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Abstract

In the last few years there has been rapid progress in the theory of
difference sets. This is a survey of these fascinating new developments.

1 Introduction

This paper is an update of the survey of the first author [Jungnickel (1992)].
Recent surveys on related topics are Ma (1994) (partial difference sets) and
Pott (1996) (relative difference sets). For the connections to coding theory,
we refer the reader to Assmus, Key (1992, 1992a, to appear) and Pott (1992).
A comprehensive introduction to difference sets can be found in Beth, Jung-
nickel, Lenz (1986) and Jungnickel (1992).

For the convenience of the reader, we recall the basic definition. A
(v, k, λ)-difference set in a group G of order v is a k-subset D of G, such
that every element g 6= 1 of G has exactly λ representations g = d1d

−1
2 with

d1, d2 ∈ D. The parameter n = k−λ is called the order of the difference set.
We say that D is abelian, cyclic etc. if G has this property.

The known families of difference sets can be subdivided into three classes:
difference sets with Singer parameters, cyclotomic difference sets
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and difference sets with (v,n) > 1. The difference sets with Singer param-
eters include the classical Singer difference sets and the Gordon-Mills-Welch
series. By cyclotomic difference sets we mean the Paley series consisting of
the quadratic residues in GF (q), q ≡ 3 mod 4, the families using higher
order residues and also the twin prime power series. The families of differ-
ence sets with (v, n) > 1 are the Hadamard difference sets, the McFarland
and Spence family and two new series, one found by Davis/Jedwab and one
found by Chen. The construction methods for these three classes of differ-
ence sets are completely different: The Singer difference sets are cyclic and
can be obtained from the action of a cyclic group of linear transformations
on the one-dimensional subspaces of a finite field (viewed as a vector space
over a suitable subfield), while cyclotomic difference sets live in elementary
abelian groups (or the direct product of two such groups) and are unions
of cosets of multiplicative subgroups of finite fields. The class of difference
sets with (v, n) > 1 is by far the richest; only recently, in a major work of
Davis and Jedwab (1996), it has been discovered that all these difference sets
are in fact very similar. In their paper, Davis and Jedwab give a recursive
construction which covers all abelian groups known to contain a difference
set with (v, n) > 1 (a modification is needed to include Chen’s series). The
best way to describe their construction is in terms of (abelian) characters:
The difference set is built up from smaller pieces, which are in some sense
orthogonal to each other with respect to the character group.

In the existence theory of difference sets, usually the following kind
of problem is considered. Given a parameter series (for instance the Singer
series), which (abelian) groups can contain a difference set with these param-
eters? Here the group order is prescribed, and the task is to find necessary
and sufficient conditions on the group structure for the existence of a differ-
ence set. This turns out to be an extremely difficult problem; up to now,
it has been solved for only two infinite parameter series, namely for differ-
ence sets in abelian 2-groups [Davis (1991), Kraemer (1993)] and (almost) for
McFarland difference sets under the self-conjugacy assumption [McFarland
(1973), Ma, Schmidt (1995a, submitted)].

The existence theory for Singer and cyclotomic difference sets on one
side and difference sets with (v, n) > 1 on the other side is clearly separated.
While the main tool for the study of the Singer and cyclotomic difference sets
is the multiplier theorem, almost all results on difference sets with (v, n) > 1
are exponent bounds and rely on the character theoretic approach introduced
by Turyn (1965). Most of the nonexistence results presented in this survey
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are of the latter type, since the research focussed on difference sets with
(v, n) > 1 in the last few years.

In this context, we encounter a notion coming from algebraic number
theory again and again. A prime p is called self-conjugate modulo a positive
integer m, if there exists j, such that pj ≡ −1 mod m′, where m′ is the p-free
part of m. If we study difference sets in an abelian group G, we usually say
that the self-conjugacy assumption is satisfied, if every prime divisor of the
order n is self-conjugate modulo exp(G).

2 Difference Sets with (v,n) > 1

There are five known families of difference sets with (v, n) > 1, namely the
Hadamard difference sets (called Menon difference sets in Jungnickel (1992)),
the McFarland and the Spence family, a series similar to the Spence difference
sets discovered by Davis, Jedwab (1996), and a series generalizing Hadamard
difference set found by Chen.

A striking fact that should be mentioned in such a survey is that all
known abelian difference sets with (v, n) > 1 satisfy a common condition
which might be called the character divisibility property: We say that
an (v, k, λ)-difference set D of square order n = k − λ in an abelian group
G satisfies the character divisibility property if the character value χ(D) is
divisible by

√
n for all nontrivial characters χ of G. Although every known

abelian difference set with (v, n) > 1 has this property we feel that it would
not be a good idea to turn this observation into a conjecture as has been
done in similar situations. Instead, we pose the following

Research Problem: Construct difference sets with (v, n) > 1 that do not
have the character divisibility property.

In our exposition of the latest results, we begin with the Hadamard difference
sets (HDSs) which form by far the richest and most important family. In
parts of the sections on HDSs we have drawn from the survey Davis, Jedwab
(1996a). For more details we refer the reader to this article which deals
exclusively with HDSs.
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2.1 Abelian HDSs

By a Hadamard difference set (HDS), we mean a difference set with
parameters

(v, k, λ) = (4N2, 2N2 −N,N2 −N).

In the last few years, there has been rapid progress in the theory of HDSs.
Perhaps this is best demonstrated by the following outdated conjecture which
is usually (but erroneously) attributed to McFarland and was wiped out
completely by the new results.

Conjecture 2.1 If there is an abelian HDS with v = 4N2, then N = 2r3s

for some integers r, s.

The reader should compare this conjecture with Theorem 2.4!
We first come to the new constructions and then summarize the recent

nonexistence results. We call a difference set D in a group G reversible if
{d−1 : d ∈ D} = D.

1) After working hard for about ten years, Xia (1992) found a construc-
tion for reversible HDSs in all groups

Z2 × Z2 × Z4
p1
× · · · × Z4

pt ,

where each pi is a prime with pi ≡ 3 mod 4 We note that this also yields
HDSs in Z4 × Z4

p1
× · · · × Z4

pt (which are not reversible). Xia’s sensational
construction was the first result disproving Conjecture 2.1.

The proof of the correctness of Xia’s construction was considerably sim-
plified by Xiang and Chen (1996).

2) Using a recursive construction Jedwab (1992) showed that HDSs exist
in all groups

H × Zs1 × · · · × Zsr

(where H is an abelian 2-group of square order with exp(H) ≤ 2
√
|H|) if

there exists a binary supplementary quadruple (BSQ) (see Jedwab’s paper
for the definition) of size s1 × · · · × sr.

A new and much clearer way of viewing this construction is presented in
Davis, Jedwab (1996, Cor. 6.4). Because of its importance, we explain this
approach in some detail. Davis and Jedwab introduce the notion of a cov-
ering extended building set (covering EBS). An (a,m, h,±) covering
EBS in an abelian group G is a family {D1, ..., Dh} of subsets of G with the
following properties.
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a) |D1| = a±m and |Di| = a for i = 2, ..., h.
b) For every nonprincipal character χ of G there is exactly one i with

|χ(Di)| = m and χ(Dj) = 0 if j 6= i.
Once a covering EBS is known, it is easy to construct difference sets

corresponding to this covering EBS, as is shown in Davis, Jedwab (1996,
Theorem 2.4):

Theorem 2.2 Suppose there exists an (a,m, h,±) covering EBS in an abelian
group G. Then there exists an (h|G|, ah±m, ah±m−m2)-difference set in
any abelian group containing G as a subgroup of index h.

The reason why covering EBSs are so useful is that there is a very power-
ful recursive construction for these objects. Using this method, Davis and
Jedwab obtain a unified construction covering all abelian groups which are
known to contain a difference set with (v, n) > 1.

3) Arasu, Davis, Jedwab, Sehgal (1993) constructed a BSQ of size 3b×3b

for all b ≥ 1. In the terminology of Davis and Jedwab this amounts to a
(3b(3b − 1)/2, 3b, 4,+) covering EBS in Z2

3b .
4) The most recent constructions yield reversible HDSs in Z2 × Z2 × Z4

p

for all odd primes p (note that this also gives HDSs in Z4 × Z4
p); in the

setting of Davis and Jedwab this amounts to (p2(p2− 1)/2, p2, 4,+) covering
EBSs in Z4

p. This important new development began with the discovery of a
reversible HDS in Z2 × Z2 × Z4

5 by van Eupen and Tonchev (preprint) who
found this difference set by a computer search. Wilson, Xiang (submitted,
Theorem 2.2) gave a very general construction method for reversible HDSs
in the groups Z2

2 × Z4
p. They showed that the construction of an HDS in

H×Z4
p, where H ∼= Z4 or Z2

2, can be reduced to the construction of a spread
S in PG(3, p) and two projective two-weight codes which are connected with
S by certain intersection properties. We note that Xia’s construction, whose
original proof had been very involved, is an easy corollary to this result. By
their method, Wilson and Xiang obtained HDSs in Z2 ×Z2 ×Z4

p, p = 13, 17
(with the help of a computer search), and exponentially many inequivalent
reversible HDSs in Z2 × Z2 × Z4

p for p ≡ 3 mod 4.
In an earlier version of this survey, we wrote that “it seems very likely

that HDSs in H × Z4
p, H

∼= Z4 or Z2
2, exist for all primes p ≡ 1 mod 4” and

that “a construction should probably use Theorem 2.2 of Wilson and Xiang”.
In the meantime, exactly this was done by Chen (submitted) in a brilliant
work. And he did even more than this: he generalized his construction to
get the following new series of difference sets.
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Theorem 2.3 Let r, s, t be any positive integers, and let q = 3r or q = p2s

for any odd prime p. Then there exists a difference set with parameters

(v, k, λ) = (4q2t
q2t − 1

q2 − 1
, q2t−1[

2(q2t − 1)

q + 1
+ 1], q2t−1(q − 1)

q2t−1 + 1

q + 1
)

in K × V , where K is any abelian group of order 4 q2t−1
q2−1 and V is the ele-

mentary abelian group of order q2t.

The state of knowledge about abelian HDSs on the existence side is summa-
rized in the next theorem. No other abelian groups are known to contain
an HDS. The best method to understand this result is described in Davis,
Jedwab (1996, section 6); one has to apply their recursive procedure to the
covering EBSs mentioned above to get the following.

Theorem 2.4 Let H be an abelian group of order 22a+2 (a ≥ 0) with exp(H)
≤ 2a+2, let b1, ..., br be positive integers, and let p1, ..., pt be (not necessarily
distinct) odd primes. Then the group

H × Z2
3b1 × · · · × Z2

3br × Z4
p1
× · · · × Z4

pt

contains an HDS. Here r = 0 or t = 0 is allowed and is interpreted in the
obvious way.

On the nonexistence side, all new results rely on the character theoretic
approach. In this section, we only mention the results which need the self-
conjugacy assumption. More nonexistence results on HDSs can be found in
Section 3.

Chan, Ma and Siu (1994) found necessary conditions for groups of p-
rank two (p odd) to contain an HDS. This result was generalized by Arasu,
Davis and Jedwab (1995) who proved part (a) of the following theorem. Part
(b) was independently obtained by Davis, Jedwab (submitted (a)) and Ma,
Schmidt (1995).

Theorem 2.5 Let G be an abelian group with Sylow p-subgroup P of order
p2a (p odd) containing an HDS. Write G = H × P . Assume that p is self-
conjugate modulo exp(G). Then the following hold.

(a) exp(P ) ≤ pa.
Furthermore, if exp(P ) = pa, then P ∼= Zpa × Zpa.
(b) If P ∼= Zpa × Zpa, then also each of the groups H × Zpb × Zpb with

b < a contains an HDS.
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Ray-Chaudhuri and Xiang (to appear (a)) obtained the following partial
generalization of the result of Mann and McFarland (1973).

Theorem 2.6 There are no HDSs in abelian groups Z2 × Z2 × P , where
|P | = p2a, a is odd and p is a prime congruent to 1 mod 4.

2.2 Nonabelian HDSs

The recent research on nonabelian HDSs focussed on 2-groups and groups
of order 4p2 (p an odd prime). Davis (1992) showed that Kraemer’s method
which settled the existence question for HDSs in abelian 2-groups can be mod-
ified to construct HDSs in nonabelian 2-groups. This result was generalized
to non-2-groups by Meisner (1992, 1996a) who gave a recursive construction
of nonabelian HDSs using relative difference sets. A research effort initiated
by Dillon (1990) led to the decision of the existence question for HDSs for
all 267 groups of order 64. Constructions were found for 258 of these groups
and nonexistence was proved for 8. The last remaining case, the so-called
modular group of exponent 32, was settled by Liebler and Smith (1993) who
found a construction for HDSs in this group with the help of a representation
theoretic sieve. Their construction was extended by Davis and Smith (1994)
who proved that there exists a group of order 22a+2 and exponent 2a+3 con-
taining an HDS for every a ≥ 2. Even higher exponents where achieved by
a recent construction of Davis, Iiams (submitted). They showed that there
is an HDS in a nonabelian group of order 24d+2 and exponent 23d+2 for every
d > 0. By comparison with Turyn’s exponent bound for abelian HDSs, this
is not exactly what one would have expected!

Liebler (1993) used arguments of McFarland (1989) and techniques from
representation theory to prove the following result.

Theorem 2.7 If p is an odd prime and the group

G = 〈x, y, z|xp = yp = z4 = 1, yx = xy, z−1xz = x−1, z−1yz = y−1〉

contains an HDS, then p = 3.

Iiams (1995) extended Liebler’s work to other groups of order 4p2 and ob-
tained the following.

Theorem 2.8 Let p ≥ 5 be a prime and let G be a group of order 4p2

containing an HDS. Then G has an irreducible complex representation of
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degree 4 or G ∼= 〈x, y, z|xp = yp = z4 = 1, xy = yx, xz = zx, zyz−1 = y−1〉
and p ≡ 1 mod 4.

We note that Theorem 2.8 excludes 10 of the 16 isomorphism classes of groups
of order 4p2 in the case p ≡ 1 mod 4 and 11 of the 12 isomorphism classes in
the case p ≡ 3 mod 4. For both p ≡ 1 and 3 mod 4, McFarland (1989) had
already excluded four of these classes (the abelian) and Liebler (1993) had
excluded one nonabelian class, see Theorem 2.7.

There has also been an interesting discovery of a single nonabelian HDS
by Smith (1995), namely an HDS in a group of order 100. McFarland (1989)
had shown that an HDS in an abelian group of this order cannot exist.
Smith’s HDS gives the first example of a parameter triple (v, k, λ) such that
a nonabelian but no abelian (v, k, λ)-difference set exists.

Finally, we note that the existence of abelian reversible HDSs implies
the existence of certain nonabelian HDSs; for instance, a reversible HDS in
Z2

2 × Z4
p leads to HDSs in all semi-direct products of Z2

2 and Z4
p. For related

material, see Meisner (1992, 1996, 1996a).

2.3 McFarland difference sets

A McFarland difference set is a difference set with parameters

v = qd+1[1 + (qd+1 − 1)/(q − 1)],

k = qd(qd+1 − 1)/(q − 1),

λ = qd(qd − 1)/(q − 1),

where q = pf is a prime power and d is a positive integer. A series of
difference sets with these parameters was constructed by McFarland (1973)
in his important paper. We will assume (p, f) 6= (2, 1), as this is the case of
Hadamard difference sets in 2-groups.

In the last years there has been a lot of progress in the existence theory
of McFarland difference sets. Under the self-conjugacy assumption the exis-
tence problem for abelian McFarland difference sets has been solved almost
completely by the work of Ma and Schmidt (1995a, submitted). A new con-
struction in the case q = 4 is due to Davis and Jedwab (1996). It shows
that the exponent bound of Ma and Schmidt (submitted) is necessary and
sufficient in this case.

Let us first look at some previous results. Arasu, Sehgal (1995) con-
structed a McFarland difference set with q = 4 and d = 1 in Z2 × Z2

4 × Z3,
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a group which is not covered by McFarland’s original construction. Arasu,
Sehgal (1995a) gave a nonexistence proof for two special cases of McFarland
difference sets. In the case d = 1, Arasu, Davis, Jedwab, Ma and McFarland
(1996) slightly improved the exponent bounds that can be obtained by the
arguments of Turyn (1965). Finally, Ma and Schmidt (1995a, submitted)
found the following exponent bounds which are best possible and almost
completely solve the existence problem for abelian McFarland difference sets
under the self-conjugacy assumption.

Theorem 2.9 Assume that there exists a McFarland difference D set in an
abelian group G of order v = qd+1[1 + (qd+1− 1)/(q− 1)], where q = pf and p
is self-conjugate modulo exp(G). Let P be the Sylow p-subgroup of G. Then
the following hold.

(a) If p is odd, then P is elementary abelian.
(b) If p = 2 and f ≥ 2, then exp(P ) ≤ 4.

Note that by the construction of McFarland (1973) condition (a) of Theorem
2.9 is also sufficient. As mentioned above, the construction of Davis and
Jedwab (1996) shows that condition (b) is also sufficient for f = 2; for p = 2
and f > 2 there are still a lot of open cases, and it is an interesting question
if the methods of Davis, Jedwab (1996) and Ma, Schmidt (1995a) may be
combined to solve this problem. It should be mentioned that Theorem 2.9
remains true if the self-conjugacy condition is replaced by the weaker as-
sumption that D has the character divisibility property. This implies that, if
the self-conjugacy condition does not hold, constructions of putative differ-
ence sets in groups exceeding the exponent bounds of Theorem 2.9 have to
be extremely involved. It is a very important question if such constructions
are possible.

In the case f = 1 of Theorem 2.9 (a) it is possible to determine all
McFarland difference sets with the given parameters. Ma and Schmidt (1997)
proved the following.

Theorem 2.10 If f = 1 in the situation of Theorem 2.9 (a), then D is one
of the difference sets constructed by McFarland.
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2.4 The Davis-Jedwab series

After Spence’s work [Spence (1977)] who constructed a series of difference
sets with parameters

v = 3d+1(3d+1 − 1)/2,

k = 3d(3d+1 + 1)/2,

λ = 3d(3d + 1)/2,

the first discovery of a new parameter series of difference sets is due to Davis
and Jedwab (1996). The new parameters are

v = 22d+4(22d+2 − 1)/3,

k = 22d+1(22d+3 + 1)/3,

λ = 22d+1(22d+1 + 1)/3,

where d is a positive integer. Davis and Jedwab (1996) constructed difference
sets with these parameters in all abelian groups of the given order v which
have a Sylow 2-subgroup P of exponent at most 4, with the single exception
of d = 1 and P ∼= Z3

4. This construction is a part of a unifying construc-
tion including all abelian groups known to contain a McFarland or Spence
difference set, see Corollary 5.3 of Davis, Jedwab (1996). The method is the
same as explained in Section 2.1: A recursive construction for covering EBSs
combined with Theorem 2.2.

Previously, Ma and Schmidt (1995a) had proved that in the case d = 1,
that is (v, k, λ) = (320, 88, 24), an abelian group containing such a difference
set must have a Sylow 2-subgroup of exponent at most 4. Schmidt (preprint)
generalized this result and obtained the following. We call a difference set
with the above parameters a Davis-Jedwab difference set.

Theorem 2.11 Let G be an abelian group of order 22d+4(22d+2 − 1)/3 with
Sylow 2-subgroup P . With the possible exception of d = 1 and P ∼= Z3

4, a
Davis-Jedwab difference set in G that has the character divisibility property
exists if and only if exp(P ) ≤ 4.

Roughly speaking, this result shows that Davis and Jedwab did a very good
job and constructed everything which is possible without using extremely
complicated character sums.
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3 Difference sets without self-conjugacy

The best way to understand the importance of the self-conjugacy assumption
is in terms of (abelian) characters. Let D be a k-subset of an abelian group
G. If D is viewed as an element of the group ring ZG, then D is a (v, k, λ)-
difference set in G if and only if

χ(D)χ(D) = n (1)

for all nonprincipal characters χ of G, where n = k − λ is the order of D.
This approach to the study of difference sets was introduced in the classical
paper of Turyn (1965). For simplicity, let us assume that n is a square,
say n = u2. It can be shown [see Turyn (1965)] that if n is self-conjugate
modulo exp(G), then (3.1) implies that χ(D) = uξ, where ξ is a root of
unity (let us call such solutions trivial solutions). This means that χ(D)
can be determined explicitly from (3.1) under the self-conjugacy assumption.
Together with the fact that χ(D) is the image of a subset of G this gives rise
to necessary conditions for difference sets. This is the reason why difference
sets are quite well understood today, if self-conjugacy is assumed.

Much less is known about difference sets without self-conjugacy, since
in this case it is much more difficult to determine χ(D) from (3.1). How
complicated matters can become is best demonstrated by McFarland’s work
[McFarland (1989)] on HDSs in abelian groups of order 4p2. He needed 70
pages to show that no such difference set exists if p is a prime ≡ 1 mod 4
(where self-conjugacy does not hold); the proof of the same result for primes
p ≡ 3 mod 4, p > 3, (where self-conjugacy holds) only takes one page [see
Mann, McFarland (1973)]!

In this context, it should be mentioned that, from the point of view of
the character approach via equation (3.1), Ryser’s conjecture (a (v, k, λ)-
difference set with (v, n) > 1 cannot be cyclic) and Lander’s conjecture (if a
(v, k, λ)-difference set exists in an abelian group G and p is a prime divisor
of (v, n), then the Sylow p-subgroup of G cannot be cyclic) are very dubious.
The reason for this is that almost all “evidence” for these conjectures comes
from cases where (3.1) has only the trivial solutions. If (3.1) has further
solutions, then the situation changes considerably and very little is known
about this. We remark that these important problems are closely connected
to the question whether there exists a McFarland difference set exceeding the
exponent bounds of Theorem 2.9.
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A new approach to avoid the self-conjugacy assumption is due to Chan
(1993); he showed that in some special cases equation (3.1) has only the
trivial solutions, although the self-conjugacy assumption does not hold. This
resulted in necessary conditions for the existence of HDSs in groups of the
form Z2pq ×Z2pq resp. Z2p×Z2p×H, where p, q are distinct prime numbers
and H is an abelian q-group. In particular, he showed that an HDS in
Z6p × Z6p can only exist if p = 3 or p = 13. Applications of Chan’s method
to divisible difference sets can be found in Arasu, Pott (1996).

The most difficult and most interesting problems arise in the cases where
equation (3.1) has other solutions than the trivial ones. An example where
equation (3.1) has three essentially distinct types of solutions, namely the
case of abelian McFarland difference sets with q = 9 and d = 1 (i.e. (891, 90, 9)-
difference sets) is studied in the remarkable work of Arasu and Ma (in prepa-
ration). Avoiding the explicit determination of these solutions, they prove
that such a difference set can only exist if the exponent of the underlying
group is 33 (by McFarland’s construction [McFarland (1973)], this condition
is also sufficient).

Some theorems which are very useful for the study of difference sets with-
out self-conjugacy can be found in Ma’s important work [Ma (to appear)] on
relative (n, n, n, 1)-difference sets.

Another approach to difference sets without self-conjugacy was chosen
by Schmidt (in preparation). He uses properties of the decomposition group
of the prime ideal divisors of the order of the difference set together with
arguments similar to those of McFarland (1989, section 4) to find restrictions
on the solutions of (3.1). To give a flavor of these results, we mention the
following special case. By ξt we denote a primitive complex t-th root of unity.

Theorem 3.1 Let d = pam, where p is an odd prime and m > 0 is an odd
integer relatively prime to p. If X ∈ Z[ξd] satisfies

XX = p,

then with suitable j either ξjdX ∈ Z[ξm] or X = ±ξjdY , where Y is a gener-
alized Gauss sum (see Ireland, Rosen (1990)).

With the help of results similar to Theorem 3.1 it is often possible to find all
solutions of equation (3.1). One of the most interesting applications concerns
the following well-known conjecture on Hadamard matrices, see Jungnickel
(1992, section 12).
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Conjecture 3.2 There is no circulant Hadamard matrix of order m > 4
(or, equivalently, there is no cyclic Hadamard difference set with N > 1).

Here m and N are connected via m = 4N2. Since Turyn’s classical work
[Turyn (1965)] it has been known that Conjecture 3.2 is true for m < 12, 100.
Since then there have been a lot of incorrect claims on this subject (and also
on Conjecture 3.4 below), see Lin, Wallis (1993). We restrict our attention to
the few results which have a chance to be correct. Schmidt (in preparation)
extends the bound of 12, 100 for which Conjecture 3.2 is known to be true and
also proves some general nonexistence theorems on Hadamard difference sets
relying on the approach mentioned above and the sub-difference set method
due to McFarland (1990).

A notion closely connected to cyclic HDSs is Barker sequences. These
are finite sequences a1, ..., av of ones and minus ones, such that the so-called
aperiodic autocorrelation

cj =
v−j∑
i=1

aiai+j

takes only the values 0 and ±1 for j = 1, ..., v−1. The only known examples
of Barker sequences have length v ∈ {2, 3, 4, 5, 7, 11, 13}. It is conjectured
that these are all possible values of v.

Conjecture 3.3 There is no Barker sequence of length v > 13.

The following facts are well-known, see Jungnickel (1992, Section 12).

Theorem 3.4 There is no Barker sequence of odd length v > 13. If there
exists a Barker sequence of even length v, then v = 4N2 for some N and
there exists an HDS in the cyclic group of order 4N2.

Hence Conjecture 3.3 is weaker than Conjecture 3.2. There is one important
theorem on Barker sequences due to Eliahou, Kervaire, Saffari (1990) which
is not known to be true for cyclic HDSs:

Theorem 3.5 There is no Barker sequence of length 4N2 if N has a prime
divisor congruent to 3 mod 4.

Using this theorem together with the results of Turyn (1965), Eliahou, Ker-
vaire (1992) showed that Conjecture 3.3 is true for v < 1, 898, 884. Some
details of this paper were discussed in Jedwab, Lloyd (1992), Broughton
(1994) and Eliahou, Kervaire (1994).
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The results of Schmidt (in preparation) give some further restrictions on
the length of Barker sequences which do not follow from Turyn’s work or
Theorem 3.5.

4 Miscellanea

4.1 Difference Sets with multiplier -1

A well-known conjecture of McFarland states that, up to a single exception,
all abelian difference sets with multiplier −1 must be HDSs. This conjecture
has been the main research problem in this field for many years. Recently,
Cao (private communication) claimed to have a proof of McFarland’s con-
jecture (we have not seen the paper yet). Hence the following might be true.

Theorem 4.1 Let D be a (v, k, λ)-difference set with multiplier -1 (w.l.o.g.
assume k < v/2 by complementation). Then either (v, k, λ) = (4000, 775, 150)
or D is a Hadamard difference set.

Ma (1991) had shown that the proof of Theorem 4.1 can be reduced to the
proof of two number theoretic conjectures on solutions of certain diophantine
equations, see Jungnickel (1992, section 13). Le, Xiang (1996) could verify
the first of these two conjectures. The key to their proof is the observation
that a solution violating Ma’s conjecture would lead to a fundamental so-
lution of Pell’s equation. Finally, Cao (private communication) claimed to
have a proof of both of Ma’s conjectures completing the proof of Theorem
4.1.

Concerning Hadamard difference sets with multiplier -1, Xiang (submit-
ted) proved that no such difference sets exist in Z2

2 × Z2
9 and Z2

4 × Z2
3. This

settled the last two open cases with N < 10, see Ma (1990).
The new constructions for difference sets with multiplier −1 were al-

ready mentioned in Section 2.2; the constructions of Xia (1992), van Eupen,
Tonchev (preprint), Wilson, Xiang (submitted) and Chen (submitted) all
provide reversible HDSs. Dillon (1990) constructed reversible HDSs in all
groups Z2t × Z2t . Putting all these examples together with the trivial HDS
in Z4 and Turyn’s reversible HDS in Z2

2×Z2
3 into the recursive constructions

of Menon (1962) and Turyn (1984), one obtains the following theorem. No
other abelian groups are known to contain a reversible HDS.
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Theorem 4.2 There exist reversible HDS in G and G×Z2
2×Z2a

3 ×Z4
p1
×· · ·×

Z4
ps for all groups G = Zb

4×Z2
2c1×· · ·×Z2

2cr , where the pi are (not necessarily
distinct) odd primes with and a, b, c1, ..., cr are nonnegative integers.

4.2 Skew Paley-Hadamard difference sets

By Paley-Hadamard difference sets we mean difference sets with param-
eters (v, k, λ) = (4n−1, 2n−1, n−1). These were called just Hadamard dif-
ference sets in Jungnickel (1992); we have switched to “Paley-Hadamard” to
avoid confusion with the HDSs from Sections 2.1 and 2.2. A Paley-Hadamard
difference set in a group G is called a skew Paley-Hadamard difference
set if G is the disjoint union of D, D(−1) := {d−1 : d ∈ D} and the iden-
tity element. It is well known (see Jungnickel (1992, section 9)) that a skew
Paley-Hadamard difference set in an abelian group of order v can only exist
if v = pm ≡ 3 mod 4 for some prime p and some positive integer m. The
following is a longstanding open conjecture.

Conjecture 4.3 If there exists an abelian skew Paley-Hadamard difference
set in a group G of order v = pm ≡ 3 mod 4, then G must be elementary
abelian.

Chen, Xiang, Sehgal (1994) made some progress towards Conjecture 4.3.
They proved the following result which, in particular, shows that Conjecture
4.3 is true for m ≤ 5.

Theorem 4.4 Let G be an abelian p-group, where p is a prime with p ≡
3 mod 4, and write |G| = pm, exp(G) = ps. If G admits a skew Paley-
Hadamard difference set and s ≥ 2, then s ≤ (m+ 1)/4.

4.3 Dihedral difference sets

Leung, Ma, Wong (1992) derived strong necessary conditions for the exis-
tence of difference sets in dihedral groups lending support to the following
conjecture.

Conjecture 4.5 No nontrivial difference sets exist in dihedral groups.

Using a computer search, Leung, Ma and Wong verified Conjecture 4.5 for all
parameter triples (v, k, λ) with k − λ ≤ 106, except five undecided cases. In
this context, we mention the following observation of Schmidt (submitted).
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Special cases of this result were previously obtained by Fan, Ma and Siu
(1985) for dihedral difference sets and by Shiu (1996) for arbitrary difference
sets.

Theorem 4.6 There is no nontrivial symmetric (v, k, λ)-design with v =
2pm for any odd prime p and any positive integer m. In particular, there is
no nontrivial difference set in any group of order 2pm.

4.4 Multipliers

There have been some attempts to make progress towards Hall’s multiplier
conjecture, see Qiu (1993, 1994, 1995, 1995a, 1996, submitted (a), submitted
(b)); let us first recall this conjecture.

Conjecture 4.7 If D is a (v, k, λ)-difference set in an abelian group and t
is a divisor of n = k − λ relatively prime to v, then t is a multiplier of D.

Maybe the most interesting result in this direction is the following obtained
by Muzychuk (submitted). It finishes the case n = 2pa which was first
considered by Turyn (1964) and Mann, Zaremba (1969), but not completely
settled.

Theorem 4.8 Let D be a (v, k, λ)-difference set in an abelian group, where
n = 2pa for some odd prime p and (p, |G|) = 1. Then p is a multiplier of D.

A unified theorem containing most of the numerous variations of Hall’s mul-
tiplier theorem is due to Arasu and Xiang (1995). There are also some new
results concerning the structure of multiplier groups. Xiang (1994) used
techniques from algebraic number theory to get restrictions on the numerical
multiplier group of difference sets. Xiang and Chen (1995) obtained the fol-
lowing upper bound for the size of the multiplier group of a cyclic difference
set.

Theorem 4.9 The multiplier group M of a cyclic (v, k, λ)-difference set D
has cardinality at most k, unless D is the Singer difference set belonging to
PG(2, 4) (in which case |M | = 6).

16



4.5 Planar difference sets

By a planar difference set we mean a difference set with parameters (v, k, λ) =
(n2 +n+ 1, n+ 1, 1). Such a difference set is equivalent to a projective plane
with a regular automorphism group (Singer group), see Beth, Jungnickel,
Lenz (1986). The structure of the multiplier groups of planar difference sets
was studied by Ho in a sequence of papers [Ho (1993, 1993a, 1993b, 1994,
1995, submitted (a))]; to give an impression of his results, we mention the
following.

Theorem 4.10 Let Π be a projective plane of order n with Singer group
G (not necessarily abelian) and difference set D ⊂ G, and let M be the
multiplier group of D. Then the Sylow 2-subgroup S of M is a cyclic direct
factor of M , and hence M is solvable. Moreover, the following hold.

a) Write n = m2a, where m is not a square. Then |S| ≤ 2a; if M is
abelian, then actually |S| = 2a and |M | ≤ (m+ 1)2a.

b) M fixes a line of Π.
c) If M has even order, then each subgroup of G is invariant under the

unique involution in M , except possibly if n = 16 and G is nonabelian.
d) Let H be an abelian subgroup of M . If H has odd order, then |H| ≤

n+ 1. If |H| = n+ 1, then n2 + n+ 1 is a prime.
e) If M is abelian, then either |M | ≤ n+ 1 or n is a square.
f) If G is abelian, then |M | ≤ n+ 1 except for n = 4, where |M | = 6.
g) If M is abelian and n is a square, then the Sylow 3-subgroup of M is

cyclic.

Recently, Ho (submitted (b)) obtained the following generalization of Ott’s
celebrated theorem, see Ott (1975).

Theorem 4.11 A finite projective plane admitting more than one abelian
Singer group is Desarguesian.

Gordon (1994, submitted) provides some computational results on the prime
power conjecture which states that the order of an abelian planar difference
set must be prime power. He uses the known nonexistence results and a
computer to show that the prime power conjecture is true for all orders
n ≤ 2, 000, 000 and to extend the list of integers that cannot divide the order
of an abelian planar difference set; the previous version of this list can be
found in Jungnickel (1992, Theorem 8.7).
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An application of the Singer difference set of Π = PG(2, q) was found by
Jungnickel (1991); he used this difference set for the construction of a anti-
polarity in Π, i.e. a bijection α between the points and lines of Π satisfying
p ∈ α(q)⇒ q 6∈ α(p).

4.6 The geometry of Singer and GMW difference sets

It is well-known that −D is an oval of the projective plane corresponding
to an abelian planar difference set D, see Jungnickel (1992). In the classical
case, one can say more.

Proposition 4.12 Let D be a Singer difference set corresponding to PG(2, q),
where q is odd, and let r be any integer. Then rD := {rd : d ∈ D} is a conic
provided that one of the following conditions holds for some integers i, j, k:

(a) rpk(qi + qj) ≡ 1 mod q2 + q + 1;
(b) rpk ≡ 2 mod q2 + q + 1.

This result is due to Jackson, Quinn and Wild (1996). Similar questions have
also been investigated in higher dimensions. In the context of constructing
perfect ternary sequences, it is of interest for which values of r the set rD
obtained from a difference set D corresponding to Π = PG(d, q) is a quadric
in Π. This has been shown to hold whenever there are integers i, j, k satisfying
rpk(qi + qj) ≡ 1 mod (qd+1− 1)/(q− 1); however, no necessary and sufficient
conditions on r are known in general, and it is also not known for which
values of r the resulting quadric is non-degenerate. We refer the reader to
Høholdt, Justesen (1983), Games (1986), Jackson, Wild (1992) and Jackson,
Quinn, Wild (1996).

Jackson, Wild (to appear) characterized the designs arising from the

Gordon-Mills-Welch difference sets as the ( q
n−1
q−1 ,

qn−1−1
q−1 , q

n−2−1
q−1 )-designs ad-

mitting
GL(m, qt) as an automorphism group for appropriate m, t with mt = n.

An interesting connection between hyperovals in PG(2, 2d) and difference
sets with Singer parameters (v, k, λ) = (2d − 1, 2d−1 − 1, 2d−2 − 1) was dis-
covered by A. Maschietti (submitted). In particular, this yields a method to
construct three infinite series of difference sets with Singer parameters some
of which are probably non-equivalent to the known ones.
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4.7 Tables

The table concerning the existence of abelian difference sets with n ≤ 30 in
Jungnickel (1992) contained three open entries belonging to the parameters
(v, k, λ) = (90, 20, 4). The table is now complete, since these entries have
been answered: Arasu, Sehgal (1995a) and Arasu, Davis, Jedwab, Ma, Mc-
Farland (1996) showed that in two of these cases (Z4 ×Z8 ×Z3 and (Z2)

2 ×
Z8 × Z3) no difference set can exist. The remaining case (Z2 × (Z4)

2 × Z3)
was settled via construction by Arasu, Sehgal (1995).

There are some new tables available. The CRC handbook of combina-
torial designs contains a table of abelian difference sets [Jungnickel, Pott
(1996)] as well as of nonabelian difference sets [Smith (1996)]; these tables
do not only deal with the existence question, but also provide a lot of explicit
examples of difference sets.

Further tables of difference sets are Kopilovich (1989) [abelian noncyclic
difference sets with k ≤ 100] and Vera Lopez, Garcia Sanchez (to appear)
[abelian difference sets with 100 < k ≤ 150].

Up to our knowledge, the only open cases of abelian (v, k, λ)-difference
sets with k ≤ 100 are the following.

(640, 72, 8), Z2 × Z3
4 × Z5;

(640, 72, 8), Z3
2 × Z2

4 × Z5;

(320, 88, 24), Z3
4 × Z5.

This is an update of the table in Jungnickel, Pott (1996). The updates are:
a) Iiams (in preparation) excluded the following cases.

(288, 42, 6), Z4 × Z8 × Z2
3;

(288, 42, 6), Z2
2 × Z8 × Z2

3;

(189, 48, 12), Z3
3 × Z7;

(176, 50, 14), Z2
4 × Z11;

(176, 50, 14), Z2
2 × Z4 × Z11;

(176, 50, 14), Z4
2 × Z11.

b) The cases (160, 54, 18), Z2×Z16×Z5 and Z4×Z8×Z5 were excluded by
Ma, Schmidt (1997).

c) Abelian (320, 88, 24)-difference sets were constructed by Davis, Jedwab
(1996) in all abelian groups of order 320 and exponent not exceeding 20,
except in Z3

4 × Z5.
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d) Arasu and Ma (in preparation) showed that no abelian (891, 90, 9)-
difference sets exist in groups of exponent exceeding 33.

e) The case of a (783, 69, 6)-difference set in Z3
3 × Z29 was excluded by

Schmidt (to appear).
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