On Lander's Conjecture for Difference Sets whose Order is a Power of 2 or 3

Ka Hin Leung Department of Mathematics National University of Singapore Kent Ridge, Singapore 119260 Republic of Singapore matlkh@nus.edu.sg

Siu Lun Ma Department of Mathematics National University of Singapore Kent Ridge, Singapore 119260 Republic of Singapore matmasl@nus.edu.sg

Bernhard Schmidt Division of Mathematical Sciences School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 bernhard@ntu.edu.sg

February 23, 2009

Abstract

Let p be a prime and let b be a positive integer. If a (v, k, λ, n) difference set D of order $n = p^b$ exists in an abelian group with cyclic Sylow p-subgroup S, then $p \in \{2, 3\}$ and |S| = p. Furthermore, either p = 2 and $v \equiv \lambda \equiv 2 \pmod{4}$ or the parameters of D belong to one of four families explicitly determined in our main theorem.

1 Introduction

A $(\mathbf{v}, \mathbf{k}, \lambda, \mathbf{n})$ difference set in a finite group G of order v is a k-subset D of G such that every element $g \neq 1$ of G has exactly λ representations $g = d_1 d_2^{-1}$ with $d_1, d_2 \in D$. The positive integer $n = k - \lambda$ is called the **order** of the difference set. The existence of a (v, k, λ, n) difference set implies the existence of a symmetric (v, k, λ) design (see [2]). For detailed treatments of difference sets, see [1, 2, 3, 4, 5, 8].

Lander [5, p. 224] proposed the following conjecture.

Conjecture 1.1 (Lander 1983) Let G be an abelian group of order v containing a difference set of order n. If p is a prime dividing v and n, then the Sylow p-subgroup of G cannot be cyclic.

In [6, Thm. 1.3], the following was proved.

Result 1.2 Lander's conjecture is correct in the case where n is a power of a prime p > 3.

In the current paper, we obtain further progress towards Lander's conjecture in the case of difference sets of prime power order and prove the following result. **Theorem 1.3** Let G be an abelian group of order v containing a (v, k, λ, n) difference set with k < v/2. Assume that n is a power of p where $p \in \{2,3\}$, and that the Sylow p-subgroup S of G is cyclic. Then $n = p^{2t}$ for some positive integer t, and S has order p. Furthermore, one of the following holds.

(i) p = 2 and $v \equiv \lambda \equiv 2 \pmod{4}$.

$$\begin{aligned} (ii) \quad &(v,k,\lambda,n) = \left(9 \cdot 2^{2t-1} - 2, \ 3 \cdot 2^{2t-1}, \ 2^{2t-1}, \ 2^{2t}\right). \\ (iii) \quad &(v,k,\lambda,n) = \left(\frac{25 \cdot 3^{2t-1} - 3}{2}, \ 5 \cdot 3^{2t-1}, \ 2 \cdot 3^{2t-1}, \ 3^{2t}\right) \\ (iv) \quad &(v,k,\lambda,n) = \left(\frac{49 \cdot 3^{2t-1} - 3}{4}, \ \frac{7 \cdot 3^{2t} - 3}{4}, \ \frac{3^{2t+1} - 3}{4}, \ 3^{2t}\right). \\ (v) \quad &(v,k,\lambda,n) = \left(\frac{64 \cdot 3^{2t-1} - 3}{5}, \ \frac{8 \cdot 3^{2t} - 3}{5}, \ \frac{3^{2t+1} - 3}{5}, \ 3^{2t}\right). \end{aligned}$$

2 Preliminaries

In this section, we list the definitions and basic facts we need in the rest of the paper. We first fix some notation. Let G be a finite group, and let R be a ring. We will always identify a subset A of G with the element $\sum_{g \in A} g$ of the group ring R[G]. For $B = \sum_{g \in G} b_g g \in R[G]$ we write $B^{(-1)} := \sum_{g \in G} b_g g^{-1}$ and $|B| := \sum_{g \in G} b_g$. We call $\{g \in G : b_g \neq 0\}$ the **support** of B. For $X, Y \in R[G]$, we write $X \subset Y$ if the support of X is contained in the support of Y. For $X \in R[G]$ and $g \in G$, the group ring element Xg is called a **translate** of X. A group homomorphism $G \to H$ is always assumed to be extended to a homomorphism $R[G] \to R[H]$ by linearity. For integers a, b, c, $b \geq 0$, we write $a^b || c$ if a^b , but not a^{b+1} , divides c.

Since D is a difference set in G if and only if $G \setminus D$ is a difference set in G, we can restrict our attention to (v, k, λ, n) -difference sets with $k \leq v/2$. Counting the number of quotients $d_1d_2^{-1}$, $d_1, d_2 \in D$, $d_1 \neq d_2$, gives the trivial parameter condition $k(k-1) = \lambda(v-1)$. This implies that k = v/2 is impossible. Thus we can assume k < v/2. Note that in this case $\lambda < k/2$ and n > k/2 since $\lambda = k(k-1)/(v-1) < k^2/v < k/2$. Hence, throughout this paper, we will only consider difference sets with

$$k < \frac{v}{2} \text{ and } \lambda < \frac{k}{2} < n.$$
 (1)

In the group ring language, difference sets can be characterized as follows [2, Lemma VI.3.2].

Result 2.1 Let D be a k-subset of a group G of order v. Then D is a (v, k, λ, n) difference set in G if and only if in $\mathbb{Z}[G]$ the following holds.

$$DD^{(-1)} = n + \lambda G \tag{2}$$

Notation 2.2 The following notation and assumptions will be used throughout the rest of the paper.

- $G = \langle \alpha \rangle \times H$ is an abelian group with cyclic Sylow *p*-subgroup $\langle \alpha \rangle$ where $p \in \{2, 3\}$.
- The order of α in G is $p^s, s \ge 1$.
- *H* is the complement of $\langle \alpha \rangle$ in *G*.
- $P = \langle \alpha^{p^{s-1}} \rangle$ is the unique subgroup of G of order p.
- D is a (v, k, λ, n) difference set in G where $n = p^r$ for some positive integer r, and (1) holds.
- If p = 2, then v is even and thus n is a square by Schützenberger's theorem [9]. So r = 2t for some positive integer t. For p = 2 and $t \le 2$, no difference set D as described above exists [2]. Thus we assume r = 2t and $t \ge 3$ in the case p = 2.

3 Proof of Theorem 1.3

Let φ denote the Euler totient function. By [7, Theorem 4.3], we have

$$n \leq \begin{cases} \frac{4^2|H|}{4\varphi(4)} = 2|H| & \text{for } p = 2 \text{ and} \\ \frac{3^2|H|}{4\varphi(3)} = \frac{9|H|}{8} & \text{for } p = 3. \end{cases}$$
(3)

Lemma 3.1 Let p = 2. Replacing D by a translate, if necessary, we have

$$D = A + \alpha^{2^{s-1}}B + PC \tag{4}$$

with $A, B \subset H$ and $C \subset G$, such that A, B, and C are pairwise disjoint. Furthermore,

$$|A| = \frac{n + \sqrt{n}}{2}, \quad |B| = \frac{n - \sqrt{n}}{2} \quad and \quad |C| = \frac{\lambda}{2}.$$
 (5)

Proof By [7, Thm. 4.1], we have D = g(X - Y) + PZ with $X, Y \subset H$, $g \in G, Z \subset G$, and $X \cap Y = \emptyset$. Replacing D by Dg^{-1} , if necessary, we can assume D = X - Y + PZ. Since D has only non-negative coefficients, this implies $Y \subset PZ$. Hence, by replacing appropriate elements z of Z by $\alpha^{2^{s-1}}z$, if necessary, we can assume $Y \subset Z$. Hence we can write Z = Y + T for some $T \subset G$. We have $D = X - Y + PZ = X - Y + P(Y + T) = X + \alpha^{2^{s-1}}Y + PT$. Taking A = X, B = Y, and C = T shows that (4) holds. Note that A, B, and C are pairwise disjoint since D has coefficients 0 and 1 only.

Let $\rho : \mathbb{C}G \to \mathbb{C}H$ be the homomorphism defined by $\rho(\alpha) = e^{2\pi i/2^s}$ and $\rho(h) = h$ for $h \in H$. Then $\rho(D) = A - B$ by (4). Note that $\rho(G) = 0$. Using (2), we get

$$(A-B)(A-B)^{(-1)} = \rho(D)\rho(D)^{(-1)} = n.$$
(6)

This implies $|A| - |B| = \pm \sqrt{n}$. Comparing the coefficient of the identity element on both sides of (6) gives |A| + |B| = n. We conclude $\{|A|, |B|\} = \{(n - \sqrt{n})/2, (n + \sqrt{n})/2\}$. Replacing D by $\alpha^{2^{s-1}}D$, if necessary, we have $|A| = (n + \sqrt{n})/2$ and $|B| = (n - \sqrt{n})/2$. Since $k = |D| = |A| + |B| + 2|C| = n + 2|C| = k - \lambda + 2|C|$, we get $|C| = \lambda/2$ and thus (5) holds. Q.E.D.

We get a similar result in the case p = 3:

Lemma 3.2 Let p = 3. Replacing D by a translate, if necessary, we have

$$D = A + (P-1)B + PC \tag{7}$$

with $A, B \subset H, C \subset G$, such that A, B, and C are pairwise disjoint. Furthermore, n is a square and

$$|A| = \frac{n+\delta}{2}, \quad |B| = \frac{n-\delta}{2} \quad and \quad |C| = \frac{1}{3} \left[\lambda - \left(\frac{n-\delta}{2}\right) \right] \tag{8}$$

where $\delta = \pm \sqrt{n}$.

Proof By Corollary 3.4, Lemma 3.6 and Theorem 4.2 of [6], we have

$$D = (X - Y)(P - 1) + PZ$$

for some $X, Y \subset H$ and $Z \subset G$ such that the supports of X(P-1) and Y(P-1) are disjoint. Since D has only nonnegative coefficients, this implies $Y(P-1) \subset PZ$. Recall $P = \langle \alpha^{3^{s-1}} \rangle$. Thus, by replacing suitable elements z of Z by $\alpha^{3^{s-1}}z$ or $\alpha^{2\cdot 3^{s-1}}z$, if necessary, we can assume $Y \subset Z$. Write Z = Y + T with $T \subset G$. Then

$$D = (X - Y)(P - 1) + PZ = Y + X(P - 1) + PT.$$

Taking A = Y, B = X, and C = T shows that (7) holds. Since D has coefficients 0 and 1 only, A, B, and C must be pairwise disjoint.

Let $\rho : \mathbb{C}G \to \mathbb{C}H$ be the homomorphism defined by $\rho(\alpha) = e^{2\pi i/3^s}$ and $\rho(h) = h$ for $h \in H$. Then $\rho(D) = A - B$ by (7). Note that $\rho(G) = 0$. Using (2), we get

$$(A - B)(A - B)^{(-1)} = \rho(D)\rho(D)^{(-1)} = n.$$
(9)

This implies that n is a square and $|A| - |B| = \pm \sqrt{n}$. Comparing the coefficient of the identity element on both sides of (9) gives |A| + |B| = n. We conclude $|A| = (n + \delta)/2$ and $|B| = (n - \delta)/2$ with $\delta = \pm \sqrt{n}$. Since $k = |D| = |A| + 2|B| + 3|C| = n + (n - \delta)/2 + 3|C| = k - \lambda + (n - \delta)/2 + 3|C|$, we get $|C| = (\lambda - (n - \delta)/2)/3$ and thus (8) holds. Q.E.D.

Lemma 3.3 Let p = 2. We have $v \equiv 2 \pmod{4}$, *i.e.*, s = 1.

Proof Recall that $n = 2^{2t}$ and $t \ge 3$. Assume $v \equiv 0 \pmod{4}$, i.e., $s \ge 2$. Let \mathbb{C}^* denote the multiplicative group of nonzero complex numbers, and let $\chi : \mathbb{Z}[G] \to \mathbb{C}^*$ be the homomorphism defined by $\chi(\alpha) = -1$ and $\chi(h) = 1$ for all $h \in H$. Note that $\chi(\alpha^{2^{s-1}}) = 1$ and thus $\chi(P) = 2$ since $s \ge 2$. Let U be the subgroup of G of index 2, and write $c_1 = |C \cap U|, c_2 = |C \cap U\alpha|$. Note that

$$c_1 + c_2 = |C| = \lambda/2 \tag{10}$$

by (5) and $\chi(C) = c_1 - c_2$. Furthermore, by (4) and (5), we have

$$\chi(D) = |A| + |B| + 2\chi(C) = n + 2\chi(C) = n + 2(c_1 - c_2).$$
(11)

From (10) and (11) we infer $4c_1 = \chi(D) - n + \lambda$ and $4c_2 = -\chi(D) + n + \lambda$. Since c_1 and c_2 are nonnegative, we conclude $\lambda \ge |n - \chi(D)|$. Since $\chi(D)$ is an integer, (2) implies $\chi(D) = \pm \sqrt{n}$, and thus we have

$$\lambda \ge n - \sqrt{n}.\tag{12}$$

Note that $v = (n^2 - n)/\lambda + 2n + \lambda$ since $(v - 1)\lambda = k(k - 1)$. Moreover, $n - \sqrt{n} \leq \lambda < n$ by (12). Since $f(\lambda) = (n^2 - n)/\lambda + 2n + \lambda$ is a convex function of λ , its maximum in the interval $[n - \sqrt{n}, n]$ is attained at one of the endpoints. This implies

$$2^{s}|H| = v \le \max\{f(n - \sqrt{n}), f(n)\} = 4n.$$
(13)

On the other hand, for $n \ge 2$, we have $(n^2 - n)/x + 2n + x > 4n - 2$ for all $x \in \mathbb{R}^+$. Hence $v = (n^2 - n)/\lambda + 2n + \lambda > 4n - 2$. Together with (13), this implies $v \in \{4n - 1, 4n\}$. But v = 4n - 1 is impossible since v is even, and v = 4n implies |H| = 1 and contradicts (3). Q.E.D.

Again, we will get a similar result for p = 3. We have seen before that n is a square in the case p = 2. By Lemma 3.2 this is also true for p = 3. Thus, from now on, we write r = 2t, i.e., $n = 3^{2t}$ if p = 3. Since t = 1 is impossible [2], we will assume $t \ge 2$ if p = 3.

Lemma 3.4 Let p = 3. We have $v \equiv 3 \pmod{9}$, i.e., s = 1. Furthermore,

$$\lambda \ge \frac{n-\delta}{2}$$
 and $v \le \frac{9n+3\delta}{2}$

where δ is defined in Lemma 3.2.

Proof Since $|C| \ge 0$, we have $\lambda \ge (n-\delta)/2$ by Lemma 3.2. Thus $(n-\delta)/2 \le \lambda < n$. Note that $v = (n^2 - n)/\lambda + \lambda + 2n$ and that, as in the proof of Lemma 3.3, $f(\lambda)$ attains its maximum on the interval $[(n - \delta)/2, n]$ at one of the endpoints. Hence

$$3^{s}|H| = v \le \max\{f((n-\delta)/2), f(n)\} = \frac{9n+3\delta}{2}$$

On the other hand, we have $n \leq 9|H|/8$ by (3) and thus s = 1. Q.E.D.

Lemma 3.5 Either $p||\lambda$ or $p^{2t-1}||\lambda$.

Proof Let p = 2. Since $n = 2^{2t}$ and $2|H| = v = (n^2 - n)/\lambda + 2n + \lambda$, we have $2^{4t} + 2^{2t+1}\lambda + \lambda^2 = 2^{2t} + 2\lambda|H|$. This implies the assertion since $t \ge 3$.

Now let p = 3. The assertion follows from $\lambda < n$, $n = 3^{2t}$, $\lambda^2 + 2\lambda n + n^2 - n = \lambda v$, and $v \equiv 3 \pmod{9}$. Q.E.D.

Lemma 3.6 If p = 2 and $2^{2t-1} || \lambda$, then

$$(v, k, \lambda, n) = (9 \cdot 2^{2t-1} - 2, 3 \cdot 2^{2t-1}, 2^{2t-1}, 2^{2t}).$$

If p = 3 and $3^{2t-1} || \lambda$, then

$$(v,k,\lambda,n) = \left(\frac{25\cdot 3^{2t-1}-3}{2}, 5\cdot 3^{2t-1}, 2\cdot 3^{2t-1}, 3^{2t}\right)$$

Proof Let p = 2. Since $\lambda < n = 2^{2t}$, we have $\lambda = 2^{2t-1}$, $k = n + \lambda = 3 \cdot 2^{2t-1}$ and $v = (k^2 - n)/\lambda = 9 \cdot 2^{2t-1} - 2$.

Now let p = 3. Since $\lambda < n$, we have $\lambda = 3^{2t-1}$ or $2 \cdot 3^{2t-1}$. If $\lambda = 3^{2t-1}$, then $3^{2t-1} = \lambda \ge (n-\delta)/2 = (3^{2t} \pm 3^t)/2$. But this implies t = 1, contradicting our assumption $t \ge 2$. Thus we have $\lambda = 2 \cdot 3^{2t-1}$. Now the assertion follows from $k = n + \lambda$ and $\lambda(v - 1) = k(k - 1)$. Q.E.D.

Lemma 3.7 If p = 3 and $3||\lambda$, then either

$$(v,k,\lambda,n) = \left(\frac{49\cdot 3^{2t-1}-3}{4}, \frac{7\cdot 3^{2t}-3}{4}, \frac{3^{2t+1}-3}{4}, 3^{2t}\right)$$

or

$$(v,k,\lambda,n) = \left(\frac{64 \cdot 3^{2t-1} - 3}{5}, \ \frac{8 \cdot 3^{2t} - 3}{5}, \ \frac{3^{2t+1} - 3}{5}, \ 3^{2t}\right)$$

Proof As $v = (n^2 - n)/\lambda + \lambda + 2n$, we have $n - 1 \equiv 0 \pmod{\lambda/3}$. Write $y = 3(n-1)/\lambda$. Since $\lambda < n$, we infer y > 3 - 3/n. As y is not divisible by 3, we have $y \ge 4$.

On the other hand, $\lambda \ge (n-\delta)/2$ implies $y \le 6(n-1)/(n-\delta) = 6 + 6(\delta - 1)/(n-\delta)) = 6 + 6/\delta$. Since we assume $t \ge 2$, we have $\delta \ge 9$, and thus we get y < 7. Since $y \ne 6$, we conclude $y \le 5$.

In summary, we have $y = \{4, 5\}$ and hence $\lambda = (3^{2t+1} - 3)/4$ or $\lambda = (3^{2t+1}-3)/5$. Now the assertion follows from $k = n+\lambda$ and $\lambda(v-1) = k(k-1)$. Q.E.D.

Proof of Theorem 1.3 This immediately follows from Lemmas 3.5, 3.6, and 3.7. Q.E.D.

Remark 3.8 For many values of t, standard results [2] can be used to show that difference sets with the parameters as stated in Theorem 1.3 cannot exist. However, it seems difficult to prove this for all t.

References

- L.D. Baumert: Cyclic Difference Sets. Springer Lecture Notes 182, Springer 1971.
- [2] T. Beth, D. Jungnickel, H. Lenz: *Design Theory* (2nd edition). Cambridge University Press 1999.
- [3] D. Jungnickel: Difference Sets. Contemporary Design Theory: A Collection of Surveys, eds. J.H. Dinitz, D.R. Stinson. Wiley 1992, 241-324.
- [4] D. Jungnickel, B. Schmidt: Difference Sets: An Update. Geometry, Combinatorial Designs and Related Structures. Proc. First Pythagorean Conference, eds. J.W.P. Hirschfeld et al. Cambridge University Press 1997, 89-112.
- [5] E.S. Lander: Symmetric Designs: An Algebraic Approach. London Math. Soc. Lect. Notes 75, Cambridge University Press 1983.
- [6] K.H. Leung, S.L. Ma and B. Schmidt, Nonexistence of abelian difference sets: Lander's conjecture for prime power orders, *Trans. Amer. Math.* Soc., 356 (2004), pp. 4343-4358.
- [7] K.H. Leung and B. Schmidt, The Field Descent Method, Des. Codes Cryptogr., 36 (2005), pp. 171-188.

- [8] A. Pott: Finite geometry and character theory. Springer Lecture Notes 1601, Springer 1995.
- [9] M.P. Schützenberger: A nonexistence theorem for an infinite family of symmetrical block designs. Ann. Eugen. 14 (1949) 286-287.