On Lander's Conjecture for Difference Sets whose Order is a Power of 2 or 3

Ka Hin Leung
Department of Mathematics
National University of Singapore
Kent Ridge, Singapore 119260
Republic of Singapore matlkh@nus.edu.sg
Siu Lun Ma
Department of Mathematics
National University of Singapore
Kent Ridge, Singapore 119260
Republic of Singapore matmasl@nus.edu.sg
Bernhard Schmidt
Division of Mathematical Sciences
School of Physical \& Mathematical Sciences
Nanyang Technological University
Singapore 637371
bernhard@ntu.edu.sg

February 23, 2009

Abstract

Let p be a prime and let b be a positive integer. If a (v, k, λ, n) difference set D of order $n=p^{b}$ exists in an abelian group with cyclic Sylow p-subgroup S, then $p \in\{2,3\}$ and $|S|=p$. Furthermore, either $p=2$ and $v \equiv \lambda \equiv 2(\bmod 4)$ or the parameters of D belong to one of four families explicitly determined in our main theorem.

1 Introduction

A $(\mathbf{v}, \mathbf{k}, \lambda, \mathbf{n})$ difference set in a finite group G of order v is a k-subset D of G such that every element $g \neq 1$ of G has exactly λ representations $g=d_{1} d_{2}^{-1}$ with $d_{1}, d_{2} \in D$. The positive integer $n=k-\lambda$ is called the order of the difference set. The existence of a (v, k, λ, n) difference set implies the existence of a symmetric (v, k, λ) design (see [2]). For detailed treatments of difference sets, see $[1,2,3,4,5,8]$.

Lander [5, p. 224] proposed the following conjecture.
Conjecture 1.1 (Lander 1983) Let G be an abelian group of order v containing a difference set of order n. If p is a prime dividing v and n, then the Sylow p-subgroup of G cannot be cyclic.

In [6, Thm. 1.3], the following was proved.
Result 1.2 Lander's conjecture is correct in the case where n is a power of a prime $p>3$.

In the current paper, we obtain further progress towards Lander's conjecture in the case of difference sets of prime power order and prove the following result.

Theorem 1.3 Let G be an abelian group of order v containing $a(v, k, \lambda, n)$ difference set with $k<v / 2$. Assume that n is a power of p where $p \in\{2,3\}$, and that the Sylow p-subgroup S of G is cyclic. Then $n=p^{2 t}$ for some positive integer t, and S has order p. Furthermore, one of the following holds.
(i) $p=2$ and $v \equiv \lambda \equiv 2(\bmod 4)$.
(ii) $(v, k, \lambda, n)=\left(9 \cdot 2^{2 t-1}-2,3 \cdot 2^{2 t-1}, 2^{2 t-1}, 2^{2 t}\right)$.
(iii) $(v, k, \lambda, n)=\left(\frac{25 \cdot 3^{2 t-1}-3}{2}, 5 \cdot 3^{2 t-1}, 2 \cdot 3^{2 t-1}, 3^{2 t}\right)$.
(iv) $(v, k, \lambda, n)=\left(\frac{49 \cdot 3^{2 t-1}-3}{4}, \frac{7 \cdot 3^{2 t}-3}{4}, \frac{3^{2 t+1}-3}{4}, 3^{2 t}\right)$.
$(v)(v, k, \lambda, n)=\left(\frac{64 \cdot 3^{2 t-1}-3}{5}, \frac{8 \cdot 3^{2 t}-3}{5}, \frac{3^{2 t+1}-3}{5}, 3^{2 t}\right)$.

2 Preliminaries

In this section, we list the definitions and basic facts we need in the rest of the paper. We first fix some notation. Let G be a finite group, and let R be a ring. We will always identify a subset A of G with the element $\sum_{g \in A} g$ of the group ring $R[G]$. For $B=\sum_{g \in G} b_{g} g \in R[G]$ we write $B^{(-1)}:=\sum_{g \in G} b_{g} g^{-1}$ and $|B|:=\sum_{g \in G} b_{g}$. We call $\left\{g \in G: b_{g} \neq 0\right\}$ the support of B. For $X, Y \in R[G]$, we write $X \subset Y$ if the support of X is contained in the support of Y. For $X \in R[G]$ and $g \in G$, the group ring element $X g$ is called a translate of X. A group homomorphism $G \rightarrow H$ is always assumed to be extended to a homomorphism $R[G] \rightarrow R[H]$ by linearity. For integers a, b, c, $b \geq 0$, we write $a^{b} \| c$ if a^{b}, but not a^{b+1}, divides c.

Since D is a difference set in G if and only if $G \backslash D$ is a difference set in G, we can restrict our attention to (v, k, λ, n)-difference sets with $k \leq v / 2$. Counting the number of quotients $d_{1} d_{2}^{-1}, d_{1}, d_{2} \in D, d_{1} \neq d_{2}$, gives the trivial parameter condition $k(k-1)=\lambda(v-1)$. This implies that $k=v / 2$ is impossible. Thus we can assume $k<v / 2$. Note that in this case $\lambda<k / 2$ and $n>k / 2$ since $\lambda=k(k-1) /(v-1)<k^{2} / v<k / 2$. Hence, throughout
this paper, we will only consider difference sets with

$$
\begin{equation*}
k<\frac{v}{2} \text { and } \lambda<\frac{k}{2}<n . \tag{1}
\end{equation*}
$$

In the group ring language, difference sets can be characterized as follows [2, Lemma VI.3.2].

Result 2.1 Let D be a k-subset of a group G of order v. Then D is a (v, k, λ, n) difference set in G if and only if in $\mathbb{Z}[G]$ the following holds.

$$
\begin{equation*}
D D^{(-1)}=n+\lambda G \tag{2}
\end{equation*}
$$

Notation 2.2 The following notation and assumptions will be used throughout the rest of the paper.

- $G=\langle\alpha\rangle \times H$ is an abelian group with cyclic Sylow p-subgroup $\langle\alpha\rangle$ where $p \in\{2,3\}$.
- The order of α in G is $p^{s}, s \geq 1$.
- H is the complement of $\langle\alpha\rangle$ in G.
- $P=\left\langle\alpha^{p^{s-1}}\right\rangle$ is the unique subgroup of G of order p.
- D is a (v, k, λ, n) difference set in G where $n=p^{r}$ for some positive integer r, and (1) holds.
- If $p=2$, then v is even and thus n is a square by Schützenberger's theorem [9]. So $r=2 t$ for some positive integer t. For $p=2$ and $t \leq 2$, no difference set D as described above exists [2]. Thus we assume $r=2 t$ and $t \geq 3$ in the case $p=2$.

3 Proof of Theorem 1.3

Let φ denote the Euler totient function. By [7, Theorem 4.3], we have

$$
n \leq \begin{cases}\frac{4^{2}|H|}{4 \varphi(4)}=2|H| \quad \text { for } p=2 \text { and } \tag{3}\\ \frac{3^{2}|H|}{4 \varphi(3)}=\frac{9|H|}{8} \quad \text { for } p=3\end{cases}
$$

Lemma 3.1 Let $p=2$. Replacing D by a translate, if necessary, we have

$$
\begin{equation*}
D=A+\alpha^{2^{s-1}} B+P C \tag{4}
\end{equation*}
$$

with $A, B \subset H$ and $C \subset G$, such that A, B, and C are pairwise disjoint. Furthermore,

$$
\begin{equation*}
|A|=\frac{n+\sqrt{n}}{2}, \quad|B|=\frac{n-\sqrt{n}}{2} \quad \text { and } \quad|C|=\frac{\lambda}{2} \tag{5}
\end{equation*}
$$

Proof By [7, Thm. 4.1], we have $D=g(X-Y)+P Z$ with $X, Y \subset H$, $g \in G, Z \subset G$, and $X \cap Y=\emptyset$. Replacing D by $D g^{-1}$, if necessary, we can assume $D=X-Y+P Z$. Since D has only non-negative coefficients, this implies $Y \subset P Z$. Hence, by replacing appropriate elements z of Z by $\alpha^{2^{s-1}} z$, if necessary, we can assume $Y \subset Z$. Hence we can write $Z=Y+T$ for some $T \subset G$. We have $D=X-Y+P Z=X-Y+P(Y+T)=X+\alpha^{2^{s-1}} Y+P T$. Taking $A=X, B=Y$, and $C=T$ shows that (4) holds. Note that A, B, and C are pairwise disjoint since D has coefficients 0 and 1 only.

Let $\rho: \mathbb{C} G \rightarrow \mathbb{C} H$ be the homomorphism defined by $\rho(\alpha)=e^{2 \pi i / 2^{s}}$ and $\rho(h)=h$ for $h \in H$. Then $\rho(D)=A-B$ by (4). Note that $\rho(G)=0$. Using (2), we get

$$
\begin{equation*}
(A-B)(A-B)^{(-1)}=\rho(D) \rho(D)^{(-1)}=n \tag{6}
\end{equation*}
$$

This implies $|A|-|B|= \pm \sqrt{n}$. Comparing the coefficient of the identity element on both sides of (6) gives $|A|+|B|=n$. We conclude $\{|A|,|B|\}=$ $\{(n-\sqrt{n}) / 2,(n+\sqrt{n}) / 2\}$. Replacing D by $\alpha^{2^{s-1}} D$, if necessary, we have $|A|=(n+\sqrt{n}) / 2$ and $|B|=(n-\sqrt{n}) / 2$. Since $k=|D|=|A|+|B|+2|C|=$ $n+2|C|=k-\lambda+2|C|$, we get $|C|=\lambda / 2$ and thus (5) holds. \quad Q.E.D.

We get a similar result in the case $p=3$:
Lemma 3.2 Let $p=3$. Replacing D by a translate, if necessary, we have

$$
\begin{equation*}
D=A+(P-1) B+P C \tag{7}
\end{equation*}
$$

with $A, B \subset H, C \subset G$, such that A, B, and C are pairwise disjoint. Furthermore, n is a square and

$$
\begin{equation*}
|A|=\frac{n+\delta}{2}, \quad|B|=\frac{n-\delta}{2} \quad \text { and } \quad|C|=\frac{1}{3}\left[\lambda-\left(\frac{n-\delta}{2}\right)\right] \tag{8}
\end{equation*}
$$

where $\delta= \pm \sqrt{n}$.

Proof By Corollary 3.4, Lemma 3.6 and Theorem 4.2 of [6], we have

$$
D=(X-Y)(P-1)+P Z
$$

for some $X, Y \subset H$ and $Z \subset G$ such that the supports of $X(P-1)$ and $Y(P-1)$ are disjoint. Since D has only nonnegative coefficients, this implies $Y(P-1) \subset P Z$. Recall $P=\left\langle\alpha^{3^{s-1}}\right\rangle$. Thus, by replacing suitable elements z of Z by $\alpha^{3^{s-1}} z$ or $\alpha^{2 \cdot 3^{s-1}} z$, if necessary, we can assume $Y \subset Z$. Write $Z=Y+T$ with $T \subset G$. Then

$$
D=(X-Y)(P-1)+P Z=Y+X(P-1)+P T
$$

Taking $A=Y, B=X$, and $C=T$ shows that (7) holds. Since D has coefficients 0 and 1 only, A, B, and C must be pairwise disjoint.

Let $\rho: \mathbb{C} G \rightarrow \mathbb{C} H$ be the homomorphism defined by $\rho(\alpha)=e^{2 \pi i / 3^{s}}$ and $\rho(h)=h$ for $h \in H$. Then $\rho(D)=A-B$ by (7). Note that $\rho(G)=0$. Using (2), we get

$$
\begin{equation*}
(A-B)(A-B)^{(-1)}=\rho(D) \rho(D)^{(-1)}=n \tag{9}
\end{equation*}
$$

This implies that n is a square and $|A|-|B|= \pm \sqrt{n}$. Comparing the coefficient of the identity element on both sides of (9) gives $|A|+|B|=n$. We conclude $|A|=(n+\delta) / 2$ and $|B|=(n-\delta) / 2$ with $\delta= \pm \sqrt{n}$. Since $k=|D|=|A|+2|B|+3|C|=n+(n-\delta) / 2+3|C|=k-\lambda+(n-\delta) / 2+3|C|$, we get $|C|=(\lambda-(n-\delta) / 2) / 3$ and thus (8) holds.
Q.E.D.

Lemma 3.3 Let $p=2$. We have $v \equiv 2(\bmod 4)$, i.e., $s=1$.
Proof Recall that $n=2^{2 t}$ and $t \geq 3$. Assume $v \equiv 0(\bmod 4)$, i.e., $s \geq 2$. Let \mathbb{C}^{*} denote the multiplicative group of nonzero complex numbers, and let $\chi: \mathbb{Z}[G] \rightarrow \mathbb{C}^{*}$ be the homomorphism defined by $\chi(\alpha)=-1$ and $\chi(h)=1$ for all $h \in H$. Note that $\chi\left(\alpha^{2^{s-1}}\right)=1$ and thus $\chi(P)=2$ since $s \geq 2$. Let U be the subgroup of G of index 2 , and write $c_{1}=|C \cap U|, c_{2}=|C \cap U \alpha|$. Note that

$$
\begin{equation*}
c_{1}+c_{2}=|C|=\lambda / 2 \tag{10}
\end{equation*}
$$

by (5) and $\chi(C)=c_{1}-c_{2}$. Furthermore, by (4) and (5), we have

$$
\begin{equation*}
\chi(D)=|A|+|B|+2 \chi(C)=n+2 \chi(C)=n+2\left(c_{1}-c_{2}\right) . \tag{11}
\end{equation*}
$$

From (10) and (11) we infer $4 c_{1}=\chi(D)-n+\lambda$ and $4 c_{2}=-\chi(D)+n+\lambda$. Since c_{1} and c_{2} are nonnegative, we conclude $\lambda \geq|n-\chi(D)|$. Since $\chi(D)$ is an integer, (2) implies $\chi(D)= \pm \sqrt{n}$, and thus we have

$$
\begin{equation*}
\lambda \geq n-\sqrt{n} . \tag{12}
\end{equation*}
$$

Note that $v=\left(n^{2}-n\right) / \lambda+2 n+\lambda$ since $(v-1) \lambda=k(k-1)$. Moreover, $n-\sqrt{n} \leq \lambda<n$ by (12). Since $f(\lambda)=\left(n^{2}-n\right) / \lambda+2 n+\lambda$ is a convex function of λ, its maximum in the interval $[n-\sqrt{n}, n]$ is attained at one of the endpoints. This implies

$$
\begin{equation*}
2^{s}|H|=v \leq \max \{f(n-\sqrt{n}), f(n)\}=4 n \tag{13}
\end{equation*}
$$

On the other hand, for $n \geq 2$, we have $\left(n^{2}-n\right) / x+2 n+x>4 n-2$ for all $x \in \mathbb{R}^{+}$. Hence $v=\left(n^{2}-n\right) / \lambda+2 n+\lambda>4 n-2$. Together with (13), this implies $v \in\{4 n-1,4 n\}$. But $v=4 n-1$ is impossible since v is even, and $v=4 n$ implies $|H|=1$ and contradicts (3).
Q.E.D.

Again, we will get a similar result for $p=3$. We have seen before that n is a square in the case $p=2$. By Lemma 3.2 this is also true for $p=3$. Thus, from now on, we write $r=2 t$, i.e., $n=3^{2 t}$ if $p=3$. Since $t=1$ is impossible [2], we will assume $t \geq 2$ if $p=3$.

Lemma 3.4 Let $p=3$. We have $v \equiv 3(\bmod 9)$, i.e., $s=1$. Furthermore,

$$
\lambda \geq \frac{n-\delta}{2} \quad \text { and } \quad v \leq \frac{9 n+3 \delta}{2}
$$

where δ is defined in Lemma 3.2.
Proof Since $|C| \geq 0$, we have $\lambda \geq(n-\delta) / 2$ by Lemma 3.2. Thus $(n-\delta) / 2 \leq$ $\lambda<n$. Note that $v=\left(n^{2}-n\right) / \lambda+\lambda+2 n$ and that, as in the proof of Lemma 3.3, $f(\lambda)$ attains its maximum on the interval $[(n-\delta) / 2, n]$ at one of the endpoints. Hence

$$
3^{s}|H|=v \leq \max \{f((n-\delta) / 2), f(n)\}=\frac{9 n+3 \delta}{2}
$$

On the other hand, we have $n \leq 9|H| / 8$ by (3) and thus $s=1$. Q.E.D.

Lemma 3.5 Either $p \| \lambda$ or $p^{2 t-1} \| \lambda$.
Proof Let $p=2$. Since $n=2^{2 t}$ and $2|H|=v=\left(n^{2}-n\right) / \lambda+2 n+\lambda$, we have $2^{4 t}+2^{2 t+1} \lambda+\lambda^{2}=2^{2 t}+2 \lambda|H|$. This implies the assertion since $t \geq 3$.

Now let $p=3$. The assertion follows from $\lambda<n, n=3^{2 t}, \lambda^{2}+2 \lambda n+$ $n^{2}-n=\lambda v$, and $v \equiv 3(\bmod 9)$.
Q.E.D.

Lemma 3.6 If $p=2$ and $2^{2 t-1} \| \lambda$, then

$$
(v, k, \lambda, n)=\left(9 \cdot 2^{2 t-1}-2,3 \cdot 2^{2 t-1}, 2^{2 t-1}, 2^{2 t}\right)
$$

If $p=3$ and $3^{2 t-1} \| \lambda$, then

$$
(v, k, \lambda, n)=\left(\frac{25 \cdot 3^{2 t-1}-3}{2}, 5 \cdot 3^{2 t-1}, 2 \cdot 3^{2 t-1}, 3^{2 t}\right)
$$

Proof Let $p=2$. Since $\lambda<n=2^{2 t}$, we have $\lambda=2^{2 t-1}, k=n+\lambda=3 \cdot 2^{2 t-1}$ and $v=\left(k^{2}-n\right) / \lambda=9 \cdot 2^{2 t-1}-2$.

Now let $p=3$. Since $\lambda<n$, we have $\lambda=3^{2 t-1}$ or $2 \cdot 3^{2 t-1}$. If $\lambda=$ $3^{2 t-1}$, then $3^{2 t-1}=\lambda \geq(n-\delta) / 2=\left(3^{2 t} \pm 3^{t}\right) / 2$. But this implies $t=1$, contradicting our assumption $t \geq 2$. Thus we have $\lambda=2 \cdot 3^{2 t-1}$. Now the assertion follows from $k=n+\lambda$ and $\lambda(v-1)=k(k-1)$.
Q.E.D.

Lemma 3.7 If $p=3$ and $3 \| \lambda$, then either

$$
(v, k, \lambda, n)=\left(\frac{49 \cdot 3^{2 t-1}-3}{4}, \frac{7 \cdot 3^{2 t}-3}{4}, \frac{3^{2 t+1}-3}{4}, 3^{2 t}\right)
$$

or

$$
(v, k, \lambda, n)=\left(\frac{64 \cdot 3^{2 t-1}-3}{5}, \frac{8 \cdot 3^{2 t}-3}{5}, \frac{3^{2 t+1}-3}{5}, 3^{2 t}\right)
$$

Proof As $v=\left(n^{2}-n\right) / \lambda+\lambda+2 n$, we have $n-1 \equiv 0(\bmod \lambda / 3)$. Write $y=3(n-1) / \lambda$. Since $\lambda<n$, we infer $y>3-3 / n$. As y is not divisible by 3 , we have $y \geq 4$.

On the other hand, $\lambda \geq(n-\delta) / 2$ implies $y \leq 6(n-1) /(n-\delta)=$ $6+6(\delta-1) /(n-\delta))=6+6 / \delta$. Since we assume $t \geq 2$, we have $\delta \geq 9$, and thus we get $y<7$. Since $y \neq 6$, we conclude $y \leq 5$.

In summary, we have $y=\{4,5\}$ and hence $\lambda=\left(3^{2 t+1}-3\right) / 4$ or $\lambda=$ $\left(3^{2 t+1}-3\right) / 5$. Now the assertion follows from $k=n+\lambda$ and $\lambda(v-1)=k(k-1)$. Q.E.D.

Proof of Theorem 1.3 This immediately follows from Lemmas 3.5, 3.6, and 3.7. Q.E.D.

Remark 3.8 For many values of t, standard results [2] can be used to show that difference sets with the parameters as stated in Theorem 1.3 cannot exist. However, it seems difficult to prove this for all t.

References

[1] L.D. Baumert: Cyclic Difference Sets. Springer Lecture Notes 182, Springer 1971.
[2] T. Beth, D. Jungnickel, H. Lenz: Design Theory (2nd edition). Cambridge University Press 1999.
[3] D. Jungnickel: Difference Sets. Contemporary Design Theory: A Collection of Surveys, eds. J.H. Dinitz, D.R. Stinson. Wiley 1992, 241-324.
[4] D. Jungnickel, B. Schmidt: Difference Sets: An Update. Geometry, Combinatorial Designs and Related Structures. Proc. First Pythagorean Conference, eds. J.W.P. Hirschfeld et al. Cambridge University Press 1997, 89-112.
[5] E.S. Lander: Symmetric Designs: An Algebraic Approach. London Math. Soc. Lect. Notes 75, Cambridge University Press 1983.
[6] K.H. Leung, S.L. Ma and B. Schmidt, Nonexistence of abelian difference sets: Lander's conjecture for prime power orders, Trans. Amer. Math. Soc., 356 (2004), pp. 4343-4358.
[7] K.H. Leung and B. Schmidt, The Field Descent Method, Des. Codes Cryptogr., 36 (2005), pp. 171-188.
[8] A. Pott: Finite geometry and character theory. Springer Lecture Notes 1601, Springer 1995.
[9] M.P. Schützenberger: A nonexistence theorem for an infinite family of symmetrical block designs. Ann. Eugen. 14 (1949) 286-287.

