
On Lander’s Conjecture for Difference Sets

whose Order is a Power of 2 or 3

Ka Hin Leung

Department of Mathematics

National University of Singapore

Kent Ridge, Singapore 119260

Republic of Singapore

matlkh@nus.edu.sg

Siu Lun Ma

Department of Mathematics

National University of Singapore

Kent Ridge, Singapore 119260

Republic of Singapore

matmasl@nus.edu.sg

Bernhard Schmidt

Division of Mathematical Sciences

School of Physical & Mathematical Sciences

Nanyang Technological University

Singapore 637371

bernhard@ntu.edu.sg

February 23, 2009

1



Abstract

Let p be a prime and let b be a positive integer. If a (v, k, λ, n)
difference set D of order n = pb exists in an abelian group with cyclic
Sylow p-subgroup S, then p ∈ {2, 3} and |S| = p. Furthermore, either
p = 2 and v ≡ λ ≡ 2 (mod 4) or the parameters of D belong to one
of four families explicitly determined in our main theorem.

1 Introduction

A (v,k, λ,n) difference set in a finite group G of order v is a k-subset

D of G such that every element g �= 1 of G has exactly λ representations

g = d1d
−1
2 with d1, d2 ∈ D. The positive integer n = k−λ is called the order

of the difference set. The existence of a (v, k, λ, n) difference set implies the

existence of a symmetric (v, k, λ) design (see [2]). For detailed treatments of

difference sets, see [1, 2, 3, 4, 5, 8].

Lander [5, p. 224] proposed the following conjecture.

Conjecture 1.1 (Lander 1983) Let G be an abelian group of order v con-

taining a difference set of order n. If p is a prime dividing v and n, then the

Sylow p-subgroup of G cannot be cyclic.

In [6, Thm. 1.3], the following was proved.

Result 1.2 Lander’s conjecture is correct in the case where n is a power of

a prime p > 3.

In the current paper, we obtain further progress towards Lander’s conjec-

ture in the case of difference sets of prime power order and prove the following

result.
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Theorem 1.3 Let G be an abelian group of order v containing a (v, k, λ, n)

difference set with k < v/2. Assume that n is a power of p where p ∈ {2, 3},
and that the Sylow p-subgroup S of G is cyclic. Then n = p2t for some

positive integer t, and S has order p. Furthermore, one of the following

holds.

(i) p = 2 and v ≡ λ ≡ 2 (mod 4).

(ii) (v, k, λ, n) = (9 · 22t−1 − 2, 3 · 22t−1, 22t−1, 22t).

(iii) (v, k, λ, n) =
(

25·32t−1−3
2

, 5 · 32t−1, 2 · 32t−1, 32t
)
.

(iv) (v, k, λ, n) =
(

49·32t−1−3
4

, 7·32t−3
4

, 32t+1−3
4

, 32t
)
.

(v) (v, k, λ, n) =
(

64·32t−1−3
5

, 8·32t−3
5

, 32t+1−3
5

, 32t
)

.

2 Preliminaries

In this section, we list the definitions and basic facts we need in the rest of

the paper. We first fix some notation. Let G be a finite group, and let R be a

ring. We will always identify a subset A of G with the element
∑

g∈A g of the

group ring R[G]. For B =
∑

g∈G bgg ∈ R[G] we write B(−1) :=
∑

g∈G bgg
−1

and |B| :=
∑

g∈G bg. We call {g ∈ G : bg �= 0} the support of B. For

X,Y ∈ R[G], we write X ⊂ Y if the support of X is contained in the

support of Y . For X ∈ R[G] and g ∈ G, the group ring element Xg is called

a translate of X. A group homomorphism G → H is always assumed to be

extended to a homomorphism R[G] → R[H] by linearity. For integers a, b, c,

b ≥ 0, we write ab||c if ab, but not ab+1, divides c.

Since D is a difference set in G if and only if G \ D is a difference set in

G, we can restrict our attention to (v, k, λ, n)-difference sets with k ≤ v/2.

Counting the number of quotients d1d
−1
2 , d1, d2 ∈ D, d1 �= d2, gives the

trivial parameter condition k(k − 1) = λ(v − 1). This implies that k = v/2

is impossible. Thus we can assume k < v/2. Note that in this case λ < k/2

and n > k/2 since λ = k(k − 1)/(v − 1) < k2/v < k/2. Hence, throughout
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this paper, we will only consider difference sets with

k <
v

2
and λ <

k

2
< n. (1)

In the group ring language, difference sets can be characterized as follows [2,

Lemma VI.3.2].

Result 2.1 Let D be a k-subset of a group G of order v. Then D is a

(v, k, λ, n) difference set in G if and only if in Z[G] the following holds.

DD(−1) = n + λG (2)

Notation 2.2 The following notation and assumptions will be used through-

out the rest of the paper.

• G = 〈α〉 × H is an abelian group with cyclic Sylow p-subgroup 〈α〉
where p ∈ {2, 3}.

• The order of α in G is ps, s ≥ 1.

• H is the complement of 〈α〉 in G.

• P = 〈αps−1〉 is the unique subgroup of G of order p.

• D is a (v, k, λ, n) difference set in G where n = pr for some positive

integer r, and (1) holds.

• If p = 2, then v is even and thus n is a square by Schützenberger’s

theorem [9]. So r = 2t for some positive integer t. For p = 2 and t ≤ 2,

no difference set D as described above exists [2]. Thus we assume r = 2t

and t ≥ 3 in the case p = 2.

3 Proof of Theorem 1.3

Let ϕ denote the Euler totient function. By [7, Theorem 4.3], we have

n ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

42|H|
4ϕ(4)

= 2|H| for p = 2 and

32|H|
4ϕ(3)

=
9|H|

8
for p = 3.

(3)
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Lemma 3.1 Let p = 2. Replacing D by a translate, if necessary, we have

D = A + α2s−1

B + PC (4)

with A,B ⊂ H and C ⊂ G, such that A, B, and C are pairwise disjoint.

Furthermore,

|A| =
n +

√
n

2
, |B| =

n −√
n

2
and |C| =

λ

2
. (5)

Proof By [7, Thm. 4.1], we have D = g(X − Y ) + PZ with X,Y ⊂ H,

g ∈ G, Z ⊂ G, and X ∩ Y = ∅. Replacing D by Dg−1, if necessary, we can

assume D = X − Y + PZ. Since D has only non-negative coefficients, this

implies Y ⊂ PZ. Hence, by replacing appropriate elements z of Z by α2s−1
z,

if necessary, we can assume Y ⊂ Z. Hence we can write Z = Y +T for some

T ⊂ G. We have D = X−Y +PZ = X−Y +P (Y +T ) = X +α2s−1
Y +PT .

Taking A = X, B = Y , and C = T shows that (4) holds. Note that A, B,

and C are pairwise disjoint since D has coefficients 0 and 1 only.

Let ρ : CG → CH be the homomorphism defined by ρ(α) = e2πi/2s
and

ρ(h) = h for h ∈ H. Then ρ(D) = A−B by (4). Note that ρ(G) = 0. Using

(2), we get

(A − B)(A − B)(−1) = ρ(D)ρ(D)(−1) = n. (6)

This implies |A| − |B| = ±√
n. Comparing the coefficient of the identity

element on both sides of (6) gives |A| + |B| = n. We conclude {|A|, |B|} =

{(n − √
n)/2, (n +

√
n)/2}. Replacing D by α2s−1

D, if necessary, we have

|A| = (n+
√

n)/2 and |B| = (n−√
n)/2. Since k = |D| = |A|+ |B|+2|C| =

n + 2|C| = k − λ + 2|C|, we get |C| = λ/2 and thus (5) holds. Q.E.D.

We get a similar result in the case p = 3:

Lemma 3.2 Let p = 3. Replacing D by a translate, if necessary, we have

D = A + (P − 1)B + PC (7)

with A,B ⊂ H, C ⊂ G, such that A, B, and C are pairwise disjoint. Fur-

thermore, n is a square and

|A| =
n + δ

2
, |B| =

n − δ

2
and |C| =

1

3

[
λ −

(
n − δ

2

)]
(8)

where δ = ±√
n.
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Proof By Corollary 3.4, Lemma 3.6 and Theorem 4.2 of [6], we have

D = (X − Y )(P − 1) + PZ

for some X,Y ⊂ H and Z ⊂ G such that the supports of X(P − 1) and

Y (P −1) are disjoint. Since D has only nonnegative coefficients, this implies

Y (P − 1) ⊂ PZ. Recall P = 〈α3s−1〉. Thus, by replacing suitable elements

z of Z by α3s−1
z or α2·3s−1

z, if necessary, we can assume Y ⊂ Z. Write

Z = Y + T with T ⊂ G. Then

D = (X − Y )(P − 1) + PZ = Y + X(P − 1) + PT.

Taking A = Y , B = X, and C = T shows that (7) holds. Since D has

coefficients 0 and 1 only, A, B, and C must be pairwise disjoint.

Let ρ : CG → CH be the homomorphism defined by ρ(α) = e2πi/3s
and

ρ(h) = h for h ∈ H. Then ρ(D) = A−B by (7). Note that ρ(G) = 0. Using

(2), we get

(A − B)(A − B)(−1) = ρ(D)ρ(D)(−1) = n. (9)

This implies that n is a square and |A| − |B| = ±√
n. Comparing the

coefficient of the identity element on both sides of (9) gives |A| + |B| = n.

We conclude |A| = (n + δ)/2 and |B| = (n − δ)/2 with δ = ±√
n. Since

k = |D| = |A|+2|B|+3|C| = n+(n−δ)/2+3|C| = k−λ+(n−δ)/2+3|C|,
we get |C| = (λ − (n − δ)/2)/3 and thus (8) holds. Q.E.D.

Lemma 3.3 Let p = 2. We have v ≡ 2 (mod 4), i.e., s = 1.

Proof Recall that n = 22t and t ≥ 3. Assume v ≡ 0 (mod 4), i.e., s ≥ 2.

Let C
∗ denote the multiplicative group of nonzero complex numbers, and let

χ : Z[G] → C
∗ be the homomorphism defined by χ(α) = −1 and χ(h) = 1

for all h ∈ H. Note that χ(α2s−1
) = 1 and thus χ(P ) = 2 since s ≥ 2. Let

U be the subgroup of G of index 2, and write c1 = |C ∩ U |, c2 = |C ∩ Uα|.
Note that

c1 + c2 = |C| = λ/2 (10)

by (5) and χ(C) = c1 − c2. Furthermore, by (4) and (5), we have

χ(D) = |A| + |B| + 2χ(C) = n + 2χ(C) = n + 2(c1 − c2). (11)
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From (10) and (11) we infer 4c1 = χ(D) − n + λ and 4c2 = −χ(D) + n + λ.

Since c1 and c2 are nonnegative, we conclude λ ≥ |n − χ(D)|. Since χ(D) is

an integer, (2) implies χ(D) = ±√
n, and thus we have

λ ≥ n −√
n. (12)

Note that v = (n2 − n)/λ + 2n + λ since (v − 1)λ = k(k − 1). Moreover,

n − √
n ≤ λ < n by (12). Since f(λ) = (n2 − n)/λ + 2n + λ is a convex

function of λ, its maximum in the interval [n −√
n, n] is attained at one of

the endpoints. This implies

2s|H| = v ≤ max{f(n −√
n), f(n)} = 4n. (13)

On the other hand, for n ≥ 2, we have (n2 − n)/x + 2n + x > 4n − 2 for all

x ∈ R
+. Hence v = (n2 − n)/λ + 2n + λ > 4n − 2. Together with (13), this

implies v ∈ {4n − 1, 4n}. But v = 4n − 1 is impossible since v is even, and

v = 4n implies |H| = 1 and contradicts (3). Q.E.D.

Again, we will get a similar result for p = 3. We have seen before that

n is a square in the case p = 2. By Lemma 3.2 this is also true for p = 3.

Thus, from now on, we write r = 2t, i.e., n = 32t if p = 3. Since t = 1 is

impossible [2], we will assume t ≥ 2 if p = 3.

Lemma 3.4 Let p = 3. We have v ≡ 3 (mod 9), i.e., s = 1. Furthermore,

λ ≥ n − δ

2
and v ≤ 9n + 3δ

2

where δ is defined in Lemma 3.2.

Proof Since |C| ≥ 0, we have λ ≥ (n−δ)/2 by Lemma 3.2. Thus (n−δ)/2 ≤
λ < n. Note that v = (n2−n)/λ+λ+2n and that, as in the proof of Lemma

3.3, f(λ) attains its maximum on the interval [(n − δ)/2, n] at one of the

endpoints. Hence

3s|H| = v ≤ max{f((n − δ)/2), f(n)} =
9n + 3δ

2
.

On the other hand, we have n ≤ 9|H|/8 by (3) and thus s = 1. Q.E.D.
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Lemma 3.5 Either p||λ or p2t−1||λ.

Proof Let p = 2. Since n = 22t and 2|H| = v = (n2 − n)/λ + 2n + λ, we

have 24t + 22t+1λ + λ2 = 22t + 2λ|H|. This implies the assertion since t ≥ 3.

Now let p = 3. The assertion follows from λ < n, n = 32t, λ2 + 2λn +

n2 − n = λv, and v ≡ 3 (mod 9). Q.E.D.

Lemma 3.6 If p = 2 and 22t−1||λ, then

(v, k, λ, n) = (9 · 22t−1 − 2, 3 · 22t−1, 22t−1, 22t).

If p = 3 and 32t−1||λ, then

(v, k, λ, n) =

(
25 · 32t−1 − 3

2
, 5 · 32t−1, 2 · 32t−1, 32t

)
.

Proof Let p = 2. Since λ < n = 22t, we have λ = 22t−1, k = n+λ = 3 ·22t−1

and v = (k2 − n)/λ = 9 · 22t−1 − 2.

Now let p = 3. Since λ < n, we have λ = 32t−1 or 2 · 32t−1. If λ =

32t−1, then 32t−1 = λ ≥ (n − δ)/2 = (32t ± 3t)/2. But this implies t = 1,

contradicting our assumption t ≥ 2. Thus we have λ = 2 · 32t−1. Now the

assertion follows from k = n + λ and λ(v − 1) = k(k − 1). Q.E.D.

Lemma 3.7 If p = 3 and 3||λ, then either

(v, k, λ, n) =

(
49 · 32t−1 − 3

4
,

7 · 32t − 3

4
,

32t+1 − 3

4
, 32t

)

or

(v, k, λ, n) =

(
64 · 32t−1 − 3

5
,

8 · 32t − 3

5
,

32t+1 − 3

5
, 32t

)
.

Proof As v = (n2 − n)/λ + λ + 2n, we have n − 1 ≡ 0 (mod λ/3). Write

y = 3(n − 1)/λ. Since λ < n, we infer y > 3 − 3/n. As y is not divisible by

3, we have y ≥ 4.

On the other hand, λ ≥ (n − δ)/2 implies y ≤ 6(n − 1)/(n − δ) =

6 + 6(δ − 1)/(n − δ)) = 6 + 6/δ. Since we assume t ≥ 2, we have δ ≥ 9, and

thus we get y < 7. Since y �= 6, we conclude y ≤ 5.
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In summary, we have y = {4, 5} and hence λ = (32t+1 − 3)/4 or λ =

(32t+1−3)/5. Now the assertion follows from k = n+λ and λ(v−1) = k(k−1).

Q.E.D.

Proof of Theorem 1.3 This immediately follows from Lemmas 3.5, 3.6,

and 3.7. Q.E.D.

Remark 3.8 For many values of t, standard results [2] can be used to show

that difference sets with the parameters as stated in Theorem 1.3 cannot

exist. However, it seems difficult to prove this for all t.
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