Exponent Bounds

Bernhard Schmidt

We survey the presently known exponent bounds for difference
sets and relative difference sets. The cases where these bounds
are sufficient for the existence of the objects in question are
discussed in some detail.

1 Introduction

One of the central themes of the theory of difference sets is to search
for necessary and sufficient conditions on the group structure for the
existence of difference sets. Most known necessary conditions have
the form of exponent bounds. Here the exponent of a group means
the order of its largest cyclic subgroup. An exponent bound gives
an upper bound on the exponent of groups containing difference
sets. Turyn’s exponent bound [49] from 1965 is the most prominent
example. Since Turyn’s work, exponent bounds have played an
important role in the study of difference sets.

Turyn’s exponent bound has two important features: It relies
on a self-conjugacy assumption and it is obtained by considering a
single homomorphic image of a putative difference set.

Turyn’s bound has been refined in two ways. Firstly, under the
self-conjugacy assumption, one can try to improve Turyn’s result by
considering several homomorphic images simultaneously. It turns
out that this approach, though it needs sophisticated arguments
to combine information from different homomorphic images, of-
ten leads to striking results. In particular, necessary and sufficient
conditions for the existence of several infinite families of difference
sets can be derived in this way. For difference sets, only five re-
sults of this category are known: For Hadamard difference sets in
abelian 2-groups (Turyn, Davis, Kraemer), McFarland difference
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sets (McFarland, Ma/Schmidt, Davis/Jedwab), McFarland differ-
ence sets without self-conjugacy (Schmidt), Chen difference sets
(Chen, Schmidt), and Davis-Jedwab difference sets (Davis-Jedwab,
Schmidt). All these results will be treated in this paper.

The second, more important refinement of Turyn’s method is
to try to get rid of the very restrictive self-conjugacy assumption.
Results in this direction have been obtained by McFarland [3§],
Chan [9] and Ma [32]. These results are remarkable, however, they
only apply in quite special situations. Substantial progress has been
obtained by the author [46, 47| by introducing the new method of
field descent. These field descent exponent bounds are very general
and do not rely on restrictive assumptions like self-conjugacy.

2 Preliminaries

In this section, we briefly mention the basic notions concerning
difference sets. For thorough treatments see |7, Chapter VI| and
139].

Let GG be a finite group of order nm, and let N be a subgroup of G
of order n. A subset R of G is called an (m, n, k, \) difference set
in G relative to N if every g € G\ N has exactly A representations
g = iyt with 71,7 € R, and no nonidentity element of N has
such a representation. The subgroup N is called the forbidden
subgroup.

In the case n = 1, i.e., when the forbidden subgroup consists
only of the identity element, we write v instead of m and speak of
a (v,k, \) difference set in G. The nonnegative integer n = k — A
is called the order of the difference set. If n € {0, 1}, the difference
set is called trivial. By a “difference set” we will always mean a
nontrivial difference set. Sometimes it is useful to attach n to the
parameters of a difference set. Thus we also speak of (v,k, A\, n)
difference sets.

3 Self-conjugacy exponent bounds
We first explain Turyn’s classical exponent bound. Turyn’s argu-

ment relies on the the so-called self-conjugacy assumption.

Definition 3.1 Let m be a positive integer. A prime p is called
self-conjugate modulo m if p? = —1 (mod m') for some j where
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m' is the p-free part of m. A composite integer is called self-

conjugate modulo m if all its prime divisors are self-conjugate mod-
ulo m.

The following is a straightforward generalization of Turyn’s result
[49, Cor. 1] using projections. The most important applications will
be given later.

Theorem 3.2 (Turyn) Assume that there is an (m,n, k, \) differ-
ence set in a (not necessarily abelian) group G relative to a subgroup
N. Let U be a normal subgroup of G such that G/U is cyclic and
let 1 be a positive integer self-conjugate modulo |G/U| such that
a) N is not contained in U and [* divides k or
b) N is contained in U, k — An # 0 and [? divides k — An.
Then
U] [
>
[UNN| — 2r-1

where 1 = max(1l,s), and s is the number of prime divisors of
ged(l, |G/UY).

3.1 Difference sets

In the case of difference sets, Turyn’s exponent bound reads as
follows.

Corollary 3.3 (Turyn) Assume the existence of a (v, k, \,n) dif-
ference set in a group G. Let U be a subgroup of G such that G/U

is cyclic, and let [2 be a divisor of n which is self-conjugate modulo
|\G/U|. Then

l
|U| 2 or—1
where 1 = max(1l,s), and s is the number of prime divisors of

ged(l, |G/U).

A Hadamard difference set is a difference set with parameters
(v,k, A\, n) = (4u?,2u? — u,u? — u,u?) for some positive integer wu.
In the case u = p* for a prime p, the Turyn bound is quite strong
since then p is always self-conjugate modulo v/2:
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Corollary 3.4 Assume that an abelian group G contains a Hadamard
difference set with u = p* for some prime p. Then

2442 if p — 2
< Y
emG—{pa if p> 2.
It took almost 30 years until it was shown by Davis [13] and
Kraemer [28] that Turyn’s bound is also sufficient for the existence
of Hadamard difference sets in abelian 2-groups:

Theorem 3.5 (Davis, Kraemer) A Hadamard difference set in

an abelian 2-group G of order 22472 erists if and only if expG <
2012,

The case of nonabelian 2-groups is very different: Davis and liams
[15] extended an example of Liebler and Smith [30] to an infinite
family of difference sets in high exponent 2-groups.

Theorem 3.6 (Davis, Iiams) For every positive integer t, there
is a nonabelian group of order 272 and exponent 233 containing
a Hadamard difference set.

liams [23] proved that the exponent obtained in Theorem 3.6 is
the highest possible under some conditions:

Theorem 3.7 (Iiams) Let G be a 2-group of order 242" m €
{1,2}, with a normal cyclic subgroup (x) of order exp G such that
x and x~1 are not conjugate in G. If G contains a Hadamard dif-
ference set, then exp G < 23ttm+1

The result of Davis and Kraemer is one of the few known neces-
sary and sufficient conditions for the existence of an infinite family
of difference sets. The following theorem on McFarland difference
sets also belongs to this category. A McFarland difference set
is a difference set with parameters

= "1+ (¢" =1)/(¢—1)],
¢ (¢* —1)/(qg - 1),
qgﬁ—lV@—lh

= q M)

S > x>
I
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where ¢ = p/ is a prime power and d is a positive integer. McFarland
[37] constructed such difference sets in all abelian groups G of order
v = ¢ 1+ (¢4t —1)/(g—1)] which contain an elementary abelian
subgroup order ¢¢t!.

Theorem 3.8 (Ma, Schmidt [35]) Assume that there is a Mc-
Farland difference set in an abelian group G of order ¢*™'[1+ (g% —
1)/(q — 1)] where ¢ = p/ and p is a prime self-conjugate modulo
expG. Let P be the Sylow p-subgroup of G. Then the following
hold.

a) If p is odd, then P is elementary abelian.

b) If p=2 and f > 2, then exp P < 4.

In view of McFarland’s result mentioned above, part a of The-
orem 3.8 is sufficient for the existence of a McFarland difference
set. Davis and Jedwab [16] showed that part b is also sufficient for
infinitely many cases.

Theorem 3.9 (Ma/Schmidt, Davis/Jedwab) A McFarland dif-
ference set in an abelian group G of order 2243(224+1 4 1)/3 exists
if and only if the Sylow 2-subgroup of G has exponent at most 4.

Quite recently, two new families of difference sets were discovered
by Chen [11] and Davis, Jedwab [16]. Chen’s difference sets have
parameters

2t_1
_ 42tq
v AT
206" - 1)
k — 2t17+1’
q [q+1 ]
21
+1
A o= gl _1‘17’
7 (g—1) |
n = ¢%?

where ¢ = pf is a power of 3 or a square of an odd prime power
and t is a positive integer. For t = 1, such a difference set is a
Hadamard difference set. For ¢t > 2, any difference set with the
above parameters, for any prime power ¢, will be called a Chen
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difference set. Chen’s construction requires the underlying groups
to have an elementary abelian Sylow p-subgroup.

The second recent series of difference sets was constructed by
Davis and Jedwab [16] and has parameters

— 22t+2(22t _ 1)/3’
_ 22t71(22t+1 + 1)/3’

_ 22t—1(22t—1 + 1)/3’
24t—2

S > ™™

where t > 2 is an integer. Any difference set with such parameters
will be called a Davis-Jedwab difference set. Note that Davis-
Jedwab difference sets are also Chen difference sets (put ¢ = 2).
Davis and Jedwab [16] constructed Davis-Jedwab difference sets in
all abelian groups of order 2%+2(22 — 1)/3 which have a Sylow 2-
subgroup S of exponent at most 4, with the single exception of
t = 2 and Sy & Z3. This exception was removed by Arasu and
Chen [1] who constructed the necessary difference set in Z3 x Zs.
If we apply Turyn’s bound 3.3 to Chen difference sets, we get the
following.

Theorem 3.10 (Turyn) Let ¢ = p/ be a prime power, and let
G be an abelian group of order 4¢*(¢* — 1)/(¢*> — 1) containing a
Chen difference set. Assume that p is self-conjugate modulo exp G.
Denote the Sylow p-subgroup of G by S,. Then the following hold.
a) If p is odd, then exp S, < q.
b) If p =2, then exp Sy < 4q.

Schmidt [45] improved Turyn’s bound for Chen difference sets.

Theorem 3.11 (Schmidt) Let ¢ = p/ be an odd prime power,
and let t, f be integers > 2. Let G be an abelian group of order
4¢*(¢** —1)/(¢* — 1) containing a Chen difference set. Assume that
p s self-conjugate modulo exp G. Then the Sylow p-subgroup of G
has exponent at most pf’l.

Schmidt’s result leads to the following necessary and sufficient
conditions for the existence of Chen difference set for infinitely many
cases.
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Corollary 3.12 (Chen, Schmidt) Let p be an odd prime. Let G
be an abelian group of order 4p®(p* + 1) whose Sylow 2-subgroup is
elementary abelian. Then G contains a Chen difference set if and
only if its Sylow p-subgroup is elementary abelian.

For the formulation of the next result, we need a definition. See
[7, Chapter VI] for the terminology.

Definition 3.13 Let D be a (v, k, A\, n) difference set in an abelian
group. We say that D has the character divisiblilty property if
Xx(D) is divisible by v/n for all nontrivial characters x of G.

Theorem 3.14 (Davis/Jedwab, Schmidt, Arasu/Chen)

Let G be an abelian group of order 22%2(2? — 1)/3 with t > 2.
A Davis-Jedwab difference set in G with the character divisibility
property exists if and only if the Sylow 2-subgroup of G has exponent
at most 4.

3.2 Relative difference sets

Turyn’s Theorem 3.2 provides a useful exponent bound for relative
difference sets. In the following, we concentrate on semiregular
relative diffference sets, i.e., relative (m,n, k, \) difference sets with
n > 1 and m = k. For this family, there is a further exponent
bound due to Pott [39, Thm. 4.1.1].

Theorem 3.15 (Pott) If a relative (m,n, m, \) difference set ex-
ists in an abelian group G with |G| > 4, then exp G divides m.
In particular, there is no semiregular relative difference set in any
cyclic group of order > 4.

In the following, we focus on semiregular relative difference sets
with prime power parameters, i.e., relative difference sets with
parameters of the form (m,n, k,\) = (p%, p° p%,p*?), p prime. In
this case, Turyn’s exponent bound can be improved dramatically.
The major result here is the following from [36] improving previous
work of Ma/Pott [33] and Schmidt [43, 44].
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Theorem 3.16 (Ma, Schmidt) Let p be an odd prime. If a rel-
ative (p%, p°, p%, p*°) difference set erists in an abelian group G,
then

eXpG < p|_a/2j—|-1

where |a/2] denotes the largest integer not exceeding a/2.

The bound in Theorem 3.16 is sharp in the sense that it can be
attained for all triples (p, a,b) with b < |a/2], see [39, Chapter 4].

For p = 2, the situation is quite different. We have the following
results due to Ma/Pott [33] and Schmidt [43, 44].

Theorem 3.17 (Ma, Pott, Schmidt)

a) Assume the existence of a (22¢, 20,222 22¢-) relative difference
set in an abelian group G relative to N. Then exp N < 2% and
expG < 2%exp N. Furthermore, if b > a, then N 1is not a direct
factor of G.

b) Assume the existence of a (22011 20 2%+l 92a=b+1) relgtive dif-
ference set in an abelian group G relative to N. Then exp G < 2012
and exp N < 20H149 where 6 = 1 if expG = expN and 6§ = 0
otherwise.

Davis and Jedwab [16, Cor. 8.2] partially improved results of
Davis [14] and Ma and Schmidt [34, 43] to show that the bounds in
Theorems 3.16 and 3.17 are essentially sufficient in the case b = 1:

Theorem 3.18 (Ma/Schmidt, Davis/Jedwab) Let p be prime.
With the possible exceptions G =2 Zicﬂ OF Zipetr X Lipe X Ly, p 0dd,
¢ > 1, an abelian p-group G containes a (p*, p,p®, p*~ ') relative dif-
ference set if and only if exp G < pl¥/2+1H0 yhere 6 = 1 if p = 2
and a =1 (mod 2) and § = 0 otherwise.

Semiregular relative difference sets with parameters of the form
(n,n,n, 1) are of special interest since they can be used to construct
quasiregular projective planes of order n, see [39, Chapter 5. It is
conjectured that an (n,n,n, 1) relative difference set exists if and
only if n is a prime power and the underlying group is an elementary
abelian p-group. The following result from [33] can be interpreted
as a result on collineation groups of projective planes.
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Theorem 3.19 (Ma, Pott) Let p be an odd prime. If a relative
(p?,p?,p*, 1) difference set ezists in an abelian group G, then G
must be elementary abelian.

4 Field descent exponent bounds

Aside from the Theorem 3.15, all exponent bounds we have seen
depend on a self-conjugagy argument. This is very restrictive: It
can be seen that self-conjugacy “almost never” holds if the group
order has many prime divisors, for instance, see [46]. Thus more
general exponent bounds are desirable. Such bounds have been
obtained by the author of the present paper by the new method of
field descent. We describe the most important results concerning
the field descent here. First we need a definition.

Definition 4.1 Let m, n be positive integers, and let m = Hle p;i°
be the prime power decomposition of m. For each prime divisor q
of n let

T pi if m is odd or g = 2,
M = 41],,40,pi otherwise.

Let D(n) be the set of prime divisors of n. We define F(m,n) =
H§:1 p% to be the minimum multiple of ngl p; such that for every
pair (i,q), i € {1,...,t}, ¢ € D(n), at least one of the following
conditions is satisfied.

(a) ¢ =p; and (p;, b;) # (2, 1),

(b) by = ci,

(¢) ¢ # p; and ¢°4ma@ £ 1 (mod plit?).

It is worth to note the following important property of F'(m,n).

Proposition 4.2 Let P be a finite set of primes, and let () be the
set of all positive integers which are products of powers of primes
in P. Then there is a computable constant C(P) such that

F(m,n) < C(P)
for all m,n € Q.

Now we are ready to state the field descent result from [46].
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Theorem 4.3 (Schmidt) Assume XX =n for X € Z[£,,] where
n and m are positive integers. Then

for some j.

The field descent leads to the following general exponent bounds
proved in [47].

Theorem 4.4 (Schmidt) Assume the existence of a (v,k,\,n)-
difference set D in a group G. If U is a normal subgroup of G such
that G /U s cyclic of order e then

vF(e,n)
2y/ne(F(e,n))

e <

where ¢ denotes the Euler totient function and F' is defined as in
4.1.

It is worth to state the abelian case separately.

Theorem 4.5 Assume the ezistence of a (v, k, A\, n)-difference set
in an abelian group G. Then

vF(v,n) '
np(F(v,n))

expG <
2

In particular, if G is cyclic, then
F(v,n)?
4p(F(v,n))

For relative difference sets, we get the following exponent bound
[47].

n <

Theorem 4.6 (Schmidt) Assume the ezistence of an (m,n, k, \)-
difference set in a group G relative to N. Let U be any subgroup of
G not containing N such that G/U is cyclic of order e. Then

UIF (e, k)

2/kop(F (e, k))

UNN|<
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The field descent also can be applied to group invariant weighing
matrices and other problems which can be studied by character
methods. Here we only mention the most striking applications to

difference sets, circulant Hadamard matrices and Barker sequences
which can be found in [46, 47].

Theorem 4.7 (Schmidt) For any finite set P of primes there is
a computable constant C(P) such that

exp G < C(P)|G|?

for any abelian group G containing a Hadamard difference set whose
order u? is a product of powers of primes in P.

Ryser’s conjecture asserts that there isno (v, k, A, n) difference
set with ged(v,n) > 1 in any cyclic group. It is interesting to check
Ryser’s conjecture for the parameters of known difference sets with
ged(v,n) > 1. These are the Hadamard, McFarland, Spence, Chen,
and Davis-Jedwab parameters, cf. [7].

Theorem 4.8 (Schmidt)

a) If there is a Hadamard difference set in a cyclic group of order
v = 4u? then F(v,u)?/o(F(v,u)) > v.

b) If there is a difference set with McFarland parameters in a
cyclic group of order qd+1[%+1], g=p/ thenp>2,d=f=1
and

p+2 12

e(p+2) ~ p+2
In particular, p+ 2 has at least 20 distinct prime divisors and p >
2-10%8,

¢) There are no difference sets with Spence or Chen/Davis/Jedwab
parameters in any cyclic groups.

(4.1)

By computer search, one can check that Theorem 4.8 implies the
following.

Theorem 4.9 (Schmidt) For k < 5-10'°, Ryser’s conjecture is
true for all parameters (v, k, \,n) of known difference sets with the
possible exception of (v,k,\) = (4u?,2u? — u,u?® — u) with u €
{165, 11715, 82005}
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McFarland difference sets with p = 3, f = 2 and d = 1 were
studied thoroughly by Arasu and Ma [4]. This case is very difficult
since the self-conjugacy condition does not hold. Their result is the
following.

Theorem 4.10 (Arasu, Ma) A McFarland difference set in an
abelian group G of order 891 exists if and only if the Sylow 3-
subgroup of G is elementary abelian.

In [47], a necessary and sufficient condition for the existence of
McFarland difference sets with f = d = 1 was obtained. This is the
first example of a necessary and sufficient condition for a (presum-
ably) infinite family of difference sets known in the literature which
does not rely on the self-conjugacy argument.

Theorem 4.11 (Schmidt) Let p be an odd prime such that p + 2
1S squarefree and

p+2 12

R;;5< —515 (4.2)

Then a (p*(p+2),p(p+ 1), p+ 1)-difference set in an abelian group
G exists if and only if

G = (Z/pL)* x (Z/(p + 2)Z).

Ryser’s conjecture implies two further longstanding conjectures,
namely, the Barker and the circulant Hadamard matrix conjecture.
A circulant Hadamard matrix of order v is a matrix of the
form

aq a9 e Gy
go| @ @ e
a2 as o .. al

with a; = £1 and HH® = vI where I is the identity matrix. It
is conjectured that no circulant Hadamard matrix of order v > 4
exists. A sequence (a;)?_;, a; = £1, is called a Barker sequence
of length v if | V7 a;a;4,| < 1 for j = 1,...,u — 1. The Barker
conjecture asserts that there are no Barker sequences of length



Ezxponent Bounds 13

v > 13. Storer and Turyn [48] proved the Barker conjecture for
all odd v. It is well known [7, VL. §14] that the existence of a
Barker sequence of even length v implies the existence of a circulant
Hadamard matrix of order v which in turn is equivalent to the
existence of a Hadamard difference set in a cyclic group of order
v. Together with other known results, Theorem 4.8 a implies the
following.

Theorem 4.12 (Schmidt)
a) There is no circulant Hadamard matriz of order v, 4 < v <
10", with the possible exceptions v = 4u?, u € {165, 11715, 82005}.
b) There is no Barker sequence of length v with 13 < v < 4-10'2.
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