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Abstract

We study difference sets with parameters (v,k,A) = (p*(r?™ —
1/(r —1),p* 19201, 5 2(r — 1)72m2), where 7 = (p° — 1)/(p — 1)
and p is a prime. Examples for such difference sets are known from
a construction of McFarland which works for m = 1 and all p, s.
We will prove a structural theorem on difference sets with the above
parameters; it will include the result, that under the self-conjugacy as-
sumption McFarland’s construction yields all difference sets in the un-
derlying groups. We also show that no abelian (160, 54, 18)-difference
set exists. Finally, we give a new nonexistence prove of (189,48, 12)-
difference sets in Zg x Zg X Z7.

1 Introduction

A (v, k, \)-difference set in a finite group of order v is a k-subset D of G,
such that every element g # 1 of G has exactly A representations g = dyd; "
with dy,dy € D. The integer n := k — X is called the order of the difference
set. Such a (v, k, A)-difference set in G is equivalent to a symmetric (v, k, A)-
design admitting G as a regular automorphism group [see Lander (1983)].
We will study difference sets with parameters

= pP(r™=-1)/(r-1),

— ps—17.2m—1’

— p3_2(7“ _ 1),,.2m—2’ (1)
— p25727.2m72,

where p is a prime, r = (p* — 1)/(p — 1), s > 2 and m > 1. Wallis (1971)
was the first who constructed symmetric designs with parameters (1), and
McFarland (1973) gave a contruction of difference sets with these parame-
ters. Both constructions only work for m = 1, but also include symmetric
designs respectively difference sets with parameters different from (1). The
parameter series covered by the constructions of Wallis and McFarland is

= ¢ =1)/(g—1)+1],
= ¢ (¢ =1)/(¢—1),
q*(¢* = 1)/(qg - 1),
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where ¢ = pf is any prime power. For f = 1 this series coincides with series
(1), where we have to choose m = 1.

Finally, by generalizing a result of Spence (1993), Jungnickel and Pott (1995)
constructed symmetric designs with parameters (1) for all m > 1 and all
s > 2, such that r is a prime power.

In this paper, we first study difference sets with parameters (1) in general.
Section 2 will provide the necessary theoretical background. In Section 3
we will give a theorem on the structure of such difference sets including a
proof of the uniqueness of McFarlands construction under the self-conjugacy
condition. In Section 4 the special case p = s = m = 2, i.e. the case
of (160, 54, 18)-difference sets, will be studied in detail. We will show that
no abelian difference sets with these parameters exist; this fills two open
entries in Kopilovich’s table of noncyclic abelian difference sets with £ < 100
[Kopilovich (1989)]. Section 5 contains a new proof for the nonexistence of a
(189, 48, 12)-difference set in Zs X Zg X Z7; this case does not belong to the
parameter series (1), but can be handled by similar methods. The only proof
available up to now [Arasu, McDonough, Seghal (1993)] required complicated
calculations in cyclotomic fields, which will be avoided by our approach.

2 Preliminary Results

In this section we state some technical results, which are very useful for the
study of difference sets and will be needed in the later sections.

Throughout the paper, we will use following notation. Let GG be a finite group.
We identify a subset A of G with the element 3 ¢ 4 g of the group ring ZG.
For B = Y ,cq by € ZG we write |B| := Y cqby and BOY := 3 o byg L.
Let U be a normal subgroup of G; the natural epimorphism G — G/U is
always assumed to be extended to ZG by linearity and is denoted by py-.
Furthermore, we write Gy := G/U and gy := py(g) for g € G. If D is a
subset of G with py(D) = ¥ e, dg9, then the numbers d, = [D N Ug| are
called coeflicients of py (D) or intersection numbers of D with respect to U.
In the case of a double projection, i.e. if we have two subgroups U; < U, of
G, we identify (for B € ZG) py,(B) with py,,u, (pr, (B)) in order to avoid a
clumsy notation.

A multiset containing exactly \; “copies” of the element a; (i = 1,2, ...,1)
will be denoted by {1 - ay, ..., A\ - as}.



We begin with a fundamental lemma which is a direct consequence of the
definition of a difference set.

Lemma 2.1 Let D be a (v, k, \)-difference set in a group G, and let U be a
normal subgroup of G, such that Gy is abelian. Then

pU(D)IOU(D)(_l) =n-+ ‘U')\GU,

and hence
xX(pu(D))x(pu(D)) =n

for every nontrivial character x of Gy.

Definition 2.2 A prime p is called self-conjugate modulo a positive integer
m, if there is a positive integer j with

= —1 mod m/,

where m = p*m’ with (m',p) = 1. An integert is called self-conjugate modulo
m if every prime divisor of t is self-conjugate modulo m.

Lemma 2.3 (Turyn (1965)) Let £ be a complex m-th root of unity, and
let t be an integer, which is self-conjugate modulo m. If A € Z[€] and

AA =0 mod t**
for a positive integer a, then
A =0 mod t°.

The next lemma is a direct consequence of the inversion formula [see for
instance Curtis, Reiner (1962)].

Lemma 2.4 Let G be a finite abelian group, and let t be a postive integer
relatively prime to |G|. If B € ZG with

x(B) =0 mod t
for all characters of G, then

B =0 mod ¢.



The next result will be an essential tool in this paper.

Lemma 2.5 (Ma (1985)) Let p be a prime, and let G be a finite abelian
group with cyclic Sylow p-subgroup. If Y € ZG satisfies the condition

x(Y) =0 mod p*
for all nontrivial characters x of G, then there are X1, Xy € ZG with
Y = anl -+ PXQ,

where P is the unique subgroup of order p of G.
Furthermore, the coefficients of X1 and X5 can be chosen to be nonnegative
if Y has nonnegative coefficients.

We will also need a lemma on sums of squares.
Lemma 2.6 Let a1, as, ...,a,, m € Ny with 37" ; a; = m. Then
n n n
ai = min{>_ b7 : b; € Ng, > _b; = m}
i=1 i=1 i=1
if and only if |a; — a;| <1 for alli,j < n.

Proof
If a; — a; > 2, then we can replace a; by a; — 1 and a; by a; + 1, and ¥ a?
decreases. The lemma follows by induction. g

Example 2.7 Let G be a group of order 20, and let w = ¥ c; agg be an
element of ZG with a, > 0 for all ¢ € G and Y a, = 27, which satisfies

wwY =9 + 36G.

Then Eag = coefficient of 1 in ww(~Y = 45. If we had a, = 4 for any g,
then Lemma 2.6 would imply

dai>4+4-22 41517 =47,

a contradiction. Hence a, < 3 for all g. Using similar arguments, it is easy
to show that {a, : ¢ € G} must be one of the multisets {9-2,9-1,2- 0},
{1-3,6-2,12-1,2-0}, {2-3,3-2,15- 1}.
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The following result is a special case of Lemma 3.2 from Ma, Schmidt (1995).

Lemma 2.8 Let p be a prime, and let G = E X H be an abelian group with
E =~ (Z,)* and (p,|H|) = 1. Let R be the set of subgroups of order p*~* of
E. If D is a subset of G with

x(D) = 0 mod p*~*
for all nontrivial characters x of G, then D can be written as
D= > UXy+ EY,
UeR
with Xy, Y C G.

3 Some general Results

In Result 3.1 we recall the construction of McFarland (1973), which shows
that there are difference sets with parameters (1) for all p and s if m = 1.
For m > 1, no example of a difference set with parameters (1) is known. As
there are examples of symmetric designs with these parameters [see section
1], it is interesting to ask if the corresponding difference sets exist, i.e. if
there are symmetric designs belonging to this parameter series admitting a
regular automorphism group.

In the Results 3.1-3.3 we summarize what is already known about difference
sets with parameters (1). Our Theorem 3.4 gives some more structural infor-
mation and shows that in the case of self-conjugacy the contruction in Result
3.1 yields all difference sets in the underlying group.

The following is a special case of McFarlands contruction [McFarland (1973)].

Result 3.1 Let p be a prime, and let G be a group of order
p-1
p—1

v =p°( +1)

p—1
p—1
be the subgroups of order p*~' of E, and let g1, ..., g, be representatives of
distinct cosets of E in G. Then

D =" Hg;

i=1

with an elementary abelian Sylow p-subgroup E. Let Hy,....,H, (r =

is a difference set in G with parameters (1) (where m =1).
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The next result follows from the so-called Mann-Test [see Jungnickel (1992)].
For the convenience of the reader, we include a proof.

Theorem 3.2 Let D be a difference set with parameters (1) in a group G,
and assume m > 1. If there exists a normal subgroup U of G, such that Gy
s abelian, and if there exists a divisor t of r, which is self-conjugate modulo

ezp(Gy), then

p-1
>1 —1)—.

R

Proof
By Lemmas 2.1, 2.3 and 2.4 we can write

pu(D) = tw
for some w € ZGy, and we have

n

A
== t_2 + t_Q‘U‘GU

Comparing the coefficient of 1 in this equation yields

k' n A
<Xy Ay

hence

Ul > S(kt—n)



The next result is a consequence of Theorem 4.33 of Lander (1983).

Result 3.3 Assume that there exists a difference set with parameters (1) in
an abelian group G. Let U be a subgroup of G, such that the Sylow p-subgroup
of Gy is cyclic and p is self-conjugate modulo exp(Gy). Then

U >p*"
Now we prove a new result dealing with the case of equality in Result 3.3.

Theorem 3.4 Let D be a difference set with parameters (1) in an abelian
group G, where (p,2m) =1 and p is self-conjugate modulo exp(G).
Then the Sylow p-subgroup E of G is elementary abelian, and we have

T
D =) H;X,,

i=1
where Hy, ..., H, are the subgroups of order p*~' of E, and Xi,..., X, are
subsets of G with |Xi| = --- = |X,| = r?™=2, such that no two elements of
XiU---UX, are in the same coset of F.
Furthermore, pp(D) = 0 mod p*!, and pp(D)/p* ! is the complement of a
difference set in G with parameters

,',.Zm -1 T,2m—1 -1 7,.2m—2 -1

r—1" r—1 7 r—=1

(v, k, A) = (

Remark

a) A classical construction of Singer (1938) shows that difference sets with
parameters

2m __ 1
r—1" r—1 " r—1 )

exist if r is prime power. It is widely conjectured that this condition is also
necessary [see Jungnickel (1992)].

b) The assumptions of Theorem 3.4 are always satisfied for m = 1 and p = 3,
since 3* = —1 mod (3°—1)/(3—1)+ 1.

Proof of Theorem 3.4

First of all, we observe that p® is the exact divisor of v, since

7.2m -1 (ps _ 1)2m _ (p _ 1)2m

r—1 o p(ps—l _ 1)(p _ 1)2m—1

2m—1 _ 1 2m—2 __ 1

(v,k, ) = (
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and
(p* —1)*™ — (p — 1)*™ = 2mp mod p°.

From Result 3.3 we see that E is elementary abelian. By Lemmas 2.1 and

2.3 we have
x(D) =0 mod p*~*

for every nontrivial character x of G. Thus we can apply Lemma 2.8 and get
T
D =) HX;+EY
i=1

with X;,Y C G, where Hy, ..., H, are the subgroups of order p*~! of E.
Let {hi,...,h,} be a complete system of coset representatives of H; in E.
Replacing X; by X; + Y P, h; we can assume Y =0, i.e.

D =Y HX,. (2)
=1

In particular,
pe(D) = 0 mod p*~ .

We write pg(D) = p*~'w with w € ZGg. Lemma 2.1 gives
ww =22 4 (r — 1) 2G .

The argument described in Example 2.7 shows that w has coefficients 0 and
1 only, i.e. w is a difference set in Gg. It also follows that no two elements
of X;U---UJX, are in the same coset of FE.

It remains to show |X;| = r?™~2 for i = 1,...,r. From (2) we have

pu, (D) = p* " pu, (Xi) + p°*P Y puy(X;),
J#i
where P is the subgroup of order p of G,. Comparing the coefficient of 1 in
the equation

pis (D), (D)D) = p25=2p2m=2 4 125=3(p _ 1),2m-2¢

gives
p2sf2|Xi| +p2573 Z ‘X]| _ p2573r2m72(r +p i 1).
1£]
Together with 37_, | X;| = r2m=1 this yields | X;| = r2m~2, .
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Corollary 3.5 Let D be a difference set with parameters (1) in an abelian
group G, where p is odd and self-conjugate modulo exp(G). If m = 1, then D
s one of the difference sets constructed in Result 3.1.

Remark
Corollary 3.5 could also be derived using the methods in the paper Ma,
Schmidt (1995a).

4 Abelian (160,54,18)-difference sets

The construction of McFarland [see Result 3.1] gives difference sets with
parameters (1) for m = 1 and all p and s. It is interesting to ask if this
construction can be generalized to m > 1. Unfortunately, this seems to be
impossible. At least such a construction cannot include the whole series (1),
since we will show that there is no abelian difference set with these parame-
ters in the case m = p = s = 2 (i.e. (v,k,\) = (160,54, 18)). This also fills
two missing entries in Kopilovich’s table of noncyclic abelian difference sets
with £ < 100 [Kopilovich (1989)].

The nonexistence of abelian (160, 54, 18)-difference sets in G # Zy X Z14 X Zs,
Z, x Zg x Zs5 is already known and follows from the Results 3.2 and 3.3. The
remaining cases need some more involved arguments dealing with the simul-
taneous solution of equations arising from Lemma 2.1. We think that similar
methods can be used to handle other difference sets, especially such with
parameters (1).

It should be mentioned that an additional motivation for the study of dif-
ference sets in Zy X Zig X Zs and Z4 X Zg x Zs comes from the fact that a
projection down to Zg x Zs could be a multiple of a complement of a cyclic
(40, 13, 4)-difference set (which is known to exist, see Remark a) after Theo-
rem 3.4 and put r = 3, m = 2).

Finally, we want to speculate on a possible connection to the construction of
difference sets in nonabelian groups. In our Lemma 4.3, we come very close
to contructing a projected difference set in Zy X Zy4 X Zs. Therefore, there
might be a chance to use this information for the contruction of a difference
set in a nonabelian group of order 160.
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Proposition 4.1 There is no (160, 54, 18)-difference set in an abelian group
G%ZQXZH;XZ@ Z4XZ8XZ5.

Proof

For G = Z3; x Z5 this follows from Result 3.3 (with U = 1). In the remaining
cases there is a subgroup U of order 4, such that exp(Gy) = 10. Since 3 is
self-conjugate modulo 10, the assertion follows from Result 3.2. o

Theorem 4.2 There are no (160, 54, 18)-difference sets in Zy x Z1¢ X Zs and
Z4 X Zg X Z5.

We devide the proof of Theorem 4.3 into several steps. Our first goal is the
following lemma.

Troughout this section, D denotes a (160, 54, 18)-difference set in
G=<g><h><k>27ZyxZxZs (Case 1)

or

G=<g><h><k>=7Z4xZgxZs (Case 2).

Lemma 4.3 Let U =< h* > in Case 1 and U =< ¢*> >< h* > in Case 2.
Then (replacing D by a translate if necessary) we have

pr(D) = (4b+ 2bhy)) + X (3+ gu + 2gvhy) + Y (1 + 2h3) (1 + gv)

with b € Gy, X,Y C Gy, | X| =2 and |Y| =6, such that {1} U{b}UXUY
is a complete system of coset representatives of T :=< gy >< h¥ > in Gy.

In order to prove Lemma 4.3 we need some preliminary results.

Lemma 4.4 Let U,y be a subgroup of G with Gy, = Zs X Z5, which contains
a subgroup Uy, such that Gy, = Z4 X Zs. Then (up to a translation)

pu, (D) = 6(Gu, — 1)
(in either of the Cases 1 and 2).

Proof
By Lemmas 2.1, 2.3 and 2.4 we have

pu,(D) = 0 mod 3. (3)

11



From Lemmas 2.1, 2.3 and 2.5 we get
pUl(D) =2X +PY,

where X,Y € ZGy, and P is the subgroup of order 2 of Gy,. As py,(P) =2,
it follows that
pu,(D) =0 mod 2. (4)

By (3) and (4) we can write py,(D) = 6w for some w € ZGy,. Lemma 2.1
implies ww(~" = 1 + 8Gy,. The argument described in Example 2.7 shows
that w has coefficients {9 - 1,1 -0}, i.e. w = Gy, — [ for some [ € Gy,. By
replacing D by a translate (if necessary) we can assume [ = 1. o

Lemma 4.5 Let Us =< h? > in Case 1 and Us =< ¢> >< h? > in Case 2.
Then (up to a translation)

pU3(D) = 3(GU3 - (1 + gUs) + a(l - gUa))
for some a € Gy, \ {1, gv, }-

Proof

By Lemmas 2.1, 2.3 and 2.4 we can write py,(D) = 3u with u € ZGy,. Let
U = Ygeay, 499 Lemma 2.1 gives uu("" = 4 + 16Gy,. By the argument
described in Example 2.7 we see that {a,} = {1-2,16-1,3- 0}, i.e.

u=Gy, + g1 — g2 — g3 — g4, (5)

where g1, ..., g4 are different elements of Gy,. Let Uy =< g >< h? > (in Case
1 and 2). Then by (5) and Lemma 4.4

Pu, (u) - 2GU2 + (gl)Uz - (92)U2 - (93)U2 - (94)U2
= 2GU2 - 2.

Hence (w.l.o.g.) (91)v, = (92)v, and (93)u, = (94)v, = 1. Together with (5)
this proves the assertion. o
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Lemma 4.6 Let Uy =< g >< h* > (in Case 1 and 2). Then py,(D) has
coefficients 0, 2,4 only.

Proof

We have py, (D) = 0 mod 2 by the same argument as in the proof of Lemma
4.4. Let py,(D) = 2z with z = ¥ cq, bgg. Lemma 2.1 yields 227D =
9 + 36Gy,. From Example 2.7 we know

{bs} =1{9-2,9-1,2-0} or

{b,} ={1-3,6-2,12-1,2-0} or

{bs} =1{2-3,3-2,15- 1}.

The last two cases can not occur, as py,(z) = 3(Gy,—1) for Uy =< g >< h? >
according to Lemma 4.4. This proves the assertion. o

Now we are able to prove the crucial Lemma 4.3.

Proof of Lemma 4.3
Let {g1,...,910} be a complete system of coset representatives of T in Gy .
We write

10
pu(D) =" Aigi,
i=1

where Ay, ..., Ajy are elements of ZT (which we consider to be imbedded in
ZGy) with nonnegative coefficients. We fix an ¢ and write

A; = a1 + asgy + ashy + asguhy,
where ag, ..., a4 are nonnegative integers. Lemma 4.6 gives us
a; +ag, a3+ ag € {0,2,4}. (6)

According to Lemma 4.5 there are three possible cases.

Case (i): py,(9:) =1 or gy,. Then A; = 0.

Case (ii): py,(9:;)) = a or agy,. By replacing g; by g¢:gu, (if necessary)
we can assume py,(g;) = a. Then a; + a3 = 6 and a; = a4 = 0. Hence
{a1,a3} = {2,4} by (6). By replacing g; by g;h? (if necessary) we can
assume a; = 4 and az = 2.

Case (iii): pu,(9:) €< gv, > U a < gy, >. Then

a1+a3:a2+a4:3. (7)
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We need another case distinction.

a) a; = 0 for some j € {1,2,3,4}. By replacing g; by g;t with a suitable
t € T (if necessary) we can assume a3 = 0. Then (6) and (7) imply a; = 3,
as =1 and a4 = 2.

b) a; > 1 for all j. From (7) we infer {a;,as} = {as, as} = {1,2}. Thus (6)
implies a; = ay and a3 = a4. By replacing g; by g;t with a suitable ¢t € T' (if
necessary) we can assume a; = a = 1 and ay = a4 = 2.

Summarizing the above results, we have A; = 0 for the i with ¢; € T,
A; = 4+ 2h% for the i with py,(g;) = a and

A; € {34 gu + 2guhf, (L4 2h3)(1 + gu)}
otherwise. Hence we can write
pu(D) = (4b+ 2bh%) + X (3 + gu + 29uhi) + Y (1 + 2h3) (1 + gv),

where {1} U {b} U X UY is a complete system of coset representatives of T’
in GU-
It remains to show |X| =2 and |Y| = 6. As |D| = 54, we have

6 +6/X|+6|Y| =54
Comparing the coefficient of 1 in the equation
pu(D)py(D) = 36 + 72Gy
gives
(16+4)+ (9+1+4)|X]|+ (1+4)2)Y| = 108.

Together with the above equation this proves the assertion. o

Lemma 4.7 Let Us =< ¢g? >< gh®? >. Then (in either of the Cases 1 and
2)
pus(D) = 4by + 2b1gy, + X1(5 + gus) + 3Y1(1 + gu)
= (2[)1 + 4X1) + (2b1 + X1 + 3Y1)(1 + gUe)’

where by € Gy, and X1,Y; C Gy, such that {1}U{b }UX,UY; is a complete
system of coset representatives of < gy, > 1n G-
Furthermore, | X1| = 2 and |Y;| = 6.

14



Proof
The assertion follows directly from Lemma 4.3 via projection. o

Proof of Theorem 4.2
We will conclude the proof by showing that the py,(D) described in Lemma
4.7 can not satisfy the equation

pus (D) pus (D) = 36 + 144Gy, (8)

which is necessary for D to be a (160, 54, 18)-difference set in G.
We write X; = {c,d}. From Lemma 4.7 and (8) we infer

(2b; + 4c +4d)(2b; ' + 4c '+ 4d7 1) = 36 mod (1 + gy,)
(this has to be interpreted as a congruence in ZGy,). It follows that
(bt +b7te) + (bid™' +b7'd) + 2(ed™! + ¢7'd) = 0 mod (1 + gy,)-
Let e = b, 'c and f = b, 'd. Then
(e+e )+ (f+fH+20ef+etf)=0mod (1+ gy,). 9)

Since no two elements of {by, ¢, d} are in the same coset of < gy, >, the same
is true for {1,e, f}. As Gy, =< hy, >< ky, > with o(hy,) = 4, o(ky,) =5
and h{,, = gu,, we have {e, f} < hy, >. Therefore, we can assume 5|o(e).

Since e appears on the left hand side of (9), egy, must also appear on the
left hand side of (9). But this is not possible:

1) egy, = e ! would imply e = gy,, contradicting 5|o(e).
2) egy, = f is not possible because e and f are in distinct cosets of < gy, >.
3) Assume egy, = f~!. Then (9) becomes

(6 + 6_1) + (e_lgUe + €gUﬁ) + 2(629Ue + 6_29U6) = 0 mod (1 + gUﬁ)'

Hence €? + e72 = 0 mod (1 + gy, ), which implies e* = gy, contradicting

5[o(e).
4) egy, = ef ! is not possible since f €< gy, >.
5) Assume egy, = e f, i.e. f = e?gy,.- Then (9) becomes

(6 + 6_1) + (629U6 + e_ZgUﬁ) + 2(€_lgU6 + egUG) = 0 mod (1 + gUG)'
Hence €? + e 2+ e ! +e = 0 mod (1 + gy,). Thus egy, € {€? e7?, e},

contradicting 5|o(e) and concluding the proof. 0
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5 Nonexistence of a (189,48,12)-difference set

Using arguments similar to those in Section 4, we give a new proof for the
nonexistence of a (189,48 12)-difference set in Z3 X Zg X Z7;. This was an
open entry in Lander’s table [Lander (1983)] for a long time. The only
proof available up to now [Arasu, McDonough, Seghal (1993)] is much more
involved and uses complicated calculations in cyclotomic fields.

Concerning other abelian (189, 48, 12)-difference sets, it is known that the
underlying group cannot be cyclic [see Lander (1983)]. Up to our knowledge,
it is still unknown if such a difference set exists in (Z3)® x Z,.

Theorem 5.1 There is no (189,48, 12)-difference set in Zz x Zg X Z.

Proof
Assume that there exists such a difference set D. Let U be a subgroup of G
of order 3, such that Gy is cyclic. From Lemmas 2.1, 2.3 and 2.5 we get

pu(D) = 3X + PY, (10)

where XY € ZGy (with nonegative coefficients), and P is the subgroup of
order 3 of Gy. Let W be the subgroup of order 9 of G' containing U. By
(10) we can write pw (D) = 3u, where u € ZGw has nonnegative coeflicients.
Lemma 2.1 gives uu(~Y = 4+ 12Gw; the argument described in Example 2.7
shows that u has coefficients 0 and 1 only. Hence no two elements of X UY
are in the same coset of P. Comparing the coefficient of 1 in the equation

pu(D)py (D) = 36 + 36Gy (11)

yields 9| X| + 3|Y| = 72. Together with 3(]X |+ |Y|) = k£ = 48 this implies
|X| =4 and |Y| = 12. By (10) and (11) we can write

XX =44 Pz (12)

for some Z € ZGy. W.l.o.g. we can assume Z = Z?il a;g;, where a; € Z and
{g1,.--,921} is a complete system of coset representatives of P in Gy. Since
X has nonnegative coefficients only, the a;’s also must be nonnegative.

W.lo.g. we can assume 1 € X; as no two elements of X are in the same coset
of P, we can also assume X = g1 + g2 + g3 + g4, g1 = 1, and we have a; = 0.
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From (12) it follows that as, as,as > 0, since the coefficients of go, g3, g4 in
XX are positive. Thus we can write

XXV =44 P(A-1)+Ph (13)
for some h € Gy \ P. However, (X X(=9)(=1) = X X(=1) implies
PACY 4 Ph~t = PA + Ph. (14)

Hence there must be 4,5 € {2,3,4} with Pg; = Pg;l. We observe that
1 = j is impossible, as g; € P and Gy has odd order. Hence we can assume
Pg, = Pgs'. For the same reason as above, Ph = Ph~! is impossible. Hence

Ph~!' C PA by (14), which implies Ph~! = Pg,. Now (13) becomes
XX =44 Plgo+95" + g0 +97). (15)

Recall that W is the subgroup of order 9 of G' containing U, and let a :=
pw(g2) and b := py(gs4). Then (15) implies

(a+a b+ +(@+a?)=(a+a ') +20b+b7"). (16)

Since the coefficient of b in (a + a ')(b + b!) is at most 1, we must have
b € {a? a2}, say b = a®. Then (16) becomes a® + a3 = a® + a~2, which is
impossible, because the order of a can only be 3,7 or 21. o
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