Asymptotic Nonexistence of Difference Sets in

Dihedral Groups

Ka Hin Leung
Department of Mathematics
National University of Singapore
Kent Ridge, Singapore 119260
Republic of Singapore

Bernhard Schmidt
Institut fiir Mathematik
Universitat Augsburg
86135 Augsburg
Germany

April 26, 2001

Abstract

We prove that for any primes pi,...,ps there are only finitely many

numbers [[7_; pi, a; € ZT, which can be orders of dihedral difference

sets. We show that, with the possible exception of n = 540, 225, there
is no difference set of order n with 1 < n < 10% in any dihedral group.

1 Introduction

Almost all known results on difference sets need severe restrictions on the
parameters. The main purpose of this paper is to provide an asymptotic



nonexistence result free from any assumptions on the parameters. The only
assumption we make is that the underlying group is dihedral.

Difference sets originally mainly were studied in cyclic groups where they
exist in abundance. For example, for any prime power n, there is a difference
set in the cylic group of order n? + n + 1, namely, the so-called Singer
difference set, see [2|. It is a very interesting phenomenon that the situation
changes completely if one switches from cyclic groups to dihedral groups. No
nontrivial difference set in any dihedral group has been found yet.

Conjecture 1 There is no nontrivial difference set in any dihedral group.

In the next section, we will see the reason for the probable nonexistence of
dihedral difference sets: Putative difference sets in dihedral groups can be
decomposed into two “orthogonal parts” corresponding to the two cosets of
the subgroup of index two. The orthogonality of these two parts seems to be
a too strong condition to admit solutions. It can be checked that a similar
decomposition is impossible for all known difference sets in cyclic groups.
This explains why difference sets in cyclic groups and dihedral groups behave
so differently.

Difference sets in dihedral groups were thoroughly studied in [3]. The main
result obtained there is the following.

Result 2 If there is a nontrivial difference set of order n in a dihedral group,
then n = u? for an odd integer u and o(u)/u < 1/2 where @ denotes the Euler
totient function. In particular, v has at least three distinct prime divisors,
and if u has ezxactly three distinct prime divisors p1, po, p3, then

{p15p27p3} € {{3, 9, 7}a {3, 9, 11}’ {31 9, 13}}'

The main result we obtain in the present paper is quite different and of
aymptotic nature: For any primes pq, ..., ps; there are at most finitely many
n of the form []_, p{", a; € Z*, which can be orders of difference sets in
dihedral groups.

The central tool for the proof is the general bound on the absolute value of
cyclotomic integers from [6, Thm. 4.2]. A combination of this bound with a
substantial refinement of the arguments in [3] and careful number theoretic
analysis yields the desired result. A similar asymptotic result for Hadamard
difference sets has been obtained in [5, Thm. 6.1], but there the proof follows
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directly from the bound for the algebraic integers whereas the asymptotic
result of the present paper needs substantial additional analysis.

In the final section, we obtain a nonexistence result for dihedral difference
sets which is particularly useful for small cases. We use it to show that with
one possible exception there is no dihedral difference set of order n < 109.

2 Preliminaries

In this section, we review the known facts which are needed in this paper.
Let G be a multiplicatively written group of order v. A (v, k, A\, n) difference
set is a k-subset D of G such that any nonidentity element of G has exactly A
representations as a quotient of two elements of D. The nonnegative integer
n = k — X is called the order of D. We will only consider nontrivial
difference sets, i.e. difference sets with n > 1. We also will assume k < v/2
which is possible without loss of generality since D is a (v, k, A, n) difference
set in G if and only if G\ D is a (v,v — k,v — 2k + \)-difference set in G.
Given a difference set D, one can construct a finite geometry with point set
G and block set {Dg : g € G} with the property that any two blocks meet in
exactly A points, see [2]. A difference set thus should be viewed as a concise
description of a finite geometry.

When we study difference sets in a group G, we usually use the language
of the group ring Z[G]. For X = Y a,9 € Z[G] we write | X| = > a, and
X® = Y"a,g". Let 1 be the identity element of G. For r € Z we write
r for the group ring element r - 1, and for S C G we write S instead of
de ¢ 9. Using the group ring notation, a k-subset of a group G of order v is
a (v, k, A\, n)-difference set in G if and only if

DDGY —n 1 \G

in Z[G]. The following lemma from [3] is crucial for the study of difference
sets in dihedral groups.

Lemma 3 Let D,, = (g, h|g> = h™ = ghgh = 1) denote the dihedral group
of order 2m and write Cy, = (h) . There is a (2m, k, \,n) difference set in
D, if and only if there are A, B C Cy, with |A|+ |B| =k and

AACY 4+ BBEY = G, + 1, (1)



2AB = ACp. 2)

Proof Let D be a k-subset of D,, and write D = A + Bg with A, B C C),.
A straightforward computation shows that DD = n + AD,), if and only if
(1) and (2) hold. O

By G* we denote group of all characters x : G — C of a finite abelian group
G. The trivial character is denoted by xo. For a subgroup H of G* we write

H*={g€G:x(g)=1forall xy € H}

and
Ut ={x€G" :x(g)=1forall g U}.

for a subgroup U of G. Note that x(g) is a complex t-th root of unity for all
X € G* and all g € G where t = exp G. We write & = €>™/*. Any character
can be extended naturally to a mapping Z|G| — Z[&] by linearity. For the
basics on characters and difference sets, we refer the reader to [2, VL. §3].
We will make repeated use of the following.

Result 4 (Fourier inversion) Let G be a finite abelian group and A =
deG a,g € Z|G). Then the coefficients a, are determined by the character

values of A through
1 _
g = @ Z x(Ag 1)'
XE€G*

From Lemma 3 and the Fourier inversion we get the following.

Corollary 5 There is a (2m, k, A, n) difference set in Dy, if and only if there
are A, B C C,, with

|A|+ |B| =k and 2|A||B|=Am

such that
X(A)x(B) =0 and [x(A)]+ [x(B)]* =n

for every x € C*, \ {xo}-



The condition x(A)x(B) = 0 is the reason why we call the pieces A and B
“orthogonal”. Note that we can assume |A| < |B| by replacing D by Dg
if necessary which we will do from now on. The following essentially is a
reformulation of [3, Thm. 2, Cor. 3] and gives an important restriction on
the parameters of difference sets in dihedral groups.

Lemma 6 Assume the ezistence of a (2m, k, A\, n) difference set D = AU Bg
in D,,. Write a = |A| and b = |B| where a < b. Then n = u? for an odd
integer u > 1, and there is an even divisor ¢ < u — 1 of (u® — 1)/2 such that

S ul(u+ ) — 1]
, 2c

a = ulut+c—1)/2

b = ulut+c+1)/2

E = u(u+c)

A = uc

Proof Put u = b—a and ¢ = \/u. By Lemma 3 we have a® +b*> = Am +n
and 2ab = Am. Thus n = u2. In particular, u > 1 since n > 1. Moreover, we
have a+b=k =n+ X =u(u+ c) and this together with u = b — a gives the
formulas for a and b. We then get the formula for m from 2ab = Am = ucem.
Furthermore, n + A = u(u + ¢) shows that A is divisible by . Thus ¢ is an
integer. For the proof of the fact that u is odd, we refer to [3, Cor. 3|. By
the formula for m, we see that (u + ¢)? — 1 is even. Thus, ¢ must be even
and hence X is also even. We recall that we assume k£ < v/2 for a (v, k, A, n)
difference set. Since k(k — 1) = A(v — 1) we have A < n. This implies ¢ < u.
In [3, Thm. 2] it is shown that u divides m. Thus 2¢ divides (u + ¢)? — 1 and
thus u? — 1 since c is even. 0O

Let D = AU Bg be a difference set in D,, as in Lemma 3. Using Corollary
5, we can partition the nontrivial characters of C,, into two disjoint sets A
and B as follows.

A= {xeC:[x(A =n}, B:={xeC,:[x(B) =n}

In [3, Thm. 4] and its proof the following was shown.
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Result 7 Either A or B is a union of cosets of the subgroup of C}, of order
m/(m,n). Furthermore,

Al = (ma—a)/n
IB| = (mb—b*)/n.

Let Uy, be the group of units modulo m. Then U, acts on C, by x — X' for
l € Uy. Both A and B are unions of orbits of Uy, on C7,.

Now we state the results on cyclotomic integers from [5, 6] we will use. We
first need a definition.

Definition 8 Let m, n be positive integers, and let m = Hlepici be the
prime power decomposition of m. For a prime q write

o Hp#qu- if m is odd or g = 2,
M = 411, 49,Pi otherwise.

Let D(n) be the set of prime divisors of n. For ¢ € D(n) and i € {1,...,t},
let B(q,1) be the smallest positive integer such that one of the following con-
ditions 1s satisfied.

(b) B(C],Z) = G, .
(¢) ¢ # pi and q°rdma (@) # 1 (mod pB(q,z)H)'

1

Fori=1,....,t let b; := max{B(q,7) : q € D(n)}. We define

F(m,n) = pr’
i=1
The properties of the function F(m,n) just defined are crucial for the proof
of our asymptotic result in the next section. Note that F(m,n) and m have
the same prime divisors since b; is positive for all .. The following result was
proved in [5].

Result 9 Assume XX = n for X € Z[£,] where n and m are positive
integers. Then

X&, € LlEremm)

for some j.



The next result essentially is contained in [6].

Result 10 Let X be of the form

m—1
X =D ag,
=0

with 0 < a; < C for some constant C'. Let f be a divisor of m which has the
same prime divisors as m. If X € Z[&;| and if n := XX is an integer, then
2 £2

n < '/
4o(f)

Proof The proof is the same as that of Theorem 4.2 of [6], we only have to
replace F'(m,n) there by f. O

Corollary 11 If a difference set D of order n exists in the dihedral group of
order 2m, then

an < WF(m, n).

Proof Write D = AU Bg with A,B C Cy,. Let x be a character of C,,
order m. By Corollary 5 we have |x(A)|> = n or |x(B)|?> = n. We only treat
the case |x(A4)[?> = n, the other case is similar. Note x(4) = Y™ ' a;&l,
with 0 < a; < 1. Furthermore, F(m,n)/¢(F(m,n)) = m/e(m) since m
and F(m,n) have the same prime divisors. Thus the assertion follows from
Results 9 and 10. O

3 Asymptotic nonexistence

In this section, we prove that for any primes pi,...,ps there are only finitely
many numbers [[7_, pi*, oy € Z*, which can be orders of dihedral difference
sets. We start with a general lemma. By [z] we denote the largest integer

<z



Lemma 12 Let G be a finite abelian group, and let X be an element of
Z|G] with nonnegative coefficients. Assume that |x(X)|*> € {0,n} for some
positive integer n and all nontrivial characters x of G. Let N be the number
of montrivial characters x with |x(X)|?> =n. Then

_ 2
N> e(1—¢€)|G]

n

where e = [ X|/|G| = [[X|/|G]].

Proof Write X = Y. a,9 with a, € Z{ and |G| = v, |X| = z. Then
z/v =y + € where y = [z/v]. The minimum of )~ a? under the conditions
Sa, =z, a, € Zg, is attained if and only if a, € {y,y + 1} for all g € G,
see [4]. In that case, the number of g¢’s with ay = y + 1 is ev. Hence
Y a2l = (1—evy* +ev(y+1)* = 2*/v+we(l —¢). Thus for all a, € Zg with
> a, =x we get

Zafl > %2—}—1)6(1—6). (3)

On the other hand, since ) a? is the coefficient of 1 in X X1, we have

Zaéﬁ%[aﬁJan] (4)

by the Fourier inversion formula. The lemma follows by combining (3) and
(4). 0O

Notation 13 The following notation will be used throughout this section.
In the situation of Lemma 6, write 2¢ = 2°t#¢; ¢, where ¢4, ¢s are odd divisors
of u—1 and u + 1 respectively and 2¢ | (u—1), 2° | (u+1). As c is even, we
may assume o > 1 and 8 > 1. Write u—1 = 2%c;d; and u+1 = 28¢yd,. Then
u—1+c=2%(d;+2%"1¢cy) and u+14c = 2%¢y(dy +2%1¢;). Next, we write
di + 2%~ ey = ugty and dy + 27 '¢; = uoty, where t; and t, are the greatest
divisors of d; + 2%~ "¢, respectively dy + 2% '¢; which are relatively prime to
u. In particular, we deduce that m = wujustita. For the convenience of the
reader we give a table of the necessary identities.



c = 20t 1lc e
u—1 = 2%d;
u+1l = 2Pcyd,
di +26-1ey = wuity
dy 4+ 27 e; = wugty

ut+c—1 = 2% uty
utec+1l = 2Pcousts
m = U,’U,1U2t1t2

Lemma 14 Fither a or b is divisible by m/(m,n). We havet; =1 orty = 1.
More precisely, we have t1 =1 if m/(m,n) divides b and ty = 1 if m/(m,n)
divides a. With m' denoting the largest divisor of m coprime to u, we have
m' = tity < u.

Proof We first show m/(m,n) divides a or b. Let H be the subgroup of
Cp, of order (m,n). By Result 7 we have x(A4) = 0 for all x € H+ \ {xo}
or x(B) = 0 for all x € H+\ {xo0}. Let p: C,, = C,,/H be the canonical
epimorphism. Then, by the Fourier inversion formula, p(A) or p(B) is a
multiple of Cy,/H. Thus |Cy,/H| = m/(m,n) divides a or b.

Note that m' = t1t, by definition. Suppose that m/(m,n) divides a =
u(u 4+ ¢ — 1)/2. Then t, divides a. Since t, divides b by definition, it also
divides u = b — a. As (t2,u) = 1 we conclude to = 1. Since ¢ | (u+c¢—1)/2
and ¢ < u, we get 115 < u. The same argument works in the case that
m/(m,n) divides b. O

Theorem 15 Write u = [[;_, p;"" where the p;’s are distinct primes. Then
ufe < [Ii_, pi- Moreover, if s is the largest integer such thatu/c > pips - - - ps,
then

2¢0(u) < p(P)u/P + 2%c (5)

where P = [];_, pi.
Proof For convenience, we denote the unique subgroup of order d of C,, by

G(d). By assumption we have v > ¢P. Let d > 1 be a divisor of P. Then
d < u/c and thus



a/(m/d) =ad/m < au/cm =u/(u+c+1) < 1. (6)

Let p: Cy, — Cy,/G(d) be the canonical epimorphism. Note that the char-
acter values of p(A) are exactly the values x(A4), x € G(d)*. From Lemma
12 with X = p(A), G = G(d) and € = ad/m we get

m

v ANG(d)*| > G(E —a).

Hence

AnG@Y > 4+ @ - vt el )

Since (¢ —1)/2u and (m/d — u(u + ¢ — 1)/2) are both positive, we get

IANG(d)*] > 2% - W. (8)
Since u(u +c—1)/4 < (u+ c—1)?/4 = mc/(2u) we get

m mc

A > — - —
AnG@) > T Q
from (8). Similarly, we derive
m  mc
B A > — - —
BNG)] > 2d  2u
and thus
m  mc
IANG(d)*| < 20" o (10)

since [ANG(d)*| =% — | BNG(d)*| - 1.

Let p denote the Mébius function. Write U = Us_,; G(p;)*. Using (9), (10),
inclusion-exclusion, and the well known formula ¢(P)/P = >_, , u(d)/d we
get

ANUl = Y —pd)|ANGd)*

d|P, d>1

10



> Y (w50

2u
d|P, d>1
m N’(d) s—lmc
- APy _gs—107%
2 ( Z d ) U
dP, d>1
m ©(P) s mc
= (11t
2 ( P ) U

In the same way we estimate B N U| and get

aAn (1)

Let x be a character of (), of order m, and let W be the subgroup of C7, of
order m/(m,n). By Result 7 the set

m—1
S = U 116%
i=1

L mc

min(|ANU|,|BNU|) > %(1— ) — 25"

(i,m)=1

is contained either in A or B. Note |S| = ¢((m, n))|W| = me(n)/n. Now we
are going to show that SNU = (). We claim that for any character 7 € W, 7
is trivial on G(p;) for j =1,...,s. Note that the claim is obvious if p; does
not divide the order of 7. In case that p; divides the order of 7, we observe
that p; | (m/|W]) also, so 7 must also be trivial on G(p;). Now, as X' is
nontrivial on G(p,) for all 4 with (,,) = 1 and j = 1,...,s, we conclude
Wx'*NU = for (i,m) =1 . Hence, SNU = ). Thus together with (11) we
get

P
max(|A|,|B|) > me(n)/n+ %(1 _ %) _ 23—17720
m. . 2p(u)  p(P) 2%
Using Result 7 it is straightforward to check that
m m
A Bl < — + —.
Al <Bl <5+ 5,

Combining the last two estimates gives
m[2ap(u) o(P) 230] . m
2w P U 2u

11



and thus 2¢(u) — p(P)u/P — 2%¢ < 1. Since 2p(u) — p(P)u/P — 2°c is an

integer, this implies (5).

It remains to show that r = s is impossible. When r = s, then ¢(P)/P =
¢(u)/u. Recall u/c > P. Sincer > 3, we get 2"c < 2"u/P = 2"[u/(p(u)P)|p(u) =

2(IT—y(pi — 1) Hp(u) < 2227147167 p(u) = ¢(u)/6. Now (5) gives the

contradiction 2¢p(u) < ¢(u) + ¢(u)/6. Hence s <r. O

We will need the following properties of the function F' from Definition 8.
For a prime p and an integer y we write p® || v if p® | y and p*™' [ y.

Lemma 16 Let r, s, x be positive integers where x is coprime to rs. Then
a) F(r,s) divides r,
b) F(rz,s) divides z ged(e, ) F(r, s) where e is the exponent of the group Z.

Proof Part a holds because of condition b in Definition 8. For part b, let
p; be a prime divisor of rz and define b by p;" || F(rz,s). We have to show
pi | zged(e,7)F(r,s). If p; | © then pZ \ x by part a, and we are finished.
Thus let p; | 7. Define b}, a and ¢; by pZ | F(r,s), p} || e and p§* || r. Since
b; < ¢; by part a, it suﬂices to show b; < b+ a. Let D(s) be the set of prime
divisors of s, and let ¢ € D(s). Let B(i,q), B(i,q)" be the numbers defined

in Definition 8 when applied to F(rz,s) respectively F(r,s). By Definition
8 applied to F(r, s) one of the following cases holds.

Case 1 ¢ = p; and (p;, B(4,q)") # (2,1). Then B(i,q) < B(i,q)" by Definition
8, condition a, applied to F(rz,s).
Case 2 B(i,q)' = ¢;. Then B(i,q)
8, condition b, applied to F(rz, s).

Case 3 ¢ # p; and

< B(i,q)" since B(i,q) < ¢; by Definition

¢ #1 (mod pf9 (12)

where I" = ord,, (¢) and

! { Hpj|r, quéqu if r is odd or q= 2’

m, = .
q )
4] ij|r, pi#2,q Pi otherwise.

Note that
¢" =1 (mod p;) and ¢" =1 (mod 4) if r =0 mod 2 and ¢ #2.  (13)
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Let I' be defined as I" only with r replaced by rxz. Then I' | eI” where
e = exp Z:. Now (12), (13), T'| eI, and p{*' [ e imply

¢" #1 (mod p; "),

Thus B(i,q) < B(i,q)" + a by Definition 8, condition ¢, applied to F(r, s).
In summary, we have shown B(i,q) < B(i,q) 4+ a for all ¢ € D(s) in every
possible case. Thus

b; = max{B(i,q) : ¢ € D(s)} < a+ max{B(i,q) : ¢ € D(s)} = b, +a

concluding the proof. 0O

Lemma 17 Let py,...,p; be any primes. Then there is a constant K € Z*
only depending on the p; such that F(r,s) | K for all r and s which are
products of powers of the p;.

Proof We use the notation of Definition 8. Write T" := szl pi. Let i €
{1,...,t} and ¢ € D(s) be arbitrary. If ¢ = p;, then B(i,q) < 2 by Definition
8, condition a. Note that m, < 27 and thus ¢°m«(@ < T?7. Hence, as a
very crude estimate, B(q,i) < T? by Definition 8, condition c, if ¢ # p;.
This implies

F(r,s) | TT".

Lemma 18 Let s be a positive integer and x € R with x > 2s. Then
1
((1 + ) = 1) r < 2s.
x

Proof This follows from (1 +1/x)° < 3°_ (s/z) = 1+ (s/z) S0 s (s/x)* <
1+ (s/2) 30 (1/2) < 1+ 2s/x. O

Theorem 19 Let py,...,p, be distinct primes. There are only finitely many
u’s of the form [[,_, p for which a dihedral difference set of order u? can
exst.

13



Proof It will be sufficient to deal with the case where o; > 1 for all 7. We
will only treat the case t; = 1. The case t = 1 can be done in exactly the
same way by adjusting some signs and indices.
In the following, when we say that a number z depending on u “is bounded”
we mean that there is a constant K such that x < K for all u of the form
[I;—, pi"". In this sense, Theorem 15 shows that u/c is bounded.
Recall that m = uujustity = uujusty where to = m’ < u is the largest
divisor of m coprime to u. Let e be the exponent of the group Zj, and
P = ged(e, uuqug). Write ty = Hq_;-lj where the g;’s are primes, and let L
be the least common multiple of all the (¢; — 1)’s. Then P = ged(L, uuyus)
as to and u are relatively prime. Thus, for each 7, there exists a j; such that
the highest powers of p; dividing P respectively g;, — 1 are equal. Hence, we
may rearrange the g¢;’s such that P | gcd(H;.:l(qj — 1), uuqug), s < r and
g < <gs.
Write F'(m,u) = Mu' where M is the largest divisor of F(m,u) relatively
prime to u. By Lemma 16 we have M | t, and v’ | F(ujuou,u) - P. By
Corollary 11, we get
M2y u! w o M?
4< - : M
T e(M)p(uu® p(u) o(M)
Write ¢, = Y []}_; ¢i. Since M | to, we have M?/o(M) < t3/¢(t2). Fur-
thermore, p(t2) > (Y )¢(q1 - - ¢s). On the other hand, as v and v’ have the
same set of prime factors, u/¢(u) = u'/p(u'). Therefore, we obtain

u ! t2

~ () o(V)e(a---gs) v
By Lemma 17 there is a constant E such that F(ujusu, u) | E for all u’s which
are products of powers of the p;. Since u' | F(ujusu,u) - P, we have v’ | EP.
Using 5 < u, P | ¢(g1---qs) and (14) we get du/ty < (u/p(u)) - (E/o(Y))
and thus

(14)

Y is bounded. (15)

to
Combining (14) with the fact that u > (u+c+1)/2 = 28 Lcyusty, we deduce
u U 1

= o(u) olg---q) @(Y)22-22u2’ (16)

14



Since u' | EP we can replace v’ by EP in (16) and get

plo--g) . v E
P 7 p(u) @(Y)2¥cGus

From (17), we see that ¢(q; - - -¢5)/P is bounded. Also, since P | ¢(q1---qs)
we see from (17) that ¢(Y") is bounded. Thus

(17)

Y is bounded. (18)

We shall see later that (17) actually also forces all ¢;’s to be bounded. Using
our table of identities in Notation 13, we obtain d,2°cousty = di(u+c+1) =
dl(u +c — 1) + 2d1 = [(’LL — 1)2 %c ][2aclu1] + 2d1 = (’LL — 1)U1 + 2d1 =
wuy — (up — dy) + dy = vuy — 2°- 102 —I— dy. Hence

d12ﬁCQ’U,2t2 = uuq + dl — Qﬂil. (19)
For 1 </ < s, we define

Note that Q(1) > P/us. Asuisodd, Q(¢) > Q(1 )HZ 1 q - where 1)
is defined to be 1 if £ = 1. Thus

Zlq

0
P
) > — 2
S (20)
By (19) and the definition of Q(¢) we have
d1—2ﬁ Cy = d12ﬁ02U2t2 = d12 CoU9 tg qu qo— 1 —1)] mod Q(ﬁ)

(Here it is understood that when £ =1, HZ 1¢=1)
Since |d; — 2% 'ey| < di2Pchuy, we conclude that

12 cyuslty — Y(ﬁ g)(ge—1)---(gs = 1)] = (dr =27 "¢p)

i=1

15



is positive and thus > Q(¢). This implies

d128 coualty + 1 — HQz g —1)---(gs — 1)] > Q). (21)

Recall to = Y T[], ¢;- Now suppose that ¢, > 2s + 1. Then we get

0<qe - qs—p(ge---qs) < [(1+ ! 1)5—1](qe—1) - (gs—1) < 2s(qes1—1) -~ - (gs—1)

qe —

using Lemma 18 with x = ¢, — 1 and the fact that the ¢is are ascending.
Here the product on the right hand side has to be interpreted as 1 if [ = s.
In particular, we have

d12’502uQ[t2+1—Y(1:[ Gi)(qe—1)---(gs—1)] < d12'302u2Y(1:[ qi)(28)(qer1—1) - - (gs—1).

Combining this with (21), we get

-1
Q) < di2cyupY (28)([ [ @) (g — 1) -+ (g5 — 1).
i=1
Together with (20) this gives
-1 -1

z. H 2 < d12ﬂC2U2Y(23)(H ¢i)(qey1 — 1) -+ (g — 1).

1
Uz 5% i=1

Therefore,
R AL=2"
g—-1< d12ﬂCQU3Y(2$)w 211 %
Combining this with (17), we obtain
5 u E T Ui dy Y u
et < by @) s S L =P e e Ly
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Recalling that di/(2°7'cy) = (u — 1)/(2°71¢y2%1) = (u — 1)/c is bounded
by Theorem 15 and using (18) we conclude that g, Hf;ll q; " is bounded if
q¢ > 2s + 1. Using induction on £, this shows that all ¢;’s are bounded.
By (18) this shows that t, is bounded. Finally, (15) now implies that u is
bounded, too. O

4 Further nonexistence results

After the asymptotic analysis of the last section, we now provide a result
which is useful in dealing with cases where n is small. We will also update
the list of open cases with n < 10° from [3]. We will need the following well
known results of Turyn’s [7].

Definition 20 A prime p is called self-conjugate modulo a positive integer
m if there is a positive integer j with

= —1 mod m/,

where m = p®m’ with (m/,p) = 1. A composite integer ¢ is called self-
conjugate modulo m if every prime divisor of ¢ is self-conjugate modulo m.

Result 21 Let X € Z[&)] and 0 € Gal(Q(&)/Q). Ifr = |X|* € ZT and if
o fizes all prime ideals dividing r, then X° = eX where € is a root of unity.

Result 22 Let a be self-conjugate modulo m. If X € Z[,,] with
|X|?> =0 mod d?,
then X = 0 mod a.

Result 23 Let G be an abelian group of order v, let w be a character of G
of order vy, and let H be a subgroup of G* of order vy where (v1,v9) = 1.
Assume that there is a subset A of G such that 7(A) = 0 (mod r) for some
integer v and all T € Hw, and that 7(A) # 0 for some 7 € Hw. Then

t—1
27 > rvivg

where t 1s the number of distinct prime divisors of vy.
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The following is an immediate consequence of the orthogonality relations, see
2, p. 314].

Lemma 24 Let G be an abelian group. Let D C G, let w € G* and let H be
a subgroup of G*. Then

w(DNHY) = Zm

TEH

Theorem 25 Assume the existence of a (2m, k, \,u?) difference set in D,
where u is odd. Let T be a set of prime divisors p of u with p* | m such that
for every p € T at least one of the following conditions is satisfied.

a) There is a divisor | of u/p which is self-conjugate modulo m/p such that
[ > 2!=2 where t is the number of prime divisors of u.

b) 4u?/p* > F(m/p,u/p)*/o(F(m/p,u/p)).

¢c) F(m/p,u/p) =4 (mod 8), ¢ = 3 (mod 4) for all prime divisors q of u/p,
and 8u?/p? > F(m/p,u/p)*/¢(F(m/p,u/p)).

Then
W>2(1+Z _1>

Proof Let A, B be defined as in Result 7. Let x be a character of C,, of
order m and assume x € A. Let p € T and write x = yx' where 7 has order
p and X' is of order m/p. Note that p and m/p are coprime by assumption.
We will show x' € A.
Assume the contrary, i.e. |x'(B)| = u. Since x(B) = 0 and since B is a union
of orbits of U,, by Result 7 we have Xfy'(B) =0fori=1,...,p—1. Now
Lemma 24 implies pX "(BNyt) = Zz o X'7'(B) = X'(B). Let X := BN~™.
Then x'(X) = Z"ﬁp ! me/p with z; € {0,1} and |x'(X)| = u/p since
IX'(B)| = u. Applying Result 10 to x'(X), we get
u* _ _F(m/p,u/p)*

— <

>~ 4p(F(m/p, u/p))
and thus condition b of Theorem 25 cannot hold.
Now let [ be a divisor of u/p which is self-conjugate modulo m/p. Let w' be
the largest divisor of m/p coprime to u. Note that w' divides m/(m,n). Let
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W respectively W' be the subgroup of order m/(m, n) respectively w' of C*,.
Since x € A and since A is a union of cosets of W and possibly W \ {xo},
we in particular get xiy € A for all 1 € W’. In the same way as we did for
X'(X), we conclude |x'9(X)| = u/p for all p € W'. Since [ is self-conjugate
modulo m/p, Result 22 implies

X'(X) =0 (mod 1) (22)

for all 1 € W'. Note that the coset W'x' contains a unique character 7 of
order m/(pw'). Since W'x' = W'n we get

nY(X) =0 (mod )

for all 1p € W' from (22). Now we apply Result 23 with G = 74, v = m/p,
A=X,H=W" w=n,v =m/(pw), vo =w', r =1 and get

22~ (m/p) > U(m/(pw"))(w') = Im/p

where s is the number of prime divisors of m/(pw'). Since s =t — 1, this
shows that condition a of Theorem 25 also cannot hold.

Thus condition ¢ must be satisfied. By Result 9, we can assume x'(X) €
Z[&f| where f = F(m/p,u/p) = 4 (mod 8). Write J := x'(X) =Y +iZ
with Y, Z € Z[&;4). Since all prime divisors of u/p are = 3 (mod 4), the
automorphism o € Gal(Q({;)/Q) defined by i = —i and £/, = /4 fixes
all prime ideals above u/p in Z[&;], see [2, VI. Thm. 15.2]. Thus J = eJ
where € is a root of unity by Result 21. Since € € Z[¢;] and f = 0 (mod 4),
we have € = 5} for some [. Applying o to to J? = €J, we get ee” = 1. Thus
e =+ with j € {0,...,3}. If e =4, then J° =Y —iZ = iY — Z. Thus
Y =—Z and J = (1 —1)Y. But this implies that |J|? is divisible by 2 which
is impossible since u is odd. Similarly, € = —¢ is impossible. If ¢ = —1, then
Jo°=Y —1Z =-Y —iZ and thus Y =0. If j =0, then Z = 0. In any
case, we have shown that x'(X) times a root of unity lies in Z[{;/,]. Since
IX'(X)| = u/p, Result 10 now shows u?/p* < (f/2)?/40(f/2) = f?/8p(f).
Thus condition ¢ of Theorem 25 also cannot hold, a contradiction.

Hence we have shown that y € A implies ¥’ € A. In the same way, it follows
that y € B implies x' € B. Let W be the subgroup of order m/(m,n) of C},.
Recall that both A and B are unions of cosets of W and possibly W \ {xo}-
By what we have shown, y € A and x? € A for all p € T or x € B and
xfeBforallpeT.
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Let S C C%, be the union of all cosets Wx*, Wx?*» 1< s<m, (s,m) =1,
1 < w, < m/p, (wy,m/p) =1, p € T. Note ¢((m,n))/(m,n) = ¢(n)/n.
Thus we have

S| = o((mm) + Y ((%)so((m,n)/p))

By what we have shown, S C A or S C B. Result 7 implies |A| < m/2 < |B|
and B[ —[A[ <m/u. Writey := 1+ . zﬁ' Suppose 2y > n/p(n). Then
|S| = ymp(n)/n > m/2 and thus S C B. Note n/p(n) = u/p(u). We have
2yp(u) > ne(u)/e(n) = u. Since u is odd and ye(u) in an integer, this
implies 2y (u) > u. Hence |B|—|A| > 2|S| —m = [2yp(u) —u]m/u > m/u,
a contradiction. Thus 2y < n/p(n) proving the assertion. 0O

Corollary 26 With the possible exception of u = 735 there is no difference
set of order u? < 10° in any dihedral group.

Proof Assume the existence of a difference set of order «? < 10° in D,,. In
[3] it is shown that only the following cases are possible.

w105 |315 |525 |[735 | 945
m | 24885 | 223020 | 620550 | 1214955 | 2010015

For u = 105 we apply Theorem 25 with p = 5 and [ = 3. Since 3 is self-
conjugate modulo 24885/5, condition a of Theorem 25 is satisfied. Thus
35/16 = 105/¢(105) > 2(1 4 1/4) = 5/2, a contradiction. Thus u # 105.

In the case u = 315 we have F(m,u) = m/3. Thus Corollary 11 gives
396900 = 4n < m?/(3¢(m)) < 340000, a contradiction. Thus u # 315.

For u = 525 take p = 7 in Theorem 25. Note F(m/7,u/7) = m/(7 - 15).
Thus F(m/7,u/7)?/o(F(m/7,u/T7)) < 4u?/7%, i.e. condition b of Theorem
25 is satisfied. Hence 35/16 = u/p(u) > 2(1 + 1/6), a contradiction. Thus
u # 525.

For u = 945 we have F(m,u) = m/9 and like for u = 315 we get a contra-
diction by Corollary 11. Thus u # 945. O

In view of Result 2, the following is of interest.
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Remark 27 Using Corollary 11, Theorem 19, Theorem 25, some additional
calculations, and a computer search the following can be shown: With the
possible exception of u = 735, there is no difference set of order u? with
u = 3°5°7¢ for any positive integers a, b, ¢ in any dihedral group.
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