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Abstract

We show that every weighing matrix of weight n invariant under a finite abelian

group G can be generated from a subgroup H of G with |H| ≤ 2n−1. Furthermore,

if n is an odd prime power and a proper circulant weighing matrix of weight n

and order v exists, then v ≤ 2n−1. We also obtain a lower bound on the weight

of group invariant matrices depending on the invariant factors of the underlying
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group. These results are obtained by investigating the structure of subsets of finite

abelian groups that do not have unique differences. Finally, our method can be

used to improve multiplier theorems for difference sets.

1 Introduction

Let G be a finite multiplicative group of order v and let Z[G] denote the corresponding

integral group ring. Any X ∈ Z[G] can be written as X =
∑

g∈G agg with ag ∈ Z. The

integers ag are the coefficients of X. We write |X| =
∑

g∈G ag and X(−1) =
∑
agg

−1.

We identify a subset S of G with the group ring element
∑

g∈S g. For the identity

element 1G of G and an integer s, we write s for the group ring element s1G. The set

supp(X) = {g ∈ G : ag 6= 0} is called the support of X.

A weighing matrix is a square matrix M with entries 0,±1 only such that MMT =

nI where n is a positive integer and I is an identity matrix. The integer n is the weight

of the matrix. Let G be a finite group and let H = (hf,g)f,g∈G be a |G| × |G| matrix,

indexed with the elements of G. We say that H is G-invariant if hfk,gk = hf,g for

all f, g, k ∈ G. Weighing matrices invariant under cyclic groups are called circulant

weighing matrices.

The existence of group invariant weighing matrices has been studied quite intensively,

see [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 19, 20], for instance. Interest in methods for the

study of group invariant weighing matrices also stems from the multiplier conjecture for

difference sets: The most powerful known approach to this conjecture due to McFarland

[15] depends on nonexistence results for group ring elements which satisfy the same

equation XX(−1) = n as group invariant weighing matrices. In fact, we will describe an

application of our results to multipliers of difference sets in Section 6.

The following is well known, see [18, Lem. 1.3.9].

Lemma 1. Let G be a finite group of order v. The existence of G-invariant weighing

matrix of weight n is equivalent to the existence of X ∈ Z[G] with coefficients 0,±1 only

such that XX(−1) = n.
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In view of Lemma 1, we will always view G-invariant weighing matrices as elements

of Z[G]. The key to our results is the investigation of the support of group invariant

weiging matrices in Section 3. As the support of such matrices does not contain a unique

difference, we can use the Smith Normal Form of the matrix of the corresponding linear

system to gain insights into the structure of the support.

Many group invariant weighing matrices can be constructed as follows. Let H be a

subgroup of a finite abelian group G and let g1, . . . , gK ∈ G be representatives of distinct

cosets of H in G. Suppose that X1, . . . , XK ∈ Z[H] have coefficients 0,±1 only and

that
∑K

i=1XiX
(−1)
i = n and XiXj = 0 whenever i 6= j. It follows by straightforward

computation ([2, Thm. 2.4]) that

X =
K∑
i=1

Xigi (1)

is a G-invariant weighing matrix of weight n. If (1) holds, we say that X is generated

from H .

Note that, indeed, the main conditions that make (1) a weighing matrix only involve

equations over the group ring ofH. These conditions are
∑K

i=1XiX
(−1)
i = n andXiXj = 0

for i 6= j. The choice of the gi’s only makes sure that the coefficients of X are 0,±1.

In fact, such gi’s exist in any abelian group which contains H as a subgroup of index at

least K.

The following [1, Construction 3.10] provides examples of group invariant weighing

matrices obtained via (1).

Result 2. Let q = pa where p is a prime and a is a positive integer. Let d ≥ 2 be

an integer and assume that d is even if p is odd. Set r = qd + qd−1 + · · · + 1. Let V

be a (d + 1)-dimensional vector space over Fq and let U1, . . . , Ur be the d-dimensional

subspaces of V . Let G be any abelian group containing V as a subgroup such that the

index of V in G is at least (r+1)/2. Finally, let g1, . . . , g(r−1)/2 ∈ G\H be representatives

of distinct cosets of H in G. Then

X = U1 +

(r−1)/2∑
i=1

(U2i − U2i+1)gi (2)
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is a G-invariant weighing matrix of weight q2d.

The main aim of our work is to show that group invariant weighing matrices necessarily

have the form (1) if their weight is small compared to order of the underlying group.

Moreover, we show that the order of the group H which contains the “building blocks” Xi

is bounded by a constant only depending on n. Some results in this direction concerning

circulant weighing matrices previously were obtained in [12]. The main result of [12] is

the following.

Result 3. For every positive integer n, there is a positive integer F (n), only depending

on n, such that every circulant weighing matrix of weight n is generated from a cyclic

group of order F (n).

Though the constant F (n) can be computed for any given n, it is huge even for

moderately sized n. In particular, all primes ≤ 4n + 1 are divisors of F (n). In Section 5,

we prove the following result which substantially generalizes and improves Result 3.

Theorem 4. Let n be a positive integer. Every weighing matrix of weight n invariant

under an abelian group G is generated from a subgroup H of G with |H| ≤ 2n−1.

A G-invariant weighing matrix X ∈ Z[G] is called proper if 〈supp(Xg)〉 = G for all

g ∈ G. Note that X is proper if and only if Xg 6∈ Z[U ] for all proper subgroups U of G

all g ∈ G.

Example 5. Let q = 2a where a is a positive integer. There exists a proper weighing

matrix Y of weight q2 invariant under a cyclic group, say U , of order q2 + q+ 1 (see [19]).

Let G = U × 〈g〉 × 〈h〉 where g is an element of order 2 and the order of h is coprime to

2(q2 + q + 1). Note that G is a cyclic group of order 2(q2 + q + 1)k where k is the order

of h. Set

X = (1 + g)Y + (1− g)hY.

Using Y Y (−1) = q2, (1 + g)(1− g) = 0, and (1 + g)2 + (1− g)2 = 4, it is straightforward

to verify that X is a G-invariant weighing matrix of weight 4q2 = 22a+2. Furthermore,

the fact that Y is proper implies that X is proper, too.
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Note that the order of h in Example 5 can be arbitrarily large. Hence Example 5

shows that, for any fixed a, there exist proper circulant weighing matrices of weight 22a+2

invariant under groups of arbitrarily large order. We will show that this cannot happen

if the weight is an odd prime power. In fact, Theorem 4, together with results from [12],

yields the following result.

Corollary 6. Let n be an odd prime power. If there exists a proper circulant weighing

matrix of weight n and order v, then v ≤ 2n−1.

Example 7. We show that the statement of Corollary 6 does not hold any more if

“circulant” is replaced by “group invariant”. Let p be an odd prime and

G = (Z/pZ)3 × 〈g1〉 × · · · × 〈g(r−1)/2〉,

where r = p2+p+1 and the gi’s are elements of order at least 2. Then (2) defines a proper

G-invariant weighing matrix of weight p4. As the order of the gi’s can be arbitrarily large,

this shows that, for fixed p, there exist proper weighing matrices of weight p4 invariant

under arbitrarily large groups. Hence the conclusion of Corollary 6 does not hold for

weighing matrices invariant under arbitrary abelian groups.

We will also obtain a lower bound on the weight of a G-invariant matrix depending

on the invariant factors of G. We first give the necessary definitions. Let G be finite

abelian group with |G| ≥ 2. Then there are unique integers k ≥ 1, v1, . . . , vk ≥ 2 with

v1|v2| · · · |vk such that G is isomorphic to (Z/v1Z)×· · ·×(Z/vkZ). The numbers v1, . . . , vk

are called the invariant factors of G. The positive integer k is equal to the minimum

number of generators of G and is denoted by d(G).

Theorem 8. Let n be a positive integer. Let G be a finite abelian group with invariant

factors vi, i = 1, . . . , d(G), and suppose that
∏m

i=1 vi > 2n−1 for some m ≤ d(G). If a

proper G-invariant weighing matrix of weight n exists, then

n ≥ (d(G)−m+ 2)2 .

We will prove Theorem 8 in Section 5. The following example shows that the bound

in Theorem 8 can be attained. For an element g of a group G, denote the order of g in

G by ord(g).
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Example 9. Let V be an elementary abelian group of order 22a and let

G = V × 〈g1〉 × · · · × 〈g2a−1〉

be an abelian group such that ord(gi) is even and larger than 222a for all i. Then (2) defines

a G-invariant weighing matrix X of weight n = 22a by Result 2. It is straightforward to

check that X is proper.

Write k = d(G) and note that k = 2a+2a−1. Let v1, v2, . . . , vk be the invariant factors

of G. By the assumptions above, we have vi = 2 for i = 1, . . . , 2a and v2a+1 > 222a . Thus∏2a+1
i=1 vi > v2a+1 > 222a > 2n−1. Applying Theorem 8 to this example, we get

n ≥
(
2a+ 2a−1 − (2a+ 1) + 2

)2
= 22a−2 + 2a + 1.

In particular, the bound provided by Theorem 8 is best possible for a = 1.

2 Preliminaries

For the convenience of reader, we recall some known results which will be used later. Let

G be a finite multiplicatively written abelian group. We denote the group of complex

characters of G by Ĝ. For A =
∑

g∈G agg ∈ Z[G] and χ ∈ Ĝ, we set χ(A) =
∑

g∈G agχ(g).

A proof of the following result can be found in [8, Section VI.3], for instance.

Result 10 (Fourier Inversion Formula). Let G be a finite abelian group and let Ĝ denote

the group of complex characters of G. Let X =
∑

g∈G agg ∈ Z[G]. Then

ag =
1

|G|
∑
χ∈Ĝ

χ(Xg−1)

for all g ∈ G. In particular, if χ(X) = 0 for all χ ∈ Ĝ, then X = 0.

The following determinant bound is due to Schinzel [17].

Result 11. Let A = (Aij) be a real n × n matrix. For i = 1, . . . , n, write R+
i (A) =∑n

j=1 max(0, Aij) and R−i (A) =
∑n

j=1 max(0,−Aij). We have

| det(A)| ≤
n∏
i=1

max{R+
i (A), R−i (A)}.
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We will use the Smith Normal Form of integer matrices M to analyse the connection

between the solution sets of Mx = 0 where, on the one hand, x is considered as an integer

vector and, on the other hand, as a vector with entries from a finite abelian group. Lemma

12 below supplies some tools supporting these arguments.

At this point, a remark on notation is appropriate. When we are using group rings, we

write groups multiplicatively to distinguish between the addition in the group ring and

the group operation. When we consider linear systems of equations over ablian groups,

however, we write groups additively, so that we can easily use matrix-vector notation.

Lemma 12. Let G be an additive finite abelian group and let M be an m × n matrix

with integer entries where m ≥ n. Write s = rankQ(M). Let S and T = (X|Y ) be

unimodular matrices such that D = SMT is a Smith Normal Form of M . Note that X

is an n × (n − s) matrix and Y is n × s; and that D is a rectangular diagonal m × n

matrix with diagonal entries d1, . . . , dn where ds+1, . . . , dn = 0. Denote the rows of Y by

Y1, . . . , Yn. Then we have the following.

(a) If y ∈ Gn satisfies My = 0, then there is a subgroup H of G with |H| ≤
∏s

j=1 dj such

that

y = Xe+ Y f with e ∈ Hs and f ∈ Gn−s. (3)

(b) Let 1n denote the vector with all entries 1 in Zn. If M1n = 0, then we can assume

that Y contains 1n as a column.

(c) There is γ ∈ Zn−s such that Yiγ 6= Yjγ whenever Yi 6= Yj.

Proof. Since T is invertible, there is w ∈ Gn such that y = Tw. We have Dw =

DT−1y = 0, since S−1 (DT−1y) = My = 0. Write w =
(
e
f

)
with e = (e1, . . . , es)

T ∈ Gs

and f ∈ Gn−s. We have Dw = (e1d1, . . . , esds, 0, . . . , 0)T = 0. This implies that, for each

i, the order of ei in G divides di. Hence the subgroup H of G generated by e1, . . . , es has

order at most
∏s

j=1 dj. As e ∈ Hs and y = Tw = Xe+ Y f , this proves (3).

Now suppose M1n = 0. Set r = T−11n. Then Dr = DT−11n = 0, since M1n =

S−1DT−11n = 0. Write r =
(
u
v

)
with u ∈ Zs, v ∈ Zn−s. Then u = 0, since Dr = 0.

Hence 1n = Tr = (X|Y )r = Y v. As all entries in 1n are 1, this implies that the greatest
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common divisor of the entries of v is 1. By [21, p. 336], there is an (n − s) × (n − s)

unimodular matrix V which has v as its first column. Set

T ′ = T

(
Is 0

0 V

)
,

where Is is the s× s identity matrix and the zeros are zero blockmatrices of appropriate

sizes. Then T ′ is unimodular, since T and V are unimodular. Furthermore,

SMT ′ = D

(
Is 0

0 V

)
= D,

since the last n − s columns of D are all zero. Note that column s + 1 of T ′ is first

column of Y V which is equal to Y v = 1n by the choice of V . Hence, replacing T by T ′,

if necessary, we can assume that Y contains 1n as a column. This proves part (b).

If Yi 6= Yj, then {γ ∈ Zn−s : Yiγ = Yjγ} is contained in a hyperplane of Qn−s.

Since any union of finitely many hyperplanes of Qn−s does not cover Zn−s, there exists

γ ∈ Zn−s which does not satisfy any of the equations Yiγ = Yjγ for Yi 6= Yj. This proves

part (c).

3 Structure of Sets with no Unique Difference

Throughout this section, we write groups additively. Let A be a subset of a finite abelian

group G. If there is g ∈ G such that there is exactly one pair (a, b), a, b ∈ A, with

g = a− b, we say that A has a unique difference.

Suppose that A ⊂ G has no unique difference. Write |A| = n and A = {a1, . . . , an}.
To each ai we associate a variable xi. Consider the linear system

E = {xi − xj = xi′ − xj′ : 0 ≤ i, i′, j, j′ ≤ |A| − 1, i 6= i′, j 6= j′,

and ai − aj = ai′ − aj′}.
(4)

Since A does not have a unique difference, for every pair (i, j) with i 6= j, there is at least

one pair (i′, j′) such that the equation xi − xj = xi′ − xj′ is contained in E (note that for

given (i, j), there might well be more than one such pair (i′, j′)).
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Note that E is a homogeneous linear system and can be written in the form Mx = 0

where M is a coefficient matrix of the system. Note that M has entries 0, ±1, and ±2

only. It is indeed possible that M contains entries ±2. For instance, if i = j′ 6= 0, then

the row of M corresponding to the equation xi − xj = xi′ − xj′ has an entry ±2, as

the equation is equivalent to 2xi − xj − xi′ = 0. Furthermore, note that the sum of the

positive entries of each row of M is at most 2, and the sum of the negative entries of each

row is at least −2.

Theorem 13. Let G be a finite abelian group and A be a subset of G which has no unique

difference. Let M be a coefficient matrix of the linear system (4) determined by A.

Then there exist an integer K ≥ |A| − rankQ(M) and a subgroup H of G with |H| ≤
2|A|−1 such that the following hold. There are integers α1 < · · · < αK and nonempty

subsets A1, . . . , AK of G satisfying the following conditions.

(i) A is the disjoint union of A1, . . . , AK.

(ii) If (Ai−Aj)∩ (Ai′ −Aj′) is nonempty for any i, j, i′, j′ with 1 ≤ i, j, i′, j′ ≤ K, then

αi − αj = αi′ − αj′.

(iii) Ai ⊂ H + gi for some gi ∈ G for i = 1, . . . , K.

Proof. Write n = |A| and s = rankQ(M). Note that s ≤ n − 1, since the sum of all

columns of M is zero. Let S and T be unimodular matrices such that D = SMT is a

Smith Normal Form of M . As in Lemma 12, we write T = (X|Y ) and 1n ∈ Zn is a

vector with all entries 1. Obviously, if we set all xi’s to be 1, it is a solution for the linear

system E . Therefore, as M is the coefficient matrix of E , M1n = 0. By Lemma 12 (b),

we can assume that 1n is the first column of Y . Recall that D is a rectangular diagonal

m × n matrix with diagonal entries d1, . . . , dn where ds+1, . . . , dn = 0. Hence the last

n− s columns of D and thus of S−1D = MT are all zero. This shows

MY = 0. (5)

Let Y1, . . . , Yn be the rows of Y and write {Y1, . . . , Yn} = {Z1, . . . , ZK} where the

Zi’s are pairwise distinct. Since the columns of Y are linearly independent, we have
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rankQ(Y ) = n − s. Hence K ≥ n − s = |A| − rankQ(M). By Lemma 12 (c), there is

γ ∈ Zn−s such that the values αi = Ziγ, i = 1, . . . , K, are pairwise distinct. In other

words, Yiγ = Yjγ if and only if Yi = Yj. By renumbering the Zi’s, if necessary, we

may assume α1 < · · · < αK . Write A = {a1, . . . , an} and set Ai = {aj : Yjγ = αi},
i = 1, . . . , K. Note that the Ai’s form a partition of A. This proves part (i).

For part (ii), suppose that ar − as = ar′ − as′ for some ar ∈ Ai, as ∈ Aj, ar′ ∈ Ai′ ,
as′ ∈ Aj′ . Then the equation xr − xs = xr′ − xs′ is contained in the system (4). By

considering the row vector associated with the equation and (5), this implies Yr − Ys =

Yr′ − Ys′ . Note that Yrγ = αi by the definition of Ai and, similarly, Ysγ = αj, Yr′γ = αi′ ,

and Ys′γ = αj′ . Thus αi − αj = (Yr − Ys)γ = (Yr′ − Ys′)γ = αi′ − αj′ . This proves part

(ii).

It remains to prove (iii). Write a = (a1, . . . , an)T . Since Ma = 0, we have

a = Xe+ Y f with e ∈ Hs and f ∈ Gn−s (6)

by Lemma 12 (a), where H is a subgroup of G with |H| ≤
∏s

j=1 dj and d1, . . . , ds are

the nonzero diagonal entries of D. From the theory of the Smith Normal Form (see [16,

p. 41], for instance), it is well known that
∏s

i=1 di is the greatest common divisor of all

s× s minors of M . Let N be such a minor of M . The sum of the positive entries of each

row of N is at most 2, and the sum of the negative entries of each row is at least −2,

since the same is true for M . Hence | det(N)| ≤ 2s by Result 11. Recall s ≤ n− 1. Thus

|H| ≤
∏s

i=1 di ≤ 2n−1.

Now let ar, as ∈ Ai. To complete the proof of (iii), we have to show ar − as ∈ H. By

the definition of Ai, we have Yrγ = Ysγ, which implies Yr = Ys. Let X1, . . . , Xn denote

the rows of X. Using (6), we get

ar − as = (Xr −Xs)e+ (Yr − Ys)f = (Xr −Xs)e.

Since e ∈ Hs, this shows ar − as ∈ H.

For an abelian group G and t ∈ Z, we write tG = {tg : g ∈ G}. Note that tG is a

subgroup of G for all t ∈ Z. The following is well known and straightforward to prove.
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Lemma 14. Let G ∼= (Z/v1Z)× · · · × (Z/vkZ) where v1, . . . , vk ≥ 2 are integers. Then

|tG| = |G|∏k
i=1 gcd(t, vi)

for all positive integers t. In particular, |tG| ≥ |G|/tk.

For the application of Theorem 13, it is important to provide an upper bound on

rankQ(M). This is the purpose of the following result. For a group G and S ⊂ G, let 〈S〉
denote the subgroup of G generated by S.

Theorem 15. Let G be finite abelian group with invariant factors vi, i = 1, . . . , d(G).

Suppose A is a subset of G with 0 ∈ A and 〈A〉 = G that does not have a unique difference.

Let M be a coefficient matrix of the linear system (4) determined by A. If 2|A|−1 <
∏m

i=1 vi

for some m ≤ d(G), then

rankQ(M) ≤ |A| − d(G) +m− 2.

Proof. Let s = rankQ(M) and k = d(G). As shown in the proof of Theorem 13, we have

s ≤ |A| − 1 and there is a subgroup H of G with |H| ≤ 2|A|−1 such that

a = Xe+ Y f with e ∈ Hs and f ∈ Gn−s, (7)

where X ∈ Zn×s and Y ∈ Zn×(n−s). Furthermore, all entries of the first column of Y are

equal to 1. Write f = (f1, . . . , fn−s)
T and Y = (Yij). Note that Xe ∈ Hn, since e ∈ Hn.

Hence A ⊂ H〈f1, . . . , fn−s〉.

By assumption, we have 0 ∈ A, say at = 0. Using (7), we get 0 = at = h +∑n−s
j=1 Ytjfj for some h ∈ H. Note that Yt1 = 1, as all entries of the first column of Y

are equal to 1. Hence f1 = −h−
∑n−s

j=2 Ytjfj and thus H〈f1, . . . , fn−s〉 = H〈f2, . . . , fn−s〉.
As A ⊂ H〈f1, . . . , fn−s〉 = H〈f2, . . . , fn−s〉 and 〈A〉 = G by assumption, we conclude

d(G/H) ≤ n− s− 1.

Recall that |H| ≤ 2|A|−1 <
∏m

i=1 vi. Hence |G/H| >
∏k

i=m+1 vi. We claim that

d(G/H) ≥ k −m+ 1. To prove this, suppose d(G/H) ≤ k −m. Then there is a positive

integer l ≤ k −m such that

G/H = 〈Hg1〉 × · · · × 〈Hgl〉. (8)
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for some g1, . . . , gl ∈ G. Using (8), Lemma 14, |G/H| >
∏k

i=m+1 vi, and l ≤ k −m, we

get

|vm(G/H)| ≥ |G/H|
vlm

≥ |G/H|
vk−mm

>

k∏
i=m+1

vi
vm
.

This implies |vm〈g1, . . . , gl〉| >
∏k

i=m+1
vi
vm

. But we have |vmG| =
∏k

i=m+1
vi
vm

by Lemma

14. This is a contradiction, since vm〈g1, . . . , gl〉 is a subgroup of vmG. This shows

d(G/H) ≥ k −m+ 1.

Combining this with d(G/H) ≤ n− s− 1, we get s = rankQ(M) ≤ n− k+m− 2.

Corollary 16. Let G be a finite abelian group with invariant factors vi, i = 1, . . . , d(G).

Suppose A is a subset of G with 0 ∈ A and 〈A〉 = G that does not have a unique difference.

Suppose |G| > 2|A|−1 and let m be a positive integer such that
∏m

i=1 vi > 2|A|−1. Then the

conclusions of Theorem 13 hold with

K ≥ d(G)−m+ 2.

In particular, K ≥ 2.

Proof. This follows from Theorems 13 and 15.

4 Structure of Group Ring Elements Satisfying

XX(−1) = n

From now on, we write groups multiplicatively again. The following observation provides

a connection between sets with no unique difference and group ring elements satisfying

XX(−1) = n.

Lemma 17. Let G be a finite abelian group and let n be a positive integer. Suppose that

X ∈ Z[G] is a solution of XX(−1) = n and that |supp(X)| > 1. Then supp(X) has no

unique difference.

Proof. Write X =
∑

g∈S agg where S = supp(X), ag ∈ Z, and ag 6= 0 for all g ∈
S. Suppose that supp(X) has a unique difference. Then there is k ∈ G such that
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there is exactly one pair (c, d), c, d ∈ supp(X), with k = cd−1 (recall that we write

G multiplicatively). Note that the identity element of G is not a unique difference of

supp(X), as |supp(X)| > 1. Hence k is not the identity element of G. But the coefficient

of k in XX(−1) is acad 6= 0, as k = cd−1 is the only representation of k as a difference of

elements of supp(X). This contradicts XX(−1) = n.

As for G-invariant weighing matrices, we call X ∈ Z[G] proper if 〈supp(Xg)〉 = G

for all g ∈ G. The condition for X to be proper in the following theorem is not restrictive.

In fact, if 〈supp(Xg)〉 6= G, then the theorem can be applied with X replaced by Xg and

G replaced by 〈supp(Xg)〉.

Theorem 18. Let G be finite abelian group with invariant factors vi, i = 1, . . . , d(G).

Suppose that X is a proper element of Z[G] with XX(−1) = n where n is a positive integer

and |G| > 2n−1. Let m be a positive integer with
∏m

i=1 vi > 2n−1. Then there is an integer

K ≥ d(G)−m+ 2 such that the following hold.

There exist a subgroup H of G with |H| ≤ 2n−1, nonzero elements X1, . . . , XK of

Z[H], and g1, . . . , gK ∈ G, such that

(i) X =
K∑
i=1

Xigi;

(ii) supp(Xigi) ∩ supp(Xjgj) = ∅ whenever i 6= j;

(iii) XiXj = 0 whenever i 6= j.

Proof. Write X =
∑

g∈G agg with ag ∈ Z. Recall that A = supp(X) = {g ∈ G : ag 6= 0}.
As XX(−1) = n by assumption, A does not have a unique difference by Lemma 17.

Furthermore, XX(−1) = n implies
∑

g∈G a
2
g = n and thus |A| ≤ n.

Replacing X by Xg for some g ∈ G, if necessary, we can assume 1 ∈ A. Since X is

proper by assumption, we have 〈A〉 = G. As |G| > 2n−1 by assumption, Corollary 16

shows that there are K ≥ d(G) −m + 2, a subgroup H of G with |H| ≤ 2n−1, integers

α1 < · · · < αK , and nonempty disjoint subsets A1, . . . , AK of G such that conditions

(i)-(iii) in Theorem 13 hold. By condition (iii) of Theorem 13, there are g1, . . . , gk ∈ G
such that Aig

−1
i ∈ H for all i.
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Set Xi = g−1i
∑

g∈Ai agg for i = 1, . . . , K. Note that Xi ∈ Z[H] and Xi 6= 0 for all

i, as the Ai’s are nonempty. Furthermore, ag 6= 0 for all g ∈ Ai, as Ai ⊂ supp(X). We

have
∑K

i=1Xigi =
∑K

i=1

∑
g∈Ai agg =

∑
g∈supp(X) agg = X. Thus condition (i) of Theorem

18 holds. Note that supp(Xigi) = supp(
∑

g∈Ai agg) = Ai. As the Ai’s are disjoint, this

proves part (ii) of Theorem 18.

It remains to prove (iii). Recall that ag 6= 0 for all g ∈ Ai and all i. Thus

supp
(
XiX

(−1)
j gig

−1
j

)
= supp

(
(Xigi)(Xjgj)

(−1))
= supp

(∑
g∈Ai

agg

)∑
h∈Aj

ahh
−1


⊂ supp

∑
g∈Ai

∑
h∈Aj

gh−1


= supp

(
AiA

(−1)
j

)
. (9)

For any real number α, we set

Yα =
K∑

i,j=1
αi−αj≤α

XiX
(−1)
j gig

−1
j and Zα =

K∑
i,j=1

αi−αj>α

XiX
(−1)
j gig

−1
j .

Our strategy is to show Yα = 0 when α < 0. Subsequently, we use some specific values

for α and the condition Yα = 0 to show that (iii) holds.

Consider integers i, j, i′, j′ with 1 ≤ i, j, i′, j′ ≤ K. By condition (ii) of Theorem 13, the

intersection of supp(AiA
−1
j ) and supp(Ai′A

−1
j′ ) can only be nonempty if αi−αj = αi′−αj′ .

In view of (9), this implies that

supp
(
XiX

(−1)
j gig

−1
j

)
∩ supp

(
Xi′X

(−1)
j′ gi′g

−1
j′

)
6= ∅ only if αi − αj = αi′ − αj′ . (10)

Taking i′ = j′ in (10), we conclude

1 /∈ supp(XiX
(−1)
j gig

−1
j ) whenever i < j, (11)

since 1 ∈ supp(Xi′X
(−1)
i′ ) for all i′ and αi − αj 6= 0 for i < j. Furthermore, (10) implies

supp(Yα) ∩ supp(Zα) = ∅ (12)

14



for all α ∈ R. Note that

n = XX(−1) =
K∑

i,j=1

XiX
(−1)
j gig

−1
j = Yα + Zα.

We conclude supp(Yα + Zα) = supp(n) = {1}. Thus, in view of (12), we either have

Yα = 0 or supp(Yα) = 1. If α < 0, then i < j for all terms XiX
(−1)
j gig

−1
j occuring in Yα.

Hence 1 6∈ supp(Yα) by (11) and thus

Yα = 0 for α < 0. (13)

We now consider some specific values of α. Recall that α1 < α2 < · · · < αK . For any

1 ≤ t < ` ≤ K, we define α(t, `) = αt − α`. Clearly, α(t, `) < 0. We also define

B(t, `) = {(i, j) : i ≥ t and αi − αj ≤ α(t, `)}.

Note that i < j for all (i, j) ∈ B(t, `), since α(t, `) < 0. Observe that αj−α` ≥ αi−αt ≥ 0

for (i, j) ∈ B(t, `). Thus j ≥ ` whenever (i, j) ∈ B(t, `). Moreover, j > ` whenever

(i, j) ∈ B(t, `) and i > t. Therefore, we can write

B(t, `) = {(t, `)} ∪B′(t, `)

where B′(t, `) = {(i, j) ∈ B(t, `) : j > `}.

By (13), we have

Yα(1,`) =
∑

(i,j)∈B(1,`)

XiX
(−1)
j gig

−1
j = 0 for ` > 1. (14)

First, setting ` = K in (14), we get X1X
(−1)
K = 0, as B(1, K) = {(1, K)}. Now we prove

by induction that

X1X
(−1)
K = X1X

(−1)
K−1 = · · · = X1X

(−1)
2 = 0. (15)

Suppose we have

X1X
(−1)
K = X1X

(−1)
K−1 = · · · = X1X

(−1)
` = 0 (16)

with ` ≥ 3. Recall that B(1, `− 1) = {(1, `− 1)} ∪B′(1, `− 1). Therefore,

Yα(1,`−1) = X1X
(−1)
`−1 +

∑
(i,j)∈B′(1,`−1)

XiX
(−1)
j gig

−1
j = 0. (17)
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By the induction assumption (16), we have X1X
(−1)
j = 0 for j ≥ `. As j ≥ ` for

(i, j) ∈ B′(1, `− 1), after multiplying (17) by X1, we get

(X1)
2X

(−1)
`−1 = 0. (18)

Let χ be any complex character of G. Note that (18) implies χ(X1)
2χ(X

(−1)
`−1 ) = 0 and

thus χ(X1X
(−1)
`−1 ) = χ(X1)χ(X

(−1)
`−1 ) = 0. Therefore, X1X

(−1)
`−1 = 0 by Result 10. This

completes the proof of (15).

Now we show by induction on t that XiX
(−1)
j = 0 whenever i ≤ t and i < j. For t = 1

this holds by (15). Suppose that XiX
(−1)
j = 0 whenever i ≤ t− 1 and i < j. We have

0 = Yα(t,`) =
K∑

i,j=1
αi−αj≤α(t,`)

XiX
(−1)
j gig

−1
j

for all ` > t by (13), as α(t, `) < 0. In the sum above, all terms with i < t vanish by the

induction assumption. Therefore,

0 =
K∑

i,j=1
i≥t

αi−αj≤α(t,`)

XiX
(−1)
j gig

−1
j =

∑
(i,j)∈B(t,`)

XiX
(−1)
j gig

−1
j

for ` > t by the definition of B(t, `). Now apply the same argument as before, we obtain

XtX
(−1)
j = 0 for all j > t.

In summary, we have shown XiX
(−1)
j = 0 whenever i 6= j. Hence χ(Xi)χ(Xj) = 0 for

all complex characters χ of G and all i 6= j. This implies χ(Xi)χ(Xj) = 0 for all complex

characters χ of G and thus XiXj = 0 for all i 6= j by Result 10. This completes the proof

of part (iii) of Theorem 18.

5 Group Invariant Weighing Matrices

In this section, we prove the results on group invariant matrices stated in the introduction.
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Proof of Theorem 4 Let n be a positive integer and let X be a weighing matrix of

weight n invariant under an abelian group G. By Lemma 1, we can view X as an element

of Z[G] satisfying XX(−1) = n. We need to show that X is generated from subgroup H

of G with |H| ≤ 2n−1.

Write A = supp(X). Replacing X by Xg for some g ∈ G, if necessary, we can assume

1 ∈ A. If |〈A〉| ≤ 2n−1, there is nothing to show, since then X trivially is generated from

〈A〉 (in this case K = 1 and X1 = X). Thus we may assume |〈A〉| > 2n−1. But then X

is generated from a subgroup H of 〈A〉 with |H| ≤ 2n−1 by Theorem 18. 2

Proof of Corollary 6 Let G be a cyclic group of order v. Suppose there exists a proper

circulant weighing matrix X ∈ Z[G] of weight n, where is an odd prime power. We need

to show v ≤ 2n−1.

Suppose v > 2n−1. We may assume 1 ∈ supp(X). Since X is proper, we have

〈supp(X)〉 = G and thus |〈supp(X)〉| = v > 2n−1. By Theorem 18, there is a proper

subgroup H of G such that X is generated from H. Hence X =
∑K

i=1Xigi with Xi ∈ Z[H]

and gi ∈ G for some positive integer K, such that the conditions (i)-(iii) of Theorem 18

are satisfied. Note that K ≥ d(G)−m+ 2 ≥ 2. But this is impossible by [12, Thm. 2.6].

Thus v ≤ 2n−1. 2

Proof of Theorem 8 Suppose a proper G-invariant weighing matrix X of weight n

exists, and that
∏m

i=1 vi > 2n−1, where the vi’s are invariant factors of G. We have to

show

n ≥ (d(G)−m+ 2)2 . (19)

By Theorem 18, we have X =
∑K

i=1Xigi where K ≥ d(G) −m + 2 and the conditions

stated in Theorem 18 hold. Let i ∈ {1, . . . , K} be arbitrary. Since Xi 6= 0, there is a

character χ of G such that χ(Xi) 6= 0. As XiXj = 0 for all j 6= i, we conclude χ(Xj) = 0

for j 6= 0. Thus χ(X) = χ(Xigi). Since XX(−1) = n, we have |χ(X)|2 = n. Hence

|χ(Xi)| =
√
n. This implies |Xi| ≥

√
n. Comparing the coefficient of the identity in

n = XX(−1) =
∑K

i=1XiX
(−1)
i , we get n =

∑K
i=1 |Xi| ≥ K

√
n, i.e., n ≥ K2. Since

K ≥ d(G)−m+ 2, this proves (19). 2

17



6 Application to Multipliers of Difference Sets

We now sketch how Theorem 18 can be used to improve the multiplier theorem for

difference sets obtained in [13]. We first recall a simplified slightly weakened version of

this result. We refer the reader to [8] for the necessary background on difference sets.

Define a function M(m) for all positive integers m recursively as follows. Set M(1) =

1. For m > 1, let p be a prime divisor of m, and let pe be the highest power of p dividing

m. Then M(m) is the product of the distinct prime factors of

m,M(
m2

p2e
), p− 1, p2 − 1, ..., p2m − 1.

We remark that the number M(m) depends on the order in which the prime divisors of

m are chosen for the recursion. Result 19 below, however, holds for all possible values of

M(m). By [13, Thm. 1.4], we have the following.

Result 19. Let D be a (v, k, λ, n) difference set in an abelian group G of exponent v∗.

Let n1 be a divisor of n with (v, n1) = 1. Suppose that t is an integer such that, for every

prime divisor u of n1, there is an integer fu with t ≡ ufu (mod v∗). Let m = n/n1. If v

and M(m) are coprime, then t is a multiplier of D.

The connection to the results of the current paper is that Theorem 18 can be used

to remove all prime divisors of M(m) which are larger than 2m
2−1, without affecting the

validity of Result 19. The proof of this fact will be presented in [14]. In cases where m

has a large number of distinct prime divisors, this yields a substantial improvement upon

Result 19, since M(m) often will have many prime divisors larger than 2m
2−1 for such m.

For instance, suppose m = π(2t) where π(s) denotes the product of the first s primes.

It is well known that π(s) = s(1+o(1))s. It can be seen [14] that, no matter which order of

the prime divisors of m is chosen to compute M(m), there are a prime divisor p of π(2t)

and an integer u > π(t)2
t

such that all prime divisors of pu − 1 divide M(m). On the

other hand, as a consequence of Theorem 18, all prime divisors exceeding 2π(2t)
2−1 can be

removed from M(m) without affecting the validity of Result 19. Note that u = t2
t(1+o(1))t

and π(2t)2 = t(4+o(1))t and thus pu � 2π(2t)
2

for large t. This indicates that Theorem 18
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indeed can be used to replace M(m) by a substantially smaller number and thus yields

a significant improvement of the multiplier theorem in [13] in cases where m has many

distinct prime divisors.

References

[1] M. H. Ang, S. L. Ma: Symmetric weighing matrices constructed using group matri-

ces. Des. Codes Cryptogr. 37 (2005), 195–210.

[2] K. T. Arasu and J. F. Dillon: Perfect ternary arrays. In: Difference Sets, Sequences,

and their Correlation Properties. NATO Science Series 542, Kluwer 1999, 1–15.

[3] K.T. Arasu, J.F. Dillon, D. Jungnickel, A. Pott: The solution of the Waterloo prob-

lem. J. Combin. Theory A 71 (1995), 316–331.

[4] K. T. Arasu, J. R. Hollon: Group developed weighing matrices. Australasian J.

Comb. 55 (2013), 205–233.

[5] K.T. Arasu, K.H. Leung, S.L. Ma, A. Nabavi, D.K. Ray-Chaudhuri: Determination

of all possible orders of weight 16 circulant weighing matrices. Finite Fields Appl.

12 (2006) 498–538.

[6] K.T. Arasu, K.H. Leung, S.L. Ma, A. Nabavi, D.K. Ray-Chaudhuri: Circulant weigh-

ing matrices of weight 22t. Des. Codes Crypt. 41 (2006), 111–123.

[7] K.T. Arasu, S.L. Ma: Some new results on circulant weighing matrices. J. Alg.

Comb. 14 (2001), 91-101.

[8] T. Beth, D. Jungnickel, H. Lenz: Design Theory (2nd edition). Cambridge University

Press 1999.

[9] P. Eades: Circulant (v, k, λ)-designs. In: Combinatorial Mathematics VII, Lecture

Notes in Math. 829, Springer 1980, 83–93.

19



[10] P. Eades, R. M. Hain: On Circulant Weighing Matrices. Ars Comb. 2 (1976), 265–

284.

[11] C. Koukouvinos, J. Seberry: Weighing matrices and their applications. J. Stat.

Plann. Inf. 62 (1997), 91-101.

[12] K. H. Leung, B. Schmidt: Finiteness of circulant weighing matrices of fixed weight.

J. Combin. Theory Ser. A, 116 (2011), 908–919.

[13] K. H. Leung, S. L. Ma, B. Schmidt: A multiplier theorem. J. Combin. Theory Ser.

A 124 (2014), 228–243.

[14] K. H. Leung and B. Schmidt: Improvements on multiplier theorems. In preparation.

[15] R. L. McFarland: On multipliers of abelian difference sets. Ph.D. Dissertation, Ohio

State University (1970).

[16] C. Norman: Finitely Generated Abelian Groups and Similarity of Matrices over a

Field. Springer 2012.

[17] A. Schinzel: An inequality for determinants with real entries. Colloq. Math. 38

(1977/78), 319–321.

[18] B. Schmidt: Characters and cyclotomic fields in finite geometry. Lecture Notes in

Mathematics 1797. Springer 2002.

[19] J. Seberry, A. L. Whiteman: Some results on weighing matrices. Bull. Aust. Math.

Soc. 12 (1975) 433–447.

[20] Y. Strassler: The classification of circulant weighing matrices of weight 9. Ph.D.

Thesis, Bar-Ilan University 1997.

[21] E. Steinitz: Ernst Rechteckige Systeme und Moduln in algebraischen Zahlkörpern.

I. Math. Ann. 71 (1911), 328–354.

20


