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Abstract

A partial geometry admitting a Singer group G is equivalent to a partial differ-
ence set in G admitting a certain decomposition into cosets of line stabilizers. We
develop methods for the classification of these objects, in particular, for the case of
abelian Singer groups. As an application, we show that a proper partial geometry
Π = pg(s + 1, t + 1, 2) with an abelian Singer group G can only exist if t = 2(s + 2)
and G is an elementary abelian 3-group of order (s + 1)3 or Π is the Van Lint-
Schrijver partial geometry. As part of the proof, we show that the Diophantine equation
(3m − 1)/2 = (2rw − 1)/(2r − 1) has no solutions in integers m, r ≥ 1, w ≥ 2, settling
a case of Goormaghtigh’s Equation.

1 Introduction

A partial geometry pg(s + 1, t + 1, α) is an incidence structure of points and lines with the
following properties:

1. every line has s + 1 points,

2. every point is incident with exactly t + 1 lines,

3. through any two points there is at most one line,

4. for every line L and every point p not on L there are exactly α lines through p that
meet L.

We remark that our notation essentially follows Bose [2]. This notation was also used in
[4, 5, 14, 15]. It seems more natural than others since s + 1, t + 1 and α correspond to the
objects counted in conditions 1, 2 and 4.

Partial geometries were introduced by Bose [2] in order to unify and generalize certain
aspects of the theory of nets, association schemes and designs. The point graph of a partial
geometry has the points of the geometry as vertices and two points form an edge if and only
if they are on a common line. It is well known [2] and straightforward to show that the point
graph of a partial geometry is strongly regular. This provides an interesting link between
design theory and strongly regular graphs.

Let v, respectively b, be the number of points, respectively lines, of a partial geometry
pg(s + 1, t + 1, α). Elementary counting [2] shows that

v = (s + 1)(α + st)/α,

b = (t + 1)(α + st)/α.

As described in the table below, the notion of partial geometries includes several geometrical
structures as special cases.
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pg(k, r, k) Steiner 2-design

pg(k, r, r) dual of Steiner 2-design

pg(k, k, k) projective plane of order k − 1

pg(k, k + 1, k) affine plane of order k

pg(k, r, r − 1) (k, r)-Bruck net

pg(k, r, k − 1) transversal design TD(k, r)

pg(k, r, 1) generalized quadrangle GQ(k − 1, r − 1)

A proper partial geometry is a partial geometry that does not fall into any of the above
categories, i.e. a pg(s + 1, t + 1, α) with 1 < α < min{s, t}.

In this paper, we are interested in partial geometries admitting Singer groups, i.e. point
regular automorphism groups. Improper partial geometries with Singer groups exist in abun-
dance. Some prominent instances are cyclic projective planes, affine translation planes and
translation nets. However, proper partial geometries, in particular those with Singer groups,
seem to be extremely rare. The purpose of this paper is to provide some explanation for
this phenomenon and to pinpoint certain cases where it might be worth looking for new
examples.

A crucial observation for the study of partial geometries with Singer groups is that
such a geometry always gives rise to a partial difference set : Let G be a Singer group of
a pg(s + 1, t + 1, α). We can identify G with the point set of the geometry. Let 1 be the
identity element of G. By property 2 of a partial geometry, there are exactly t + 1 lines
through the point 1, say L1,...,Lt+1. Let

D =
t+1⋃
i=1

(Li \ {1}).

It is straightforward to check that the quotients gh−1, g, h ∈ D, g 6= h, cover each element
of D the same number of times and cover each element of G \ (D ∪ {1}) the same number
of times. Such a set D is called a partial difference set. We call such a partial difference
set arising from a partial geometry geometric. A partial difference set with the same pa-
rameters as a potential partial difference set arising from a partial geometry will be called
pseudogeometric, see Definition 5. Powerful tools are available for the investigation of partial
difference sets, see [15, 16, 17, 18]. We will use and extend this machinery to derive new
results on pseudogeometric partial geometries with abelian Singer groups.

Let L1,...,Lt+1 ⊂ G be the lines from above. If G is abelian then by [17, Thm. 3.4], each
Li either is a subgroup of G or does not contain any two elements which are inverses of each
other. In the first case, we call Li a subgroup line, in the second case an orbit line. Following
[11], we say the partial geometry is of spread type if all Li’s are subgroup lines. If there are
no subgroup lines, the geometry is said to be of rigid type. In case there are subgroup lines
as well as orbit lines, the geometry is said to be of mixed type.

De Winter [11, Remark 5.3] conjectured that no pg(s + 1, t + 1, 2) with abelian Singer
group of mixed type exists. We will verify this conjecture except for one exceptional para-
meter family by proving the following.
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Theorem 1 Let Π = pg(s + 1, t + 1, 2) be a partial geometry with an abelian Singer group
G of mixed type. Then s + 1 = 3a for some a > 1, t = 2(3a + 1), G is an elementary abelian
3-group of order 33a, and there are exactly 3a + 3 subgroup lines.

Let us summarize the known parameters s+1, t+1, α for which a proper pg(s + 1, t + 1, α)
with an abelian Singer groups exists. An infinite family was discovered by Thas [20, 21].
His construction is based on PG-reguli which are defined as follows. Let n ≥ 2 be an integer
and let q be a prime power. By PG(n, q) we denote the desarguesian projective geometry
of dimension n over Fq. Let m < n and let R be a set of pairwise disjoint m-dimensional
subspaces of Π = PG(n, q). Then R is called a PG-regulus if there is a constant α > 0 such
that the following condition is satisfied.

If U is any m+ 1-dimensional subspace of PG(n, q) and an element V of R is a subspace
of U , then U has a point in common with exactly α elements of R \ {V }.

Given such a PG-regulus R, a partial geometry can be constructed as follows. Consider
Π as embedded in Σ = PG(n + 1, q). Let P be the set of points of Σ which are not in Π and
let B be the set of all m + 1-dimensional subspaces of Σ which intersect Π in an element of
R. Let G be the geometry with point set P , line set B and incidence given by the incidence
of Σ. It is straightforward to check that G is a pg(qm+1, |R|, α). Furthermore, the group of
elations of Σ with axis Π is a regular automorphism group of G.

Let r be any positive integer. Denniston [8] constructed maximal (2r+k−2r +2k, 2k)-arcs
in PG(2, 2r) for k = 1, ..., r. Such an arc O is a set of 2r+k−2r +2k points of PG(2, 2r) which
meets every line of PG(2, 2r) in either 0 or 2k points. Thus O is a PG-regulus in PG(2, 2r)
with α = 2k − 1. Hence the construction of Thas shows that for every positive integer r and
k = 1, ..., r, there is a pg(2r, 2r+k − 2r + 2k, 2k − 1) with an abelian Singer group.

Aside from Thas’ infinite family, there are two proper partial geometries with abelian
Singer groups known: a pg(6, 6, 2) constructed by Van Lint and Schrijver [13] and a pg(9, 21, 2)
discovered by Mathon [6]. The partial geometry of Van Lint and Schrijver is of rigid type. To
our knowledge, all other known proper partial geometries with Singer groups are of spread
type. In particular, no proper partial geometry of mixed type is known.

All known proper partial geometries Π with an abelian Singer group G which are different
from the Van Lint-Schrijver geometry have the following properties.

• G is elementary abelian.

• Π is of spread type.

The main thrust of this paper is to investigate whether these two properties must hold for all
partial geometries with abelian Singer groups different from the Van Lint-Schrijver geometry.

Some interesting results on this problem are known already: the order of an abelian
Singer group of a partial geometry of spread type must be a prime power [17, Thm. 3.6].
This result was strengthened in [9, Thm. 2.5]: Every partial geometry of spread type is
isomorphic to a partial geometry obtained by Thas’ construction (see above). However, note
that this is not a complete classification since PG-reguli have not been classified.
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2 Partial Geometries with Singer groups and their Par-

tial Difference Sets

Let G be a Singer group of a partial geometry. As usual, we identify G with the point set
of the geometry and let G act by right translation. An element x of G corresponds to the
automorphism of the geometry induced by G → G, g 7→ gx. The G-stabilizer of a line L is
denoted by StabG(L), i.e.

StabG(L) = {x ∈ G : Lx = L}.
If |StabG(L)| = 1 we say that L has a trivial stabilizer.

Loosely speaking, we will show that a partial geometry admitting a Singer group is
equivalent to a partial difference set admitting a certain decomposition into cosets of line
stabilizers. To make this connection precise, we use the language of group rings.

Let G be a multiplicatively written finite group. The identity element of G will be denoted
by 1. We will always identify a subset A of G with the element

∑
g∈A g of the integral group

ring Z[G]. In particular, we refer to group ring elements with coefficients 0 and 1 only as
sets. We write b for a group ring element b · 1, b ∈ Z. For B =

∑
g∈G bgg ∈ Z[G] and r ∈ Z

we write B(r) :=
∑

g∈G bgg
r and |B| := ∑

g∈G bg. We call {g ∈ G : bg 6= 0} the support of B.
When we write A ⊂ B for A,B ∈ Z[G], this means that the support of A is contained in
the support of B. A group homomorphism G → H is always assumed to be extended to a
homomorphism Z[G] → Z[H] by linearity. For A =

∑
g∈G agg, B =

∑
g∈G bgg and a positive

integer n we write A ≡ B mod n if ag ≡ bg mod n for all g ∈ G.

Denote the order of G by v. A k-subset D of G is called a (v, k, λ, µ) partial difference
set in G if the multiset

{gh−1 : g, h ∈ D}
contains each nonidentity element of D with multiplicity λ and each nonidentity element
in G \ D with multiplicity µ. Throughout this paper, we only consider nonempty partial
difference sets, i.e., we assume k > 0. We call a partial difference set D trivial if D ∪ {1}
or (G \ D) ∪ {1} is a subgroup of G. A partial difference set D with D = D(−1) is called
reversible. A partial difference set is called regular if it is reversible and it does not contain
the identity element. In this paper, we only consider regular partial difference sets. In the
group ring language, partial difference sets can be characterized as follows.

Result 2 [15, Thm. 1.3] Let D be a k-subset of a group G of order v such that D does not
contain the identity element. Then D is a (v, k, λ, µ) partial difference set in G if and only
if in Z[G] the following equation holds.

DD(−1) = (k − µ) + (λ− µ)D + µG. (1)

Remark 3 Note that applying “(−1)” to both sides of (1) yields (λ− µ)D = (λ− µ)D(−1).
Hence every partial difference set with λ 6= µ is reversible. This well known observation
is important since, in the abelian case, it allows us to determine the character values of D
explicitly, see Result 13.
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Theorem 4 Let s, t, α be positive integers and let G be a finite group. The following state-
ments are equivalent.

(i) There is a partial geometry pg(s + 1, t + 1, α) admitting G as a Singer group.

(ii) There are a set U of subgroups of G and subsets RU of G, U ∈ U , satisfying the following
conditions.

• 1 ∈ RU for all U ∈ U .

• |U ||RU | = s + 1 for all U ∈ U .

• The element
D = −(t + 1) +

∑
U∈U

RUUR
(−1)
U (2)

of Z[G] is a partial difference set in G with parameters

v = (s + 1)(st + α)/α,
k = s(t + 1),
λ = s + (α− 1)t− 1,
µ = α(t + 1).

(3)

Proof (i)⇒(ii): Assume that a pg(s + 1, t + 1, α) with an abelian Singer group G exists.
Let L1,...,Lt+1 be the lines which contain 1. By [17, Thm. 2.3], the set

D = −(t + 1) +
t+1∑
i=1

Li

is a partial difference set in G with parameters (3). We have to show that D can be written
in the form (2).

Let L be any line containing 1 and let U = StabG(L). Then Lu = L for every u ∈ U , i.e.
L is a union of left cosets of U , say

L =
r∑

i=1

giU

where gi ∈ L and r|U | = s + 1. Since L contains 1, we can assume that one of the gi’s is
1. Note that a line Lg, g ∈ G, contains 1 if and only if g−1 ∈ L. Hence the lines through 1
which are in the same G-orbit as L are exactly Lg−1, g ∈ L. Hence the set

⋃
g∈L

Lg−1 =
r⋃

i,j=1

giUg−1
j

is contained in D. Using the group ring notation and letting RU =
∑r

i=1 gi, this means that

−r + RUUR
(−1)
U is contained in D. This shows that D has the form (2).

(ii)⇒(i): Assume that D defined by (2) is a partial difference set in G with the given
parameters. In particular, this implies that D is a set, i.e., has coefficients 0 and 1 only. We
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have to show that a pg(s + 1, t + 1, α) with G as a Singer group exists. We take G as the
point set of the geometry and

{RUUg : U ∈ U , g ∈ G}
as the line set.

We first show that two lines RUUg and RW Wh, U,W ∈ U , g, h ∈ G, are identical only if
U = W and Ug = Wh. Assume RUUg = RW Wh. Since RU and RW contain 1, this implies
gh−1 ∈ RW W and hg−1 ∈ RUU . Hence gh−1 ∈ RW W ∩ UR

(−1)
U . If g 6= h and U 6= W ,

then this would imply that gh−1 6= 1 has coefficient ≥ 2 in D, a contradiction. Thus g = h
or U = W . But g = h and U 6= W is not possible since then RUU = RW W and every
nonidentity element of RUU would have coefficient ≥ 2 in D. This shows U = W . Hence
RUUg = RUUh. This implies gh−1 ∈ RUU , say gh−1 = ru with r ∈ RU , u ∈ U . Thus
RUU = RUUhg−1 = RUUu−1r−1 = RUUr−1. If r 6= 1, then there would be nonidentity
elements with coefficient ≥ 2 in RUUR

(−1)
U , a contradiction. Hence r = 1 and gh−1 = u.

This shows Ug = Uh. In summary, we have shown that two lines RUUg and RW Wh,
U,W ∈ U , g, h ∈ G, are identical only if U = W and Ug = Wh.

It is obvious that every line has exactly s + 1 points. Now let h ∈ G be any point. We
have to show that there are exactly t + 1 lines through h. For each U ∈ U and every r ∈ RU

there is exactly one right coset Ug of U such that h ∈ rUg. Hence, for every U ∈ U , there
are exactly |RU | lines RUUg which contain h. Thus the total number of lines containing h
is

∑
U∈U |RU |. On the other hand, counting the number of elements of D gives

s(t + 1) = k = −(t + 1) +
∑
U∈U

|RU |2|U | = −(t + 1) + (s + 1)
∑
U∈U

|RU |.

Hence
∑

U∈U |RU | = t + 1. This shows that there are exactly t + 1 lines through each point.

We now show that all lines containing 1 are contained in D∪{1}. Let 1 ∈ RUUg, U ∈ U ,
g ∈ G. Then g−1 ∈ RUU , say g−1 = ru, r ∈ RU , u ∈ U . Hence RUUg = RUUu−1r =
RUUr ⊂ RUUR

(−1)
U is contained in D ∪ {1}. This shows that all lines containing 1 are

contained in D ∪ {1}.
To show that any two lines intersect in at most one point, assume that |L ∩M | ≥ 2 for

distinct lines L,M . Choose g ∈ L ∩M . Then Lg−1 and Mg−1 are distinct lines containing
1 which contain a further common point, say h. But then h has coefficient ≥ 2 in D, a
contradiction.

It remains to show that for every line L and every point g not on L, there are exactly
α lines through g which meet L. First let L be a line containing 1, i.e., a line contained in
D ∪ {1}. We claim that

DL = sL + α(G− L). (4)

For the proof of (4), let

T = [(D − s + α)L](−1)[(D − s + α)L].

Note that D = D(−1) and

D2 = α(t + 1)G + (s− α− t− 1)D + (t + 1)(s− α)
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by Result 2. We compute

T = L(−1)(D + α− s)(D + α− s)L

= L(−1)
[
D2 + 2(α− s)D + (α− s)2

]
L

= L(−1) [α(t + 1)G + (α− s− t− 1)D + (t + s− α + 1)(s− α)] L.

The coefficient of 1 in L(−1)GL = |L|2G is |L|2 = (s + 1)2, and the coefficient of 1 in L(−1)L
is |L| = s+1. We also need to compute the coefficient of 1 in L(−1)DL. Since L is a line, we
have L = RUUr−1 for some U ∈ U , r ∈ RU . The coefficient of 1 in L(−1)DL is the number
of solutions of

1 = (r1u1r
−1)−1d(r2u2r

−1), r1, r2 ∈ RU , d ∈ D, u1, u2 ∈ U,

i.e. of
d = r1u1u

−1
2 r−1

2 , r1, r2 ∈ RU , d ∈ D, u1, u2 ∈ U. (5)

By (2) and since D has coefficients 0 and 1 only, there are exactly |U | solutions of (5) if

d ∈ RUUR
(−1)
U and d 6= 1, and no solutions otherwise. Note that the number of nonidentity

elements in RUUR
(−1)
U is |RUUR

(−1)
U | − |RU |. Hence the coefficient of 1 in L(−1)DL is

(|RUUR
(−1)
U | − |RU |)|U | = (|RU ||U |)2 − (|RU ||U |) = (s + 1)2 − (s + 1) = s(s + 1).

By what we have shown, the coefficient of 1 in T is

α(t + 1)(s + 1)2 + (α− s− t− 1)s(s + 1) + (t + s− α + 1)(s− α)(s + 1)

= α(s + 1)(st + α).

Write (D + α− s)L =
∑

g∈G agg with ag ∈ Z. Then

∑
g∈G

ag = |D + α− s||L| = (k + α− s)(s + 1) = (s + 1)(st + α).

The coefficient of 1 in T is
∑

g∈G a2
g. Hence

∑
g∈G

a2
g = α(s + 1)(st + α).

Since |G| = (s + 1)(st + α)/α, this implies ag = α for all g ∈ G and hence

(D + α− s)L = αG.

This proves (4).

Now let g be any element such that Lg is a line not containing 1. Then g−1 6∈ L and by
(4) the coefficient of g−1 in in DL is α. But this coefficient equals |Lg∩D|, so |Lg∩D| = α.
Hence there are exactly α lines containing 1 which intersect Lg.

Now let g be any point and let L be any line not containing g. Then Lg−1 does not
contain 1. By what we have shown, there are exactly α lines trough 1 meeting Lg−1. Hence
there are exactly α lines containing g and intersecting L. Q.E.D.
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Definition 5 We call the set D from Theorem 4 a geometric partial difference set. Any
regular partial difference set with parameters (3) for positive integers s, t, α will be called
pseudogeometric.

Lemma 6 Let D be a partial difference set corresponding to a proper partial geometry.
Then D is nontrivial.

Proof By [15, Prop. 1.2], a regular (v, k, λ, µ) partial difference set is nontrivial if and only
if

−
√

∆ < λ− µ <
√

∆− 2 (6)

where ∆ = (λ− µ)2 + 4(k − µ). Since D has parameters (3), we get λ− µ = s− t− α − 1
and

√
∆ = s + t − α + 1. Since the partial geometry is proper, we have s > α and t > 0.

This implies (6). Q.E.D.

Corollary 7 Using the notation of Theorem 4, let L = RUU be a line of the partial geometry
admitting G as a Singer group. Then

StabG(L) = U.

Furthermore, if U is a normal subgroup of G, then |U | ∈ {1, s + 1}.

Proof Since L = RUU , we have U ⊂ StabG(L). Assume that there is g ∈ StabG(L) \ U .
Then RUUg−1 = RUUg = RUU and hence g−1 = ru for some r ∈ RU , u ∈ U . Note r 6∈ U .
But then RUU = RUUg = RUUu−1r−1 = RUUr−1 which in view of (2) implies that every
element of RUU has coefficient ≥ 2 in D, a contradiction. This shows StabG(L) = U .

If U is a normal subgroup of G and |U | 6∈ {1, s + 1}, then there is a nonidentity element

of G with coefficient ≥ 2 in RUUR
(−1)
U = RUR

(−1)
U U , contradiction. Q.E.D.

Since we are mainly interested in the case of abelian Singer groups, we state this case
separately. The following follows directly from Theorem 4 and Corollary 7.

Corollary 8 Let s, t, α be positive integers and let G be a finite abelian group. Then follow-
ing statements are equivalent.

(i) There is a partial geometry pg(s + 1, t + 1, α) admitting G as a Singer group.

(ii) There are a set U of subgroups of order s + 1 of G and a set L of (s + 1)-subsets of G
such that

D = −(t + 1) +
∑
U∈U

U +
∑
L∈L

LL(−1) (7)

is a partial difference set in G with parameters (3).

Notation 9 We call the elements of U in Corollary 8 subgroup lines. For L ∈ L all the sets
Lg−1, g ∈ L, are distinct lines of the geometry which pass through 1. We call these lines
orbit lines.
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The following observation is useful.

Lemma 10 Orbit lines do not contain any elements of order 2.

Proof Let Lg−1 be an orbit line, L ∈ L, g ∈ L. Assume that Lg−1 contains an element
h of order 2, say h = lg−1 with l ∈ L. But since h = h−1 = gl−1, we conclude that h has
coefficient ≥ 2 in LL(−1) and hence in D, a contradiction. Q.E.D.

3 Partial Difference Sets and Characters

Complex characters of abelian groups are an indispensable tool for the study of partial
difference sets. Let G be a finite abelian group. We denote the group of complex characters
of G by G∗. The character sending all g ∈ G to 1 is called trivial and denoted by χ0. For
a subgroup W of G, we write W⊥ for the subgroup of G∗ consisting of all characters which
are trivial on W . We will repeatedly make use of the following elementary properties of
characters of finite abelian groups. For a proof, see [1, Section VI.3].

Result 11 Let G be a finite abelian group.

(i) Let D =
∑

g∈G dgg ∈ C[G]. Then

dg =
1

|G|
∑
χ∈G∗

χ(Dg−1)

for all g ∈ G (Fourier Inversion Formula). In particular, two elements of C[G] are equal if
and only if all their character values are equal.

(ii) If χ ∈ G∗ is nontrivial on a subgroup U of G, then χ(U) = 0.

(iii) If H is a subgroup of G and A,B ∈ Z[G] with χ(A) = χ(B) for all χ ∈ G∗ \H⊥, then
A = B + XH for some X ∈ Z[G].

(iv) G∗∗ is isomorphic to G and an isomorphism G → G∗∗ is given by g 7→ τg where τg is
the character of G∗ defined by τg(χ) = χ(g), χ ∈ G∗.

Corollary 12 Let G be a finite abelian group, let U be a subgroup and let S be a subset of
G. Then

|S ∩ U | = |U |
|G|

∑

χ∈U⊥

χ(S).

Proof Let ρ : G → G/U be the canonical epimorphism. The set of characters of G/U can
be identified with U⊥ such that χ(X) = χ(ρ(X)) for all X ∈ Z[G] and all χ ∈ U⊥. Note
that |S ∩ U | is the coefficient of 1 in ρ(S). Hence

|S ∩ U | = 1

|G/U |
∑

χ∈(G/U)∗
χ(ρ(S)) =

|U |
|G|

∑

χ∈U⊥

χ(S)
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by Result 11(i). Q.E.D.

Recall that a partial difference set D is called regular if D = D(−1) and 1 /∈ D. Part (i)
of Result 11 leads to the following.

Result 13 [15, Cor. 3.3] Let G be an abelian group of order v. A k-subset D of G with
1 6∈ D is a regular (v, k, λ, µ) partial difference set in G if and only if

χ(D) =
λ− µ±

√
(λ− µ)2 + 4(k − µ)

2
(8)

for every nontrivial character χ of G.

Notation 14 Result 13 indicates that the parameter ∆ := (λ − µ)2 + 4(k − µ) plays an
important role in the study of regular partial difference sets. We will use this parameter
throughout this paper.

An essential tool for the study of partial difference sets is duality. It was developed by
Delsarte in his PhD thesis [7]. Let D be a regular (v, k, λ, µ) partial difference set in an
abelian group G. The dual of D is defined as

D∗ = {χ ∈ G∗ : χ 6= χ0, χ(D) = (λ− µ−
√

∆)/2}.

Delsarte [7] proved that the dual of a partial difference set again is a partial difference set.
Since Delsarte’s result is formulated in a different framework, we sketch a proof here for the
convenience of the reader.

Result 15 [7] Let G be an abelian group and let D 6= G \ {1} be a regular (v, k, λ, µ) partial
difference set. Then the dual D∗ is a regular (v, k∗, λ∗, µ∗) partial difference set in G∗ with
parameters

k∗ =
2k + (v − 1)(λ− µ +

√
∆)

2
√

∆

µ∗ =
2k + (v − 1)(λ− µ +

√
∆)

2
√

∆
+
−v2 + (λ− µ + v − 2k +

√
∆)2

4∆

λ∗ = µ∗ − λ− µ + v − 2k +
√

∆√
∆

Proof Since 1 6∈ D, we have
∑

χ∈G∗ χ(D) = 0 by Result 11(i). This implies

k + |D∗|(λ− µ−
√

∆)/2 + (v − |D∗| − 1)(λ− µ +
√

∆)/2 = 0.

Hence
|D∗| = [2k + (v − 1)(λ− µ +

√
∆)]/(2

√
∆) = k∗.
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In the following, we will use the canonical isomorphism between G and (G∗)∗ given by
g 7→ (G∗ → C, χ 7→ χ(g)). In particular, for g ∈ G and Y =

∑
χ∈G∗ aχχ ∈ Z[G∗], we write

g(Y ) :=
∑

χ∈G∗ aχχ(g). We also use the Fourier transforms

f : Z[G] → Z[G∗], X 7→ ∑
χ∈G∗ χ(X)χ

F : Z[G∗] → Z[G], Y 7→ ∑
g∈G g(Y )g.

It is well known and follows easily from Result 11 that

F (f(X)) = vX(−1) (9)

for every X ∈ C[G]. By Result 13 we have

f(D) = kχ0 +

(
λ− µ−√∆

2

)
D∗ +

(
λ− µ +

√
∆

2

)
(G∗ −D∗ − χ0). (10)

Using 1 6∈ D, D(−1) = D, (9), (10), and Result 11 we get

2vD = 2F (f(D)) =
∑

g∈G,g 6=1

[
2k − λ + µ−

√
∆− 2

√
∆ g(D∗)

]
g. (11)

Hence

g(D∗) =





2k−λ+µ−√∆

2
√

∆
if g 6∈ D

−2v+2k−λ+µ−√∆

2
√

∆
if g ∈ D

(12)

Now the assertion follows from Result 13. Q.E.D.

4 Results on Partial Difference Sets

In this section, we recall some basic results on partial difference sets in abelian groups and
prove several new results. These tools will be very helpful in the investigation of partial
geometries with abelian Singer groups in the following sections.

Let D be a regular (v, k, λ, µ) partial difference set in an abelian group G. The following
parameters are usually associated with D.

β = λ− µ
∆ = (λ− µ)2 + 4(k − µ)

δ =
√

∆
(13)

It is known that “usually” the parameter ∆ is a square, i.e. that δ is a positive integer (see
[15] for the case that ∆ is not a square).

Using (1) one finds the identity

2k = v + β ±
√

(v + β)2 − (∆− β2)(v − 1). (14)
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In particular, (v + β)2 − (∆− β2)(v − 1) is a square. By Result 15,

D∗ = {χ ∈ G∗ : χ 6= χ0, χ(D) = (β − δ)/2}.

is a regular (v∗, k∗, λ∗, µ∗) partial difference set in G∗ with

v∗ = v,

k∗ =
2k + (β + δ)(v − 1)

2δ
,

β∗ = −
(

v − 2k + β + δ

δ

)
,

δ∗ =
√

(β∗)2 + 4(k∗ − µ∗) =
v

δ
,

µ∗ = k∗ −
(

(δ∗)2 − (β∗)2

4

)
,

λ∗ = β∗ + µ∗.

(15)

Lemma 16 Using the notation from above, if ∆ is a square, the following hold.

(a) β and δ have the same parity.

(b) D is nontrivial if and only if −δ < β < δ − 2.

(c) If D 6= G\{1}, then v ≡ (2k − β + δ)/2 ≡ 0 mod δ.

(d) If D is nontrivial, then v, δ, δ∗ have the same prime divisors.

(e) D(t) = D for all t relatively prime to v.

Proof (a), (b), (d), (e) and v ≡ 0 mod δ in (c) are well-known, see e.g. [15]. By (15), we
have

k∗ + 1 =
2k − β + δ

2δ
+

(
δ + β

2

)
δ∗.

Since k∗, δ∗ are integers and β, δ have the same parity, (2k − β + δ)/2 ≡ 0 mod δ.
Q.E.D.

Corollary 17 Let p be a prime and let D be a regular partial difference set in an abelian
group G = H ×P where P is a p-group and |H| is not divisible by p. Suppose the parameter
∆ is a square. Let h ∈ H. Then

|D ∩ Ph| ≡
{

1 mod (p− 1) if h ∈ D
0 mod (p− 1) if h 6∈ D.

(16)
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Proof Assume gh ∈ D where g ∈ P . Since P is a p-group, the order of g in G is a power
of p, say pa, a ≥ 0. By Lemma 16 (e), we have D = D(t) for all t relatively prime to |G|.
Using the Chinese remainder theorem, we conclude gih ∈ D for all i relatively prime to p.
The number of these elements gih is (p − 1)pa−1. Hence D ∩ Ph can be decomposed into
sets of cardinality divisible by p− 1 and possibly the single element set {h}. The latter set
occurs in the decomposition if and only if h ∈ D. Q.E.D.

Partial difference sets in abelian groups G have the amazing property that in many
cases certain subgroups of G also contain partial difference sets. This “sub-difference set
property” was discovered in [19, 16] and is one of the major tools for the investigation of
partial difference sets. We quote this result in the form given in [15, Thm. 7.1].

Result 18 Let D be a nontrivial regular (v, k, λ, µ) partial difference set in an abelian group
G. Suppose ∆ is a square. Let N be a subgroup of G such that |N | and |G/N | are coprime
and |G/N | is odd. Let

π := (|N |, δ) and θ :=

⌊
β + π

2π

⌋
.

Then D ∩N is a regular (v′, k′, λ′, µ′) partial difference set in N with v′ = |N | and

β′ = λ′ − µ′ = β − 2πθ
∆′ = (β′)2 + 4(k′ − µ′) = π2.

(17)

Remark 19 Note that the parameters k′, λ′, µ′ of the partial difference set D ∩N can be
expressed in terms of v′, β, π, and θ using (14) and (17).

Lemma 20 Assume that a nontrivial regular (v, k, λ, µ) partial difference set exists. If ∆ is
a square, then k2 + k ≥ 2(v − 1).

Proof For a nontrivial partial difference set, µ ≥ 1. By [18, Theorem 5.1], µ must be even
if ∆ is a square. Hence µ ≥ 2. By counting the number of quotients gh−1 ∈ G\(D ∪ {1}),
g, h ∈ D, we obtain k2 − k ≥ µ(v − k − 1) and hence k2 + k ≥ 2(v − 1). Q.E.D.

The following is an improved version of [18, Theorem 2.2]. For a prime p and positive
integers b, z, we write pb||z if pb divides z and pb+1 does not divide z.

Theorem 21 Let D be a regular (v, k, λ, µ) partial difference set in an abelian group G.
Suppose D 6= G\{1} and ∆ is a square. If p is a prime divisor of v such that pm||v and
pr||δ, then

k ≤ µ(pm − 1) + ξ

pr − 1

where

ξ =





0 if β ≤ −pr,
(β + pr)2/4 if −pr < β ≤ 2pm − pr − 2,
(β − pm + pr + 1)(pm − 1) if β > 2pm − pr − 2.
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Proof For χ ∈ G∗,

χ(D)−
(

β − δ

2

)
=

{
(2k − β + δ)/2 if χ is trivial

0 or δ otherwise

≡ 0 mod δ.

Let P be the Sylow p-subgroup of G and ρ : G → G/P the natural epimorphism. Then

ρ(D) = a + pr
∑

g∈G/P\{1}
bgg

where a, bg are integers and 0 ≤ a ≤ pm − 1. The result follows by the same arguments as
in the proof of [18, Theorem 2.2]. Q.E.D.

In certain cases, it is possible to strengthen the bound on k from Theorem 21 considerably
by a finer analysis. The following is a result of this type which will be very helpful for the
study of pseudogeometric partial difference sets in the next section.

Theorem 22 Assume that there is a nontrivial regular (v, k, λ, µ) partial difference set D
in an abelian group G such that ∆ is a square and β = λ − µ ≤ 0. Let p be an odd prime
dividing v and let m, r be positive integers such that pm||v, and pr divides each of k, δ, and
β. Then

(pr+1 − pr − 1)k ≤ µ(pm − 1) +
1

2

[
(p− 2)p2r

(
β + δ +

2k − β − δ

pm

)]
.

Proof Write G = P ×H with |P | = pm and (p, |H|) = 1. By Result 13 we have χ(D) =
(β ± δ)/2 and hence χ(D) ≤ (β + δ)/2 for all nontrivial characters χ of G. Using Corollary
12, we get

|D ∩H| =
1

pm

∑

χ∈H⊥

χ(D)

≤ 1

pm

(
k +

(pm − 1)(β + δ)

2

)

=
1

2

(
β + δ +

2k − β − δ

pm

)
.

(18)

Now let ρ : G → G/P be the canonical epimorphism. Applying ρ to (1) yields

ρ(D)ρ(D)(−1) = µpm(G/P ) + βρ(D) + k − µ. (19)

Let C be the coefficient of the identity in ρ(D)ρ(D)(−1). Since β ≤ 0 we have

C ≤ µ(pm − 1) + k (20)

by (19). From the assumptions, we have χ(D) ≡ 0 mod pr for all characters χ of G. Since
|G/P | is not divisible by p, this implies

ρ(D) ≡ 0 mod pr (21)
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Now let h ∈ H be arbitrary. Corollary 17 yields |D ∩ Ph| ≡ 1 mod (p − 1) if h ∈ D and
|D ∩ Ph| ≡ 0 mod (p − 1) if h 6∈ D. If |D ∩ Ph| ≡ 1 mod (p − 1), then by (21) we have
|D∩Ph| = pr +(p−1)pru for some u. Let X = {Ph : h ∈ D∩H}. By what we have shown,
we can write

ρ(D) = prX + (p− 1)prX1 + (p− 1)prY (22)

where X, X1, Y ∈ Z[G/P ] have nonnegative coefficients, the support of X1 is contained in
X and the support of Y is disjoint from X. Now assume that some g ∈ X has coefficient
c ≥ 0 in X1. Then the coefficient of g in ρ(D) is pr[1 + c(p− 1)] and thus the contribution
of this coefficient to C is

p2r[1 + c(p− 1)]2 ≥ p2r + cp2r(p− 1)2.

Hence the contribution of prX + (p− 1)prX1 to C is at least

p2r|X|+ p2r(p− 1)2|X1|.

Since |X1|+ |Y | = (k − pr|X|)/[(p− 1)pr] we get

C ≥ −(p− 2)p2r|X|+ (p− 1)prk (23)

from (22). By (18) we have

|X| ≤ 1

2

(
β + δ +

2k − β − δ

pm

)
. (24)

Combining (20), (23) and (24) gives the assertion. Q.E.D.

Theorem 23 There are no regular (v, k, λ, µ) partial difference sets with parameters satis-
fying v = zw2, ∆ = w2 and β = w − 6 where w and z are any integers with z ≥ w ≥ 4.

Proof Suppose there exists such a partial difference set D in a group G. Since −√∆ <
β <

√
∆− 2, the partial difference set is nontrivial by Lemma 16 (b). By (14) we have

k =
1

2

(
v + β ±

√
(v + β)2 − (∆− β2)(v − 1)

)

=
1

2

(
zw2 + w − 6± w

√
z2w2 − 10zw + 24z + 1

)

and (v + β)2 − (∆− β2)(v − 1) is a square.

We first consider the case z ≥ 5. Let X = (10zw− 24z − 1)/(z2w2). Note that 0 < X <
10/(zw) ≤ 1/2. By Taylor’s theorem we have

√
1−X = 1− 1

2
X − 1

8
(1−X1)

−3/2X2,
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for some X1 with 0 < X1 < X. Note that zw2X = 10w − 24 − 1/z < 10w − 24 and
X < 10/(zw). Also recall z ≥ 4. Hence

w
√

z2w2 − 10zw + 24z + 1

= zw2
√

1−X

> zw2

[
1− 1

2
X − 1

8

(
1− 1

2

)−3/2

X2

]

> zw2 − 1

2
(10w − 24)− 1√

8

(
10

zw

)
(10w − 24)

> zw2 − 5w + 12− 100

z
√

8

> zw2 − 5w.

So either k < 3w or k > v − 2w − 3. If k < 3w, then by Lemma 20, we have

z ≤ 9

2
+

3

2w
+

1

w2
< 5,

a contradiction. If k > v − 2w− 3, then v − k− 1 < 2w + 2 and we have the same result by
applying Lemma 20 to G\(D∪{1}). Finally, for z = w = 4, we have (v +β)2− (∆−β2)(v−
1) = z2w2 − 10zw + 24z + 1 = 193 which is not a square, a contradiction. Q.E.D.

Theorem 24 Assume that there exists a regular partial difference set D in an abelian group
with parameters v = u3, ∆ = (3u)2 and β = −u − 6 where u is a positive integer. Then
u = 6 or u = 3n with n ≥ 1.

Proof Since v and ∆ have the same odd prime divisors by Lemma 16 (d), we have u = 3nw
where n,w ≥ 1 and gcd(3, w) = 1. First assume w ≥ 4. We apply Result 18 with |N | = w3.
Then π = w and

θ =

⌊
β + π

2π

⌋
=

⌊
−3n − 1

2
− 3

w

⌋
= −3n + 1

2
.

Hence, by Result 18, there exists a partial difference set with parameters v′ = w3, ∆′ = w2

and β′ = β − 2πθ = w − 6. But this is impossible by Theorem 23. So w = 1 or 2.

It remains to show that n = 1 if w = 2. Thus assume w = 2 and n ≥ 2. Write x = 3n.
We use (13) and (14) to calculate the parameters of D and obtain the following two possible
cases.

v k λ µ β ∆

8x3 8x2 + 2x− 3 6x 8x + 6 −2x− 6 36x2

8x3 8x3 − 8x2 − 4x− 3 8x3 − 16x2 8x3 − 16x2 + 2x + 6 −2x− 6 36x2

For the first case, Lemma 21 implies k ≤ 7µ contradicting n = 2. For the second case,
the parameters of the complementary partial difference set G\(D ∪ {1}) are as follows.

v k λ µ β ∆

8x3 8x2 + 4x + 2 10x + 10 8x + 6 2x + 4 36x2
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We apply Lemma 21 with p = 2. Note that ξ = (β − 8 + 2 + 1)(8 − 1) = 7(β − 5) since
β ≥ 2 · 32 + 4 = 22. Hence k ≤ 7(µ + β − 5) by Lemma 21, i.e. 8x2 + 4x + 2 ≤ 7(10x + 5).
This implies x < 9 and hence n < 2, a contradiction. Q.E.D.

5 Pseudogeometric Partial Difference Sets

In this section, we obtain several new results on pseudogeometric partial difference sets.
First let us fix some notation which we will use in the rest of this section. Let D be a
pseudogeometric partial difference set in an abelian group G. Recall that the parameters of
D are given by (3). Using the notation of Section 4, we have

v = (s + 1)(st + α)/α,

k = s(t + 1),

λ = s + (α− 1)t− 1,

µ = α(t + 1),

β = λ− µ = s− α− t− 1,

δ =
√

β2 + 4(k − µ) = s− α + t + 1.

(25)

Furthermore, by (15), the dual partial difference set D∗ has parameters

v∗ =
(s + 1)(st + α)

α
,

k∗ =
s(s− α + 1)(st + α)

α(s− α + t + 1)
,

µ∗ =
(s + 1)(s− α)(s− α + 1)(st + α)

α(s− α + t + 1)2
,

δ∗ =
(s + 1)(st + α)

α(s− α + t + 1)
,

β∗ = −(s− 2α + 1)(st + α)

α(s− α + t + 1)
.

(26)

Note that D = G \ {1} if and only if k = v − 1, i.e., if α = s + 1.

Theorem 25 Let D 6= G \ {1} be a pseudogeometric partial difference set with parameters
(25) in an abelian group G. Then

(s + 1)(t + 1) ≡ 0 mod δ. (27)

Furthermore, let p be a prime divisor of δ and define m, r by pm||v and pr||δ.
(i) If β < 0, then

s− 1

α
<

pm − 1

pr − 1
. (28)
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(ii) If β ≤ −pr, then
s

α
≤ pm − 1

pr − 1
. (29)

(iii) If β < 0 and β∗ < 0, then
δ

pr
<

(s + 1)(s− α)

s− α− 1
. (30)

(iv) If β ≤ −pr and β∗ ≤ −pm−r, then

δ

pr
≤ s + 1 and

v

pm
≤ (s + 1)2. (31)

Proof We get (27) directly from Lemma 16 (c). For (ii), if β ≤ −pr, applying Theorem 21
to D yields s/α ≤ (pm − 1)/(pr − 1). For (i), suppose β < 0. Then by Theorem 21,

s ≤ α

(
pm − 1

pr − 1

)
+

ξ

(t + 1)(pr − 1)

where 0 ≤ 4ξ ≤ (β + pr)2 ≤ p2r. Since β = s − α − t − 1 < 0, s − α < t + 1. Thus
pr ≤ δ = s− α + t + 1 < 2(t + 1) and

0 ≤ ξ

(t + 1)(pr − 1)
<

pr

2(pr − 1)
≤ 1.

Now we first study (iv), i.e. β ≤ −pr and β∗ ≤ −pm−r. Note that pm−r||δ∗. Applying
Theorem 21 to D∗ yields

sδ

(s− α)(s + 1)
≤ pm − 1

pm−r − 1
. (32)

Combining (29) and (32), we get

(
pr

δ

)
(s− α)(s + 1)

s
≥ pm − pr

pm − 1
= 1− pr − 1

pm − 1
≥ 1− α

s
.

Hence δ/pr ≤ s + 1 and

v =
(s + 1)(st + α)

α

= (s + 1)

[
sδ − (s + 1)(s− α)

α

]

= (s + 1)
[ s

α
(δ − s− 1) + s + 1

]

≤ (s + 1)

[
pm − 1

pr − 1
{pr(s + 1)− s− 1}+ s + 1

]

= (s + 1)2pm.

This completes the proof of (31).
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Finally, for (iii), we have β < 0 and β∗ < 0. Define A = (st + α)/(s − α + t + 1) and
B = (s−α+1)(st+α)/[α(s−α+ t+1)]. Note that β∗ = A−B and δ∗ = A+B. Applying
Theorem 21 to D∗ yields

s ≤ (s + 1)(s− α)

δ

(
pm − 1

pm−r − 1

)
+

ξ∗

B(pm−r − 1)

where 0 ≤ 4ξ∗ ≤ p2(m−r). By the same argument as the proof of (i), we get

(s− 1)δ

(s− α)(s + 1)
<

pm − 1

pm−r − 1
. (33)

Combining (28) and (33), we get (30) Q.E.D.

Corollary 26 Let D be a pseudogeometric partial difference set with parameters (25) in
an abelian group G. Let p be a prime divisor of δ and define m, r by pm||v and pr||δ. If
s > 2α− 1, β < 0 and p does not divide s + 1, then

δ/pr ≤ s + 1 and v/pm ≤ (s + 1)2.

Proof Since α 6= s + 1, we have D 6= G \ {1}. Hence (s + 1)(t + 1) ≡ 0 mod δ by (27).
This implies t + 1 ≡ 0 mod pr and β = δ − 2(t + 1) ≡ 0 mod pr. So β ≤ −pr. Note that
β∗ = −(s − 2α + 1)v/[δ(s + 1)] < 0 since s > 2α − 1. On the other hand, pm−r divides β∗

and hence β∗ ≤ −pm−r. Now the assertion follows from Theorem 25. Q.E.D.

In Section 6 we will show that most geometric partial difference sets satisfy the condition
t = x(s + 1) + α for some positive integer x. Note that in this case, the parameters of the
partial difference set take the following form.

v = (s + 1)2(sx + α)/α,

δ = (s + 1)(x + 1),

k = s[(s + 1)x + α + 1],

β = −(s + 1)(x− 1)− 2α− 2,

µ = α[(s + 1)x + α + 1].

(34)

Moreover, if t = x(s + 1) + α the parameters of the dual partial difference sets are given by

v∗ = (s + 1)2(sx + α)/α,

k∗ =
s(sx + α)(s− α + 1)

α(x + 1)
,

δ∗ =
(s + 1)(sx + α)

α(x + 1)
=

v

δ
,

β∗ = −(sx + α)(s− 2α + 1)

α(x + 1)
,

µ∗ =
(sx + α) (s− α + 1) (s− α)

α (x + 1)2 .

(35)
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From Theorem 22 we can derive the following restriction on partial difference sets with
parameters (34).

Theorem 27 Assume that there is a pseudogeometric partial difference set with parameters
(34) in an abelian group such that s ≥ 2α − 1, x + 1 = pr and (sx + α)/α = pm for some
prime p and m > r. Then p = 2.

Proof Assume p ≥ 3. We apply Theorem 22 to the dual of D. Note pm||v and that all of
k∗, β∗, and δ∗ are divisible by pm−r. Also note that

1

2

(
β∗ + δ∗ +

2k∗ − β∗ − δ∗

pm

)
= p−rs(s− α + x + 1).

Furthermore,

(pm−r+1 − pm−r − 1)k∗ − µ∗(pm − 1) = (p− 2)p2m−2r(s− α + 1)s.

Hence Theorem 22 implies

s− α + 1 ≤ p−r(s− α + x + 1) = s− αpm−r + 1

and hence m = r, a contradiction. Q.E.D.

6 General Results on Proper Partial Geometries with

Abelian Singer Groups

First let us fix some notation which we will use in the rest of this section. Suppose there
exists a proper partial geometry Π = pg(s + 1, t + 1, α) with an abelian Singer group G.
By Corollary 8, the partial difference set D in G arising from the partial geometry has
parameters (25) and its dual has parameters (26). Recall that by Corollary 8, we have

D = −(t + 1) +
∑
U∈U

U +
∑
L∈L

LL(−1)

and that the elements of U are called subgroup lines and the elements of L are called orbit
lines. If there are no subgroup lines, the geometry is said to be of rigid type.

Lemma 28 For any nontrivial character χ of G,

χ(D) = −(t− 1) or s− α.

Furthermore, if χ(D) = −(t + 1), then χ(S) = 0 for all S ∈ U ∪ L.

Proof The first part is the consequence of Result 13. By (4),

DS = (s− α)S + αG

for all S ∈ U ∪ L. Thus, [χ(D) − (s − α)]χ(S) = 0. If χ(D) = −(t + 1), then χ(S) = 0.
Q.E.D.
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Lemma 29 Let p be a prime divisor of s + 1 such that pm||v and pr||(s + 1). Then

|U|(pr − 1) ≤ pm − 1. (36)

Proof The lemma follows because each subgroup line contains a subgroup of order pr.
Q.E.D.

The following direct consequence of Lemma 16 (c) was proved in [11].

Lemma 30 If a proper pg(s + 1, t + 1, α) with admitting an abelian Singer group exists,
then

v ≡ (s + 1)(t + 1) ≡ 0 mod δ.

Here v and δ are given by (25).

Corollary 31 Suppose that Π is of rigid type with s > 2α− 1. Then every prime divisor of
δ must divide s + 1.

Proof Suppose there is a prime divisor p of δ such that p does not divide s + 1. Suppose
pr||δ. By Corollary 26,

δ

pr
≤ s + 1.

Recall δ = s−α+ t+1. Since the geometry is of rigid type, we have t+1 = (s+1)x for some
positive integer x. As (s + 1)(t + 1) ≡ 0 mod δ, we have x ≡ 0 mod pr and hence x ≥ pr.
Thus

s− α + (s + 1)x

x
=

δ

pr
≤ δ

x
≤ s + 1.

This implies s ≤ α. But this is impossible since we assumed that the partial geometry Π is
proper. Q.E.D.

In the following, we investigate the case with at least two subgroup lines in more depth.

Theorem 32 Suppose that Π has at least two subgroup lines. We have the following:

(i) There exists a positive integer x such that

t = (s + 1)x + α.

In particular, there are at least α + 1 subgroup lines.

(ii) The partial difference set associated with Π has parameters (34) and its dual has pa-
rameters (35). Furthermore, sx ≡ 0 mod α and there exists a positive integer w such
that

s− α = (x + 1)w.

(iii) (sx + α)/α ≡ 0 mod (x + 1) and wx ≡ 0 mod α.
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Proof (i) Let U1 and U2 be two subgroup lines. Then U1 ∩ U2 = {1} since otherwise there
would be coefficients ≥ 2 in D. Thus U1U2 is a subgroup of G of order (s + 1)2. Hence
(s + 1)2 divides v = (s + 1)(st + α)/α which implies −t + α ≡ st + α ≡ 0 mod (s + 1). So
we can write t = (s + 1)x + α for some x ≥ 1. Since there are exactly t + 1 lines through 1
and since the number of orbit lines is divisible by s + 1, the number of subgroup lines is at
least α + 1. This proves (i).

(ii) Substituting t = (s+1)x+α into (25), we deduce that the parameters have the form
(34). Since (s + 1)2 divides v, we conclude that (sx + α)/α is an integer, i.e. sx ≡ 0 mod α.
Note that D is nontrivial by Lemma 6. Hence δ = (s + 1)(x + 1) divides (2k − β + δ)/2 =
(s + 1)(t + 1) by Lemma 16 (c). This implies s− α ≡ 0 mod (x + 1).

(iii) We write x + 1 = XY where all prime factors of X are prime factors of s + 1 and
gcd(Y, s+1) = 1. Since s+1−(α+1) = (x+1)w for an integer w, every prime factor of X is
a prime factor of α+1. Hence, X and α are coprime. It follows that (sx+α)/α ≡ 0 mod X.
On the other hand, as x + 1 divides v, we conclude that Y divides v. Since Y and s + 1
are relatively prime, (sx + α)/α ≡ 0 mod Y also. As X and Y are relatively prime we have
(sx+α)/α ≡ 0 mod XY . Finally, (sx+α)/α ≡ 0 mod (x+1) implies sx+α ≡ 0 mod (x+1)α.
Since sx + α = [(x + 1)w + α]x + α = (x + 1)(wx + α), we see that wx ≡ 0 mod α.
Q.E.D.

Corollary 33 If Π has at least two subgroup lines, then s > 2α.

Proof Theorem 32 (iii) implies that (x + 1)α divides (sx− α)− (x + 1)α = x(s− α). As
s > α, we conclude that x(s− α) ≥ (x + 1)α > xα. This shows s > 2α. Q.E.D.

Corollary 34 Suppose that Π has at least two subgroup lines. If L is an orbit line in Π,
then 〈L〉 = G (here 〈L〉 denotes that smallest subgroup of G containing L).

Proof If 〈L〉 6= G, then there exists a character χ of G which is trivial on 〈L〉 but nontrivial
on G. Then χ(D) ≥ −(t + 1) + |χ(L)|2 = −(t + 1) + (s + 1)2 = (s + 1)(s + 1− x)− α − 1.
But by Lemma 28, χ(D) = s−α. So x ≥ s + 1. This contradicts s−α = (x + 1)w for some
positive integer w. Q.E.D.

In view of the above corollary, we only need to deal with the case s > 2α whenever Π is
proper and it has at least two subgroups lines.

Theorem 35 Suppose that Π has at least two subgroup lines. Let x be the integer defined
by (34). If there is a prime divisor p of x + 1 such that p does not divide s + 1, then p = 2,
x + 1 = 2r and (sx + α)/α = 2m for some positive integers m, r.

Proof By Theorem 32, the parameters of the partial difference set associated with Π are
given by (34). Let p be a prime divisor of x+1 such that p does not divide s+1. Define m and
r by pm||(sx + α)/α and pr||x + 1. By (34) and Corollary 33, we have β < 0 and s ≥ 2α + 1.
Hence we have (s + 1)(x + 1) = δ ≤ pr(s + 1) and v = (s + 1)2(sx + α)/α ≤ pm(s + 1)2 by
Corollary 26. This shows x + 1 = pr and (sx + α)/α = pm.
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It remains to show p = 2. Since s > α, we have (sx + α)/α > x + 1 and hence m > r.
Thus p = 2 by Theorem 27. Q.E.D.

Theorem 36 Suppose that Π has at least two subgroup lines. Let x be the integer defined
by (34). Then s + 1 can have at most one prime divisor which does not divide (sx + α)/α.
Furthermore, this potential prime divisor cannot be larger than α + 1.

Proof Assume s+1 has at least two prime divisors, say q1, q2, which do not divide (sx+α)/α.
Let qsi

i ||(s + 1) for i = 1, 2. Then by (34) we have q2si
i ||v and qsi

i ||δ for each i. Using (28) we
conclude s− 1 < α(qsi

i + 1) and hence

s ≤ α(qsi
i + 1)

for all i. Now (36) implies
(α + 1)(qsi

i − 1) ≤ q2si − 1

and hence α ≤ qsi
i for all i. Combining the two inequalities, we deduce that s ≤ (qsi

i + 1)qsi
i .

Without loss of generality, we may assume qs1
1 ≥ qs2

2 + 1. We then have

s + 1 ≥ qs1
1 qs2

2 ≥ (qs2
2 + 1)qs2

2 ≥ s.

This is impossible unless s + 1 = qs1
1 qs2

2 . But then α ≥ s/(qs2
2 + 1) > qs1

1 − 1. Thus,
α ≥ qs1

1 > qs2
2 . This is also impossible.

Now let q be any prime divisor of s + 1 which does not divide (sx + α)/α. It remains to
show q ≤ α + 1. Assume q > α + 1. Let U be a subgroup line of Π. Recall that |U | = s + 1.
Since q does not divide (sx + α)/α, there is g ∈ G \ U such that the order of g in G in not
divisible by q. Choose h ∈ U such that the order of h in G is q. By Lemma 16 (d) and the
Chinese Remainder Theorem, we have hig ∈ D for i = 1, ..., q − 1. Recall that D consists
exactly of the points 6= 1 which are collinear with 1. Note that the line Ug does not contain
1. But it contains at least q − 1 points collinear with 1, namely, hig, i = 1, ..., q − 1. Since
q − 1 > α, this contradicts property 4 of a partial geometry. Q.E.D.

By Corollary 33, Theorem 35 and Theorem 36, we have the following result.

Corollary 37 Suppose that Π has at least two subgroup lines. Let x be the integer defined
by (34). If there exists a prime divisor p of x + 1 such that p does not divide s + 1, then
s + 1 = qu, x + 1 = 2r and (sx + α)/α = 2m where q is an odd prime and u, r and m are
positive integers. Furthermore, q ≤ α + 1.

Theorem 38 Suppose that Π has at least two subgroup lines. Then s + 1 has at most three
prime factors.

Proof Suppose s + 1 has r prime factors with r > 3. By Corollary 37 and Lemma 16
(d), all prime divisors of v must be prime divisors of s + 1. Let s + 1 =

∏r
j=1 qsi

i where
q1, q2, . . . , qr are distinct primes and si ≥ 1. For each i, let qxi

i ||(x + 1) and qvi
i ||v where

24



xi ≥ 0 and vi ≥ 1. Note that δ = (s + 1)(x + 1) =
∏r

i=1 qsi+xi
i . By (28), for each i, we have

(s− 1)/α < (qvi
i − 1)/(qsi+xi

i − 1). Hence

(
s− 1

α

)r

<

r∏
i=1

qvi
i − 1

qsi+xi
i − 1

≤
r∏

i=1

qvi−si−xi
i

qsi
i

qsi
i − 1

=
v

(s + 1)(x + 1)

r∏
i=1

qsi
i

qsi
i − 1

≤ s

α
(s+1)

r∏
i=1

qi

qi − 1
.

Simplifying, we get
(s− 1)r−1

s + 1
<

(s− 1)r

s(s + 1)
< αr−1

r∏
i=1

qi

qi − 1
. (37)

By Lemma 36 we have α(qsi
i − 1) ≤ qvi

i − 1 for all i. Hence

αr ≤
r∏

i=1

qvi
i − 1

qsi
i − 1

≤
r∏

i=1

qvi−si
i

qi

qi − 1
=

v

s + 1

r∏
i=1

qi

qi − 1
≤ (s + 1)(sx + α)

α

r∏
i=1

qi

qi − 1

and

αr+1 ≤ (s + 1)(sx + α)
r∏

i=1

qi

qi − 1
≤ (s + 1)2(x + 1)

r∏
i=1

qi

qi − 1
. (38)

By Theorem 25 (iii) we have δ(s− α − 1)/(s− α) < qsi+xi
i (s + 1) for all i. Substituting

δ = (s+1)(x+1) and s−α = (x+1)w, we have x+1−(1/w) < qsi+xi
i and hence x+1 ≤ qsi+xi

i .
Therefore (x + 1)r ≤ ∏r

i=1 qsi+xi
i = (s + 1)(x + 1) which implies x + 1 ≤ (s + 1)1/(r−1).

Substituting this into (38), we have

αr+1 ≤ (s + 1)
2r−1
r−1

r∏
i=1

qi

qi − 1
. (39)

Combined with inequalities (37) and (39), we get

(s− 1)
(r+1)(r−1)

r

(s + 1)3
≤

(
r∏

i=1

qi

qi − 1

)2

.

As r ≥ 4, we get
(

s− 1

s + 1

)5

(s + 1) ≤
(

r∏
i=1

qi

qi − 1

)8
3

. (40)

Note that r ≥ 4 implies s + 1 ≥ 210. Thus [(s − 1)/(s + 1)]5 ≥ 2/3. It is obvious that
qi ≥ [qi/(qi − 1)]8/3 when qi ≥ 5. On the other hand,

2

3
· 2 · 3 · 5 · 7 ≥

(
2

1
· 3

2
· 5

4
· 7

6

)8
3

.

This contradicts (40). Hence we have proved r ≤ 3. Q.E.D.
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7 The Case α = 2

In this section, we begin with the proof Theorem 1. The proof will be completed in the
following sections. The following result is the consequence of [11, Corollary 2.3 and Lemma
5.2].

Lemma 39 Let Π be a proper pg(s + 1, t + 1, 2) with an abelian Singer group G of mixed
type and let D be the partial difference set in G associated to Π. Then there is a positive
integer x such that

t + 1 = (s + 1)x + 3 (41)

and
s− 2 ≡ 0 mod (x + 1). (42)

Furthermore, (sx + 2)/(2(x + 1)) is an integer and the parameters of D are given by

v = (s + 1)2(x + 1)

[
sx + 2

2(x + 1)

]
,

δ = (s + 1)(x + 1),
k = s(t + 1),
β = −(s + 1)(x− 1)− 6,
µ = 2(t + 1)

(43)

Proof By [11, Lemma 5.1], the geometry must have at least two subgroup lines. Hence
(41), (42) and (43) follow from Theorem 32. Q.E.D.

Note that by (35), the parameters of the dual D∗ of the partial difference D in Lemma
39 take the following form.

v∗ = (s + 1)2(x + 1)

[
sx + 2

2(x + 1)

]
,

k∗ = s(s− 1)

[
sx + 2

2(x + 1)

]
,

β∗ = −(s− 3)

[
sx + 2

2(x + 1)

]
,

δ∗ = (s + 1)

[
sx + 2

2(x + 1)

]
,

µ∗ = (s− 1)

(
s− 2

x + 1

)[
sx + 2

2(x + 1)

]
.

(44)

Lemma 40 In the situation of Lemma 39, let p be a divisor of x+1, say, pr||x+1 for some
r ≥ 1.
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(a) If p 6= 3, then s + 1 = 3u, x + 1 = 2r and (sx + 2)/[2(x + 1)] = 2n for some positive
integers u, r, n.

(b) If p = 3 and r ≥ 2, then x + 1 = 3r and (sx + 2)/[2(x + 1)] = 3n or 2 · 3n for some
n ≥ 0.

Proof Since s+1 ≡ 3 mod (x+1), we have (s+1, x+1) = 1 or 3. So, if p 6= 3 then p does
not divide s + 1. Thus part (a) follows from Corollary 37.

Now assume p = 3 and r ≥ 2. By part (a), we have x+1 = 3r. Since s+1 ≡ 3 mod (x+1),
we have 3||s + 1 (note that this conclusion would be false if r = 1 which is the reason why
the case r = 1, i.e. x = 2, is a different story). Write (sx + 2)/(2(x + 1)) = 3nz where z is
not divisible by 3. Using Theorem 21, we get

2 · 3nz =
sx + 2

x + 1
< s ≤ 2(3r+n+2 − 1)

3r+1 − 1
⇒ z < 3 +

3n+1 − 1

3n(3r+1 − 1)
.

This implies z = 1 or 2. Q.E.D.

Corollary 41 In the situation of Lemma 39, one of the following cases must occur.

A: s + 1 = 3 · 2m, x + 1 = 3r and (sx + 2)/[2(x + 1)] = 3n or 2 · 3n for some positive
integers m, r and n with r ≥ 2.

B: s + 1 = 3u, x + 1 = 2r and (sx + 2)/[2(x + 1)] = 2n for some positive integers u, r, n.

C: x = 2.

Proof If x + 1 has a prime divisor different from 3, then case B holds by Lemma 40. Now
let x + 1 be a power of 3, say x + 1 = 3r, r ≥ 2. Then (sx + 2)/[2(x + 1)] = 3n or 2 · 3n by
Lemma 40. It remains to show that s+1 = 3 · 2m for some positive integer m. We have seen
in the proof of Lemma 40 that 3||s + 1, say s + 1 = 3z where gcd(z, 3) = 1. By Theorem 36,
there can only be one prime divisor q of s + 1 apart from 3 and q ≤ α + 1 = 3. This shows
that z is a power of 2. Q.E.D.

In the following sections, we work on the cases A-C stated in Corollary 41 in order to
complete the proof of Theorem 1.

8 Case A

Lemma 42 Case A of Corollary 41 is impossible.

Proof Assume s+1 = 3 · 2m, x+1 = 3r, r ≥ 3, and (sx+2)/[2(x+1)] = 3n or 2 · 3n. Then

3 · 2m − 1 =
2(2ε · 3r+n − 1)

3r − 1
(45)
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where ε ∈ {0, 1}. First assume ε = 0. If r would not divide n, then

gcd(3n+r − 1, 3r − 1) = 3(n+r,r) − 1 = 3(n,r) − 1 ≤ 3r−1 − 1.

But since 3r − 1 divides 2(3n+r − 1), we have

gcd(3n+r − 1, 3r − 1) ≥ 1

2
gcd(2(3n+r − 1), 3r − 1) =

1

2
(3r − 1),

a contradiction. Hence r divides n. This shows that, for ε = 0, the right hand side of (45)
is even while the left hand side is odd, a contradiction. Hence ε = 0 is impossible.

Now let ε = 1. Since 2 · 3r+n − 1 is odd, 2||3r − 1 and hence 3r ≡ 3 mod 8. Then

(3 · 2m − 1)(3r − 1) = 2(2 · 3r+n − 1) ⇒ 3 · 2m ≡ 2 · 3r+n mod 4.

This implies m = 1 and s + 1 = 6. But then 3 = s − 2 ≡ 0 mod (x + 1) contradicting
x + 1 = 3r with r ≥ 2. Q.E.D.

9 Case B and Goormaghtigh’s Equation

The Diophantine equation

xm − 1

x− 1
=

yw − 1

y − 1
, y > x > 1, m, w > 2

is called Goormaghtigh’s Equation. It has been studied in several papers, see [3] for a
reference. The only known solutions are (x, y,m, w) = (2, 5, 5, 2) and (2, 90, 13, 3) and it is
conjectured that there are no other solutions. In order to deal with Case B of Corollary 41,
we prove the following new result on Goormaghtigh’s equation.

Theorem 43 The equation
3m − 1

2
=

2rw − 1

2r − 1

has no solution in positive integers m, r, w with w > 1.

Proof Assume that there is a solution. Then we have

(3m − 1)(2r − 1) = 2(2wr − 1) (46)

Considering (46) mod 8 we see that r > 1. Taking (46) mod 4 we see that m is odd. Since,
for r ≥ 3, the order of 3 mod 2r is 2r−2, we get r ≤ 74 from [3, Lemma 2].

Now consider the values pi and ni defined in the following table.

i 1 2 3 4 5 6 7
pi 3 5 7 11 13 17 23
ni 7 31031 2097151 453277445 14672749 632388379 12667487
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It is straightforward to check by computer that for i = 1, 2, ..., 7 all solutions (m, r, w) of

(3m − 1)(2r − 1) ≡ 2(2wr − 1) mod ni, m ≡ 1 mod 2

have the property that
gcd(m− 1, w − 1)r ≡ 0 mod pi

Since r < 75, this implies

gcd(m− 1, w − 1) > 3 · 5 · 7 · 11 · 13 · 17 · 23/75 = 78278.2.

In particular, we have w− 1 > 78278.2. Using (46) we get 3m−1 < 3m− 1 < 2r(w−1)+2. Since
w − 1 > 78278.2 and r < 75, this implies

m− 1

w − 1
≤ log 2

log 3

(
r +

2

n− 1

)
< 47.

Hence we can take α = 47 in [3, Lemma 4] and get

gcd(m− 1, w − 1) ≤ 743

(
47 +

1

2

)
= 35292.5,

a contradiction. Q.E.D.

Corollary 44 Case B of Corollary 41 is impossible.

Proof In case B of Corollary 41 we have s+1 = 3u, x+1 = 2r and (sx+2)/(2(x+1)) = 2n.
Hence

3u − 1

2
=

2n+r − 1

2r − 1
. (47)

Note that r divides n since (2n+r − 1, 2r − 1) = 2(n,r) − 1. This contradicts Theorem 43.
Q.E.D.

10 Case C

Now we consider the case x = 2 in Corollary 41, i.e. partial geometries pg(s + 1, 2(s + 1) + 3, 2)
with abelian Singer groups of mixed type. Let G be the Singer group. Recall that by (13),
the associated partial difference set D in G has parameters

v = (s + 1)3,

δ = 3(s + 1),

k = s[2(s + 1) + 3],

β = −(s + 1)− 6,

µ = 2[2(s + 1) + 3].

(48)

Recall that
D = −(t + 1) +

∑
U∈U

U +
∑
L∈L

LL(−1). (49)
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Corollary 45 If a proper partial geometry pg(s + 1, 2(s + 1) + 3, 2) with an abelian Singer
group of mixed type exists, then s + 1 = 3n for some integer n ≥ 2.

Proof In view of (48) and Theorem 24, we have s+1 = 6 or s+1 = 3n with n ≥ 1. For the
latter case, n = 1 is not possible since the partial geometry is assumed to be proper. Now
suppose s + 1 = 6. Then v = 23 · 33, δ = 2 · 32, β = −12 and β∗ = −4. Applying Theorem
25 (iv) with pr = 2, we have 9 = δ/pr ≤ s + 1 = 6, a contradiction. Q.E.D.

Now we begin with the investigation of the case s + 1 = 3n in Corollary 45.

Lemma 46 Let s+1 = 3n for some n ≥ 2 and let D be given by (49). Let L ∈ L be arbitrary
and g ∈ L. Define L∗ := {h1h

−1
2 : h1, h2 ∈ L and h1 6= h2} ⊂ G. Then the following hold.

(a) If o(g) ≥ 27, then L∗ contains at most 6 nonidentity elements of 〈g〉.
(b) If o(g) = 9, then L∗ contains at most 2 elements of 〈g〉.

Proof First, we write L = A1 + A2u2 · · ·+ Afuf such that Ai are nonempty subsets of 〈g〉
and 〈g〉ui are distinct 〈g〉-cosets not equal to 〈g〉.

We claim |Ai| = 1 if i 6= 1. Otherwise, without loss of generality, we may assume
{1, ga} ⊂ A2 where ga 6= 1. Since u2 and gau2 are in L, both Lu−1

2 and L(gau2)
−1 are lines

that contain 1 but are distinct from L. Since ga ∈ Lu−1
2 and g−a ∈ L(gau2)

−1, both ga

and g−a are in D\L. Therefore, Lga and Lg−a are lines that do not contain 1 and hence
|Lga∩D| = |Lg−a∩D| = 2. On the other hand, {ga, ga+1, gau2} ⊂ Lga and {g−a, g−a+1, u2} ⊂
Lg−a. Since ga, g−a, u2 and gau2 are in D, both ga+1 and g−a+1 are not in D. However, as
o(g) is a power of 3, either o(g) = o(ga+1) or o(g) = o(g−a+1) and by Lemma 16 (e), this
implies either ga+1 or g−a+1 is in D, a contradiction.

Since |Ai| = 1 for i 6= 1, we have L∗ ∩ 〈g〉 = A1A
−1
1 \{1}. Now, let us write

A1 = B1 ∪B2g ∪B3g
2

where Bi ⊂ 〈g3〉 for each i. Recall that DL = sL + 2(G− L) by (4) and g〈g3〉+ g2〈g3〉 ⊂ D
by Lemma 16 (e). In DL, the coefficient of elements in 〈g3〉, g〈g3〉 and g2〈g3〉 are at least
|B2| + |B3|, |B1| + |B3| and |B1| + |B2| respectively. As o(g) ≥ 9, it is not possible that
L contains a 〈g3〉-coset. Therefore, each of |B2| + |B3|, |B1| + |B3| and |B1| + |B2| must
be at most 2. It follows that |B1| + |B2| + |B3| ≤ 3 and in case |B1| + |B2| + |B3| = 3,
|B1| = |B2| = |B3| = 1. Now (a) is clear as |A1| ≤ 3.

For (b), we have o(g) = 9 and it suffices to show |A1| ≤ 2. If |A1| ≥ 3, we may assume
{1, g, g2+3r} ⊂ L for some r. As g−1 /∈ L, we have r 6= 2. When r = 0, we consider the line
Lg−1. Note that {1, g} ⊂ Lg−1 ∩ L but Lg−1 6= L as g−1 /∈ L. This is impossible. When
r = 1, we consider Lg−4 6= L. Again, {g, g5} ⊂ Lg−4 ∩ L and this is impossible. Hence,
|A1| ≤ 2. Q.E.D.

Theorem 47 Assume that a proper pg(s + 1, 2(s + 1) + 3, 2) admitting an abelian Singer
group G exists. Then G is an elementary abelian 3-group.
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Proof By Corollary 45, we have s + 1 = 3n for some n ≥ 2. Let D be the partial difference
set in G corresponding to the geometry and recall that D has the form (49). Note that
|L| = 1 or 2. We claim that

⋃
L∈L LL(−1) contains elements of order 3 only. Then by

Corollary 34, the group G must be elementary abelian.

Suppose there exists g ∈ L1 for some L1 ∈ L such that o(g) ≥ 9. Observe that, by
Lemma 16 (e), we have M = {gi : gcd(3, i) = 1} ⊂ ⋃

L∈L LL(−1) as g /∈ U for any U ∈ U .
If o(g) = 9, then by Lemma 46 (b), there can be at most 4 elements of M in

⋃
L∈L LL(−1).

This contradicts |M | ≥ 6 in this case. Hence o(g) ≥ 27. However, by Lemma 46 (a), there
can be at most 12 elements of M in

⋃
L∈L LL(−1). This is impossible since |M | ≥ 18 in this

case. Q.E.D.

Lemma 48 Let n be non-negative integer, η = exp 2πi
3

and X,Y ∈ Z[η].

(a) If |X|2 + |Y |2 = 3n then X = 0 or Y = 0.

(b) If |X|2 + |Y |2 = 2 · 3n then |X|2 = |Y |2 = 3n.

Proof For Z = e + fη ∈ Z[η] we have |Z|2 = e2 + f 2 − ef and hence

|Z|2 ≡ 0, 1, 3, 4, or 7 mod 9 and (50)

|Z|2 6∈ {2, 5, 6} (51)

Write X = a + bη and Y = c + dη with a, b, c, d ∈ Z.

(a) We prove part (a) by induction on n. By (51), the assertion is true for n ≤ 1. Now assume
n ≥ 2. In view of (50), |X|2 + |Y |2 ≡ 0 mod 9 implies |X|2 ≡ 0 mod 9 and |Y |2 ≡ 0 mod 9.
It is straightforward to check that, in turn, this implies a ≡ b ≡ c ≡ d ≡ 0 mod 3. Hence
X/3 ∈ Z[η], Y/3 ∈ Z[η], |X/3|2 + |Y/3|2 = 3n−2 and the assertion follows by induction.

(b) Again, we use induction on n. By (51), the assertion is true for n ≤ 1. Now, the same
argument as in the proof of part (a) completes the proof. Q.E.D.

Lemma 49 Let G be an abelian group of order (s + 1)3 for some positive integer s. Let S
be a subset of G such that |S| = s + 1 and in SS(−1) all nonidentity elements of G have
coefficient 0 or 1. Furthermore, assume |χ(S)|2 ∈ {0, s + 1, 3(s + 1)} for all characters χ of
G. Let

x = |{χ ∈ G∗ : χ 6= χ0, |χ(S)|2 = s + 1}|,
y = |{χ ∈ G∗ : χ 6= χ0, |χ(S)|2 = 3(s + 1)}|.

Then

x =
1

2
(s + 1)(s2 + 4s),

y =
1

6
s2(s + 1)
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Proof The coefficient of 1 in SS(−1) is s+1. Hence by Result 11 (i), we have
∑

χ∈G∗ |χ(S)|2 =

(s + 1)4. Since |S| = s + 1, this implies
∑

χ 6=χ0
|χ(S)|2 = (s + 1)4 − (s + 1)2, i.e.

x(s + 1) + 3y(s + 1) = (s + 1)4 − (s + 1)2. (52)

The coefficient of 1 in (SS(−1))(SS(−1))(−1) equals the sum of the squares of the coefficients
of SS(−1) and thus is (s + 1)2 + s(s + 1) = (2s + 1)(s + 1). Using Result 11 (i), we get∑

χ∈G∗ |χ(S)|4 = (2s+1)(s+1)4. Hence
∑

χ 6=χ0
|χ(S)|4 = (2s+1)(s+1)4−(s+1)4 = 2s(s+1)4

and thus
x(s + 1)2 + 9y(s + 1)2 = 2s(s + 1)4. (53)

Solving the equations (52) and (53) gives the assertion. Q.E.D.

Theorem 50 A proper pg(s + 1, 2(s + 1) + 3, 2) with an abelian Singer group and exactly
2(s + 1) orbit lines does not exist.

Proof Assume that such a partial geometry exists. By Corollary 45, we have s + 1 = 3n

for some n ≥ 2. By Theorem 47, the group G must be an elementary abelian 3-group. By
(49), we have

D = −[2(s + 1) + 3] + U1 + U2 + U3 + SS(−1) + TT (−1)

where the Ui’s are subgroups of G of order s + 1 and S, T are distinct orbit lines. Note
that χ(D) = −[2(s + 1) + 3] or s − 2 for all nontrivial characters χ of G. By Lemma 28,
we have |χ(S)|2 + |χ(T )|2 ∈ {0, s + 1, 2(s + 1), 3(s + 1)}. Using Lemma 48, we conclude
|χ(S)|2 ∈ {0, s+1, 3(s+1)} and |χ(T )|2 ∈ {0, s+1, 3(s+1)}. Let D∗ be the dual of D, i.e.

D∗ = {χ ∈ G∗ : χ 6= χ0, χ(D) = −[2(s + 1) + 3]}.

Then |D∗| = (s− 1)s(s + 1)/3 by (44). Let

X = {χ ∈ G∗ : χ 6= χ0, |χ(S)|2 = s + 1},
Y = {χ ∈ G∗ : χ 6= χ0, |χ(S)|2 = 3(s + 1)},
Z = {χ ∈ G∗ : χ 6= χ0, |χ(T )|2 = 3(s + 1)}.

Then |X| = 1
2
(s + 1)(s2 + 4s) and |Y | = |Z| = 1

6
s2(s + 1) by Lemma 49. Furthermore, the

sets D∗, X, Y , Z are pairwise disjoint. This implies

|D∗|+ |X|+ |Y |+ |Z| ≤ (s + 1)3 − 1.

Substituting the values for |D∗|, |X|, |Y |, |Z| gives −s3 + s2 + 4s ≥ 0 and thus n < 2, a
contradiction. Q.E.D.

Proposition 51 For s + 1 = 9, a pg(s + 1, 2(s + 1) + 3, 2) with an abelian Singer group G
and exactly s + 1 orbit lines does not exist.
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Proof Assume the contrary and let D ⊂ G be the associated partial difference set. Then
|G| = 36 and D = −21 +

∑12
i=1 Ui + SS(−1) where the Ui’s are subgroups of G of order 9

and S is an orbit line. By Theorem 47, the group G is elementary abelian. Furthermore,
|χ(S)|2 ∈ {0, 9, 27} for all nontrivial characters χ of G. From Corollary 34 we conclude that
S contains a set {g1, ..., g6} such that 〈g1, ..., g6〉 = G. In particular, gi 6= 1 for i = 1, ..., 6.
Hence

S = {1, g1, ...., g6, a, b}
for some a, b ∈ G, a 6= b. Now let η = exp 2πi/3 and let χi be the character of G with
χi(gi) = η and χi(gj) = 1 for i 6= j. Then

χi(S) = 6 + η + χi(a + b).

Since |χi(S)|2 ≡ 0 mod 9, we know that χi(S) is divisible by 3. Hence

η + χi(a + b) ≡ 0 mod 3.

This is only possible if χi(a) = χi(b) = η or χi(a + b) = 1 + η2. But χi(a + b) = 1 + η2 is
impossible since |χi(S)|2 = 36 in this case. Hence

χi(a) = χi(b) for i = 1, ..., 6. (54)

Since the gi generate G, we can write

a =
6∏

i=1

gai
i

b =
6∏

i=1

gbi
i

for some integers ai, bi with 0 ≤ ai ≤ 2, 0 ≤ bi ≤ 2. By (54) we get

ηai = χi(a) = χi(b) = ηbi , i = 1, ..., 6.

Hence ai = bi for all i. This implies a = b, a contradiction. Q.E.D.

11 Proof of Theorem 1

Theorem 1 follows directly from Corollary 41, Lemma 42, Corollaries 44 and 45, Theorems
47, 50, and Proposition 51. If a proper pg(s + 1, t + 1, 2) with an abelian Singer group G
of spread type exists, then |G| = (s + 1)3, t = 2(s + 2), and G is an elementary abelian
3-group by [11, Thm. 4.1]. Furthermore, by [11, Cor. 6.12], the only pg(s + 1, t + 1, 2) with
an abelian Singer group of rigid type is the Van Lint-Schrijver geometry [13]. Together with
Theorem 1 this implies the following.

Corollary 52 Let Π by a proper partial geometry pg(s + 1, t + 1, 2) with an abelian Singer
group G. Then G is an elementary abelian 3-group of order (s + 1)3 and t = 2(s + 2) or Π
is the Van Lint-Schrijver partial geometry.
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