
On the nonexistence of semi-regular relative

difference sets

Ka Hin Leunga *, Bernhard Schmidtb �, and Tao Zhangc,�

a Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260,

Republic of Singapore.

b Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore 637371, Republic of Singapore.

c Zhejiang Lab, Hangzhou 311100, China.

Abstract

In this paper, we study semi-regular relative difference sets. We give some

nonexistence results on abelian (mn, n,mn,m) relative difference sets. In par-

ticular, we focus on the case when m is prime and show that, for any fixed

integer n ≥ 2, there are at most finitely many primes p for which an abelian

(pn, n, pn, p) relative difference set may exist. We illustrate our results by in-
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1 Introduction

Let G be a group of order un and N be a subgroup of G of order n. A k-subset D of

G is called an (u, n, k, λ) relative difference set (RDS) in G with respect to N if the

expressions d1d
−1
2 with d1, d2 ∈ D, d1 ̸= d2, represent each element of G\N exactly

λ times and represent no element of N . If the group G is abelian, then D is called

abelian RDS. If k = u, then D is called semi-regular RDS.

In this paper, we focus on semi-regular RDS. Semi-regular RDSs not only have

their own interest, but also have applications in mutually unbiased bases [7]. There

have been a number of papers devoted to the research on (pa, pb, pa, pa−b) RDSs (see

[15, 17] and the references therein). A construction of (p2t(p+1), p+1, p2t(p+1), p2t)

RDSs can be found in [3, 9], where t is a positive integer and p = 2 or p is a Mersenne

prime. Feng [5] gave a construction of (p(p + 1), p, p(p + 1), p + 1) RDSs, where p is

a Mersenne prime. Constructions of non-abelian RDSs with parameters (4q, q, 4q, 4)

and (16q, q, 16q, 16) can be found in [6, 20], where q is a sufficient large prime power

with q ≡ 1 (mod 4). For the nonexistence results, Ma [14] showed that there does

not exist abelian (pq, q, pq, p) RDSs with p, q being two distinct odd primes such that

p > q. In [10], Leung, Ma and Tan showed that there is no abelian (3pq, 3, 3pq, pq)

RDS with p, q being two distinct primes larger than 3. Feng and Xiang [6] proved that

if a = 1 or 2 and p is an odd prime, then there does not exist an abelian (2ap, p, 2ap, 2a)

RDS except a = 2 and p = 3. In [8], Hiramine proved that if an abelian (2n, n, 2n, 2)

RDS exists, then n is a power of 2 except for a few cases. Some nonexistence results

on (mn, n,mn,m) RDS with gcd(m,n) = 1 can be found in [5, 20].

The primary aim of this paper is to continue this investigation and provide new

nonexistence results for semi-regular RDSs. Some of our results still rely on the “tra-

ditional” self-conjugacy approach, but the most significant parts of our paper concern

cases without the self-conjugacy condition. This in fact extends the pioneering work of

Ma [14] who developed powerful tools that do not require the self-conjugacy assump-

tion. In this vein, we combine a new “trick” to deal with Weil numbers corresponding

to characters of different orders with a result on unique differences modulo p to prove

that, for any fixed integer n ≥ 2, there are at most finitely many primes p for which

an abelian (pn, n, pn, p) relative difference set may exist.
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2 Preliminaries

To study a relative difference sets in a group G, it is convenient to use group ring

notations. Let Z[G] denote the group ring of G over Z. For any A ∈ Z[G], A can be

written as A =
∑

g∈G agg, where ag ∈ Z. We identify a subset S of G with the group

ring element
∑

g∈S g. Given any A =
∑

g∈G agg ∈ Z[G], we define A(t) =
∑

g∈G agg
t.

We also define supp(A) = {g ∈ G : ag ̸= 0}.
It is well known that a subset D in G is an (mn, n,mn,m) RDS with forbidden

group N if and only if

DD(−1) = mn1G +m(G−N), (1)

where 1G is the identity of group G. Moreover, if D is an (mn, n,mn,m) RDS in G

with forbidden group N , then D contains exactly one element of each coset of N in

G.

Lemma 2.1. [16, Theorem 4.1.1] Let R be an abelian (m,n,m,m/n) RDS in G

relative to N . Then exp(G)|m or G = Z4, n = 2.

Lemma 2.2. [4] Let R be an (m,n, k, λ) RDS in G relative to N . If U is a normal

subgroup of G contained in N , and if ρ denotes the canonical epimorphism G→ G/U ,

then ρ(R) is an (m,n/u, k, λu) RDS in G/U relative to N/U .

The standard tool to investigate if possible solutions exist for (1) is to apply

character theory. We denote the group of all characters of G by G∗. For any A =∑
g∈G dgg and χ ∈ G∗, define χ(A) =

∑
g∈G dgχ(g). The following inversion formula

shows that A is completely determined by its character value χ(A), where χ ranges

over G∗.

Lemma 2.3 (Fourier inversion formula). Let G be an abelian group. If A =
∑

g∈G agg ∈
Z[G], then

ag =
1

|G|
∑
χ∈G∗

χ(A)χ(g−1),

for all g ∈ G.

For any subgroup U of G, we set

U⊥ = {χ ∈ G∗ : χ(g) = 1, ∀g ∈ U}.

Using Fourier inversion formula, it is easy to conclude the following:

3



Lemma 2.4. Let D be a subset of G. D is an (mn, n,mn,m) RDS with forbidden

group N in G if and only if for any character χ ∈ G∗,

|χ(D)|2 =


m2n2, if χ is principal;

0, if χ is nonprincipal and χ ∈ N⊥;

mn, if χ is nonprincipal and χ /∈ N⊥.

Suppose G = U ×K. Then for any A =
∑

g∈G agg, we may write A =
∑

g∈K Dgg

where Dg ∈ Z[U ]. Often, we are interested in finding the value of χ(Dg) for any

character χ ∈ G∗.

Lemma 2.5. Let G be an abelian group and let E =
∑

g∈G agg ∈ Z[G]. For every

subgroup U of G and every χ ∈ G∗, we have

∑
τ∈U⊥

χτ(E) = |U⊥|χ

(∑
g∈U

agg

)
.

Proof. Using the orthogonality relations, we compute∑
τ∈U⊥

χτ(E) =
∑
τ∈U⊥

χτ(
∑
g∈G

agg)

=
∑
τ∈U⊥

∑
g∈G

agχτ(g)

=
∑
g∈G

agχ(g)
∑
τ∈U⊥

τ(g)

= |U⊥|
∑
g∈U

agχ(g)

= |U⊥|χ(
∑
g∈U

agg).

This proves the lemma.

From now on, we assume ζm is a primitive m-th root of unity.

Corollary 2.6. Let G = U ×K be an abelian group of exponent e and suppose that

D ∈ Z[G] satisfies ψ(D) ≡ 0 (mod B) for all ψ ∈ G∗ for some B ∈ Z[ζe] coprime

to |K|. Write D =
∑

g∈K Dgg with Dg ∈ Z[U ]. Then χ(Dg) ≡ 0 (mod B) for all

g ∈ K and χ ∈ G∗.
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Proof. Let g ∈ K, write E = Dg−1 =
∑

h∈G ahh with ah ∈ Z, and let χ be any

character of G. Comparing the coefficients of elements of K on both sides of Eg = D,

we see that
∑

h∈U ahh = Dg. Note that |U⊥| = |K|. Hence

|K|χ(Dg) = |U⊥|χ

(∑
h∈U

ahh

)
=
∑
τ∈U⊥

χτ(E) (2)

by Lemma 2.5. Note that χτ(E) = χτ(D)χτ(g−1) ≡ 0 (mod B) by assumption.

Hence |K|χ(Dg) ≡ 0 (mod B) by (2). As |K| and B are coprime, this implies

χ(Dg) ≡ 0 (mod B).

3 Number Theoretic Background

By Lemma 2.4, we are led to study the equation |X|2 = n in Z[ζu] for integers n and

u, the solution X is called a Weil number. There are basically two directions to prove

non-existence results. One direction is to find conditions on n and u such that no

solution exists. If there are indeed solutions, we find all of them and try to show that

the structure of the solutions does not meet the requirements for such difference sets.

Generally, it is quite difficult to find all the solutions for |X|2 = n in Z[ζu]. We

say that A,B ∈ Z[ζu] are equivalent if B = ±ζ iuτ(A) for some integer i and some

τ ∈ Gal(Q(ζu)/Q). For n = 2, we have the following:

Lemma 3.1. [2, Lemma 6] Let u be a positive integer and X ∈ Z[ζu] with |X|2 = 2.

Then X is equivalent to 1 + ζ4, 1 + ζ7 + ζ37 , or 1 + ζ615 − ζ815.

In [11] and [12], we obtained some interesting results when u is a prime power.

We record some of them that we will apply in later sections.

Lemma 3.2. [11, Theorem 4.7] Let p be an odd prime and let a, w be positive integers

with gcd(w, p) = 1. Suppose that X ∈ Z[ζpa ] satisfies |X|2 = w2. Write w = w0w1

such that ordp(q) ≡ 0 (mod 2) for all prime divisors q of w0 and ordp(q) ≡ 1 (mod 2)

for all prime divisors q of w1. If w1 = 1 or w1 > 1 and gcd(ordp(q1), . . . , ordp(qk)) >

2w1−1, where q1, . . . , qk are the distinct prime divisors of w1, then X = ηw for some

root of unity η.

The following two lemmas follow from [12, Theorems 22 and 23].
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Lemma 3.3. Let p be an odd prime and n be a nonsquare integer not divisible by p.

Let q1, . . . , qs be the distinct prime divisors of n. Write f = gcd{ordp(q1), . . . , ordp(qs)}.
Assume that there is X ∈ Z[ζpa ] with |X|2 = n. Then f is odd and p ≤ n2 + n+ 1.

Lemma 3.4. Let a be a positive integer. Let p, q be primes satisfying ordp(q) ≥ 2q.

Then there is no solution for |X|2 = q, X ∈ Z[ζpa ].

Definition 3.5. Let p be an odd prime. We define

Θp :=

p−1∑
x=1

(
x

p

)
ζxp

where (x
p
) is the Legendre symbol. For convenience, we set Θ2 = 1 + ζ4.

Note that Θp a Gauss sum. We record a known result concerning Θp.

Lemma 3.6. [12, Corollary 8] Suppose X ∈ Z[ζpa ] satisfies |X|2 = p2r+in where

n ∈ N, r ∈ N ∪ {0} and i ∈ {0, 1}. Then X = prΘi
pA for some A ∈ Z[ζpa ] with

|A|2 = n.

Next, we deal with the case where u not necessarily is a prime power. For our

application, we record a simplified version of [18, Theorem 2.2.2].

Lemma 3.7. Let p, q be distinct primes and u = pqr where r is a positive integer.

Suppose X ∈ Z[ζu] is a solution of XX = qa with a ≥ 1. If p ∤ q− 1, then there is an

integer j such that

Xζju ∈ Z[ζp] or X = ζjuΘqY,

where Y ∈ Z[ζp] with |Y |2 = qa−1.

For more general situations, we need the so-called self-conjugacy assumption to

determine the solution of |X|2 = n.

Definition 3.8. Let u = pau′ with gcd(p, u′) = 1 where p is a prime and u′ is a

positive integer. Then p is called self-conjugate modulo u if there exists an integer j

such that pj ≡ −1 (mod u′). A composite integer n is called self-conjugate modulo u

if every prime divisor of n is self-conjugate modulo u.
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The self-conjugacy assumption imposes a strong necessary condition on the solu-

tion of equation |X|2 = n in Z[ζu].

Proposition 3.9. Suppose that A ∈ Z[ζu] satisfies |A|2 = n and let w be a divisor

of n that is self-conjugate modulo u. Write w = w2
1w2 where w2 =

∏k
i=1 pi is the

square-free part of w and the pi’s are distinct primes (k = 0, i.e., w2 = 1 is allowed)

that divides w2. Then

A ≡ 0

(
mod w1

k∏
i=1

Θpi

)
.

Proof. Write B = w1

∏k
i=1Θpi , where ΘpiΘpi = pi. Note that |B|2 = w2

1

∏k
i=1 pi = w.

Let p be any prime ideal of Z[ζu] above w and, for X ∈ Z[ζu], let νp(X) be the largest

nonnegative integer such that X ∈ pνp(X). Note that p is invariant under complex

conjugation, since w is self-conjugate modulo u. Hence |A|2 = n ≡ 0 (mod w) and

|B|2 = w imply νp(A) ≥ νp(B). We conclude A ≡ 0 (mod B).

Corollary 3.10. Let p be a prime and let n, u be a positive integers with gcd(u, p) = 1.

Suppose A ∈ Z[ζu] and |A|2 = n. If pt||n and p is self-conjugate modulo u, then t is

even.

Proof. Since p is self-conjugate modulo u, then (p) = p1 · · · ps, where the pi’s are

distinct prime ideals of Z[ζu] above p, and pi = pi. By Proposition 3.9, the result

follows.

To end this section, we prove a technical lemma.

Lemma 3.11. Let p be a prime and m a positive integer with p ∤ m. Let X =∑p−1
i=0 xiζ

i
p and Y =

∑p−1
i=0 xi where xi ∈ Z[ζm]. Suppose p ∤ Y , |X|2 = |Y |2 = pw and

p ∤ w. Then p|XȲ .

Proof. Since |Y |2 = pw and Y ∈ Z[ζm], Corolllary 3.10 implies that p is not self-

conjugate modulo m. Hence the prime ideal factorization of pZ[ζm] has the form

pZ[ζm] =
c/2∏
i=1

PiPi, (3)
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where c = φ(m)/ordm(p) and the Pi’s are pairwise distinct prime ideals of Z[ζm]. By
(3), the prime ideal factorization of Y has the form

Y Z[ζm] = W

c/2∏
i=1

Pαi
i Pi

βi

where W is some product of prime ideals that contain w and αi, βi, are nonnegative

integers. Since |Y |2 = pw with p ∤ w, we have αi+βi = 1 for all i. Hence, interchanging

Pi with Pi if necessary, we have

Y Z[ζm] = W

c/2∏
i=1

Pi (4)

where W is an ideal in Z[ζm] relatively prime to pZ[ζm]. On the other hand,

pZ[ζpm] =

 c/2∏
i=1

QiQi

p−1

, (5)

where the Qi’s are pairwise distinct prime ideals of Z[ζpm], Qp−1
i = PiZ[ζpm] for all i,

and
∏c/2

i=1QiQi = (1− ζp)Z[ζpm].
By (5), the prime ideal factorization of X has the form

XZ[ζpm] = W ′
c/2∏
i=1

Qαi
i Qi

(p−1)−αi
with 0 ≤ αi ≤ (p− 1),

and W ′ is a product of prime ideals that contain w. To show p|XȲ , it suffices to

show αi = p− 1 for all i.

Note that X − Y =
∑p−1

i=1 xi(1 − ζ ip). Hence, X − Y ≡ 0 mod (1 − ζp). Since

1− ζp ∈ Qαi
i ∩Qi and Y ∈ Pi ⊂ Qαi

i , it follows that X ∈ Qαi
i . In particular, αi ≥ 1.

To show αi = p−1, it suffices to show that X /∈ Qi. Otherwise, it follows that Y ∈ Qi

also. But then as Pi = Qi ∩Z[ζm], we have Y ∈ Pi also. This is impossible and thus

αi = p− 1.

4 Results on the M-Function

As demonstrated in [11], M-function is a useful tool to study Weil numbers. We first

recall the definition of M-function.
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Definition 4.1 (M-function). For X ∈ Z[ζu], let

M(X) =
1

φ(u)

∑
σ∈Gal(Q(ζu)/Q)

(XX)σ,

where φ denotes the Euler totient function.

Note that M(X) ≥ 1 for all nonzero X ∈ Z[ζu] by the inequality of geometric

and arithmetic means, since
∏

σ∈Gal(Q(ζu)/Q) (XX)σ ≥ 1. The following lemma is a

consequence of [2, (3.4),(3.16)]. For the convenience of readers, we give a proof here.

Lemma 4.2. Let X ∈ Z[ζn], let q be a prime divisor of n, and write n = qbn′ with

gcd(q, n′) = 1. If b = 1, then X =
∑q−1

i=0 Xiζ
i
q with Xi ∈ Z[ζn′ ] and

M(X) =
1

q − 1

∑
0≤i<j≤q−1

M(Xi −Xj). (6)

On the other hand, if b > 1, then X =
∑qb−1−1

i=0 Xiζ
i
qb

with Xi ∈ Z[ζqn′ ] and

M(X) =

qb−1−1∑
i=0

M(Xi). (7)

Proof. Observe that

|X|2 =
qb−1−1∑
i=0

|Xi|2 +
qb−1−1∑
i=0

∑
0≤j ̸=i≤qb−1−1

XiXjζ
i−j
qb
.

Therefore,

∑
σ∈Gal(Q(ζn)/Q)

σ(|X|2) =
∑

σ∈Gal(Q(ζn)/Q)

qb−1−1∑
i=0

σ(|Xi|2) + Tr(
∑

0≤j ̸=i≤qb−1−1

XiXjζ
i−j
qb

)

where Tr : Q(ζn) → Q is the trace function.

For b = 1, we then have

φ(n)M(X) =
∑

σ∈Gal(Q(ζn′ )/Q)

[(q − 1)σ(

q−1∑
i=0

|Xi|2) + σ(
∑

0≤j ̸=i≤q−1

XiXj)(−1)].

Note that
∑q−1

j=1 ζ
j
q = −1. Hence,

φ(n)M(X) =
∑

σ∈Gal(Q(ζn′ )/Q)

∑
0≤i<j≤q−1

σ(|Xi −Xj|2) =
∑

0≤i<j≤q−1

φ(n′)M(Xi −Xj).
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Since φ(n) = (q − 1)φ(n′), (a) follows.

For b ≥ 2, q2|Ord(ζ i−j
qb

) and thus for each summand z in XiXjζ
i−j
qb

, q2|Ord(z).
Therefore, Tr(z) = 0 and

Tr(
∑

0≤j ̸=i≤q−1

XiXjζ
i−j
q ) = 0.

On the other hand,

∑
σ∈Gal(Q(ζn)/Q)

qb−1−1∑
i=0

σ(|Xi|2) =
∑

σ∈Gal(Q(ζqn′ )/Q)

qb−1−1∑
i=0

qb−1σ(|Xi|2)

as each Xi ∈ Q(ζqn′). We thus get (b).

The length of a cyclotomic integers was defined in [12]. Here, we generalize the

definition. Recall that the supp(A) denotes the support of a group ring element A,

as defined in Section 2.

Definition 4.3. Let n,m be positive integers with gcd(m,n) = 1. Let G be a cyclic

group of order n, and let g be a fixed generator of G. For Y =
∑n−1

i=0 aig
i ∈ Z[ζm][G],

write Y (ζn) =
∑n−1

i=0 aiζ
i
n. We say that Y is m-minimal if

|supp(Y )| = min {| supp(Z)| : Z ∈ Z[ζm][G], Y (ζn) = Z(ζn)} .

If X ∈ Z[ζm][ζn] and Y ∈ Z[ζm][G] with Y (ζn) = X, then Y is called an m-alias of

X. The m-length of X is |supp(Y )|, where Y is a minimal m-alias of X. We denote

the m-length of X by ℓm(X).

It is straightforward to check that by using a similar argument as in the proof of

[12, Lemma 20], with a2i replaced by M(ai), we obtain the following:

Lemma 4.4. Let p be prime and p ∤ m. Suppose X =
∑p−1

i=0 aiζ
i
p with all ai’s are in

Z[ζm]. Then

M(X) ≥ 1

p− 1

(
(p− ℓm(X))

p−1∑
i=0

M(ai) + ℓm(X)max{0, ℓm(X)− p

2
}

)
. (8)

In particular,

M(X) ≥ max

{
pℓm(X)

2(p− 1)
,
ℓm(X)(p− ℓm(X))

p− 1

}
. (9)
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Note that in the argument shown in [12, Lemma 20], we need to apply Lemma 4.2

and use the fact that M(ai) ≥ 1 whenever ai ̸= 0. The following is a “field-descent”

result based on the investigation of unique differences modulo p. In a group G, a

subset A in G is said to have a unique difference if there exist g, h ∈ A such that

gh−1 ̸= xy−1 for any x, y ∈ G with (g, h) ̸= (x, y). For the convenience of readers, we

record the following result by Lev [13].

Result 4.5. Let A be a subset of a finite abelian group G and let p be the smallest

prime divisor of |G|. If p > 2|A|−1, then A has a unique difference.

Proposition 4.6. Let u = pau′, where p is a prime, a ≥ 1 and gcd(p, u′) = 1. Let

n be any positive integer such that p > max{4n2, 2n−1}. If X ∈ Z[ζu] is a solution of

XX = n, then there is an integer j such that Xζjpa ∈ Z[ζu′ ].

Proof. We first deal with the case a ≥ 2. Write X =
∑s

i=1Xiζ
ai
pa where 0 ̸= Xi ∈

Z[ζpu′ ] and 0 ≤ a1 < a2 < . . . < as ≤ pa−1 − 1.

By Lemma 4.2 (7),

n = M(X) =
s∑

i=1

M(Xi).

Since M(Xi) ≥ 1 if Xi ̸= 0, we conclude that s ≤ n. We claim that {a1, . . . , as} does

not have a unique difference modulo pa−1 if s ≥ 2.

Consider the equation

XX(−1) =

pa−1−1∑
r=0

∑
ai−aj≡r mod pa−1

XiXjζ
ai−aj−r
pa ζrpa = n.

Note that XiXjζ
ai−aj−r
pa ∈ Q[ζpu′ ] if ai − aj ≡ r mod pa−1. As {1, ζpa , . . . , ζp

a−1−1
pa } is

linearly independent over Q[ζpu′ ], we see that∑
ai−aj≡r mod pa−1

XiXjζ
ai−aj−r
pa = 0.

As all Xi’s are nonzero, the sum above either consists of no terms or at least two

summands. Therefore, by viewing {a1 . . . , as} ⊂ Zpa−1 , we see that {a1 . . . , as} does

not have unique difference. By Result 4.5, this is impossible if s ≥ 2 as p > 2n−1.

Therefore, s = 1 and we may assume X ∈ Z[ζpu′ ].
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As before, we write X =
∑s

i=1Xiζ
ai
p where 0 ̸= Xi ∈ Z[ζu′ ] and 0 ≤ a1 < a2 <

. . . < as ≤ p− 1. We claim that s = ℓu′(X) ≤ n.

In view of Lemma 4.4, we conclude that

2n = 2M(X) >M(X)
2p− 2

p
≥ s.

Hence s ≤ 2n − 1. Observe that 2n − 1 ≤ (p − 1)/2 as p > n2 + n + 1. Thus the

product s(p− s) is increasing when s varies from 1 to 2n− 1. However, if s ≥ n+ 1,

then by Lemma 4.4,

M(X) ≥ s(p− s)

p− 1
≥ (n+ 1)(p− (n+ 1))

p− 1
≥ n+

n+ p− (n+ 1)2

p− 1
> n.

It follows that s ≤ n. Write

n = XX(−1) =

p−1∑
r=0

∑
ai−aj≡r mod p

XiXjζ
r
p .

Since p > n2 + n + 1 > s2, there exists 0 < t ≤ p − 1 such that t ̸= ai − aj for any

1 ≤ i, j ≤ s. In particular, ∑
ai−aj≡t mod p

XiXjζ
t
p = 0.

As {1, ζp, . . . , ζp−1
p }\{ζtp} is linearly independent over Q[ζu′ ], it then follows for 1 ≤

r ≤ p− 1, ∑
ai−aj≡r mod p

XiXjζ
r
p = 0.

Using a similar argument as before, we see that {a1, . . . , as} ⊂ Zp does not have a

unique difference if s > 1, which again is impossible. Hence s = 1 and X = ζpX
′ for

some X ′ ∈ Z[ζu′ ].

Lemma 4.7. Let u be a positive integer and X, Y ∈ Z[ζu].

(a) We have

M(X + Y )1/2 ≤ M(X)1/2 +M(Y )1/2. (10)

Moreover, equality holds in (10) if and only if Y = αX for some α ∈ Q.

(b) If X ̸= 0 and X ≡ 0 (mod m) for some integer m, then

M(X) ≥ m2. (11)
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Proof. For a proof of (10), please see [19, p. 70]. Suppose thatX ≡ 0 ( mod m). Then

X = mY for some Y ∈ Z[ζn], and M(X) = m2M(Y ) ≥ m2, since M(Y ) ≥ 1.

Lemma 4.8. Suppose that X, Y ∈ Z[ζu] satisfy |X|2 = |Y |2 = n and X ≡ Y (mod

a) where a, n, v are positive integers. If X ̸= Y , then a ≤ 2
√
n.

Proof. Suppose that X ̸= Y . Note that M(X) = M(Y ) = n. As X ≡ Y (mod a)

by assumption, we have M(X − Y ) ≥ a2 by (11). On the other hand,

M(X − Y ) ≤ M(X) +M(Y ) + 2M(X)1/2M(Y )1/2 = 4n

by (10). We conclude a2 ≤ 4n and thus a ≤ 2
√
n.

Lemma 4.9. Let u, n ≥ 2 be integers and suppose that X, Y ∈ Z[ζu] satisfy |X|2 =

|Y |2 = n. If X ≡ Y (mod n), then X = Y , except for the following cases.

(i) n = 2, X is equivalent to 1 + ζ4, and Y = X̄;

(ii) n = 2, X is equivalent to 1 + ζ4, 1 + ζ7 + ζ37 , or 1 + ζ615 − ζ815, and Y = −X;

(iii) n = 3, Y ∈ {η(−1 + ζ3), η(−1 + ζ23 )} for some root of unity η, and X = Y + 3η;

(iv) n = 4, X = ±2η for some root of unity η, and Y = −X.

Proof. Suppose that X ≡ Y (mod n) and X ̸= Y . By Lemma 4.8, we have n ≤ 2
√
n

and thus n ≤ 4.

Suppose that n = 4. By (10),

M(X − Y ) ≤ M(X) +M(Y ) + 2M(X)1/2M(Y )1/2 = 16.

Since X ≡ Y (mod 4), then M(X − Y ) ≥ 16. Hence we have equality in (10) and

thus Y = αX for some α ∈ Q. Since |X| = |Y |, we conclude X = ±Y . As X ̸= Y ,

this implies X = −Y . Hence 2X ≡ X − Y ≡ 0 ( mod 4) and thus X ≡ 0 (mod 2).

This implies X = 2η for some root of unity η.

Suppose that n = 3. AsX ≡ Y ( mod 3), we haveX−Y = 3Z for some Z ∈ Z[ζu].
Suppose that Z is not a root of unity. Then M(Z) ≥ 3/2 by [2, Lemma 2]. Thus

M(X − Y ) = 9M(Z) ≥ 27/2, contradicting (10). Hence Z is a root of unity, i.e.,

X − Y = 3η for some root of unity η. We conclude

3 = |X|2 = |Y + 3η|2 = |Y |2 + 9 + 3(Y η̄ + Ȳ η) = 12 + 3(Y η̄ + Ȳ η)
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and hence T + T̄ = −3 where T = Y η̄. This implies ℜ(T ) = −3/2, where ℜ(T )
denotes the real part of T . Thus T = −3/2 + ai with a ∈ Q. Note that 3 = |Y |2 =

|T |2 = 9/4+a2. Hence a = ±
√
3/2 and T = −3/2±(

√
3/2)i = −1+ζ3 or T = −1+ζ23 .

We conclude Y = ηT ∈ {η(−1 + ζ3), η(−1 + ζ23 )}.

Finally, for n = 2, we check that either (i) or (ii) holds by applying Lemma

3.1.

Lemma 4.10. Suppose X =
∑p−1

i=0 xiζ
i
p and xi ∈ Z[ζm] for all i. If p ∤ m, |X|2 = p

and |
∑p−1

i=0 xi|2 = p, then there exists j such that |xj|2 = p and xi = 0 if i ̸= j.

Proof. Let Y =
∑p−1

i=0 xi. We first deal with the case p = 2. In this case X = x0 − x1

and Y = x0 + x1. But by Lemma 4.9, we see that X = ±Y . That means either

x0 = 0 or x1 = 0.

We may now assume p ≥ 3. By Lemma 3.11, we see that p|XȲ . Therefore,

XȲ =

p−1∑
i=0

xiȲ ζ
i
p = pZ

for some Z ∈ Z[ζpm]. Since |X|2 = |Y |2 = p, it follows that |XȲ | = p. Hence |Z| = 1.

Therefore, Z = ζζtp for some integer t and a root of unity ζ ∈ Z[ζm]. We may assume

t = 0. Then
p−2∑
i=0

(xi − xp−1)Ȳ ζ
i
p = pζ.

Multiplying both sides by Y , we obtain
∑p−2

i=0 (xi−xp−1)ζ
i
p = Y ζ as Y Ȳ = p.Therefore,

(x0 − xp−1) = Y ζ and xi − xp−1 = 0 whenever 0 < i ≤ p − 2. Thus, Y =
∑p−1

i=0 xi =

Y ζ + pxp−1. By Lemma 4.9, xp−1 = 0 and ζ = 1 if p > 3. It then follows xi = 0 for

i ̸= 0. Our conclusion then follows.

Finally, we assume p = 3. By Lemma 4.9, if xp−1 ̸= 0, we may then assume X

or Y is in Z[ζ3] and X = Y + 3 after multiplying X and Y by η−1. Thus, we may

assume both X, Y ∈ Z[ζ3]. This is impossible as Y ∈ Z[ζm] with 3 ∤ m. Therefore,

xp−1 = 0 and hence xi = 0 if i ̸= 0.
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5 General Nonexistence Results

In this section, we assume D is an (mn, n,mn,m) RDS in an abelian group G. We

will derive some necessary conditions on m,n.

Theorem 5.1. Let D be an (mn, n,mn,m) RDS in group G relative to a subgroup

N . Suppose q is a prime divisor of n and qt∥mn.

(a) For any prime p ̸= q that divides mn and self-conjugate modulo q if q is odd or

qt if q = 2, then pb∥mn implies b is even.

(b) Let q1, q2, . . . , qs be all the distinct prime divisors of mn which are self-conjugate

modulo q if q is odd and qt if q = 2. Suppose q ̸= qi for all i and qbii ∥mn for

i = 1, . . . , s. Denote A := mn/(qtqb11 . . . qbss ). Then either A is a square or

q ≤ A2 + A+ 1.

Proof. There exists χ /∈ N⊥ such that ord(χ) = qr. By Lemma 2.4, |χ(D)|2 = mn.

Since pb∥mn and χ(D) ∈ Z[ζqr ], it follows from Corollary 3.10 that b is even.

For (b), it follows from Proposition 3.9 that there exists B ∈ Z[ζqr ] such that

B|χ(D) and |B|2 = qaqb11 . . . qbss . Therefore, there exists X ∈ Z[ζqr ] such that |X|2 =
A. It follows from Lemma 3.3 that q ≤ A2 + A+ 1.

To deal with the case when A is a square, we need a different approach.

Lemma 5.2. Let D be an (mn, n,mn,m) RDS in group G relative to a subgroup N .

Suppose q2c∥mn and there exists a subgroup G′ such that G = G′ × G1 and q ∤ |G′|.
If qc|χ(D) for all χ ∈ G⊥

1 , then

qcn ≤ n+ |G1| − |G1 ∩N |.

Proof. Let η : G → G′ be the natural projection. Write D =
∑

h∈G′ Xhh where

Xh ∈ Z[G1]. Note that η(D) =
∑

h∈G′ |Xh|h and

η(DD(−1)) = mn+m|G1| ·G′ −m · η(N). (12)

By Corollary 2.6, |Xh| ≡ 0 (mod qc) for all h. By comparing the coefficients of

identity in both sides of the Equation (12), we get∑
h∈G′

|Xh|2 ≤ mn+m|G1| −m|G1 ∩N |.
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Since
∑

h∈G′ |Xh| = mn and qc divides |Xh|, it follows that∑
h∈G′

|Xh|2 ≥ q2c
∑

h∈G′ |Xh|
qc

.

(Here we use the inequality that if all ai’s are nonzero integers,
∑r

i=1 |ai|2 ≥ |a|2r
where a = min{ai : i = 1, . . . , r}.) Therefore, q2c(mn

qc
) ≤ mn +m|G1| −m|G1 ∩ N |

and our lemma follows.

Theorem 5.3. Let D be an (mn, n,mn,m) RDS in group G relative to a subgroup

N . Suppose q is a prime; qc∥mn and n is not a power of q. If there exist m′|m, n′|n
such that the following conditions hold:

(i) gcd( mn2

m′n′2 ,m
′n′2) = 1;

(ii) q ∤ m′n′ and n′ ̸= 1;

(iii) q is self-conjugate modulo m′n′2;

then c is even and q
c
2n′ ≤ n′ + mn

m′n′ − 1.

Proof. By (i), there exist subgroups G′ of order m′n′2 and subgroup G1 of order
mn2

m′n′2 such that G = G′ × G1. For any nonprincipal χ ∈ G⊥
1 , χ(D) ∈ Z[ζm′n′ ] and

|χ(D)|2 = mn or 0. As q ∤ n′ and n′ > 1, it follows from Theorem 5.1 that c is

even. By Proposition 3.9 , we deduce that qc/2|χ(D). Our Theorem now follows from

Lemma 5.2.

For the purpose of our applications, it is sufficient to consider the case m′, n′ in

Theorem 5.3 are p-powers.

Theorem 5.4. Let D be an (mn, n,mn,m) RDS in group G relative to a subgroup

N . Suppose m = par, n = pbs where p is an odd prime, a, b are integers with b ≥ 1;

and gcd(p, r) = gcd(p, s) = 1. Suppose rs is a square, write rs = (v0v1)
2, where

ordp(q) ≡ 0 (mod 2) if q|v0; and ordp(q) ≡ 1 (mod 2) if q|v1. If one of the following

conditions

(i) v1 = 1;
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(ii) v1 > 1 and gcd(ordp(q1), . . . , ordp(qk)) > 2v1−1, where q1, . . . , qk are the distinct

prime divisors of v1;

holds, then pb ≤
√
rs+ 1.

Proof. We will follow the notation used in Theorem 5.3. In this case, |G′| = pa+b and

|G1| = rs. It follows from Lemma 3.2 that (v0v1) | χ(D). Since gcd(v0v1, p) = 1, we

may argue by a similar argument as in Theorem 5.3 and obtain

(v0v1)
2p

a+brs

v0v1
≤ mn+m(rs2)− pars = pa+brs+ par2s2 − pars.

Recall that rs = (v0v1)
2. After simplification, we obtain pb ≤

√
rs+ 1.

The following results were implicitly contained in [1] and recorded in [8]. The first

one deal with the exponent of the group.

Lemma 5.5. Let D be an abelian (mn, n,mn,m) RDS in G relative to N . For any

prime p that divides n, we let Sp be the p-Sylow subgroup of N . Then either p < m+1

or |Sp| >
√
n.

Lemma 5.6. Let R be an abelian (mn, n,mn,m) RDS in G relative to N . Suppose

p ≥ 3 is a prime dividing n and rp(G) denote the p-rank of G, i.e. the minimum

number of generators of the Sylow p-subgroup of G. Then

(p−m− 1)n ≤ prp(G) − prp(N) − prp(G/N).

It is easy to deduce the following from Lemma 5.6.

Corollary 5.7. Let D be an abelian (mn, n,mn,m) RDS in G relative to N . There

exists at most one prime p that divides n with p > m+ 1.

Corollary 5.7 is crucial in the proof [8, Theorem 61.] as it reduces to the case

when n has at most one prime factor larger than 3. To end this section, we record a

technical result.

Lemma 5.8. Suppose D is an (mn, n,mn,m) RDS in G relative to N and gcd(m,n) =

1. Write G = G′ ×H where G′ is a subgroup of order m and H a subgroup of order

n2. If D =
∑

g∈G′ Dgg, then DgDh ̸= H for some g ̸= h in G′.
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Proof. Suppose DgDh = H for all g ̸= h in G′. Then DgD
(−1)
h = H for all g ̸= h

in G′. Set Wg = supp(DgD
(−1)
g ) for any g ∈ G′. Suppose ab−1 = cd−1 for some

elements a, b ∈ supp(Dg) and c, d ∈ supp(Dh). As ad = bc and DgDh = H, we have

a = b and c = d. Therefore, ab−1 = e. This shows Wg ∩Wh = {e}. In particular,⋃
g ̸=e supp(DgD

(−1)
g ) ∩ supp(DeD

(−1)
e ) = {e}. Write∑

g∈G′\{e}

DgD
(−1)
g = (m− 1)n+ T1 and DeD

(−1)
e = n+ T2

where T1, T2 ∈ Z[H]. Note that supp(T1) ∩ supp(T2) ⊂ {e}. On the other hand, as

DD(−1) = mn+m(G−N), it follows that∑
g∈G′

DgD
(−1)
g = mn+m(H −N) = mn+ T1 + T2.

Hence, T1+T2 = m(H−N). As supp(T1)∩ supp(T2) ⊂ {e}, it follows that T1 = mT ′
1

and T2 = mT ′
2 where T ′

1, T
′
2 ∈ Z[H].

Let χ be a nontrivial character on H. Then χ(De) = 0 implies n +mχ(T ′
2) = 0.

Hence, m|n. This is impossible. On the other hand, if χ(De) ̸= 0, then χ(Dg) = 0 for

all g ̸= e. Therefore, (m− 1)n+mχ(T ′
1) = 0. Again, m|n, which is impossible.

6 Abelian (pn, n, pn, p) RDSs

In this section, we are only concerned with (pn, n, pn, p) RDSs for prime p.

Theorem 6.1. Let p, q be distinct primes. Then there does not exist an abelian

(pqr, qr, pqr, p) RDS if either one of the following holds:

(a) ordq(p) ≥ 2p.

(b) p2 + p+ 1 < q.

(c) q is self-conjugate modulo p.

Proof. Let G = ⟨g⟩ × H be an abelian group, where gp = 1 and |H| = q2r. Write

D =
∑p−1

i=0 Dig
i, where Di ⊆ H.

Recall that D contains exactly one element of each coset of N . Since g ̸∈ N and

N ⊂ H, this implies that each Di contains exactly one element of each coset of N
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in H. Suppose ψ is a nontrival character of H that is trivial on N . Let τ be the

character of H/N that is induced by ψ, that is, τ(Ng) = ψ(g) for all g ∈ H. Note

that τ is nontrivial since ψ is nontrivial. Hence

χ(Di) =
∑
g∈Di

ψ(g) =
∑
g∈Di

τ(Ng) = τ(H/N) = 0 for all i. (13)

To prove part (a), we let χ /∈ N⊥ with ord(χ) = qa for some integer a. Then

|χ(D)|2 = pqr. By Lemma 3.6, there exists X ∈ Z[ζqa ] such that |X|2 = p. By

Lemma 3.4, we get a contradiction.

(b) follows from Lemma 3.3.

Finally, we assume q is self-conjugate modulo p. Let χ /∈ N⊥ be any nontrivial

character of group G with ord(χ) = qa for some integer a and σ be a character of

order p. Clearly,

|
p−1∑
i=0

χ(Di)ζ
ij
p |2 = pqr

for j = 0, . . . , p− 1. Since q is self-conjugate modulo p, we deduce from Corollary 2.6

that Θr|χ(Di) for i = 0, . . . , p− 1. Let χ(Di) = Θrxi. Then we have

|
p−1∑
j=0

xjζ
j
p |2 = p and |

p−1∑
j=0

xj|2 = p.

By Lemma 4.10, we see that there exists i(χ) such that |xi(χ)|2 = p for some i(χ)

and xj = 0 if j ̸= i(χ). Therefore, |χ(Di(χ))|2 = pqr and χ(Dj) = 0 if j ̸= i(χ). Hence

for any χ /∈ N⊥, we have χ(DiDj) = 0 whenever i ̸= j. Combining this with (13), we

conclude that, for every nontrivial character χ of H, we have χ(DiDj) = 0 for i ̸= j.

Note that as |Di||Dj| = |H|, DiDj = H. This contradicts Lemma 5.8.

We remark that Theorem 6.1 can be generalized by using a similar argument, but

omit the tedious details.

Theorem 6.2. Let p a prime, let n > 1 be an integer coprime to p, and let u be a

divisor of n such that gcd(u, n/u) = 1 and n/u is self-conjugate modulo pn. If an

abelian (pn, n, pn, p) RDS exists, then p ≤ max{4u4, 2u2−1}.
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Proof. Suppose such RDS exists and assume that p > max{4u4, 2u2−1}. Let G =

⟨g⟩ × H be an abelian group, where g is an element of order p and |H| = n2. By

Lemma 2.1, we have exp(G)|np (the case G = Z4 cannot occur, since gcd(p, n) = 1).

As n/u is self-conjugate modulo pn by assumption, we conclude that n/u is self-

conjugate modulo exp(G).

Let q, q′ be primes that divide n/u. Suppose qt||(n/u). Then by Theorem 5.1 (a),

t is even if q ̸= q′. As q ̸= p and gcd(n/u, u) = 1. It follows that either n/u is a

square or n/u = qr for some odd integer r.

For any nonprincipal character χ, |χ(D)|2 = pn or 0. As the order of χ divides

exp(G) and n/u is self conjugate modulo exp(G), we then conclude from Proposition

3.9 that there exist integer x and a prime q|n such that |xΘi
q|2 = n/u; and

χ(D) ≡ 0 (mod xΘi
q).

Here i = 0 or 1 and i = 0 if n/u is a square. For convenience, we write y = xΘi
q.

Write D =
∑p−1

i=0 Dig
i as in Theorem 6.1. In view of Corollary 2.6, we conclude

that if χ is nonprincipal, then y|χ(Di). Thus, we may set xi = χ(Di)/y for all i and

xi ∈ Z[ζn] as χ(Di) ∈ Z[ζn].
If χ /∈ N⊥, then |χ(D)|2 = pn and thus

|
p−1∑
i=0

xiζ
i
p|2 = |

p−1∑
i=0

xi|2 = pu.

By Lemma 3.11,

(

p−1∑
i=0

xiζ
i
p)(

p−1∑
i=0

xi) = pY

where Y ∈ Z[ζpn] and |Y |2 = u2. Write Y =
∑p−1

i=0 yiζ
i
p where yi ∈ Z[ζn]. By

Proposition 4.6 and our assumption that p > max{4u4, 2u2−1}, we see that there

exists t such that Y = ytζ
t
p and yj = 0 if j ̸= t. Hence,

p−1∑
j=0

xjζ
j
p = (

p−1∑
j=0

xj)
−1pytζ

t
p ∈ Q[ζn]ζ

t
p.

Since
∑p−1

j=0 xjζ
j
p is an algebraic integer in Z[ζpn],

xt +
∑
j ̸=t

xjζ
j−t
p = (

p−1∑
j=0

xjζ
j
p)ζ

−t
p = (

p−1∑
j=0

xj)
−1pyt ∈ Z[ζn].
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It follows that xj = xi whenever j ̸= t, i ̸= t. Now set s ̸= t and observe that

xt − xs =

p−1∑
j=0

xjζ
j−t
p .

Hence, |xt − xs|2 = pu. Moreover,

p−1∑
i=0

xi = (xt − xs) + pxs.

If xs ̸= 0, then by Lemma 4.8, we obtain p < 2
√
pu2. This is impossible. Hence,

xs = 0 and xj = 0 if j ̸= t. Therefore, χ(Dt) ̸= 0 and χ(Dj) = 0 if j ̸= t. That

means χ(DiDj) = 0. Since this is true for all nonprincipal χ ∈ ⟨g⟩⊥, DiDj = aH for

an integer a. Now |Di| = |Dj| = n and |H| = n2, so a = 1. By Lemma 5.8, we get a

contradiction.

Corollary 6.3. For any fixed integer n ≥ 2, an abelian (pn, n, pn, p) RDS exists for

at most finitely many primes p.

Proof. Assume that an abelian (pn, n, pn, p) RDS exists. We set u = n in Theorem

6.2. Then n/u = 1. We may then say n/u is self conjugate modulo pn and by Theorem

6.2, we get the desired conclusion. On the other hand, one may set y = 1 in the proof

of Theorem 6.2, and then apply the argument to conclude p ≤ max{4n4, 2n
2−1}.

Corollary 6.4. Let p > 3 be a prime and let n be a positive integer such that n is

self-conjugate modulo pn. Then no abelian (pn, n, pn, p) RDS exists.

Proof. Assume that an abelian (pn, n, pn, p) RDS exists. Setting u = 1 in Theorem

6.2, we conclude p ≤ max(4, 20) = 4.

Note that Corollary 6.4 generalizes Theorem 6.1 (c) if p > 3. Next, we consider

cases without the self-conjugacy condition. It has been shown in [14] that (pq, q, pq, p)

RDS does not exist if p > q.

Theorem 6.5. Let p and q be two distinct odd primes such that gcd(p, q − 1) = 1.

Then there does not exist an abelian (pq, q, pq, p) RDS. In particular, there is no

abelian (pq, q, pq, p) RDS if p > q.
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Proof. Let G = ⟨g⟩ × H be an abelian group, where ord(g) = p and |H| = q2.

Write D =
∑p−1

i=0 Dig
i, where Di ⊆ H. Note that by Lemma 2.1, exp(G) = pq. Let

χ ∈ G∗\N⊥ be a character of order q and τ be a character of order p. Note that

χ(D) = xΘq where x ∈ Z[ζq] with |x|2 = p.

By Lemma 3.11, we see that x|τχ(D) and therefore, τχ(D) = xY with Y ∈ Z[ζpq].
As |Y |2 = q, it follows from Lemma 3.7 that either Y = Θqζ or Y ∈ Z[ζp]ζ where ζ

is a root of unity. Note that as x ∈ Z[ζq] and x|τχ(D), x|χ(Di −Dj) for any i, j.

We first consider the case Y ∈ Z[ζp]ζjq for some j. We may assume Y = (
∑p−1

i=1 aiζ
i
p)ζ

j
q

where ai’s are integers. As x|χ(Di −D0), χ(Di −D0) = xaiζ
j
q . Note that ord(χ) = q

as exp(G)|pq. H = (Ker(χ) ∩ H) × Q where Q is a subgroup of order q. Let

η : G → H be the natural projection. We may consider χ a character of Q and

|χ(η(Di −D0))|2 = pa2i . Thus,

η((Di −D0)(Di −D0)
(−1)) = pa2i + αQ. (14)

But by applying the principal character on the above equation, we conclude that

pa2i + αq = 0. Note that α ̸= 0 if ai ̸= 0. Therefore, q|ai. But then we have q|Y ,

which is impossible as |Y |2 = q. Hence Y = Θqζ where ζ is a root of unity.

We may assume Y = Θqζζ
j
p where ζ is a root of unity in Z[ζq]. Pick t ̸= j, then∑

χ(Di −Dt)ζ
i
p = xZ. It is then clear that χ(Di −Dt) = 0 and χ(Dj −Dt) = xΘqζ.

But then

xΘq =

p−1∑
i=0

χ(Di) =
∑

χ(Di −Dt) + pχ(Dt) = xΘqζ + pχ(Dt).

If ζ ̸= 1, then p divides |1 − ζ|. This is impossible as ζ = ±ζ iq. Thus χ(Dt) = 0;

χ(Dj) = χ(D) and χ(Di) = 0 if i ̸= j.

It follows that χ(DiDj) = 0 for all nonprincipal χ ∈ ⟨g⟩⊥. Note that χ(Di) = 0 if

χ ∈ N⊥ by the same argument as for (13). Therefore DiDj = aH for an integer a.

As |Di| · |Dj| = n2 = |H|, we see that a = 1 and DiDj = H. This contradicts Lemma

5.8.

7 m = 2, 3 or 4

In this section, we focus cases on m ≤ 4. We will now illustrate how our previous

results be applied in these situations. First, (2n, n, 2n, 2)-RDSs have been studied
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extensively in [8]. One of main result is the following:

Result 7.1. [8, Theorem 6.10] If an abelian (2n, n, 2n, 2) RDS exists, then n is a

power of 2 except in the following cases.

(a) n = 2a3b, a, b ≥ 1.

(b) n = 2a3bpc, pc > 2a3b > 1 for a prime p > 3.

Here, we illustrate how we derive the above result from ours. By Theorem 6.1,

we see that (2qr, qr, 2qr, 2) RDS does not exist if q is a prime larger than 3. It then

follows from Corollary 6.4 that 2|n and there is at most one prime p ≥ 5 that divides

n.

Unfortunately, Corollary 6.4 cannot be applied to exclude cases not yet excluded

from Result 7.1. However, we may apply Theorem 5.4 to study (q2cpa+b, qαpb, q2cpa+b, q2c−αpa)

RDS.

Lemma 7.2. Suppose p, q are distinct primes and p is odd. Let a, b, c, α be positive

integers and D be (q2cpa+b, qαpb, q2cpa+b, q2c−αpa) RDS. If q is self-conjugate modulo

p or ordp(q) > qc − 1, then pb ≤ qc + 1.

Theorem 7.3. Suppose an abelian (2n, n, 2n, 2) RDS exists and p is an odd prime.

(a) If n = 2pb, then p = 7 and b is even.

(b) If n = 4pb, then pb ∈ {7r, 23r, 31r, 73s : r ≥ 2 is even, s ≥ 1}.

(c) If n = 8pb, then pb = 3 or 7r with r ≥ 2.

Proof. If 2 is self-conjugate modulo p or ordp(q) ≥ 3, then by Lemma 7.2, p ≤ 3 and

b = 1. But as 3 is self-conjugate modulo 4, it follows from Theorem 6.1 that b is even

if n = 2 · 3b.
If 2 is not self-conjugate modulo p and ordp(2) > 2v1 − 1 = 3, then again by

Lemma 7.2, we get pb ≤ 3. This is impossible. Thus, ordp(2) ≤ 3. Consequently,

p = 3, 5 or 7. As we assume 2 is not self-conjugate modulo p, p = 7. Again, as 7 is

conjugate modulo 4 from Theorem 6.1 that b is even.

For (b), by Theorem 5.1 (b), there exists B ∈ Z[ζpb ] such that |B|2 = 8. As shown

in [12, Corollary 33], p = 3, 5, 7, 23, 31, 73. Since 2 is self-conjugate modulo 3 and
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5, then p cannot be 3 or 5. Note that 7, 23 and 31 are self-conjugate modulo 8, it

follows from Theorem 6.1 that b is even if n = 4 · 7b, n = 4 · 23b or n = 4 · 31b.
The proof of (c) is similar as (a). If 2 is self-conjugate modulo p, then pb ≤ 22+1 ≤

5. Thus, pb = 3 or 5. By Lemma 5.5, pb cannot be 5.

If 2 is not self-conjugate modulo p and ordp(2) > 2v1 − 1 = 7, then pb ≤ 5. This

is impossible. Thus, ordp(2) ≤ 7. Consequently, p = 3, 5, 7, 31 or 127. As we assume

2 is not self-conjugate modulo p, p = 7, 31 or 127. For any χ ̸∈ N⊥ with order pa for

some a ≥ 1, we have |χ(D)| = 16pb. Then χ(D) = Θb
pY , where Y ∈ Z[ζpa ]. Hence

|Y |2 = 16. By using a similar argument as in [12, Corollary 33], we see that either

4|Y or p = 7. If ̸= 7, we get a contradiction by Lemma 5.5. (Note that using the

notation in Lemma 5.5, q2c = 16, n = 4pb, |G1| = 16 and |G′| = p2b.)

For m = 3, we obtain a result analogous to Result 7.1 as follows:

Theorem 7.4. Suppose an abelian (3n, n, 3n, 3) RDS exists. Then one of the follow-

ing conditions is satisfied:

(a) n = pr with p = 3 or 13.

(b) n = 2a3b, a, b ≥ 1.

(c) n = 2a3bpc, pc > 2a3b > 1 for a prime p > 3.

Proof. By Theorem 6.1, we see that p ≤ 13. On the other hand, 3 is not self-conjugate

modulo p and p is not self-conjugate modulo 3, therefore, p = 2 or 13. By Corollary

6.4, there is at most one prime factor of n larger than 3. Thus (b) or (c) holds.

Again, by applying Lemma 7.2, we obtain the following in case n = 3pr.

Theorem 7.5. Let p > 3 be a prime. If an abelian (9pr, 3pr, 9pr, 3) RDS exists, then

p = 11 or 13.

Proof. Suppose ordp(3) > 5 or p is self-conjugate modulo 3. Then by Lemma 7.2,

pr ≤ 3 + 1 = 4. This is impossible as p ≥ 5. Therefore, ordp(3) ≤ 5 and p is not

self-conjugate modulo 3. Thus, p = 11 and 13.

For m = 4, using a similar argument as Theorem 7.3, we deduce the following:
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Theorem 7.6. Let p be a prime and r be a positive integer, then there does not exist

an abelian (4pr, pr, 4pr, 4) RDS except p = 2, 7 and p = 3, r = 1.

Note that an abelian (12, 3, 12, 4) RDS indeed exists [3, 9] as now 2 ∤ n and

Theorem 6.1 is no longer applicable in that case. In case p = 7, it has been shown

that r ̸= 1 in [6]. It is possible to apply our results to get another proof but the main

idea behind is not so different though. Next, we summarize the result for (4n, n, 4n, 4)

RDS, which now follows from Corollary 5.7 and Theorem 7.6.

Corollary 7.7. If an abelian (4n, n, 4n, 4) RDS exists, then one of the following

conditions is satisfied:

(1) n = 2a, 3 or 7b, where a ≥ 1, b ≥ 2;

(2) n = 2a3b5c, at least two of a, b, c greater than 0.

(3) n = 2a3b5cpd, pd > 2a3b5c > 1 for a prime p > 5.

Analogous to Theorem 7.3, we obtain the following:

Theorem 7.8. Let p be an odd prime.

(a) There does not exist an abelian (8pb, 2pb, 8pb, 4) RDS unless pb ∈ {7r, 23r, 31r, 73s :
r ≥ 2 is even, s ≥ 1}.

(b) There does not exist an abelian (16pb, 4pb, 8pb, 4) RDS unless pb ∈ {3, 5, 7r : r ≥
2}.

Proof. The proof of (a) is similar to that in Theorem 7.3 (b). For (b), the proof is

similar as Theorem 7.3 Lastly, note that pb ̸= 7 from Lemma 5.6.

8 Conclusion

In this paper, we have proved several nonexistence results of abelian (mn, n,mn,m)

RDS. In particular, we show that there is no abelian (2n, n, 2n, 2) RDS for all 3 ≤
n ≤ 100 except n is a 2-power and 3 other cases which is summarized in Table 1.

Similarly, there is no abelian (3n, n, 3n, 3) RDS for all 2 ≤ n ≤ 100 except n is a
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3-power and 4 other cases which is summarized in Table 2, and there is no abelian

(4n, n, 4n, 4) RDS for all 3 ≤ n ≤ 100 except n is a 2-power and 6 other cases which

is summarized in Table 3.
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n nonexistence n nonexistence n nonexistence

3 [8], Theorem 6.1 5 [8], Theorem 6.1 6 Theorem 5.1

7 [8], Theorem 6.1 9 [8], Theorem 6.1 10 Theorem 7.3

11 [8], Theorem 6.1 12 Theorem 5.1 13 [8], Theorem6.1

14 Theorem 5.1 15 Theorem 5.1 17 [8], Theorem 6.1

18 Theorem 7.3 19 [8], Theorem 6.1 20 Theorem 5.1

21 Theorem 5.1 22 Theorem 5.1 23 [8], Theorem 6.1

24 ? 25 [8], Theorem 6.1 26 Theorem 7.3

27 [8], Theorem 6.1 28 Theorem 5.1 29 [8], Theorem 6.1

30 Theorem 5.1 31 [8], Theorem 6.1 33 Theorem 5.1

34 Theorem 7.3 35 Theorem 5.1 36 Theorem 5.1

37 [8], Theorem 6.1 38 Theorem 5.1 39 Theorem 5.1

40 [8, Theorem 3.11] 41 [8], Theorem 6.1 42 Theorem 5.1

43 [8], Theorem 6.1 44 Theorem 5.1 45 Theorem 5.1

46 Theorem 5.1 47 [8], Theorem 6.1 48 Theorem 5.1

49 [8], Theorem 6.1 50 Theorem 7.3 51 Theorem 5.1

52 Theorem 5.1 53 [8], Theorem 6.1 54 Theorem 5.1

55 Theorem 5.1 56 [8, Theorem 3.11] 57 Theorem 5.1

58 Theorem 7.3 59 [8], Theorem 6.1 60 Theorem 5.1

61 [8], Theorem 6.1 62 Theorem 5.1 63 Theorem 5.1

65 Theorem 5.1 66 Theorem 5.1 67 [8], Theorem 6.1

68 Theorem 5.1 69 Theorem 5.1 70 Theorem 5.1

71 [8], Theorem 6.1 72 Theorem 5.3 73 [8], Theorem 6.1

74 Theorem 7.3 75 Theorem 5.1 76 Theorem 5.1

77 Theorem 5.1 78 Theorem 5.1 79 [8], Theorem 6.1

80 Theorem 5.1 81 [8], Theorem 6.1 82 Theorem 7.3

83 [8], Theorem 6.1 84 Theorem 5.1 85 Theorem 5.1

86 Theorem 5.1 87 Theorem 5.1 88 Theorem 7.2

89 [8], Theorem 6.1 90 Theorem 5.1 91 Theorem 5.1

92 Theorem 7.3 93 Theorem 5.1 94 Theorem 5.1

95 Theorem 5.1 96 ? 97 [8], Theorem 6.1

98 ? 99 Theorem 5.1 100 Theorem 5.1

Table 1: Nonexistence of abelian (2n, n, 2n, 2) RDS for 2 ≤ n ≤ 100 and n ̸= 2a
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n nonexistence n nonexistence n nonexistence

2 Theorem 7.4 4 Theorem 7.4 5 Theorem 7.4

6 Theorem 5.1 7 Theorem 7.4 8 Theorem 7.4

10 Theorem 5.1 11 Theorem 7.4 12 ?

13 ? 14 Theorem 5.1 15 Theorem 5.1

16 Theorem 7.4 17 Theorem 7.4 18 Theorem 5.1

19 Theorem 7.4 20 Theorem 5.1 21 Theorem 5.3

22 Theorem 5.1 23 Theorem 7.4 24 Theorem 5.1

25 Theorem 7.4 26 Theorem 5.1 28 Theorem 5.1

29 Theorem 7.4 30 Theorem 5.1 31 Theorem 7.4

32 Theorem 7.4 33 Theorem 5.1 34 Theorem 5.1

35 Theorem 5.1 36 Theorem 5.1 37 Theorem 7.4

38 Theorem 5.1 39 ? 40 Theorem 5.1

41 Theorem 7.4 42 Theorem 5.1 43 Theorem 7.4

44 Theorem 5.1 45 Theorem 5.1 46 Theorem 5.1

47 Theorem 7.4 48 ? 49 Theorem 7.4

50 Theorem 5.1 51 Theorem 5.1 52 Theorem 5.1

53 Theorem 7.4 54 Theorem 5.1 55 Theorem 5.1

56 Theorem 5.1 57 Theorem 7.5 58 Theorem 5.1

59 Theorem 7.4 60 Theorem 5.1 61 Theorem 7.4

62 Theorem 5.1 63 Theorem 5.1 64 Theorem 7.4

65 Theorem 5.1 66 Theorem 5.1 67 Theorem 7.4

68 Theorem 5.1 69 Theorem 7.4 70 Theorem 5.1

71 Theorem 7.4 72 Theorem 5.1 73 Theorem 7.4

74 Theorem 5.1 75 Theorem 5.3 76 Theorem 5.1

77 Theorem 5.1 78 Theorem 5.1 79 Theorem 7.4

80 Theorem 5.1 82 Theorem 5.1 83 Theorem 7.4

84 Theorem 5.1 85 Theorem 5.1 86 Theorem 5.1

87 Theorem 5.1 88 Theorem 5.1 89 Theorem 7.4

90 Theorem 5.1 91 Theorem 5.1 92 Theorem 5.1

93 Theorem 7.5 94 Theorem 5.1 95 Theorem 5.1

96 Theorem 5.1 97 Theorem 7.4 98 Theorem 5.1

99 Theorem 5.1 100 Theorem 5.1

Table 2: Nonexistence of abelian (3n, n, 3n, 3) RDS for 2 ≤ n ≤ 100 and n ̸= 3a
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n nonexistence n nonexistence n nonexistence

5 Theorem 7.6 6 Theorem 5.1 7 [6]

9 Theorem 7.6 10 Theorem 5.1 11 Theorem 7.6

12 ? 13 Theorem 7.6 14 Theorem 5.1

15 Theorem 5.1 17 Theorem 7.6 18 Theorem 5.1

19 Theorem 7.6 20 ? 21 Theorem 5.1

22 Theorem 5.1 23 Theorem 7.6 24 Theorem 5.1

25 Theorem 7.6 26 Theorem 5.1 27 Theorem 7.6

28 Lemma 5.6 29 Theorem 7.6 30 Theorem 5.1

31 Theorem 7.6 33 Theorem 5.1 34 Theorem 5.1

35 Theorem 5.1 36 Theorem 5.3 37 Theorem 7.6

38 Theorem 5.1 39 Theorem 5.3 40 Theorem 5.1

41 Theorem 7.6 42 Theorem 5.1 43 Theorem 7.6

44 Theorem 5.3 45 Theorem 5.1 46 Theorem 5.1

47 Theorem 7.6 48 ? 49 ?

50 Theorem 5.1 51 Theorem 5.1 52 Theorem 5.3

53 Theorem 7.6 54 Theorem 5.1 55 Theorem 5.3

56 Corollary 7.7 57 Theorem 5.1 58 Theorem 5.1

59 Theorem 7.6 60 Theorem 5.1 61 Theorem 7.6

62 Theorem 5.1 63 Corollary 7.7 65 Theorem 5.1

66 Theorem 5.1 67 Theorem 7.6 68 Theorem 5.1

69 Theorem 5.1 70 Theorem 5.1 71 Theorem 7.6

72 Theorem 5.1 73 Theorem 7.6 74 Theorem 5.1

75 Theorem 5.1 76 Theorem 5.3 77 Theorem 5.1

78 Theorem 5.1 79 Theorem 7.6 80 ?

81 Theorem 7.6 82 Theorem 5.1 83 Theorem 7.6

84 Theorem 5.1 85 Theorem 5.1 86 Theorem 5.1

87 Theorem 5.1 88 Theorem 5.1 89 Theorem 7.6

90 Theorem 5.1 91 Theorem 5.1 92 Theorem 7.8

93 Theorem 5.1 94 Theorem 5.1 95 Theorem 5.3

96 Theorem 5.1 97 Theorem 7.6 98 ?

99 Theorem 5.1 100 Theorem 5.3

Table 3: Nonexistence of abelian (4n, n, 4n, 4) RDS for 2 ≤ n ≤ 100, n ̸= 3 and

n ̸= 2a
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