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Abstract

Let p ≡ 7 mod 16 be a prime. Then there are integers a, b, c, d with a ≡ 15 mod 16,
b ≡ 0 mod 4, p2 = a2 + 2(b2 + c2 + d2), and 2ab = c2 − 2cd − d2. We show that there is a
regular Hadamard matrix of order 4p2 provided that p = a± 2b or p = a + δ1b + 4δ2c + 4δ1δ2d
with δi = ±1.

∗This research was done during a visit of the first two authors at the University of Augsburg
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1 Introduction

A Hadamard matrix of order v is a v × v matrix H with entries ±1 such HHt = vI where I is the
identity matrix. A Hadamard matrix is called regular if all of its rows contain the same number of
entries 1. It is conjectured that a Hadamard matrix of order v > 2 exists if v is divisible by 4.

While the construction of Hadamard matrices of order 4t for arbitrary t seems out of reach at
the present time, there may be some hope to construct Hadamard matrices of order 4q2 for all
prime powers q. For q ≡ 1 mod 4 and q ≡ 3 mod 8 this already has been accomplished by the
marvelous work of Mingyuan Xia and Gang Liu [7, 8]. The constructions of Xia and Liu are based
on cyclotomy, namely, the use of 4th, 8th and (q + 1)th cyclotomic classes in Fq2 . However, it
seems that the difficulty of implementing the approach using cyclotomy increases with the exact
power of 2 dividing q + 1, cf. our Lemma 4 in Section 3. In fact, up to our knowledge, no general
constructions for Hadamard matrices of order 4q2 with q ≡ 7 mod 8 have been known.

In the present paper, we obtain two putative infinite families of Hadamard matrices of order
4q2 with q ≡ 7 mod 8 prime. We believe that, for any large enough n, our constructions yield at
least 5

8n
2
5 primes q < n, q ≡ 7 mod 16 such that a regular Hadamard matrices of order 4q2 exists.

Our approach is based on 16th and (q + 1)th cyclotomic classes. The necessary computations are
much more involved than those in [7, 8] and we need to use Jacobi sums as well as a computer. For
each value of q for which our construction works, we obtain a “certificate” in terms of a quadruple
of integers a, b, c, d. Once this quadruple is known, the verification of the construction only involves
checking simple conditions on a, b, c, d which can be done by hand if q is not exceedingly large.

The integers a, b, c, d are coefficients of the Jacobi sum

J :=
∑

x∈Fq2

χ(x)ρ(x)

of order 16 (the order of a Jacobi sum is the least common multiple of the orders of the involved
characters). Here χ is a multiplicative character of order 16 and ρ is the quadratic character of
Fq2 . In Section 4 we will characterize a, b, c, d by the simple congruences and equations mentioned
in the abstract.

2 Preliminaries

Let G be an additively written abelian group of order v. We write ⊕ respectively � for the
addition respectively subtraction in G in order to distinguish them from the group ring addition
and subtraction. A t− (v, k, λ) difference family in G is a family (D1, ...,Dt) of k-subsets of G such
that for each g ∈ G \ {0} the set

{(x, y, i) : g = x � y, x, y ∈ Di, i ∈ {1, ..., t}}

has cardinality λ.

We will always identify a subset A of G with the element
∑

g∈A g of the integral group ring
Z[G]. For B =

∑
g∈G bgg ∈ Z[G] we write B(−1) =

∑
g∈G bg(�g) and |B| =

∑
g∈G bg.
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In the group ring language, a family (D1, ...,Dt) of k-subsets of G is a t − (v, k, λ) difference
family in G if and only if

t∑
i=1

DiD
(−1)
i = (tk − λ) + λG. (1)

The following result is well known [4, 9]. For the convenience of the reader, we provide a proof.

Proposition 1 If there is a 4-(v2, 1
2v(v − 1), v(v − 2)) difference family (D1,D2,D3,D4) in an

abelian group G then there is a regular Hadamard matrix of order 4v2.

Proof In view of (1) we have
∑4

i=1 DiD
(−1)
i = v2 + v(v − 2)G. Let hi = 2Di − G. Then each hi

has coefficients −1, 1 only and we have
∑4

i=1 hih
(−1)
i = 4v2. Write hi =

∑
g∈G ai,gg, i = 1, ..., 4.

We define v2 × v2-matrices Hi indexed by the elements of G such that (Hi)g,h = ai,h�g. Then∑4
i=1 hih

(−1)
i = 4v2 implies

4∑
i=1

HiH
t
i = 4v2I (2)

where I is the identity matrix of order v2. For g ∈ G let e(g) be the vector indexed with the
elements of g such that e(g)h = 1 if g = h and e(g)h = 0 otherwise. Let R be the v2 × v2 matrix
indexed by the elements of G whose g-column is e(�g), g ∈ G. Note that R is symmetric and
idempotent. We have (HiR)g,h =

∑
k∈G ai,k�ge(h)k = ai, �g�h. Hence, for each i, the matrix

HiR is symmetric, i.e.
HiR = RHt

i . (3)

Furthermore, a straightforward computation shows

HiHj = HjHi (4)

for all i, j. Using (2), (3), (4), it can be checked that⎛
⎜⎜⎝
−H1 H2R H3R H4R
H2R H1 Ht

4R −Ht
3R

H3R −Ht
4R H1 Ht

2R
H4R Ht

3R −Ht
2R H1

⎞
⎟⎟⎠

is a Hadamard matrix of order 4v2. The regularity follows from the fact that each Hi has exactly
1
2v(v − 1) entries 1. �

The following result will be useful. See [3, Section 2.3, Thm. 2] for a proof.

Result 2 An algebraic integer all of whose conjugates have absolute value 1 is a root of unity.

Note that Result 2 implies that any cyclotomic integer of absolute value 1 must be a root of unity
since the Galois group of a cyclotomic field is abelian.
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3 General Results

Throughout the rest of this paper, we use the following notation. Let q ≡ 3 mod 4 be a prime
power and let g be a generator of Fq2 . We denote the additive group of Fq2 by G. As before, we use
⊕ and � for the addition respectively subtraction in G. The multiplication of Fq2 is denoted by ∗
to distinguish it from the group ring multiplication. Let e be a divisor of q2−1 and f = (q2−1)/e.
We set

Ce,k = {get+k : t = 0, ..., f − 1}, k = 0, ..., e − 1,
Lj = Cq+1,j , j = 0, ..., q,
Sj = Lj ∪ {0}, j = 0, ..., q,
Hi = C2(q+1),i, i = 0, ..., 2q + 1.

The sets Ce,k are called eth cyclotomic classes. Xiang [10] calls the Lj ’s lines and the Hi’s half-
lines. The indices k, j, i are taken modulo e, q + 1, 2(q + 1) respectively. Note L

(−1)
j = Lj for all

j and Hi + H
(−1)
i = Li for all i. Furthermore, we have SiSj = G for i �= j and S2

j = qSj for all j.

Lemma 3 Let A ⊂ {0, ..., 2q + 1}, B ⊂ {0, ..., q} with |A| + 2|B| = q such that a �≡ b mod q + 1
for all a ∈ A, b ∈ B. Let

H =
∑
i∈A

Hi and L =
∑
j∈B

Lj .

Then
(H + L)(H + L)(−1) = HH(−1) − |B|(H + H(−1)) + γ + δG

for some γ, δ ∈ Z+.

Proof Write |A| = α and |B| = β. Let i and j be distinct elements of A∪B, not both in A. Then
Si and Sj are distinct lines since i �≡ j mod q +1 by assumption. Hence SiSj = G. Using this fact,
we get

(H + L)(H + L)(−1) =

⎛
⎝∑

i∈A

Hi +
∑
j∈B

Lj

⎞
⎠
⎛
⎝∑

i∈A

H
(−1)
i +

∑
j∈B

Lj

⎞
⎠

=

(∑
i∈A

Hi

)(∑
i∈A

H
(−1)
i

)
+

(∑
i∈A

[
Hi + H

(−1)
i

])∑
j∈B

Lj +

⎛
⎝∑

j∈B

Lj

⎞
⎠

2

=

(∑
i∈A

Hi

)(∑
i∈A

H
(−1)
i

)
+

(
−α +

∑
i∈A

Si

)⎛⎝−β +
∑
j∈B

Sj

⎞
⎠+

⎛
⎝−β +

∑
j∈B

Sj

⎞
⎠

2

=

(∑
i∈A

Hi

)(∑
i∈A

H
(−1)
i

)
− β

∑
i∈A

Si + R

4



where

R = αβ − α
∑
j∈B

Sj +
∑

i∈A,j∈B

SiSj + β2 − 2β
∑
j∈B

Sj + q
∑
j∈B

Sj + β(β − 1)G

= αβ − α
∑
j∈B

Sj + αβG + β2 − 2β
∑
j∈B

Sj + q
∑
j∈B

Sj + β(β − 1)G

= (αβ + β2) + (αβ + β(β − 1))G + (−α − 2β + q)
∑
j∈B

Sj

= (αβ + β2) + (αβ + β(β − 1))G.

This proves the assertion. �

Lemma 4 Let e be the exact power of 2 dividing q +1 and let t > 1 be a divisor of e. Let α < e be
an odd number and set β = 1

2e [qe − α(q + 1)]. Let A ⊂ {0, ..., 2e − 1} and B0, ..., Bt−1 ⊂ {0, ..., q}
with |A| = α, |B0| = · · · = |Bt−1| = β such that b �≡ a mod e for all a ∈ A and b ∈ ∪t−1

r=0Br. Set

H =
∑
i∈A

C2e,i,

Mr =
∑

j∈Br

Lj , r = 0, ..., t − 1,

Dr = g
re
t ∗ (H + Mr), r = 0, ..., t − 1.

Then |Dr| = q(q − 1)/2 for r = 0, ..., t − 1 and

t−1∑
r=0

DrD
(−1)
r = γ + R

with γ ∈ Z+ where R is a linear combination of ( e
t )th cyclotomic classes.

Proof Note that H is a union of half-lines since C2e,i =
∑ q+1

e −1
j=0 H2ej+i. Let r ∈ {0, ..., t − 1} be

arbitrary. If Hk is a half-line in H and Lj is a line in Mr, then j �≡ k mod e by assumption. In
particular, j �≡ k mod q + 1. Hence H and Mr are disjoint and we get |H + Mr| = α(q2 − 1)/2e +
β(q − 1) = q(q − 1)/2 and |Dr| = q(q − 1)/2, r = 0, ..., t − 1. Using Lemma 3 we get

t−1∑
r=0

DrD
(−1)
r =

t−1∑
r=0

(
g

re
t ∗ (H + Mr)(H + Mr)(−1)

)

= γ1 + δ1G +

(
t−1∑
r=0

g
re
t

)
∗ (HH(−1) − β(H + H(−1)))

for some γ1, δ1 ∈ Z+. Note C2e,i + C
(−1)
2e,i = Ce,i for all i. Since H is a union of (2e)th cyclotomic

classes, this implies that HH(−1)−β(H +H(−1)) is a linear combination of eth cyclotomic classes.
We conclude that

(∑t−1
r=0 g

re
t

)
∗(HH(−1)−β(H+H(−1))) is a linear combination of ( e

t )th cyclotomic
classes. �

The following is a generalization of [10, Thm. 2.3].
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Corollary 5 Let q ≡ 3 mod 4 be a prime power and let e be the exact power of 2 dividing q + 1.
Choose t = e and define D0, ...,De−1 as in Lemma 4. Then (D0, ...,De−1) is a difference family
in the additive group of Fq2 with parameters e-(q2, 1

2q(q − 1), e
4q(q − 2)).

Proof By Lemma 4 we have |Dr| = q(q − 1)/2, r = 0, ..., t − 1, and

t−1∑
r=0

DrD
(−1)
r = γ + R

with γ ∈ Z+ where R is multiple of G − 0. This implies the assertion. �.

The case e = 4 of Corollary 5 is the most interesting because it yields new Hadamard matrices
through Proposition 1.

Corollary 6 Let q ≡ 3 mod 8 be a prime power, e = t = 4, and define H, M0, M1, M2, M3 as in
Lemma 4 (here α ∈ {1, 3}). Set

Dr = gr ∗ (H + Mr), r = 0, ..., 3.

Then (D0,D1,D2,D3) is a 4-(q2, 1
2q(q−1), q(q−2)) difference family in the additive group of Fq2 .

Remark 7 The case α = 1 of Corollary 6 coincides with [10, Cor. 2.4] while the case α = 3 is
new.

The following Corollary addresses the case e = 8 and t = 4 of Lemma 4 which is the main
subject of this paper.

Corollary 8 Let q ≡ 7 mod 16 be a prime power, e = 8, t = 4 and define H, M0, M1, M2, M3

as in Lemma 4. Set
Dr = g2r ∗ (H + Mr), r = 0, ..., 3.

Then (D0,D1,D2,D3) is a 4-(q2, 1
2q(q − 1), q(q − 2)) difference family in G if and only if

ρ(HH(−1) − β(H + H(−1))) = 0 (5)

where ρ is the quadratic character of Fq2 .

Proof By the proof of Lemma 4 we have
∑3

r=0 DrD
(−1)
r = γ1 + δG + T where

T := (g0 + g
e
4 + g

2e
4 + g

3e
4 ) ∗ (HH(−1) − β(H + H(−1)))

and the coefficients of T are constant on the set of squares of Fq2 and constant on the set of
nonsquares of Fq2 . Hence ρ(HH(−1) −β(H +H(−1))) = 0 if and only if T has constant coefficients
on G \ {0}. �
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4 Number theoretic preparations

Let q ≡ 7 mod 16 be a prime power and let ρ be the quadratic character of Fq2 . From now on, we
write Ci instead of C16,i The following numbers play a crucial role in our construction.

Ji =
∑
x∈Ci

ρ(1 � x), i = 0, ..., 15. (6)

We take the indices i of Ji modulo 16. The Ji’s are multiples of Jacobsthal sums, cf. [2, 6.1.1]. Let g
be a fixed generator of Fq2 and let χ be the multiplicative character of Fq2 with χ(g) = exp(2πi/16).

Lemma 9 We have

J0 + J8 = (3q − 1)/4,

Ji + Ji+8 = 0 for i = 1, 3, 5, 7, and
Ji + Ji+8 = −(q + 1)/4 for i = 2, 4, 6.

Proof Let S respectively N be the set of nonzero squares respectively nonsquares in Fq2 . Then S =∑(q−1)/2
j=0 L2j and N =

∑(q−1)/2
j=0 L2j+1. Furthermore, C8,i =

∑(q−7)/8
k=0 L8k+i. Let i ∈ {1, ..., 7},

j ∈ {0, ..., (q − 1)/2}, k ∈ {0, ..., (q − 7)/8}. By viewing L2j and 1 � L8k+i as lines without 0 and
1 respectively in Fq2 , we see that

|L2j ∩ (1 � L8k+i)| =
{

0 if j = 0 or 2j = 8k + i
1 in all other cases,

|L2j+1 ∩ (1 � L8k+i)| =
{

0 if 2j + 1 = 8k + i
1 in all other cases.

Let i be even, 2 ≤ i ≤ 14. We get

Ji + Ji+8 =
∑

x∈C8,i

ρ(1 � x)

=
(q−7)/8∑

k=0

∑
x∈L8k+i

ρ(1 � x)

=
(q−7)/8∑

k=0

(|S ∩ (1 � L8k+i)| − |N ∩ (1 � L8k+i)|)

=
(q−7)/8∑

k=0

(q−1)/2∑
j=0

(|L2j ∩ (1 � L8k+i)| − |L2j+1 ∩ (1 � L8k+i)|)

=
(q−7)/8∑

k=0

(
q − 3

2
− q + 1

2

)
= −q + 1

4
.

A similar computation shows Ji + Ji+8 = 0 if i odd. Since
∑15

i=0 Ji = −1, we get J0 + J8 =
−1 + 3(q + 1)/4 = (3q − 1)/4. �
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We write ζ = exp(2πi/16). Let ρ be the quadratic character of Fq2 and let χ be the multiplica-
tive character of Fq2 with χ(g) = ζ. Note that χ depends on the choice of the generator g of Fq2 .
Therefore, we write χ = χg when it is necessary to indicate this dependency. We can derive the
values Ji from the coefficients of the following Jacobi sum.

J =
∑

x∈Fq2

χ(x)ρ(1 � x).

Note that J also depends on the choice of g.

Lemma 10 Write J =
∑7

i=0 tiζ
i with ti ∈ Z. Then

ti = Ji − Ji+8, i = 0, ..., 7. (7)

In particular, t0 ≡ 3 mod 4, t1 �= 0 and t2 ≡ 0 mod 4.

Proof Using ζ8 = −1 we get

J =
∑

x∈Fq2

χ(x)ρ(1 � x)

=
15∑

i=0

∑
x∈Ci

ζiρ(1 � x)

=
7∑

i=0

ζi(Ji − Ji+8).

This implies (7) since {1, ζ, ..., ζ7} is an integral basis of Q[ζ] over Q.

By Lemma 9, t0 = 2J0 − (3q − 1)/4, t1 = 2J1 and t2 = 2J2 + (q + 1)/4. As q ≡ 7 mod 16, the
remaining assertions follow if we can show that J0 is even and that J1, J2 are both odd. Recall
that Ci = {g16t+i : t = 0, ..., [(q2 − 1)/16]− 1} and Ji =

∑
x∈Ci

ρ(1� x). As 1 ∈ C0 and 1 /∈ Ci for

i = 1, 2, we get J0 ≡ q2−1
16 − 1 mod 2 and Ji ≡ q2−1

16 ≡ 1 mod 2 for i = 1, 2. Since (q2 − 1)/16 is
odd, J0 is even and J1, J2 are odd. �

For j ∈ {1, 3, 5, ..., 15} we define σj ∈ Gal(Q(ζ) : Q) by ζσj = ζj . Since −1 is a square in Fq2 ,
it follows from [2, Thms. 2.1.4, 2.1.6] that Jσ7 = J . Since {1, ζ, ..., ζ7} is an integral basis of Q[ζ]
over Q, this implies that there are integers a, b, c, d such that

J = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5). (8)

By Lemma 9, a = t0 and b = t2, so we obtain

a ≡ 3 mod 4 and b ≡ 0 mod 4. (9)

Furthermore, by [2, Thm. 2.1.3] we have |J |2 = q2. This implies

q2 = a2 + 2(b2 + c2 + d2), (10)
2ab = c2 − 2cd − d2. (11)

In order to gain more insights in the numbers a, b, c, d, we need to know how q splits in Q(ζ).
Let P1 be a prime ideal of Q(ζ) above q. As q ≡ 7 mod 16, P σ7

1 = P1 and (q) = P1P3P9P11 where
Pj = P

σj

1 , see [2, Section 11.1].
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Lemma 11 Let a, b, c, d be integers and J ′ = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5). Suppose
b ≡ 0 mod 4, |J ′|2 = q2 and (J ′) �= (q). Then

(i) (J ′) = P 2(P σ3)2 where P is a prime ideal that contains J ′ in Q(ζ).

(ii) there exist integers w, r, s, t such that G = w + r(ζ2 − ζ6) + s(ζ + ζ7) + t(ζ3 + ζ5), and
J ′ = ±G2(Gσ3)2.

Proof By assumption, J ′J ′ = q2. Hence we obtain

(J ′) = Pα
1 P β

9 P γ
3 P δ

11

with α, β, γ, δ ∈ Z+ and α + β = γ + δ = 2. Since (J ′) �= (q), there exists j such that

(J ′ σj ) = P 2
1 P 2

3 or (J ′ σj ) = P1P9P
2
3 .

First we assume (J ′ σj ) = P1P9P
2
3 . Let K be the subfield of Q(ζ) fixed by σ7 and OK be the

ring of algebraic integers in K. Since K has class number 1, the ideal P1 ∩ K is generated by
an element G1. Define Gj := G

σj

1 . Note that P3 ∩ K and P9 ∩ K are generated by G3 and G9

respectively. Since J ′ σj and G1G9G
2
3 generate the same ideal in OK , we have J ′ σj = ηG1G9G

2
3 for

some unit η in OK . Moreover, as P1∩K has norm q, we have G1G3G9G11 = q. Since |J ′ σj |2 = q2,
we then have

q2 = ηη|G1G9G
2
3|2 = ηη(G1G9G

2
3)(G9G1G

2
11) = ηηq2.

Hence |η| = 1. Result 2 implies that η is a root of unity. Since ±1 are the only roots of unity in
OK , we get J ′ σj = ±G1G9G

2
3. Note that

q = G1G3G9G11 ≡ w4 + 2s4 + 2t4 mod 4.

Since q ≡ 3 mod 4, this implies

w ≡ 1 mod 2 and s + t ≡ 1 mod 2. (12)

Moreover, a straightforward computation shows that the coefficient of ζ2 − ζ6 in G1G9G
2
3 is

b1 := 4s2r2 − 4w2st − 4r2t2 − 2w2t2 + 2s2w2 + 8s2rw + 8wrt2 − 8r2st.

Hence, b1 ≡ 2w2(s2 − t2) ≡ 2(s + t) ≡ 2 mod 4 because of (12). Since J ′ = ±G1G9G
2
3, this shows

that the coefficient of ζ2−ζ6 in J ′ is ≡ 2 mod 4. But the coefficient of ζ2−ζ6 in J ′ is ±b ≡ 0 mod 4,
a contradiction. Hence (J ′ σj ) = P1P9P

2
3 is impossible.

This shows (J ′ σj ) = P 2
1 P 2

3 . Now we get (i) by setting P = P
σ−1

j

1 . Finally, let G be a generator
of P ∩ K. By applying a similar argument as before, we see that J ′ = ±G2(Gσ3)2. �

Lemma 12 Let a, b, c, d be the integers with

J = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5).

Then

a ≡ 15 mod 16, (13)
b ≡ 0 mod 4. (14)
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Proof By Lemma 10, J �= ±q, a ≡ 3 mod 4 and b ≡ 0 mod 4. So it follows from Lemma 11 that
J = ±G2(Gσ3)2 for G = w + r(ζ2 − ζ6) + s(ζ + ζ7) + t(ζ3 + ζ5) where w, r, s, t are integers. Hence

a = ±(w4 + 2s4 − 8r2t2 − 8s2r2 − 8s2wr − 8st3 + 2t4 − 4s2w2

+4r4 + 16strw − 4w2t2 − 4w2r2 + 8s3t + 4s2t2 + 8wrt2).

Thus a ≡ ±(w4 + 2t4 + 2s4) ≡ ±3 mod 4 by (12). Since a ≡ 3 mod 4, we conclude J = G2(Gσ3)2.
Observe that

−8r2t2 − 8s2r2 − 8s2wr + 4r4 − 4w2r2 + 8wrt2 = −8r2(t2 + s2) − 8r(t2 − s2) + 4r2(r2 − w2).

By (12) again, −8r2(t2 + s2)− 8r(t2 − s2) ≡ 0 mod 16. Whereas for the term 4r2(r2 −w2), either
r2 is a multiple of 4 or r2 − w2 is a multiple of 4 as w is odd. Hence,

a ≡ w4 + 2s4 − 8st3 + 2t4 − 4s2w2 − 4w2t2 + 8s3t + 4s2t2

≡ w4 + 2(s4 + t4) − 4w2(t2 + s2)
≡ 1 + 2 − 4 ≡ 15 mod 16.

�

Now, we consider the converse of the above lemma.

Lemma 13 Let q ≡ 7 mod 16 be a prime. If a, b, c, d are integers satisfying (10), (11) and

a ≡ 15 mod 16, (15)
b ≡ 0 mod 4, (16)

then there is j ∈ {1, 3, 9, 11} with

J =
[
a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5)

]σj
.

Proof Let J ′ = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5). By Lemma 11(i), there exist i, i′ such
that (J ′) = P 2

i′(P
σ3

i′ )2 and (J) = P 2
i (P σ3

i )2. Therefore, we may assume (J ′)σj = (J) for some
j ∈ {1, 3, 9, 11}. Using a similar argument as before, we conclude that J ′ σj = ±J . The coefficients
of 1 in J and J ′ are both ≡ 3 mod 4, so J ′ σj = J . �

Lemma 14 Let a, b, c, d be the integers with

J = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5).

Then the values Ji are given by J7i = Ji for all i (indices taken modulo 16) and the following table.

i 0 1 2 3 4 6 8 9 11

Ji
3q−1

8 + a
2

c
2 − q+1

8 + b
2

d
2 − q+1

8 − q+1
8 − b

2
3q−1

8 − a
2 − c

2 −d
2

Proof This follows from Lemmas 9 and 10. �

The terms CiC
(−1)
j will play a crucial role in the verification of our construction. We can

compute the quadratic character of these terms from the values Ji.

10



Lemma 15 Write f = (q2 − 1)/16. We have

ρ(CiC
(−1)
j ) = (−1)ifJj−i.

Proof We compute

ρ(CiC
(−1)
j ) =

f−1∑
r,s=0

ρ(g16r+i � g16s+j)

=
f−1∑
r=0

ρ(g16r+i)
f−1∑
s=0

ρ(1 � g16(s−r)+j−i)

=
f−1∑
r=0

(−1)i

f−1∑
t=0

ρ(1 � g16t+j−i)

= (−1)ifJj−i.

�

5 Construction with three 16th power cyclotomic classes

Let q ≡ 7 mod 16 be a prime. Recall that we write Ci instead of C16,i. Set

H = C0 + C1 + C2.

Furthermore, let B be any subset of {0, ..., q} with β = (5q − 3)/16 elements such that no element
of B is ≡ 0, 1 or 2 mod 8 and let

L =
∑
j∈B

Lj .

Finally, set
Di = g2i(H + L), i = 0, 1, 2, 3.

We write D = (D0,D1,D2,D3). Note that D depends on the choice of the generator g of Fq2 .

Theorem 16 Let a, b, c, d be any integers with

a ≡ 15 mod 16,

b ≡ 0 mod 4,

q2 = a2 + 2(b2 + c2 + d2),
2ab = c2 − 2cd − d2

(the existence of a, b, c, d is guaranteed by (10), (11) and Lemma 12). If q = a± 2b and g is chosen
suitably, then D is a 4-(q2, 1

2q(q − 1), q(q − 2)) difference family in the additive group of Fq2 .

Proof By Lemma 13 we can choose the generator g of Fq2 such that

J = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5).

11



Write f = (q2 − 1)/16. Using Lemmas 14 and 15 we get

ρ(HH(−1)) =
2∑

i,j=0

CiC
(−1)
j

= f

2∑
i,j=0

(−1)iJj−i

=
f

8
(8b + 4a + q − 3).

Moreover, we have ρ(H + H(−1)) = 2f since ρ(Ci) = (−1)if . We get

ρ(HH(−1) − β(H + H(−1))) =
f

16
(16b + 8a + 2q − 6 − 2(5q − 3))

=
1
2
(2b + a − q).

Hence, if q = a + 2b then D is a 4-(q2, 1
2q(q − 1), q(q − 2)) difference family by Lemma 4.

Let s be an integer coprime to q2 − 1 with s ≡ 11 mod 16. Let χgs be the multiplicative
character of Fq2 defined by χgs(gs) = ζ. If we replace g by gs then

J =
∑

x∈Fq2

χgs(x)ρ(x)

=
∑

x∈Fq2

χg(x)3ρ(x)

=

⎡
⎣ ∑

x∈Fq2

χg(x)ρ(x)

⎤
⎦

σ3

= a − b(ζ2 − ζ6) − d(ζ + ζ7) + c(ζ3 + ζ5).

Hence, in this case the condition for D being a difference family becomes q = a − 2b. �

Remark 17 As the proof of Theorem 16 shows, “if g is chosen suitably” only means that we have
to replace g by gs if necessary where s is any integer with s ≡ 11 mod 16, (q2 − 1, s) = 1.

6 Construction with five 16th power cyclotomic classes

Let q ≡ 7 mod 16 be a prime. Set

H = C0 + C1 + C2 + C3 + C7.

Furthermore, let B be any subset of {0, ..., q} with β = (3q − 5)/16 elements such that no element
of B is ≡ 0, 1, 2, 3 or 7 mod 8 and let

L =
∑
j∈B

Lj .

12



Set
Di = g2i(H + L), i = 0, 1, 2, 3.

Write D = (D0,D1,D2,D3).

Theorem 18 Let a, b, c, d be any integers with

a ≡ 15 mod 16,

b ≡ 0 mod 4,

q2 = a2 + 2(b2 + c2 + d2),
2ab = c2 − 2cd − d2

(the existence of a, b, c, d is guaranteed by (10), (11) and Lemma 12). If

q = a + δ1b + δ24c + δ1δ24d (17)

with δi = ±1 and g is chosen suitably, then D is a 4-(q2, 1
2q(q − 1), q(q − 2)) difference family in

the additive group of Fq2 .

Proof By Lemma 13 we can choose the generator g of Fq2 such that

J = a + b(ζ2 − ζ6) + c(ζ + ζ7) + d(ζ3 + ζ5).

Let T = {0, 1, 2, 3, 7}. Using Lemmas 14 and 15 we get

ρ(HH(−1)) =
∑

i,j∈T

CiC
(−1)
j

= f
∑

i,j∈T

(−1)iJj−i

=
f

8
(−4a + 8b + 16c + 16d + q + 5).

Moreover, we have ρ(H + H(−1)) = −2f . We get

ρ(HH(−1) − β(H + H(−1))) =
f

16
(−8a + 16b + 32c + 32d + 2q + 10 + 2(3q − 5))

=
1
2
(−a + 2b + 4c + 4d + q).

Hence, if q = a − 2b − 4c − 4d then D is a 4-(q2, 1
2q(q − 1), q(q − 2)) difference family by Lemma

4. The theorem now follows by replacing g by gs if necessary where s ≡ 3, 9 or 11 mod 16 and
(s, q2 − 1) = 1. �

Remark 19 As the proof of Theorem 18 shows, “if g is chosen suitably” only means that we have
to replace g by gs if necessary where s is an integer with s ≡ 3, 9 or 11 mod 16 and (s, q2 − 1) = 1.
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7 Main Result

Combining Proposition 1, Lemma 12, Theorems 16 and 18 we get our main result.

Theorem 20 Let q ≡ 7 mod 16 be a prime. Then there are integers a, b, c, d with

a ≡ 15 mod 16,

b ≡ 0 mod 4,

q2 = a2 + 2(b2 + c2 + d2),
2ab = c2 − 2cd − d2.

If

q = a ± 2b or (18)
q = a + δ1b + 4δ2c + 4δ1δ24d with δi = ±1, (19)

then there is a regular Hadamard matrix of order 4q2.

We call the Hadamard matrices satisfying (18) respectively (19) the three-class family respec-
tively the five-class family. We believe that both families are infinite. In the following tables we
give all primes q < 106 respectively q < 50000 for which Theorem 20 yields a three-class respec-
tively a five-class Hadamard matrix of order 4q2. We also list the corresponding values a, b, c, d
and the choice of the generator g which gives the corresponding difference family according to
Theorems 16 and 18. The values a, b, c, d were obtained with the help of Paul van Wamelen’s
PARI-implementation [5] for the computation of Jacobi sums.

We use the following representation of Fq2 . Let k be the smallest positive integer such that
h := x2 + x + k is a primitive polynomial over Fq. Then Fq2 ∼= Fq[x]/(h) and x ∈ Fq[x]/(h) is a
primitive element of Fq2 (we write x instead of x+(h)). The value of k is provided in the following
tables. An entry i in the g-column has the following meaning: For the generator g we take xs

where s ≡ i mod 16 and (s, q2 − 1) = 1.
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Appendix 1: Table of parameters for the three-class family

q a b c d k g

7 -1 4 2 2 3 1

199 127 36 102 6 6 1

727 527 -100 -250 -230 31 11

4327 799 -1764 2058 1302 10 11

4999 4607 -196 14 -1358 15 11

27239 -4513 -15876 -10206 2142 7 11

34807 22639 6084 11778 -13182 26 1

43159 -4273 -23716 -18634 -3542 3 11

55399 7967 -23716 7546 -29722 6 11

92647 26399 -33124 8918 -52598 14 11

99527 11327 44100 -26670 47250 20 1

144967 31679 56644 -45458 68782 6 1

196247 192719 1764 18438 -18522 7 1

205879 64367 -70756 96026 69958 12 11

226087 112799 56644 -125902 -11662 6 1

239831 151631 44100 82110 -92610 7 1

273719 247727 12996 81282 1026 19 1

281959 277727 -2116 -24334 -24242 24 11

390727 387199 1764 -37002 -42 33 1

390967 239 195364 -180778 -74698 10 1

431479 -56593 244036 -11362 178334 21 1

477767 -42433 -260100 114750 -180030 10 11

517927 272927 122500 -184450 218750 10 1

549719 -46513 298116 -56238 240786 11 1

606247 201247 -202500 -281250 -208350 10 11

679127 393359 142884 238518 -275562 5 1

694567 -20641 -357604 316342 114218 20 11

715639 119407 298116 389298 92274 11 1

737719 677167 30276 143202 -146334 6 1

830359 318287 256036 -474122 -61226 12 1

Remark 21 There are exactly 356 primes q < 3.9 · 108 satisfying the conditions of Theorem 16.
Some further computational experiments suggest that for any n > 2 · 108 there are at least 1

8n
2
5

primes q satisfying the conditions of Theorem 16.
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Appendix 2: Table of parameters for the five-class family

q a b c d k g

7 -1 4 2 2 3 9

23 -17 4 2 10 7 9

71 31 -28 10 34 11 11

151 47 28 46 -86 12 1

263 -97 -36 -78 150 7 9

359 -1 252 -6 30 7 3

599 463 -92 -134 -214 7 3

631 527 -68 -134 -194 12 3

919 -17 612 186 114 15 11

2087 1759 124 478 -622 13 1

2423 -977 700 -190 1390 14 9

2503 -97 1700 -230 -430 3 11

4967 4639 -196 -782 -962 5 3

6311 -1889 3100 -790 -2810 7 1

7879 -1921 3332 -3374 -2590 12 11

8087 -3281 196 1918 -4858 5 1

10711 -3793 4508 -434 -5446 3 1

11447 79 -8036 -238 -938 7 9

11831 -5969 -4100 5230 -2830 21 9

12391 191 7100 -4810 -1790 26 1

13399 8143 -3708 2766 5934 28 11

14071 -433 9212 3094 2114 14 11

19559 -5921 -9212 7490 -5726 23 9

20743 -10657 4700 -1390 11590 5 9

21767 -4801 10044 -8658 -7038 5 11

25463 -17 17444 4102 1750 5 11

30871 -2449 19012 -8050 -6874 6 3

31607 25199 -4284 -6978 -10722 7 3

32503 13423 5436 -10050 17538 5 9

32839 31679 -508 4574 4030 12 3

35527 -30721 -196 5138 -11522 3 3

41927 -16481 -17444 -17458 11578 5 1

Remark 22 There are exactly 1401 primes q < 3.9 · 108 satisfying the conditions of Theorem 18.
Some further computational experiments suggest that for any n > 2 · 108 there are at least 1

2n
2
5

primes of q satisfying the conditions of Theorem 18.
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Appendix 3: Some sporadic examples

In the following, we chose g = x as the generator of Fq2 where we use the representation of Fq2

described at the end of Section 7. For the following primes q we obtain 4-(q2, 1
2q(q − 1), q(q − 2))

difference families and hence regular Hadamard matrices of order 4q2. Note that when we use
Corollary 8, we only need to specify the half-line part H and verify (5) since M0, M1, M2, and M3

can always be chosen such that the remaining condition is satisfied.

q = 167: Set H = C0 +C1 +C13 in Corollary 8. Then (5) can be verified using a = 31, b = 28,
c = −106, d = −38 (here k = 5).

q = 311: In this case, we set

D0 = C0 + C1 + C2 + C3 + C10 + L,

D1 = C0 + C6 + C7 + C10 + C13 + L′,
D2 = g4 ∗ D0,

D3 = g4 ∗ D1

such that L, L′ are unions of lines, |Di| = q(q − 1)/2 and each Di has coefficients 0,1 only. This
construction can be verified by direct computation.

q = 439: Put H = C0 + C1 + C2 + C3 + C4 + C6 + C7 in Corollary 8. Then (5) can be verified
using a = −337, b = 28, c = 166, d = 106 (here k = 23).

q = 1223: Put H = C0 + C1 + C2 + C6 + C7 + C12 + C13 in Corollary 8. Then (5) can be
verified using a = 223, b = −700, c = −110, d = −470 (here k = 15).

Appendix 4: Something negative

In [10], a 4-(q2, 1
2q(q − 1), q(q − 2)) difference family is constructed for q = 7 by using (q − 1)th

and 2(q − 1)th cyclotomic classes. We tried to extend this to further prime powers q ≡ 3 mod 4,
but we already failed for q = 11. Note for q = 11 a brute force search already is impossible on
a common PC within a reasonable amount of time. Hence we had to use a quite complicated
method using character sums. We conjecture that our search shows that for q = 11 there is no
4-(q2, 1

2q(q − 1), q(q − 2)) difference family (D0,D1,D2,D3) in the additive group of Fq2 of the
following form.

Di = {0}
⋃

j∈Ai

C20,j

where Ai ⊂ {0, ..., 19}, |Ai| = 9, i = 0, 1, 2, 3.
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