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A McFarland difference set is a difference set with parameters (v,k, 2 )=  
(qd+l(qd+qa-l+...+q+2),qa(qd+qa l + . . . + q + l ) ,  qd(qa-l+qa-2+...+ 
q +  1)), where q=p/and p is a prime. Examples for such difference sets can be 
obtained in all groups of G which contain a subgroup E ~-EA(q a+ 1) such that the 
hyperplanes of E are normal subgroups of G. In this paper we study the structure 
of the Sylow p-subgroup P of an abelian group G admitting a McFarland difference 
set. We prove that if P is odd and P is self-conjugate modulo exp(G), then 
p ~_ EA(qa+ 1). For p = 2, we have some strong restrictions on the exponent and the 
rank of P. In particular, we show that iff>~2 and 2 is self-conjugate modulo 
exp(G), then exp(P)~<max{2 f - i ,  4}. The possibility of applying our method to 
other difference sets has also been investigated. For example, a similar method is 
used to study abelian (320, 88, 24)-difference sets. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

L e t  G b e  a m u l t i p l i c a t i v e  g r o u p  o f  o r d e r  v a n d  le t  D b e  a s u b s e t  o f  G 

w i t h  k e l emen t s .  T h e n  D is ca l l ed  a (v, k, 2)-difference set in  G if  t h e  exp res -  

s i ons  d i d 2  1, fo r  d l , d 2 ~ D  a n d  d i e d 2 ,  r e p r e s e n t  e v e r y  n o n i d e n t i t y  

e l e m e n t  in  G exac t l y  2 t imes .  U s i n g  t he  n o t a t i o n  o f  t he  g r o u p  r i n g  Z [ G ] ,  

D is a d i f f e rence  set  p rec i se ly  w h e n  it  sat isf ies  t he  e q u a t i o n  

DD ( I ~=  2 G + n ,  (1.1)  
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where n = k - 2  and D ( l ~ = { g - l : g ~ D } .  For detailed descriptions of 
difference sets, please consult [3, 8, or 10]. McFarland [12] has given a 
construction for difference sets having the parameters (v, k, 2, n) equal to 

(qa+~(qa+qa-l  + .. .  + q + 2 ) ,  qa(qa+qa- l  + .. .  + q +  1), 

qa(qa-1 + qa- 2 + .. .  + q + 1), q2a), 

where q is any prime power and d is any positive integer. In this paper, a 
difference set with these parameters is called a McFarland difference set. 

It is known that McFarland difference sets exist in all groups G which 
contain a subgroup E ~ E A ( q  a+~) such that the hyperplanes of E are 
normal subgroups of G. (Actually, the condition on the hyperplanes 
can be relaxed; see [5, 7].) When q = 2 ,  we have (v,k,  2, n)-=(22a+2, 
22a+ 1 _ 2 a, 22a_ 2 a, 22a) and these difference sets are also known as Menon 
difference sets in 2-groups; see [8]. There are various constructions of 
these difference sets; see [4, 6, 9, 11]. We summarize the results in the 
abelian case in the following. 

THEOREM 1.1. Let q = p f  where p is a prime. Let G be an abelian group 
o f  order qa+l(qa + qa-1 + ... + q + 2 )  and let P be the Sylow p-subgroup of  
G. Then a McFarland difference set exists in G i f  

(a) p is odd and P~-EA(qa+I);  or 

(b) p = 2 ,  f~>2, and P~-EA(2  fa+f+l) or Z4 ×EA(2fa+f-1);  or 

(c) p = 2 ,  f =  1, and exp(e) ~<2 a+2. 

Based on a result of Turyn [ 13], it is easy to obtain the following 
necessary conditions on the existence of McFarland difference sets. Let p be 
a prime and m =ptw, where (p, w)=  1 Then p is called self-conjugate 
modulo m if p J -  -- - l ( m o d  w) for some integer j. 

THEOREM 1.2. [9, Theorem 4.33]. Use the notation of  Theorem 1.1. 
Suppose that p is self-conjugate modulo exp(G). I f  G contains a McFarland 
difference set, then 

(a) p is odd and exp(P) ~<pF; or 

(b) p = 2, f~> 2, and exp(P) ~< 2 f+ 1; o r  

(c) p = 2 ,  f =  1, and exp(P) ~<2 a+2. 

Note that Theorems 1.1 and 1.2 give necessary and sufficient conditions 
for the existence of McFarland difference sets when p = 2 and f = 1, i.e., 
case (c). (For this case, it is obvious that 2 is self-conjugate modulo 
exp(G).) Thus it is natural to ask whether we can narrow the gaps between 
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the two theorems in the remaining cases. Recently, Arasu, Davis, Jedwab, 
and Ma [ 1 ] have improved the bound in cases (a) and (b) of Theorem 1.2 
to p f - 1  and 2 f respectively, when d =  1 and f>~ 2. In this paper, we shall 
show that if p is odd and p is self-conjugate modulo exp(G), then 
P~-EA(qa+I);  i.e., in this case, Theorem 1.1(a) is necessary and sufficient. 
For  p = 2  and f>~2, an upper bound better than Theorem 1.2(b) will be 
obtained. Furthermore, we shall provide necessary conditions on the rank 
of the Sylow 2-subgroup and the size of d if the exponent of G falls between 
our upper bound and the lower bound given by Theorem 1.1. Also, our 
technique will be shown to be applicable to other difference sets as well. In 
Section 2, some useful lemmas will be given. The cases when p is odd and 
p = 2 will be studied separately in Sections 3 and 4. 

2. PRELIMINARIES 

In this section, we shall state some lemmas which will be used in the 
later sections. Throughout  this paper, all the groups considered are abelian 
and we assume that all group homomorphisms are extended to the group 
rings in the natural way. Also, we adopt the following notation: for y = 
~.g ~ Gag g ~ 7/[ G ], where G is a group and ag ~ ~_, let y ( -  1) = Zg ~ a agg - 1 
and [ y[ = ~g ~ Gag. 

The following is a well-known result for the study of difference sets. 

LEMMA 2.1. Let G be an abelian group and let y c Z [ G ] ,  satisfying 
yy ( -  l) = 2G + n. Then for every character Z of  G: 

Z(y) z ( y ) =  {]n y]2 
i f  z is principal on G 

if  z is nonprincipal on G. 

In order to make use of Lemma 2.1, we need some lemmas linking up 
the results on algebraic numbers with the results on group rings. 

LEMMA 2.2. (Turyn [13]).  Let p be aprime and let c ~ Z [ ( ] ,  where ( is 
an mth root o f  unity. I f  p is self-conjugate modulo m and c a - 0  (modpZa), 
then c = - 0 (modpa). 

The following is one of the variations of Ma's lemma. 

LEMMA 2.3. (Arasu, Davis, Jedwab, and Ma [ 1 ]). Let p be a prime and 
let G be an abelian group with a cyclic Sylow p-subgroup o f  order pS. I f  
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y~  ZIG]  satisfies X(Y) - 0 (modp ~) for every character X of G, then there 
exist Xo, xl  ..... x~ ~ 2~[G], where r =min{a,  b}, so that 

y =p~xo +p~-  1Plx1 + ... +p~-~P~x~, 

where the Pi are the unique subgroups of order p~ in G. Furthermore, i f  the 
coefficients of  y are nonnegative, then Xl, x2 .... , x~ can be chosen to have 
coefficients O, 1 ..... p -  1 only while Xo can be chosen to have nonnegative 
coefficients. 

Finally, we prove a lemma on intersections of subgroups. It is basically 
a generalization of the argument of the two-subgroup intersection used 
in [1].  

LEMMA 2.4. Let p be a prime, let G be an abelian group, and let P be the 
Sylow p-subgroup of G. Let pC = [e[/exp(P) and ~3 = { U <  P: [U[ =pC and 
P/U is cyclic}. Also, for each U 6 ~ ,  let U ' = { g ~ P : g P S 6 U } ,  where 
pS< exp(P). Suppose that there exists a subset D of G such that for each 
U ~ ~ and g ~ G, either 

(1) ]D~ Uhl>~ and lDc~(U'\U)hl <<.e for some h 6 U ' g  or 

(2) IO~ U'gl <~e' 

where 6, e, e', fi > e', are f ixed numbers which do not depend on U and there 
is at least one coset U'g satisfying (1). Furthermore, let t = r a n k ( P )  and 
write P =  ( g o )  × ( g l )  × "'" × ( g t - 1 ) ,  where o(go)=exp(P) and o(gi) = 
pa~<~exp( P) for i= 1, 2, ..., t -  1. Also, let b i=min{  s, ai}. Then 

c~ -- me <~ pC- Z~=l b~ 

f o r m = l , 2 , . . . , t - - 1 .  

Proof Let U o = ( g l ) ( g z ) × . . . x ( g t _ l )  and for i = l , 2 , . . . , t - 1 ,  
Ui = ( g l )  × "'" x ( g i - 1 )  × (g ig  p~-bl) × ( g i + l )  x "'" × ( g ~ - t ) ,  where 
g ~ ( g 0 )  is an element of order p~. Note that U'i= U~, U1 ~ ,  and 
[~im=OUil=P c-zi~=lbi. Choose hoEG such that ID~Uoho[>~6 and 
[D ~ ( U'o k Uo)ho ] <~ e. Since ID ~ U'iho [ = [D ~ U'oho [ >~6>e', there exists 
hi ~ U'oho such that [D c~ Uihi[ >~ fi and ]D ~ (U'i\Ui)hi] <~e for i =  1, 2 .... , 
t -  1. Now consider 

) a t 
Z m = f o b  o ( f i \ f i ) h i  U i h i .  

~ \ i = l  i = 0  

Obviously, I Zml<<.p ~-zm~e'. On the other hand, we have 

IZml > / IOn  T,,I ~ 6 - m e  

from the hypothesis of the lemma. Hence f i -  me <<pC-~"/= ~b~. I 
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3. W H E N  p IS O D D  

In this section, we shall prove that Theorem 1.1(a) is necessary and 
sufficient when p is self-conjugate modulo exp(G). 

TrmOREM 3.1. Let G be an abelian group of order qa+l(qa+ 
qa 1+ .. .  + q + 2 ) ,  where q=pf ,  p is an odd prime, and p is self-conjugate 
modulo exp(G). Then G contains a McFarland difference set if and only if  
the Sylow p-subgroup of G is elementary abelian. 

Proof Let P be the Sylow p-subgroup of G. By Theorem 1.1 (a), we 
only have to show that P is elementary abelian if G contains a McFarland 
difference set. Suppose exp(P)=p f - r ,  where 2<<,f-r<~f Assume that 
there exists a McFarland difference set D in G. Let U be any subgroup of 
G of order pya+r such that G/U is cyclic and let p: G ~  G/U be the canoni- 
cal epimorphism. Applying p to (1.1), we obtain 

p(D) p(D) ( -1 )=p2 fa+r(p  f(a 1)+pf(d-2)-.k . . .  + p f +  1) G / U + p  2fd. (3.1) 

By Lemmas 2.1, 2.2, and 2.3, we have 

p(D) = p f d x o @ p f d - - l p l X  1 Jr- .. .  @pfd - - f+rp f_rX f_r ,  (3.2) 

where Pi and xi are chosen as described in Lemma 2.3. Note that 
Z[X~l=k/pFd=pfd+py(d--1)+ "" + p f + l  and applying a character of 
order p F - r  to (3.1) yields IXol~>l. Let C be the coefficient of 1 in 
p(D) p(D) (-1~. Then by (3.2), 

C ~p2fd _.}_p2(fd--f+ r) + (f-- r)(pfd .+pf(d-- 1) q_ . . .  + p  f )  

=p2fd _~ p2fd+ r(pf(d-- 1) @ pf(d-- 2) _{_ . . .  +p f +  1 ), 

where equality holds if and only if 

p(D) =pfah + p f a - f  + ~pf_ rA (3.3) 

for some h e G/U and A ~ G/U such that no two elements of {h} w A  are 
in the same coset of Py_~. However, by (3.1), 

C=pZfd @pZfd+ r(pf(d-- 1) +pf(d--2) _}_ . . .  + p  f +  1). 

Hence, p(D) has the form described in (3.3). Now, we apply Lemma 2.4 
with s = f -  r - 1, m = t -  1, fi =pfa, e = 0, e' =pfa-f+r+,.  This yields pfa<<. 

7--I fd+r--~z I bi p = using the notation of Lemma 2.4. Hence Y. b~ ~< r. However, 
since s>~a~-1 for all i, we have Z b ~ > ~ a i - ( t - 1 ) = f d + r - t +  1. Thus 
r>>, fd+r- t+  1 which implies t - 1  >~fd. On the other hand, since b~> 1 
for all i, we have Z bi ~> t - 1/> f d  > r, which is impossible. | 

582a/70/2-10 
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With a detailed analysis of our method, it seems that the technique 
usually works for difference sets for which there exists a prime p such that 
p2, divides n and kip ~ is relatively small. In the following, we provide one 
generalization of Theorem 3.1. 

THEOREM 3.2. Let G be an abelian group of  order pSw, where (p, w) = 1; 
p is a prime which is self-conjugate modulo exp(G). I f  there exists a 
difference set in G with parameters 

(v, k, 2, n) = (p*w, pU(y + oQ, pZu-sy, pZuo¢), 

where u, ~, ~ are positive integers and 2u <~ s, then 

(i) the Sylow p-subgroup P of  G is elementary abelian; and 

(ii) there exists a difference set in G/P with parameters (v, k, 2, n )=  
(w, 7 + ~ ,  ~, ~). 

Proof Assume that there exists a difference set D in G with the given 
parameters. By k = 2 + n ,  we obtain (pU-p2U-~)y=(p2"-p")o:>~O and, 
hence, s>~u. By [9, Theorem 4.33], exp(P) ~<p ~-". Let e x p ( P ) = p  . . . . .  , 
where 1 ~< s - u - r ~< s - u. Let U be any subgroup of G of order p"  + r such 
that G/U is cyclic. Let p: G ~ G/U be the canonical epimorphism. By the 
same argument as before, we obtain p ( D ) = p " x o + p " - l p l X l +  ... + 
p2 , - s+rp  . . . . .  x . . . . . .  where Pi and xi are chosen as described in 
Lemma 2.3. Let Xo = 2g~o/v  agg and h E PI \{  1}. Thenp  2u 2 a2g >/p2U 2 a~ - 
p2U ~ agag h = [the coefficient of 1 in p(D) p(D) (-1)] - [ the coefficient of h 
in p ( D ) p ( D )  (-1~] = (p"+r2+n)-p"+~2-p2%~- which implies ~,ag>~O~.2 
Hence the coefficient of 1 in p ( D ) p ( D )  ( -~  is at least p2,~ _t_p3U-S+ 1~. The 
minimum value is attained if and only if p(D)=pUA +p2~-~+~p . . . . .  B, 
where A, B c G/U, IA[--~,  IN[ =~,  and no two elements of A u B are in 
the same coset of P ~ _ ~ _ ,  In this case, by projecting A u B  to 
(G/U)/P . . . .  r(~-G/P), we obtain a (w, ~ + ~ ,  ~)-difference set. Finally, the 
theorem follows by the same argument as Theorem 3.1. | 

Consider difference sets with parameters (v, k, 2, n) -- (17091, 1710, 171, 
1539) and (23193, 7137, 2196, 4941). By Theorem 3.2, both of them do not 
exist because there are no cyclic difference sets with parameters (v, k, )L, n) 
=(211,  190, 171, 19) and (859, 793, 732, 61); see [2] .  

4. WHEN p = 2 

Now, let us study case (b) of Theorem 1.2, i. e., p = 2 and f / >  2. This case 
is more complicated than the case of odd p. 
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THEOREM 4.1 Let G be an abelian group of order 2 f(d + 1)( 2 ya + 2 f(a- 1 ~ + 
• .- + 2 f + 2 ) ,  where f ~ 2  is self-conjugate modulo exp(G).  Let P be the 
Sylow 2-subgroup of  G with e x p ( P ) = 2 f - r + l > j 8  and r a n k ( P ) = t .  Write 
P =  ( g o )  × ( g l )  × " '  × ( g , - 1 ) ,  where O(go)=exp(P) and o(gi) = 2 a ~  < 
exp(P)  for i = 1 , 2  .... , t -  1, and let bl s)=min{s ,ai} .  I f  G contains a 
McFarland difference set, then 

2f--r+ 1 __ ( 2  s - -  1 ) m  ~ 2 f +  I -~m=lb}S) (4.1) 

for s = l , 2 , . . . , f - r - 1  a n d r e = l ,  2 ..... t - 1 .  

Proof Let exp(P)=2  f - r+l ,  where 3 < ~ f - r + l < < , f + l .  By [1 ] ,  we 
can have f - r +  1 ~<f  if d =  1. Assume that  there exists a M c F a r l a n d  
difference set D in G. Let  U be any subgroup  of G of order  2 fd+r such that  
G/U is cyclic. Let  p: G--+ G/U be the canonical  epimorphism.  Using the 
same a rgument  as Theo rem 3.1, we have 

p ( O ) = 2 f d x o + 2 f d - l p l x ~ +  ... +2fd- f+r- lP f_r+lXf_r+lXf_~+ ~ (4.2) 

where P~ and xi are chosen as described in L e m m a  2.3. Here  we can regard 
Xl, x2, ..., xF_r+ l  as subsets of  G and they can be chosen in a way tha t  for 
each i no two elements of  xi are in the same coset of  P~. Note  that  

IXi[ = 2 f a + 2 f ( d - 1 ) +  . . .  + 2 Y +  1 and Ixo[ 1> 1. 
Let  ~o: G / U ~  H =  (G/U)/Pf_~ be the canonical  epimorphism.  F r o m  (4.2), 

we obtain  rpop(D)=Omod2 fd-1. Let u=~oop(D)/2fa-~=Zg~i_iagg. 
F r o m  ( 1.1 ), we have 

uu ( - 1 ) = 4(2 fd + 2 f (d -  a) + . . .  + 2 f ) H  + 4. 

Thus  ~ ag= 2(2fd + 2f('~-l~ + ... + 2 f +  1) and Z aZg=4( 2fa + 2f(a-1) + "'" + 
2 f +  1). Let  bg, g E H, be integers such that  Z bg = 2(2 ya + 2 y(d- 1) + . . .  + 
2 f + l ) = Z a g .  Since I H l = 2 f a + 2 f ( d - 1 ) + . . . + 2 f + 2 ,  the m i n i m u m  
possible value of 5Z b~ is 4(2 fu + 2 f (u-  l~ + . . .  + 2 f )  + 2 = Z a2 - 2 which 
happens  when { b g } = { 2 , 2  .... ,2 ,  1, 1}. Thus  we have either { a g } =  
{2 ,2  ..... 2 ,0} or {ag} = { 3 , 2 , 2 , . . . , 2 ,  1, 1, 1}. 

Case 1. ({as} = {2, 2 , . . . , 2 , 0 } ) .  Since u = 2~,(x o +  .-. + x f _ ~ )  + 
P'q)(xf_~+l), where P' is the unique subgroup  of  order  2 in H and the 
coefficients of  P 'cp(xy_~+l)  are 0 and 1, we conclude that  Ixf_r+ll=O. 
Together  with Ixol/> 1, by compar ing  the coefficient of  1 in the equat ion 
p(D) p ( D ) ( i )  = 2fa+~2G/U+n, we get I X o l =  1, Ix~[ = Ix2[ . . . . .  
Ixy ~-11 = 0 ,  and Ixf ~1 = 2 Y a + 2 f ( u - l ~ +  ""  + 2 f  Hence,  

p(D) = 2fah + 2 f d - f +  ~Pf ~A, (4.3) 

where h ~ G/U, A c G/U, and no two elements in {h} u A are in the same 
coset of  Py ~. 
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Case 2. ( { a g } = { 3 , 2 , 2 , . . . , 2 , 1 , 1 , 1 } ) . S i n c e u = 2 ~ o ( x 0 + . . .  + Xf_r )+ 
P'rp(xf_,+ t) and the coefficients of P'~ (x f_  r+l) are 0 and 1, it is clear that 
[XS_r+I[ =2 .  Since ag= 3 for one g eH ,  there is a nonempty intersection 
between P'~(Xf--r+l) and exactly one ~o(xj) for O<~j<<,f--r. Note that 
[c,o(xj) m P ' ~ ( X f _ r + l ) [ = l  and, hence, I x jmPf_~+lx f_ , .+ l ] - -1 .  So the 
coefficient of 1 in 

(2fU--Jpjxj)(2fd-- f +~-- 1pf _ r + 1 X f - - r  + 1 ) -~- 22fd-- f +r--  1 p f  _ r  + 1 X j X f - - r  + 1 

is equal to 22fd--f+r 1. By comparing the coefficient of 1 in 
p(D) p(D) (-1) = 2fd+~2G/U + n, we get 

2fd[xo [ + 2 2 f d -  l [ x  1 [ -t- " ' "  d- 2 2 f d - f +  r [ x f _  r [ "}- 2 2 f d - - f  + r -- 1 . 2  

d- 2 2 f d - f +  r--  1 . 2  = 2fd+ ~2 + n.  

With Z ]xi[ = 2 f d + 2 f ( d - 1 ) +  "'" + 2 f +  1 and lXo[ ~> 1, we obtain ]Xo] = 1, 
[Xl [  = IX2] . . . . .  I X f _ r _ l ]  =0,  and [xf_r] ~-2 fd - [ -2 f (d - -1 ) - '~  - ' ' '  + 2 f - - 2 .  

Thus 

p ( D ) = Z f d h + z f d - f + ~ P f  y A + Z f d - S + r - l P s _ ~ + i B ,  (4.4) 

where h e G / U , A ,  B c G / U ,  and no two elements in {h} •A are in the 
same coset of P F - r  

By (4.3) and (4.4), we apply Lemma 2.4 with ~ = 2  fd, e= 
(2 s _  1)2fd-f+Y+ t, and e' = 3 . 2  f d - f + r + s -  1 for s = 1, 2, ..., f - -  r - -  1. Then 
the theorem follows. | 

Theorem 4.1 gives us the following corollary. 

COROLLARY 4.2. Let G be an abelian group of  order 2f(d+l)(2fd+ 
2f(d--1)-b ".. + 2 f  + 2), where f>~ 2 and 2 is self-conjugate modulo exp(G). I f  
G contains a McFarland difference set, then 

(i) exp(P) ~<max{2 f - l ,  4}; and 

(ii) if  exp(P) = 2 f -r+1,  where log2( r+  1) < f - r  ~< f - 2 ,  then 
rank(P) ~< r + 1 and d<~ r ( f -  r ) / f  

Proof Let exp(P) --- 2 s - r +  1, where 3 ~ < f -  r + 1 ~<f+ 1, and rank(P) = t. 
Assume f -  r > log 2(r+ 1). Then 2 s - r+1  - r > 2  s - r .  If t>~r+2, we obtain 
a contradiction by applying Theorem 4.1 with s = 1, m = r + 1, and 5~ bi = 
r + 1. So we have t <~ r + 1. By (2 f - r +  1)r+ 1 ~> (exp(p))rank(e> >~ 2fa+f+ 1, we 
get d<<,r(f--r) / f  and (ii) follows. Finally, for (i), if r~< 1 and f>~3, then 
d =  0, which is impossible. | 
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More restrictions will be obtained if we consider other values of s and m 
in (4.1). Furthermore, with a slightly improved version of Lemma 2.4, we 
can even get some inequalities better than (4.1) and, hence, obtain some 
better bounds. However, it is too tedious to list them here. 

COROLLARY 4.3. Let G be an abelian group of order 2f¢a+l)(2fa+ 
2f(a-1)+ ... + 2 f + 2 ) ,  where 2~>f~>3 and 2 is self-conjugate modulo 
exp(G). I f  G contains a McFarland difference set, then the exponent of the 
Sylow 2-subgroup of G cannot exceed 4. 

For f = 4 ,  if 2 is self-conjugate modulo exp(G), exp(P)~>8 and G 
contains a McFarland difference set, then by Corollary 4.2, we have d =  1 
and G can only be either (7/8) 3 x (7/3) 2 or (7/8) 3 x Zs. The existence in these 
two cases is unknown. 

Similar to Section 3, the proof of Theorem 4.1 can certainly be 
generalized to tackle other difference sets. Instead of proving a general 
theorem analogous to Theorem 4.1, we prove the nonexistence of some 
particular difference sets. 

THEOREM 4.4. No (320, 88, 24)-difference set exists in any abelian group 
of exponent at least 40. 

Proof By [9, Theorem 4.33], no (320, 88, 24)-difference set exists in 
any abelian group of exponent at least 80. Assume there exists such a 
difference set D in an abelian group G with exponent 40. Let U be any 
subgroup of G of order 8 such that G/U is cyclic and let p: G ~ G/U be the 
canonical epimorphism. By the same argument as before, we have 

p(D) = 8x0 + 4PlX 1 + 2P2x 2 + P3X3, (4.5) 

where Pi and x~ are chosen as described in Lemma 2.3. 
Let q): G/U~H=(G/U) /P2  be the canonical epimorphism. As in the 

proof of Theorem 4.1, with u=cpop(D)/4=Zg~I_ragg , we have {ag} = 
{4,2,2 ..... 2} or { a g } = { 3 , 3 , 3 , 2 , 2  .... ,2 ,1} .  

Case 1. ( { a g } = { 4 , 2 , 2  ..... 2}): For  this case, we have [x01=l ,  
Ixl[=O, Ix2[= 10, and Ix3t=0.  But then the element of Xo must be in 
the same coset of P2 as some element of x 2 which is not possible as the 
coefficients of p(D) cannot exceed 8. 

Case 2. {ag} = {3, 3, 3, 2, 2,...,2, 1}: Using the same argument as 
Case2 of the proof  of Theorem 4.1, we obtain [Xg] = 1, [Xl[=0 , IX21 =8,  
and Ix31= 2 and, hence, (4.5) becomes 

p(D) = 8h + 2P2A + P3B, (4.6) 
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where hsG/U,A, BcG/U, and no two elements in {h} wA are in the 
same coset of  P2" Now,  we choose another subgroup U 1 of G of  order 8 
such that G/U, is cyclic and I U ~  U I [ =  4. By the argument above, there is 
a coset Ulg which is completely contained in D. However,  since Ulg can 
be written as a union of two cosets of  Uc~ Ut, we must have at least two 
coefficients ~> 4 in p(D). This contradicts (4.6). | 
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