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Abstract. Let q be a power of a prime p, let k be a nontrivial divisor of q−1 and
write e = (q−1)/k. We study upper bounds for cyclotomic numbers (a, b) of order

e over the finite field Fq . A general result of our study is that (a, b) 6 3 for all a, b ∈
Z if p > (

√
14)k/ordk(p). More conclusive results will be obtained through separate

investigation of the five types of cyclotomic numbers: (0, 0), (0, a), (a, 0), (a, a) and
(a, b), where a 6= b and a, b ∈ {1, . . . , e−1}. The main idea we use is to transform

equations over Fq into equations over the field of complex numbers on which we

have more information. A major tool for the improvements we obtain over known
results is new upper bounds on the norm of cyclotomic integers.

1. Introduction and Definitions

First, we fix some notation and definitions. By q we denote a power of a prime p. Let
e and k be nontrivial divisors of q − 1 such that q = ek + 1. Let g denote a primitive
element of the finite field Fq. For each a ∈ Z, write

(1) Ca = {ga, ga+e, ..., ga+(k−1)e}.
As Ca = Ca+e, we only need to consider the sets Ca with a ∈ {0, 1, . . . , e− 1}.

Definition 1.1. For a, b ∈ {0, 1, ..., e− 1}, define (a, b) as the number of solutions to
the equation

1 + x = y, x ∈ Ca, y ∈ Cb.
Equivalently, this is the number of pairs (r, s) with 0 6 r, s 6 k − 1 such that

(2) 1 + ga+re = gb+se.

The number (a, b) is called a cyclotomic number of order e.

Cyclotomic numbers have been studied for decades by many authors, as they have
applications in various areas. These numbers can be used to compute Jacobi sums,
and vice versa, see [12]. Vandiver [10], [15], [16], [17], [18] related cyclotomic numbers
to Fermat’s Last Theorem and proved the theorem for exponents 6 2000. Cyclotomic
classes Ca were used by Paley [11] in 1993 to construct difference sets. This approach
was later employed by many other authors. Storer’s book [14] summarizes the results
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in this direction up to 1967. In the 1960s to 1980s, Baumert [1], Evans [6], Lehmer [9],
Whiteman [20, 21, 19], et al. explicitly determined all numbers (a, b) of orders e 6 12
and e = 14, 15, 16, 18, 20, 24. See [2, p.152] for more details.

Under asymptotic conditions, cyclotomic numbers exhibit an interesting uniform
behaviour. Katre [7] proved that, for fixed e and q → ∞, we have (a, b) ≈ q/e2 for
all a, b ∈ Z. On the other hand, fixing k, it was proved by Betshumiya et al. [3] that
(0, 0) 6 2 if p is sufficiently large compared to k. In [3], the condition “sufficiently
large” is not explicitly specified and, in fact, the lower bound on p required for their
method is difficult to write down explicitly. The goal of our paper is to find a simple
and improved lower bound on p which guarantees that all numbers (a, b) are small.
The following is our main result.

Theorem 1.2. Let q be a power of a prime p. Let e and k be nontrivial divisors of
q − 1 such that q = ek + 1. If

p >
(√

14
)k/ ordk(p)

,

then (a, b) 6 3 for all a, b ∈ Z.

If k is a prime, we obtain a better bound as follows.

Theorem 1.3. Let q be a power of a prime p. Let e and k be nontrivial divisors of
q − 1 such that k is a prime and q = ek + 1. If

p > (3k−1k)1/ ordk(p),

then

(a, b) 6 2 for all a, b ∈ Z.

We continue with introducing some notation and results we need later. For a pos-
itive integer k, let ζk denote a complex primitive kth root of unity. A square matrix
is called circulant if each of its rows (except the first) is obtained from the previous
row by shifting the entries one position to the right and moving the last entry to the
front. Moreover, given a matrix H, we denote the conjugate transpose of H by H∗.
The following result about eigenvalues and eigenvectors of a circulant matrix is well
known, see [5], for example.

Remark 1.4. Let k be a positive integer and let M be a circulant matrix with the first
row (a0, . . . , ak−1) where a0, . . . , ak−1 ∈ C. Then the eigenvalues and eigenvectors of
M are

λi =

k−1∑
j=0

ajζ
ij
k , Xi = (1, ζik, . . . , ζ

i(k−1)
k )T for 0 6 i 6 k − 1.

In the next section, we review some results on vanishing sums of roots of unity
which will be needed for our study. The following terminology was used in [4]. Let
T be a finite set of complex roots of unity and let cα, α ∈ T , be nonzero rational
numbers. The sum

S =
∑
α∈T

cαα, cα ∈ Qr {0},

is called a vanishing sum of roots of unity if S = 0. We say that S is nonempty
if T 6= ∅. The length l(S) is the cardinality of T . The exponent e(S) denotes the
least common multiple of all orders of the roots of unity α ∈ T . We say that S is
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similar to any sum of the form k · βS′, where k ∈ Q r {0} and β is a root of unity
and S′ has the form

S′ =
∑
α∈T

(εαcα)(εαα), where εα ∈ {1,−1}.

We call the vanishing sum S minimal if S contains no vanishing subsum. The sum
S is a reduced sum if α = 1 for some α ∈ T .

2. Vanishing Sums of Roots of Unity

The following result states that a minimal vanishing sum of roots of unity is similar
to a vanishing sum whose order is squarefree, see [8, Corollary 3.2] or [4, Theorem 1]
for a proof.

Remark 2.1. If S = α1 + · · ·+αn is a minimal vanishing sum of mth roots of unity,
then after multiplying S by a suitable mth root of unity, we may assume that all αi’s
are m0th roots of unity, where m0 is the largest square-free divisor of m.

The next result is part of [4, Theorem 6] and will be useful for our study.

Remark 2.2. Let S be a nonempty vanishing sum of length at most 6 that does not
contain subsums similar to 1 + (−1) or 1 + ζ3 + ζ23 . Then S is similar to one of the
sums

1 + ζ5 + ζ25 + ζ35 + ζ45 ,

−ζ3 − ζ23 + ζ5 + ζ25 + ζ35 + ζ45 .

3. Bounds on Norms of Cyclotomic Integers

A cyclotomic integer (not to be confused with a cyclotomic number) is an algebraic
integer in a cyclotomic field. Every cyclotomic integer can be written as a sum of
complex roots of unity. The improvements over the previously known results we obtain
arise from new bounds on absolute norms of cyclotomic integers. First, we discuss a
general norm bound.

Note that every cyclotomic integer in Q(ζk) can be written as f(ζk), where f(x) =∑k−1
i=0 aix

i is a polynomial with integer coefficients. Since |f(ζjk)| 6
∑k−1
i=0 |ai|, an

obvious bound for the absolute norm of f(ζk) is

(3) |N(f(ζk))| =

∣∣∣∣∣∣
∏

j:gcd(j,k)=1

f(ζjk)

∣∣∣∣∣∣ 6
(
k−1∑
i=0

|ai|

)ϕ(k)
.

In this section, we provide some stronger bounds that are suitable for the applications
to cyclotomic numbers we are interested in.

Theorem 3.1. Let k be a positive integer, let f(x) =
∑k−1
i=0 aix

i ∈ Z[x] and let N
denote the absolute norm of Q(ζk). Then

(4) |N(f(ζk))| 6

(
k

ϕ(k)

k−1∑
i=0

a2i

)ϕ(k)/2
.
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In particular, if
∑k−1
i=0 a

2
i > 3, then

(5) |N(f(ζk))| 6

(
k−1∑
i=0

a2i

)k/2
.

Proof. We have
k−1∑
h=0

|f(ζhk )|2 =

k−1∑
i,j,h=0

aiajζ
(i−j)h
k = k

k−1∑
i=0

a2i .

By the inequality between arithmetic and geometric means, we have

|N(f(ζk))| = |
∏

(h,k)=1

f(ζhk )| 6

(∑
(h,k)=1 |f(ζhk )|2

ϕ(k)

)ϕ(k)/2
6

(
k

ϕ(k)

k−1∑
i=0

a2i

)ϕ(k)/2
,

which proves (4).

Now assume that S =
∑k−1
i=0 a

2
i > 3. Consider function g(x) = (kS/x)x/2 on interval

[1, k]. We have g′(x) = (kS/x)x/2 (ln(kS/x)/2− 1/2) > 0 for x ∈ [1, k], so g(x) is
increasing on [1, k]. We obtain

|N(f(ζk))| 6 g(ϕ(k)) 6 g(k) = Sk/2.

�

In the case k is a prime, we obtain a different bound on the norm of f(ζk) in the
next theorem. This bound is better than (4) in certain situations.

For the rest of this section, we assume that k is a prime. For f(x) =
∑k−1
i=0 aix

i,
let M denote the circulant matrix with first row (a0, . . . , ak−1) and let N denote the
(k−1)× (k−1) matrix obtained from M by deleting its first row and its first column.
To find an upper bound for |N(f(ζk))|, we first find a relation between N(f(ζk)) and
det(M) or det(N). Then an upper bound for |det(M)| or |det(N)| will give us an
upper bound for |N(f(ζk))|.

Bounds for the determinant of a matrix are abundant in the literature. We only
need the following result by Schinzel [13].

Remark 3.2. Let N = (aij)
n−1
i,j=0 be an n × n matrix with real entries. For i =

0, 1, ..., n−1, write N+
i =

∑n−1
j=0 max{0, aij} and N−i =

∑n−1
j=0 max{0,−aij}. We have

(6) |det(N)| 6
n−1∏
i=0

max{N+
i , N

−
i }.

Proposition 3.3. Using the notation introduced above, we have the following

(a) If
∑k−1
i=0 ai 6= 0, then

(7) N(f(ζk)) =
det(M)∑k−1
i=0 ai

.

(b) If
∑k−1
i=0 ai = 0, then

(8) N(f(ζk)) = k det(N).
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Proof. For each 0 6 i 6 k − 1, define a column vector

Xi =
1√
k

(1, ζik, ζ
2i
k , ..., ζ

(k−1)i
k )T .

By Result 1.4, the eigenvalues of M are λi = f(ζik) and the corresponding eigenvectors
are Xi, 0 6 i 6 k − 1. Since k is a prime, we have

(9) N(f(ζk)) =

k−1∏
i=1

f(ζik) =

k−1∏
i=1

λi.

Note that det(M) =
∏k−1
i=0 λi. If λ0 =

∑k−1
i=0 ai 6= 0, then (7) is clear.

Suppose that λ0 = 0. Note that X∗i Xj = 1 if i = j and X∗i Xj = 0 if i 6= j. Let Q
be the k × k matrix with columns X0, ..., Xk−1, then Q−1 is the k × k matrix with
rows X∗0 , . . . , X

∗
k−1. We have

M = Q


λ0

λ1
. . .

λk−1

Q−1.

By the definition of N , we have

N = Q1


λ0

λ1
. . .

λk−1

Q
′

1,

where Q1 is the (k − 1)× k matrix formed by the last k − 1 rows of Q and Q
′

1 is the
k × (k − 1) matrix formed by the last k − 1 columns of Q−1. Since λ0 = 0, we have

N = Q2

λ1 . . .

λk−1

Q
′

2,

where Q2 is the (k− 1)× (k− 1) matrix formed by the last k− 1 columns of Q1 and
Q2
′ is the matrix formed by the last k − 1 rows of Q′1. We obtain

det(N) = det(Q2Q
′

2)

k−1∏
i=1

λi.

By (9), the equation (8) is equivalent to det(Q2Q
′

2) = 1/k. Note that (Q
′

2)ij = (Q2)ij
for any i, j, as Q2 and Q

′

2 are submatrices of Q and Q−1, respectively. More precisely,
we have

Q2 =
1√
k


ζk ζ2k · · · ζk−1k

ζ2k ζ4k · · · ζ
2(k−1)
k

. . .

ζk−1k ζ
2(k−1)
k · · · ζ(k−1)(k−1)k

 .

The (i, j)th entry of Q2Q
′

2 is

1

k

k−1∑
t=1

ζ
(i−j)t
k =

{
(k − 1)/k if i = j

−1/k if i 6= j
.
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Hence Q2Q
′

2 is a circulant matrix of size (k − 1) × (k − 1) with the first row is

((k − 1)/k,−1/k, ...,−1/k). By Result 1.4, the eigenvalues of Q2Q
′

2 are

βj =
1

k
(k − 1−

k−2∑
i=1

ζijk−1) =

{
1/k if j = 0,

1 if 1 6 j 6 k − 2.

We obtain

det(Q2Q
′

2) =

k−2∏
j=0

βj = 1/k.

�

Combining Result 3.2 and Proposition 3.3, we get the following norm bound, which
in numerous cases is stronger than Theorem 3.1.

Corollary 3.4. Let k be a prime and let f(x) =
∑k−1
i=0 aix

i ∈ Z[x]. Write A+ =∑n−1
j=0 max{0, aj}, A− =

∑n−1
j=0 max{0, aj}, and A = max{A+, A−}.

(a) If
∑k−1
i=0 ai 6= 0, then

|N(f(ζk))| 6 Ak

|
∑k−1
i=0 ai|

.

(b) If
∑k−1
i=0 ai = 0, then

|N(f(ζk))| 6 kAk−1.

4. Equations over Fq and C
The following theorem shows that under some condition on the characteristic of the
finite field Fq, we can transform certain equations over Fq to equations over the field
of complex numbers C, and vice versa.

Theorem 4.1. Let q be a power of a prime p and let e, k be nontrivial divisors of q−1

such that q = ek + 1. Let g be a primitive element of Fq and let f(x) =
∑k−1
i=0 aix

i ∈
Z[x]. Suppose that

(10) p >

(
k

ϕ(k)

k−1∑
i=0

a2i

) ϕ(k)
2ordk(p)

,

then f(ge) = 0 over Fq if and only if f(ζk) = 0 over C.

In particular, the same conclusion holds if
∑k−1
i=0 a

2
i > 3 and

(11) p >

(
k−1∑
i=0

a2i

) k
2 ordk(p)

.

Proof. Let p be a prime ideal of Z[ζk] that contains p. Write q = pn and b = ordk(p).
Note that b divides n because q = pn ≡ 1 (mod k). Since Z[ζk]/p is a finite field
extension of Z/pZ of order b, we have Z[ζk]/p ∼= Fpb . Let φ : Fpb → Z[ζk]/p be an
isomorphism. Note that ge is a primitive kth root of unity in Fpb , so φ(ge) is also a

primitive kth root of unity in Z[ζk]/p, which implies φ(ge) = ζjk + p for some integer
j coprime to k. We have

(12) f(ge) = 0 over Fq ⇔ φ(f(ge)) = f(ζjk) + p = 0 in Z[ζk]/p⇔ f(ζjk) ∈ p.

Suppose that f(ζk) = 0 over C. We have f(ζjk) = 0, as j is coprime to k. By (12),

f(ge) = 0 over Fq. Now assume that f(ge) = 0 over Fq. Note that N(p) = pb, where
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by N(p) we mean the norm of the ideal p in Z[ζk]. By (12), we have N(f(ζjk)) ≡ 0

(mod pb). As j is coprime to k, we have N(f(ζjk)) = N(f(ζk)). Thus

(13) N(f(ζk)) ≡ 0 (mod pb).

On the other hand, by Theorem 3.1 we have

(14) |N(f(ζk))| 6

(
k

ϕ(k)

k−1∑
i=0

a2i

)ϕ(k)/2
.

If f(ζk) 6= 0, then N(f(ζk)) 6= 0 and (13), (14) imply

pb 6

(
k

ϕ(k)

k−1∑
i=0

a2i

)ϕ(k)/2
,

contradicting (10). Therefore, f(ζk) = 0.

Lastly, the conclusion for the case
∑k−1
i=0 a

2
i > 3 follows from (5). �

The next theorem follows from Corollary 3.4 in the same way as Theorem 4.1
follows from Theorem 3.1, so we skip the proof.

Theorem 4.2. Let q be a power of a prime p and let e, k be nontrivial divisors of
q−1 such that q = ek+1 and k is a prime. Let g be a primitive element of Fq and let

f(x) =
∑k−1
i=0 aix

i ∈ Z[x]. Write A+ =
∑n−1
j=0 max{0, aj}, A− =

∑n−1
j=0 max{0, aj},

and A = max{A+, A−}. Suppose that one of the following conditions holds.

(a)
∑k−1
i=0 ai 6= 0 and

(15) pordk(p) >
Ak

|
∑k−1
i=0 ai|

.

(b)
∑k−1
i=0 ai = 0 and

(16) pordk(p) > kAk−1.

Then we have f(ge) = 0 over Fq if and only if f(ζk) = 0 over C.

5. Upper Bounds for Cyclotomic Numbers

In this section, we apply Theorem 4.1 to derive upper bounds for cyclotomic numbers
(a, b). In Theorem 3.1, the upper bound (k/ϕ(k)

∑
a2i )

ϕ(k)/2 is largest when ϕ(k) is
approximately k. Thus, in this case, and in particular when k is a prime, an improved
bound is desirable. Theorem 4.2 will come into play in this situation and we will
discuss this case separately in the last section.

Note that (a, b) = (a′, b′) whenever a ≡ a′ (mod e) and b ≡ b′ (mod e). From now
on, we always assume that a, b ∈ {0, 1, . . . , e−1}. We are now going to prove Theorem
1.2. Our proof is divided into five cases: We separately investigate cyclotomic numbers
(0, 0), (0, a), (a, 0), (a, a) and (a, b) where a 6= b and a, b ∈ {1, . . . , e − 1}. In fact, in
each case, we obtain a stronger result than Theorem 1.2, which is just a simplified
consequence of the analysis of the different cases.
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Theorem 5.1. If

(17) p >

(
3k

ϕ(k)

) ϕ(k)
2 ordk(p)

,

then

(18) (0, 0) =


0 if k 6≡ 0 (mod 6) and 2 6∈ C0,

1 if k 6≡ 0 (mod 6) and 2 ∈ C0,

2 if k ≡ 0 (mod 6) and 2 6∈ C0,

3 if k ≡ 0 (mod 6) and 2 ∈ C0.

Proof. Suppose that there are 0 6 a, b 6 k − 1 with 1 + gae = gbe. Then 2 ∈ C0 if
a = 0. Thus in the case 2 ∈ C0, there is one solution to 1 + gae = gbe in which a = 0.

From now on, suppose that a 6= 0 and 1 + gae = gbe. We have b 6∈ {0, a} and
f(x) = 1 +xa−xb is a polynomial of degree at most k−1 with two coefficients 1, one

coefficient −1 and all other coefficients 0. Write f(x) =
∑k−1
i=0 aix

i, then
∑k−1
i=0 a

2
i = 3

and f(ge) = 0. By (17) and Theorem 4.1, we have

f(ζk) = 1 + ζak − ζbk = 0.

By Result 2.2, we obtain 1 + ζak − ζbk = 1 + ζ3 + ζ23 , which happens only when 6 | k
and (a, b) ∈ {(k/3, k/6), (2k/3, 5k/6)}, proving (18). �

Note that by (11), Theorem 5.1 still holds when (17) is replaced by p > 3k/(2ordk(p)).
This shows that Theorem 1.2 holds in the case (a, b) = (0, 0).

We mentioned in the introduction that Vandiver has used cyclotomic numbers to
obtain results on Fermat’s Last Theorem. The next Corollary gives an example for
this kind of argument. Considering the Diophantine equation xe + ye = ze modulo p,
Theorem 5.1 implies the following.

Corollary 5.2. If p is a prime with p = ek + 1 > 3k/2, then xe + ye = ze with
x, y, z ∈ Z , implies either 2 is an eth power modulo p or xyz ≡ 0 (mod p).

For example, let p = 1301 = 100 · 13 + 1 and let e = 100, k = 13. Note that 2 is
not a 100th power modulo 1301. Therefore, if x100 + y100 ≡ z100 (mod 1301), then
xyz ≡ 0 (mod 1301).

Theorem 5.3. Let a ∈ {1, . . . , e− 1}. If

(19) p >

(
4k

ϕ(k)

) ϕ(k)
2 ordk(p)

,

then

(20) (0, a) 6

{
3 if 2 ∈ Ca,
2 if 2 6∈ Ca.

Proof. Note that 1 + gie = gje+a implies 1 + g−ie = g(j−i)e+a, so each solution (i, j)
to 1 + gie = gje+a induces a solution (−i, j− i) (calculation is modulo k) to the same
equation, two of which are different if and only if i 6= 0. Moreover if i = 0, then
2 = gje+a ∈ Ca and there is one solution to 1 + gie = gje+a in which i = 0.

Suppose that 2 ∈ Ca and (0, a) > 4. There are two different pairs (i1, j1), (i2, j2)
with

(21) i1 6= 0, i2 6= 0, (i2, j2) 6= (−i1, j1 − i1) and (i1, j1) 6= (−i2, j2 − i2)
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such that 1 + gi1e = gj1e+a and 1 + gi2e = gj2e+a. We obtain

(22) 1 + gi1e − g(j1−j2)e − g(j1−j2+i2)e = 0.

In (22), the numbers 0, i1, j1−j2 and j1−j2+i2 are pairwise different. Indeed, by (21),
we need only to show that i1 6= j1 − j2 + i2. If i1 − i2 = j1 − j2, then by subtracting
two equations 1 + gi1e = gj1e+a and 1 + gi2e = gj2e+a, we obtain gi2e = gj2e+a, a
contradiction as C0 ∩ Ca = ∅.

By (19) and Theorem 4.1, the equation (22) implies

1 + ζi1k − ζ
j1−j2
k − ζj1−j2+i2k = 0.

By Result 2.2, this is possible only when the sum on left-hand side cancels in pairs.
This happens only when “2 | k and i1 = i2 = k/2” or “j1 = j2 and i1 = i2”, both of
which are not possible. Therefore, we obtain (0, a) 6 3 if 2 ∈ Ca.

Next, suppose that 2 6∈ Ca and (0, a) > 3. Note that for any 0 6 i, j 6 k − 1 with
1 + gie = gje+a, we have i 6= 0. There exist two pairs (i1, j1) and (i2, j2) with

i1 6= 0, i2 6= 0, (i2, j2) 6= (−i1, j1 − i1) and (i1, j1) 6= (−i2, j2 − i2)

such that 1 + gi1e = gj1e+a and 1 + gi2e = gj2e+a. We obtain a contradiction by the
same argument as in the previous case. �

Theorem 5.4. Let a ∈ {1, . . . , e− 1}. If

(23) p >

(
4k

ϕ(k)

) ϕ(k)
2 ordk(p)

,

then

(24) (a, 0) 6


3 if 2 ∈ Ca and 2 | k,
2 if 2 6∈ Ca and 2 | k,
2 if 2 - k.

Proof. First, assume that k is even. If 1+gie+a = gje, then 1+g(k/2+j)e = g(k/2+i)e+a,
as gek/2 = −1. This implies (a, 0) = (0, a) and the conclusion follows from Theorem
5.3.

From now on, we assume that k is odd and (a, 0) > 3. For t = 1, 2, 3, let (it, jt)
be three different pairs with 0 6 it, jt 6 k − 1 and 1 + gite+a = gjte for t = 1, 2, 3.
First, note that jt 6= 0 for all t because 0 6∈ Ca. Moreover, we obtain the following
two equations which result from 1 + gite+a = gjte for t = 1, 2, 3

(25) 1− gj1e − g(i1−i2)e + g(i1−i2+j2)e = 0, and

(26) 1− gj1e − g(i1−i3)e + g(i1−i3+j3)e = 0.

Suppose that there are four distinct terms in one of the equations above, assume that
is (25). By (23) and Theorem 4.1, we have

1− ζj1k − ζ
i1−i2
k + ζi1−i2+j2k = 0.

By Result 2.2, the left-hand-side sum cancels in pairs, which is impossible because
k is odd and all terms in the sum are distinct. Thus, we cannot have all four terms
different in both (25) and (26). In (25), we have either i1−i2 = j1 or i1−i2+j2 = 0. In
(26), we have either i1−i3 = j1 or i1−i3+j3 = 0. Due to the difference between three
pairs (it, jt), t = 1, 2, 3, we can only have two cases: i1 − i2 = j1 and i1 − i3 + j3 = 0,
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or i1 − i2 + j2 = 0 and i1 − i3 = 0. The following argument works the same for both
cases. Assuming that the first case happens, we have, by (25) and (26),

1− 2gj1e + g(j1+j2)e = 0 and 2− gj1e − g−j3e = 0,

or equivalently

(27) 2− g−j1e − gj2e = 0 and 2− gj1e − g−j3e = 0.

Hence g−j1e + gj2e − gj1e − g−j3e = 0, which implies

(28) 1 + g(j1+j2)e − g2j1e − g(j1−j3)e = 0.

We claim that the numbers 0, j1 + j2, 2j1, j1 − j3 are pairwise different. As j1, j2, j3
are pairwise different, the claim is equivalent to 2j1 6= 0, j1 + j2 6= 0, j2 + j3 6= 0 and
j1 + j3 6= 0. Firstly, k odd and j1 6= 0 implies 2j1 6= 0. Secondly, if j1 + j2 = 0, then
the first equation in (27) implies 2− 2g−j1e = 0, so j1 = 0 (note that p > 2 by (23)),
impossible. Thirdly, if j2 + j3 = 0, then (28) implies 1− g2j1e = 0, so j1 = 0. Lastly,
if j1 + j3 = 0, then the second equation in (27) implies 2 − 2gj1e = 0, so j1 = 0, a
contradiction. Now by (23) and Theorem 4.1, the equation (28) implies

1 + ζ
(j1−j2)e
k − ζ2j1k − ζ(j1−j3)ek = 0.

By Result 2.2, the left-hand-side sum cancels in pairs, impossible as k is odd and the
terms 0, j1 − j2, 2j1, j1 − j3 are pairwise different. �

Theorem 5.5. Let a ∈ {1, ..., e− 1}. If

(29) p >

(
4k

ϕ(k)

) ϕ(k)
2 ordk(p)

,

then

(30) (a, a) 6


3 if 2 ∈ Ca and 2 | k,
2 if 2 6∈ Ca and 2 | k,
2 if 2 - k.

Proof. For each 0 6 i, j 6 k− 1 with 1 + gie+a = gje+a, we have 1 + g−ie−a = g(j−i)e.
Thus (a, a) = (−a, 0) and the conclusion follows directly from Theorem 5.4. �

Theorem 5.6. Let a 6= b ∈ {1, ..., e− 1}. If

(31) p >

(
14k

ϕ(k)

) ϕ(k)
2 ordk(p)

,

then

(a, b) 6 2.

This theorem is proved by contradiction. Let (i1, j1), (i2, j2), (i3, j3) be three differ-
ent pairs with 0 6 it, jt 6 k − 1 and 1 + gite+a = gjte+b for t = 1, 2, 3. The following
lemma states a simple relation between it’s and jt’s which will be used repeatedly
later.

Lemma 5.7. Let it, jt, t = 1, 2, 3, be defined as above, then the numbers i1 − j1, i2 −
j2, i3 − j3 are pairwise different.
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Proof. Suppose that i1 − j1 = i2 − j2. We have i1 − i2 = j1 − j2. Subtracting two
equations 1 + gi1e+a = gj1e+b and 1 + gi2e+a = gj2e+b, we obtain

gi2e+a = gj2e+b,

a contradiction as Ca ∩ Cb = ∅. �

A major part in the proof of Theorem 5.6 is proving that the sum ζi1+j2k + ζi2+j3k +

ζi3+j1k − ζi1+j3k − ζi2+j1k − ζi3+j2k , is nonzero, where it, jt, t = 1, 2, 3, are given as above.
We prove this result in the following proposition.

Proposition 5.8. Let it, jt, t = 1, 2, 3, be integers such that the it’s are pairwise
different modulo k, the jt’s are pairwise different modulo k and the it−jt’s are pairwise
different modulo k. Then the following sum is nonzero

T = ζi1+j2k + ζi2+j3k + ζi3+j1k − ζi1+j3k − ζi2+j1k − ζi3+j2k .

Proof. Suppose that T = 0. Since T is a vanishing sum of roots of unity of length
at most 6, Result 2.2 implies that T contains a subsum similar to 1 + (−1), or T
contains two subsums each of which is similar to 1 + ζ3 + ζ23 , or T itself is similar to
either 1 + ζ5 + ζ25 + ζ35 + ζ45 or −ζ3 − ζ23 + ζ5 + ζ25 + ζ35 + ζ45 .

Case 1. T contains a subsum similar to 1 + (−1).
Discarding the empty sum, the new T is a vanishing sum of 4 roots of unity. By Result
2.2 again, T cancels in pairs. Thus, the original sum T cancels in pairs. Note that none
of the first three terms in T is canceled by any of the last three terms. Otherwise,
let’s say ζi1+j2k is canceled by one of the last three terms. By the difference between
the it’s and jt’s, we can only have i1 + j2 = i2 + j1, which implies i1 − j1 = i2 − j2,
contradicting Lemma 5.7. Thus, the first three terms of T cancel in pairs, impossible.

Case 2. T is similar to 1 + ζ5 + ζ25 + ζ35 + ζ45 .
Note that by Case 1, the sets {i1 + j2, i2 + j3, i3 + j1} and {i1 + j3, i2 + j1, i3 + j2}
are disjoint. As T has length 5, we can assume that the first two terms in T are the
same, say T = 2ζi1+j2k + ζi3+j1k − ζi1+j3k − ζi2+j1k − ζi3+j2k . Hence, T is similar to the

sum 2 + ζi3+j1−i1−j2k − ζj3−j2k − ζi2+j1−i1−j2k − ζi3−i1k . It is impossible that this sum
has the form 1 + ζ5 + ζ25 + ζ35 + ζ45 .

Case 3. T contains two subsums each of which is similar to 1 + ζ3 + ζ23 .
Due to symmetry, we can consider two possibilities for these two subsums.

Subcase 1. The subsums are ζi1+j2k + ζi2+j3k + ζi3+j1k and ζi1+j3k + ζi2+j1k + ζi3+j2k .

We obtain 1 + ζi2+j3−i1−j2k + ζi3+j1−i1−j2k = 1 + ζi2+j1−i1−j3k + ζi3+j2−i1−j3k and both
sums have the form 1 + ζ3 + ζ23 . Thus 3 | k,

(32) {i2 + j3 − i1 − j2, i3 + j1 − i1 − j2} = {k/3, 2k/3}, and

(33) {i2 + j1 − i1 − j3, i3 + j2 − i1 − j3} = {k/3, 2k/3}.
Since k/3 + 2k/3 = 0, we have (i2 + j3 − i1 − j2) + (i3 + j1 − i1 − j2) = 0 and
(i2 + j1 − i1 − j3) + (i3 + j2 − i1 − j3) = 0, which implies

(34) 2(i1 + j2) = (i2 + j3) + (i3 + j1)

and

(35) 2(i1 + j3) = (i2 + j1) + (i3 + j2).

Subtracting (34) and (35), we obtain j2 − j3 = k/3. Now, the equation (32) gives
i2− i1 = 2k/3 and the equation (33) gives i3− i1 = k/3. We obtain i2− i3 = j2− j3 =
k/3, so i2 − j2 = i3 − j3, contradicting Lemma 5.7.
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Subcase 2. The subsums are ζi1+j2k + ζi2+j3k − ζi2+j1k and ζi3+j1k − ζi1+j3k − ζi3+j2k .

We obtain 1 + ζi2+j3−i1−j2k − ζi2+j1−i1−j2k = 1 + ζi3+j2−i1−j3k − ζi3+j1−i1−j3k and both

sums are equal to 1+ζ3+ζ23 . Thus 6 | k and the two sums 1+ζi2+j3−i1−j2k −ζi2+j1−i1−j2k

and 1 + ζi3+j2−i1−j3k − ζi3+j1−i1−j3k have form 1 + ζ
k/3
k − ζk/6k or 1 + ζ

2k/3
k − ζ5k/6k .

If these two sums have the same form, then i2 + j1 − i1 − j2 = i3 + j1 − i1 − j3, so
i2 − j2 = i3 − j3, contradicting Lemma 5.7. Thus, the two sums have different forms.
Noting that k/6 + 2k/3 = 5k/6 and 5k/6 + k/3 = k/6, we have

(i2 + j1 − i1 − j2) + (i3 + j2 − i1 − j3) = (i3 + j1 − i1 − j3),

so i2 = i1, a contradiction.

Case 4. T is similar to −ζ3 − ζ23 + ζ5 + ζ25 + ζ35 + ζ45 .
A reduced sum of this sum is

S′ = 1 + ζ5 + ζ25 + ζ35 − ζ3ζ−15 − ζ23ζ−15 .

Let S be the reduced sum obtained from T as follows

S = 1 + ζi2+j3−i1−j2k + ζi3+j1−i1−j2k − ζj3−j2k − ζi2+j1−i1−j2k − ζi3−i1k .

Dividing by a common divisor if necessary, we can assume that the greatest common
divisor between k and all the exponents of ζk occurring in S is 1. This implies e(S) = k.
In view of Result 2.1, we can assume that k is square-free. Since S and S′ are similar
reduced sums, we have S = S′ζt30 with t ∈ {0, 1, 11, 12, 18, 24} (the possible values of
t are obtained from the fact that 1 appears in S). The 6 possibilities are

(i) S′ = 1 + ζ5 + ζ25 + ζ35 − ζ215 − ζ715.
(ii) S′ζ30 = 1 + ζ23 − ζ815 − ζ1115 − ζ1415 − ζ215.
(iii) S′ζ1130 = 1 + ζ3 − ζ1315 − ζ15 − ζ415 − ζ715
(iv) S′ζ1230 = 1 + ζ25 + ζ35 + ζ45 − ζ815 − ζ1315 .
(v) S′ζ1830 = 1 + ζ5 + ζ35 + ζ45 − ζ1115 − ζ15.

(vi) S′ζ2430 = 1 + ζ5 + ζ25 + ζ45 − ζ1415 − ζ415.
Suppose that k is odd. We obtain k = 15 and the sum S has the exact form as one

of the 6 possibilities above, impossible as the sum of the coefficients in any of these
possibilities is nonzero. Therefore, k is even. Note that e(S′ζt30) = 15 in any case and
we can write ζ30 = −ζ815. So k = 30. Multiplying all the terms in both sides of the
equation S = S′ζt30, we obtain

ζ
2(i2+i3+j1+j3)−4(i1+j2)+15
30 = ζ24+6t

30 ,

which implies 2(i2 + j3 + j1 + j3)− 4(i1 + j2)− 6t ≡ 9 (mod 30), impossible.
�

Proof of Theorem 5.6. Let (i1, j1), (i2, j2), (i3, j3) be three different pairs so that 0 6
it, jt 6 k − 1 and 1 + gite+a = gjte+b for t = 1, 2, 3. We have

ga(gi1e − gi2e) = gb(gj1e − gj2e),

gb(gj1e − gj3e) = ga(gi1e − gi3e).
Multiplying these two equations, we obtain

(36) g(i1+j2)e + g(i2+j3)e + g(i3+j1)e − g(i1+j3)e − g(j2+j1)e − g(i3+j2)e = 0.

Write f(x) =
∑k−1
i=0 aix

i, where f(ge) is equal to the left-hand-side of (36). Each ai is

an integer in [−3, 3] and
∑k−1
i=0 ai = 0 and

∑k−1
i=0 |ai| 6 6. We claim that

∑k−1
i=0 a

2
i 6 14.

Note that
∑k−1
i=0 a

2
i is largest when one term a2i is largest possible and other terms

a2j are smallest possible. First, there are no i 6= j with |ai| = |aj | = 3. Otherwise, we

have g(i1+j2)e = g(i2+j3)e = g(i3+j1)e and g(i1+j3)e = g(i2+j1)e = g(i3+j2)e, and (36)
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implies 3(g(i1+j2)e − g(i1+j3)e) = 0. Since j2 6= j3, we have p = 3, contradicting (31)

because p >
√

14 > 3. Therefore, the sum
∑k−1
i=0 a

2
i is largest when there are three

nonzero terms, one equal to (±3)2, one equal to (±2)2 and one equal to (±1)2, that
is

k−1∑
i=0

a2i 6 9 + 4 + 1 = 14.

Now combining (36), (31) and Theorem 4.1, we obtain

(37) f(ζk) = ζi1+j2k + ζi2+j3k + ζi3+j1k − ζi1+j3k − ζi2+j1k − ζi3+j2k = 0,

which is impossible by Lemma 5.7 and Proposition 5.8.

�

Remark 5.9. Summarizing the results of Theorem 5.1, Theorem 5.3, Theorem 5.4,

Theorem 5.5 and Theorem 5.6, we obtain (a, b) 6 3 if p > (14k/ϕ(k))
ϕ(k)/(2 ordk(p)).

The inequality p >
(√

14
)k/ ordk(p)

is sufficient for p > (14k/ϕ(k))
ϕ(k)/(2 ordk(p)), due

to (11). Thus, Theorem 1.2 is proved.

6. The Case where k is Prime

In this section, we will prove Theorem 1.3. We always assume that k is a prime and
a 6= b ∈ {1, . . . , e− 1}.

Similar to the proof of Theorem 1.2, the proof of Theorem 1.3 is divided into
the cases (0, 0), (0, a), (a, 0), (a, a) and (a, b) and Theorem 1.3 is just a simplified
consequence of the results for the different cases. We remark that only in the cases
(0, a) and (a, b), we obtain better upper bounds for these numbers than the bounds
obtained in the last section. We restate the results for (0, 0), (a, 0) and (a, a) here for
the completeness of the proof.

Corollary 6.1. If

p >

(
3k

k − 1

) k−1
2 ordk(p)

,

then

(0, 0) =

{
0 if 2 6∈ C0,

1 if 2 ∈ C0.

Proof. This theorem is a direct consequence of Theorem 5.1. Note that the case 6 | k
cannot occur because k is a prime. �

Corollary 6.2. If

p >

(
4k

k − 1

) k−1
2 ordk(p)

,

then

(a, 0) 6 2 and (a, a) 6 2.

Proof. If k is even, then k = 2 and it is trivial that (a, 0) 6 2. If k is odd, then (a, 0) 6 2
by Theorem 5.4 (the case k is odd). Lastly, note that (a, a) = (−a, 0) 6 2. �

Algebraic Combinatorics, draft (May 8, 2019) 13



T. D. DUC, K. H. LEUNG, & B. SCHMIDT

Theorem 6.3. If

(38) p >
(
2k−1k

)1/ordk(p)
,

then

(39) (0, a) 6 2.

Proof. Each equation 1 + gie = gje+a induces another equation 1 + g−ie = g(j−i)e+a,
and these equations are different only if i 6= 0. Moreover, if i = 0, then 2 = gje+a ∈ Ca.

First, suppose that 2 ∈ Ca and (0, a) > 3. We have gle+a = 2 for some 0 6 l 6 k−1.
There exist 0 6 i, j 6 k − 1 with i 6= 0 and j 6= l such that 1 + gie = gje+a. Writing
t = j − l, we obtain

1 + gie − 2gte = 0.

Note that the numbers 0, i, t are pairwise different. Write 1+xi−2xt in the polynomial

form f(x) =
∑k−1
i=0 aix

i. Note that, using the notation of Theorem 4.2 (a), we have
A = 2. Thus, by Theorem 4.2 (a) and (38), we have f(ζk) = 0, as f(ge) = 0. Hence

f(ζk) = 1 + ζik − 2ζtk = 0.

By Result 2.2, this happens only when the terms in f(ζk) cancel in pairs or f(ζk) is
similar to 1 + ζ3 + ζ23 , both of which are not possible.

Next, suppose that 2 6∈ Ca and (0, a) > 3. Similar to the proof of Theorem 5.3, we
obtain the equation

1 + gi1e − g(j1−j2)e − g(j1−j2+i2)e = 0,

where the two pairs (i1, j1) and (i2, j2) are different and satisfy

i1 6= 0, i2 6= 0, (i2, j2) 6= (−i1, j1 − i1)} and (i1, j1) 6= (−i2, j2 − i2).

Write f(x) = 1+xi1−xj1−j2−xj1−j2+i2 . Note that f(x) is a polynomial with exactly
4 nonzero coefficients, as the numbers 0, i1, j1−j2 and j1−j2+i2 are pairwise different
(follows from the proof of Theorem 5.3). Thus, by Theorem 4.2 (a) and (38), we have

f(ζk) = 1 + ζi1k − ζ
j1−j2
k − ζj1−j2+i2k = 0.

By Result 2.2, the terms in f(ζk) cancel in pairs. This implies in 2 | k and i1 = i2 =
k/2, or j1 = j2 and i1 = i2, both of which are not possible. �

Remark 6.4. The bound (38) is not better than the previous bound in (19) (in fact,
they are very close). However, the conclusion (39) is better than the conclusion (20).

Theorem 6.5. If

(40) p > (3k−1k)1/ ordk(p),

then
(a, b) 6 2.

Proof. Similar to the proof of Theorem 5.6, we obtain the equation

(41) g(i1+j2)e + g(i2+j3)e + g(i3+j1)e − g(i1+j3)e − g(j2+j1)e − g(i3+j2)e = 0,

where (it, jt), t = 1, 2, 3, are pairwise different pairs each of which satisfy 1 +gite+a =

gjte+b. Write the left-hand-side of (41) as
∑k−1
i=0 aig

ie and set f(x) =
∑k−1
i=0 aix

i. We

have
∑k−1
i=0 ai = 0 and, using the notation of Theorem 4.2 (a), we have A > 3. Hence

Theorem 4.2 (a) and (40) imply

f(ζk) = ζi1+j2k + ζi2+j3k + ζi3+j1k − ζi1+j3k − ζi2+j1k − ζi3+j2k = 0.

This is impossible by the proof of Theorem 5.6. �
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Remark 6.6. Therem 6.5 is an improved version of Theorem 5.6, as the bound (40)
is better than the one in (31). Furthermore, Theorem 6.1, Theorem 6.3, Theorem 6.2
and Theorem 6.5 prove Theorem 1.3.
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