Note on a Question by S. Bagchi and B. Bagchi

BERNHARD SCHMIDT

Mathematisches Institut Giessen, Arndtstr.2, D-6300 Giessen, F.R. Germany
Communicated by D. Jungnickel
Received July 16, 1992.

In [1] Bagchi and Bagchi conjectured that one of the hypotheses of their theorem 2(d) is superfluous. This turns out to be true:

Proposition. Let $q \equiv 9 \bmod 16$ be a prime power such that 2 is a fourth power in F_{q}. Then $1 \pm \sqrt{2}$ are nonsquares in F_{q}.

Proof. Let β be a primitive eighth root of unity in F_{q} (note that β is a nonsquare). Because of

$$
\left(\beta^{2}+1\right)^{2}=\beta^{4}+2 \beta^{2}+1=2 \beta^{2}
$$

we obtain that $\left(\beta^{2}+1\right) / \beta$ is a root of 2 which we denote by $\sqrt{2}$. Note that $\sqrt{2}$ is a square and therefore $\beta^{2}+1$ is a nonsquare. Thus the equation

$$
(1+\sqrt{2}) \beta\left(\beta^{2}+1\right)=\left(\beta^{2}+\beta+1\right)\left(\beta^{2}+1\right)=\beta(1+\beta)^{2}
$$

shows that $1+\sqrt{2}$ is a nonsquare in F_{q}.
Since $(1+\sqrt{2})(1-\sqrt{2})=-1$ this is also true for $1-\sqrt{2}$.

Reference

1. S. Bagchi and B. Bagchi, Designs from Pairs of Finite Fields, J.C.T., Series A 52, 51-61 (1989).
