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Abstract

Let a and h be positive integers and let p be a prime. Let q1, . . . , qt be the

distinct prime divisors of h and write Q(h) =
{∑t

i=1 ciqi : ci ∈ Z, ci ≥ 0
}

. We pro-

vide constructions of group invariant Butson Hadamard matrices BH(G, h) in the

following cases.

1. G = (Zp)2a and at least one of the following conditions is satisfied.

• pa ∈ Q(h),

• pa + 2 ∈ Q(h) and h is even,

• pa + 1 = (q1 − 1)(q2 − 1) where q1 and q2 are distinct prime divisors of h.

2. G = Zpa × Zpa and p− 1, p ∈ Q(h).

3. G = (Zp2)a and pb ∈ Q(h) for some divisor b of a with 1 ≤ b < a.

4. G = P × Zap where P is any abelian group of order pa and p ∈ Q(h).

1 Introduction

Let H be a square matrix of order n all of whose entries are complex roots of unity, let H∗

denote the complex conjugate transpose of H, and let I be the identity matrix of order

n. If HH∗ = nI, then H is called a Butson Hadamard matrix. If all entries of H are

complex hth roots of unity, we call H a BH(n, h) matrix. In particular, a Hadamard

matrix of order n is a BH(n, 2) matrix.

Let G be an abelian group of order n which is written multiplicatively. An n × n

matrix A = (ag,k)g,k∈G, whose rows and columns are indexed by elements of G, is called

G-invariant (or just group-invariant) if agl,kl = ag,k for all g, k, l ∈ G. A G-invariant

BH(n, h) matrix is called a BH(G, h) matrix.

An overview of most known results on Butson Hadamard matrices is given in the

Ph.D. thesis of Szöllősi [22]. More recent work on Butson Hadamard matrices and group-

invariant Butson Hadamard matrices can be found in [12, 14, 16]. A survey of group-

invariant Butson Hadamard matrices and related objects is provided in [21].

For an abelian group G, let exp(G) denote the least common multiple of the orders

of the elements of G. It is well known [3] that group invariant BH(n, 2) matrices, i.e.,

group invariant Hadamard matrices, are equivalent to Hadamard difference sets. Thus

the following is a consequence of the results of Turyn [23], Davis [8], and Kraemer [15] on

Hadamard difference sets.
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Result 1.1 (Turyn, Davis, Kraemer). Let G be an abelian group of order 22a. A BH(G, 2)

matrix exists if and only if exp(G) ≤ 2a+1.

The main purpose of this paper is a partial generalization of the existence part of

Result 1.1 to abelian p-groups. It should be noted, however, that there is no chance

to generalize Result 1.1 to BH(G, 2) matrices with G being an abelian p-group of odd

order, since Hadamard matrices of odd order larger than 1 do not exist. Instead, we are

constructing BH(G, h) matrices with h > 2. Curiously, quite general constructions are

known already for BH(G, h) matrices in the case where G is an abelian p-group and p

divides h, see [2, 12, 21]. Very little is known, however, in the case where gcd(p, h) = 1.

It is this latter case that we focus on.

Our first few constructions are similar to the “big subgroup construction” of relative

difference sets given in [9]. In fact, the subgroups we need are obtained from spreads of

elementary abelian groups that correspond to translation planes. We use these subgroups

as a foundation to build Butson Hadamard matrices in the form of group ring elements.

More specifically, we create a group ring expression by assigning the same root of unity

as coefficients to all elements of certain subgroups. If a group element is in more than

one of the chosen subgroups, the coefficients assigned to these subgroups must add up to

another root of unity. This requirement will determine the conditions under which our

constructions work. For instance, we prove the following.

Theorem 1.2. Let p be a prime and suppose there are complex hth roots of unity η0, . . . , ηp

such that
∑p

i=0 ηi is a root of unity. Then there exists a BH(Zp × Zp, h) matrix.

It is interesting to note that Craigen and Szöllősi’s construction of BH(p2, 6) matrices

[22, Theorem 1.4.41] is as a special case of Theorem 1.2. In fact, suppose that p is an odd

prime and set

η0 = 1, ηp = ζ3 and ηi =

(
i

p

)
for i = 1, . . . , p− 1 (1)

in Theorem 1.2, where
(
·
p

)
is the Legendre symbol. Then we recover [22, Thm. 1.4.41].

This is not obvious at first glance, as [22, Thm. 1.4.41] uses Paley matrices and Kronecker

products whereas our construction is described in the language of group rings. However,

a direct comparison of the matrices shows that this is indeed the case.

In Section 4, we construct Butson Hadamard matrices invariant under Zpa × Zpa by

exploiting the way the cyclic subgroups of these groups are “nested”. A recursive con-

struction of Butson Hadamard matrices invariant under Zpa × (Zp)a based on elementary

properties of finite affine geometries is given in Section 5. In Section 6, Galois rings
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are employed to obtain a construction of BH(G, h) matrices for groups G of the form

Zp2 × · · · × Zp2 for a prime p. Finally, in Section 7, we use non-homomorphic character

sum preserving bijections between abelian groups that were introduced in [13] to extend

our constructions to further classes of abelian p-groups.

For all our construction methods, vanishing sums of roots of unity play a crucial role.

and we heavily use relevant results of Lam and Leung [17]. The following is the central

result of [17] we need.

Result 1.3. Let h, k ≥ 2 be integers and let q1, . . . , qt be the distinct prime divisors of h.

There are complex hth roots of unity η1, . . . , ηk with η1 + · · ·+ ηk = 0 if and only if

k =
t∑
i=1

aiqi (2)

for some nonnegative integers ai.

Note that, using the notation introduced in the abstract, condition (2) is equivalent

to k ∈ Q(h).

2 Preliminaries

Throughout this paper, we write ζh = exp(2πi/h) and

U(h) = {ζ ih : i = 0, . . . , h− 1}.

Furthermore, Zm denotes a cyclic group of order m.

2.1 Group Rings and Characters

We use the language of group rings to formulate our constructions. Let G be a multiplica-

tively written finite abelian group and let R be a ring. The elements of the group ring

R[G] have the form X =
∑

g∈G agg with ag ∈ R. The ag’s are called the coefficients of

X and supp(X) = {g ∈ G : bg 6= 0} is the support of X. Two elements X =
∑

g∈G agg

and Y =
∑

g∈G bgg of R[G] are equal if and only if ag = bg for all g ∈ G. A subset S of

G is identified with the group ring element
∑

g∈S g. For the identity element 1G of G and

λ ∈ R, we write λ for the group ring element λ1G.

For our purposes, group rings R[G] with R = Z[ζh] will be useful. In this case, the

elements of R[G] have the form X =
∑

g∈G agg with ag ∈ Z[ζh] and we write

X(−1) =
∑
g∈G

agg
−1,
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where ag is the complex conjugate of ag.

We denote the group of complex characters of G by Ĝ. For U ≤ G, write

U⊥ = {χ ∈ Ĝ : χ(g) = 1 for all g ∈ U}.

Characters χ of G are extended to the group ring R[G] by χ(X) =
∑

g∈G agχ(g) for

X =
∑

g∈G agg ∈ R[G]. The trivial character of G is the character that maps all

elements of G to 1.

The following is a useful criterion for checking if group invariant matrices are Butson

Hadamard matrices. For a proof, see [21, Lem. 2.1].

Result 2.1. Let G be a finite abelian group, let h be a positive integer, and let ag ∈ U(h)

for all g ∈ G. Consider the element D =
∑

g∈G agg of Z[ζh][G]. The G-invariant matrix

(agk−1)g,k∈G is a BH(G, h) matrix if and only if

DD(−1) = |G|. (3)

Moreover, (3) holds if and only if

|χ(D)|2 = |G| for all χ ∈ Ĝ.

For the rest of this paper, we identify the group ring elements D as in Result 2.1 with

the corresponding group invariant matrices (agk−1)g,k∈G. Hence, if (3) holds, we will just

say that D is a BH(G, h) matrix.

For a proof of the following result, see [3, Chapter VI, Lemma 3.5], for instance.

Result 2.2. Let G be a finite abelian group and D =
∑

g∈G agg with ag ∈ C. Then

ag =
1

|G|
∑
χ∈Ĝ

χ(Dg−1) for all g ∈ G.

2.2 Sums of Roots of Unity

Sums of roots of unity satisfying certain conditions will be an essential tool for all our

constructions of Butson Hadamard matrices. We now state a number theoretic result

determining precisely when these conditions can be satisfied. We defer the proof of this

result to the appendix, since it is quite technical.

5



Let h ≥ 2 be a integer and let q1, . . . , qt be the distinct prime divisors of h. We recall

the following notation.

Q(h) =

{
t∑
i=1

aiqi : ai ∈ Z, ai ≥ 0

}
,

U(h) = {ζ ih : i = 0, . . . , h− 1}.

Theorem 2.3. Let h,m be positive integers.

(a) There are η1, . . . , ηm ∈ U(h) with
∑m

i=1 ηi = 0 if and only if m ∈ Q(h).

(b) There are η1, . . . , ηm ∈ U(h) with

m∑
i=1

ηi = 1 (4)

if and only if one of the following conditions is satisfied.

(i) h is even and m+ 1 ∈ Q(h),

(ii) h is odd and m− 1 ∈ Q(h),

(iii) h is odd, has at least two distinct prime divisors, and m = (q1 − 1)(q2 − 1), where

q1, q2, q1 6= q2, are the two smallest prime divisors of h.

3 Construction from Finite Translation Planes

Let G be a finite group of order m2. A collection U0, . . . , Um of subgroups of G with

|Ui| = m for all i, UiUj = G for all i 6= j, and
⋃m
i=0 Ui = G is called a spread of G. By

the fundamental work of André [1], there is a one-to-one correspondence between spreads

in finite groups and finite translation planes. Moreover, there is a spread in a group G of

order m2 if and only if G is an elementary abelian p-group for some prime p.

Theorem 3.1. Let U0, . . . , Um be a spread of a group G of order m2 and let η0, . . . , ηm

be any complex roots of unity with
∑m

i=0 ηi = 1. Then

X =
m∑
i=0

Uiηi.

is a BH(G, h) matrix, where h is the least common multiple of the orders of the ηi’s.
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Proof. It follows from the definition of X that X =
∑

g∈G agg with ag ∈ Z[ζh]. We first

show ag ∈ U(h) for all g ∈ G. As |Ui| = m for all i and Ui ∩ Uj = {1} for all i 6= j,

every nonidentity element g of G is contained exactly one Ui. Hence ag = ηi ∈ U(h). The

coefficient of the identity element in X is
∑m

i=0 ηi = 1 by assumption. Thus ag ∈ U(h) for

all g ∈ G.

Now let χ be any nontrivial character of G. If χ was trivial on both Ui and Uj for

some i 6= j, then it would be trivial on UiUj = G, a contradiction. Hence |U⊥i ∩ U⊥j | = 1

for all i 6= j. This implies ∣∣∣∣∣
m⋃
i=0

U⊥i

∣∣∣∣∣ = (m+ 1)m−m = m2

and thus
⋃m
i=0 U

⊥
i = Ĝ. Hence every nontrivial character of G is trivial on exactly one

Ui. Suppose χ is nontrivial on Ui. Then χ(X) = χ(Ui)ηi = mηi and thus |χ(X)| = m2.

For the trivial character χ0 of G, we have

χ0(X) =
m∑
i=0

|Ui|ηi = m
m∑
i=0

ηi = m

by assumption and thus |χ0(X)| = m2. In summary, we have shown |χ(X)| = m2 for all

characters χ of G. Hence X ∈ BH(G, h) by Result 2.1.

Translation planes and thus spreads of elementary abelian groups exist in abundance;

see the monograph [18], for instance. In particular, we have the following.

Corollary 3.2. Let G be an elementary abelian group of order p2a and let h be any positive

integer such that at least one of the following conditions is satisfied.

• pa ∈ Q(h),

• pa + 2 ∈ Q(h) and h is even,

• pa + 1 = (q1 − 1)(q2 − 1) where q1 and q2 are distinct prime divisors of h.

Then there is a BH(G, h) matrix.

Proof. It is well known [18] that there is a spread in G. Hence, by Theorem 3.1, it suffices

to show that there are η1, . . . , ηpa+1 ∈ Q(h) with

pa+1∑
i=1

ηi = 1. (5)
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First suppose that pa ∈ Q(h). If h is odd, then (5) follows from Theorem 2.3 (b), as

condition (ii) of this theorem is satisfied. If h is even, then pa + 2 ∈ Q(h), as we assume

pa ∈ Q(h) and 2 is a prime divisor of h. Hence condition (i) of Theorem 2.3 (b) holds

and (5) follows.

If pa+2 ∈ Q(h) and h is even, then (5) directly follows from Theorem 2.3 (b). Finally,

suppose pa + 1 = (q1 − 1)(q2 − 1) where q1 and q2 are distinct prime divisors of h. Then

expanding the left hand side of (ζq1 + · · · + ζq1−1
q1

)(ζq2 + · · · + ζq2−1
q2

) = 1 gives a solution

of (5).

Corollary 3.3. Let h be a positive integer with at least two distinct prime divisors and

let q1 and q2 be the two smallest prime divisors of h. For every elementary abelian group

of order p2a with pa ≥ (q1 − 1)(q2 − 1)− 1, there is a BH(G, h) matrix.

Proof. If pa = (q1− 1)(q2− 1)− 1, then a BH(G, h) matrix exists by Corollary 3.2. Hence

we can assume pa ≥ (q1 − 1)(q2 − 1). Then pa ∈ Q(h) by [17, Lem. 5.1] and thus a

BH(G, h) matrix exists by Corollary 3.2.

Corollary 3.4. A BH(G, 6) matrix exists for every elementary abelian group G of square

order.

Proof. This follows from Corollary 3.3, as (q1 − 1)(q2 − 1) = 2 for h = 6.

4 Nested Cyclic Subgroups Construction

Throughout this section, G denotes the group Zpa × Zpa , where p is a prime and a is a

positive integer. Our next construction uses cyclic subgroups of G of order pa as building

blocks for BH(G, h) matrices. We start with a preliminary result. By M(b) we denote

the set of cyclic subgroups of G of order pb, 0 ≤ b ≤ a.

Lemma 4.1. Using the notation just introduced, we have the following.

(i) |M(b)| = (p+ 1)pb−1 for 1 ≤ b ≤ a.

(ii) Suppose 1 ≤ b ≤ a− 1. Each subgroup in M(b) is contained in exactly p subgroups

in M(b+ 1).

(iii) Let χ be a character of G of order pb, 0 ≤ b ≤ a. Then there is T ∈M(a− b) such

that the following holds for every K ∈M(a).

K ≤ ker(χ) if and only if T ≤ K.
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Proof. Parts (i) and (ii) are well known, but we include a proof for the convenience of

the reader. There are exactly p2b − p2b−2 elements of G of order pb and each subgroup in

M(b) has exactly (p− 1)pb−1 generators. Hence

|M(b)| = (p2b − p2b−2)/((p− 1)pb−1) = (p+ 1)pb−1.

This proves (i).

Suppose 1 ≤ b ≤ a − 1. As Aut(G) is transitive on M(b), each subgroup in M(b) is

contained in same number of subgroups in M(b + 1). Since |M(b + 1)|/|M(b)| = p and

each subgroup inM(b+ 1) contains exactly one subgroup inM(b), we conclude that (ii)

holds.

We now prove (iii). It is straightforward to show that ker(χ) contains an element of

order pa. Let g be such an element and let k be another element of order pa of G such

that G = 〈g, k〉. Since χ has order pb and χ(g) = 1, we have χ(k) = ζt
pb

for some integer

t coprime to p. Set T = 〈gpb〉.

Write K = 〈gikj〉 for some integers i, j. Since K has order pa, we have T ≤ K if and

only if (gikj)p
b ∈ T , that is, kjp

b
= 1. This holds if and only if j ≡ 0 (mod pa−b). On the

other hand, we have K ≤ ker(χ) if and only if χ(gikj) = ζtj
pb

= 1, which also holds if and

only if j ≡ 0 (mod pa−b). This proves (iii).

Before we state our construction, we introduce some more notation. By C(G) we denote

the set of all cyclic subgroups of G of order larger than 1. For each cyclic subgroup U

of G with 1 ≤ |U | ≤ pa−1, let S(U) be the set of cyclic subgroups of G of order p|U |
that contain U . By Result 4.1, we have |S(U)| = p for all U with p ≤ |U | ≤ pa−1 and

|S(U)| = p+ 1 if |U | = 1. Note that

C(G) =
⋃
U

S(U), (6)

where U runs over all cyclic subgroups U of G with 1 ≤ |U | ≤ pa−1 and the right hand

side of (6) is a partition of C(G) into pairwise disjoint subsets.

Theorem 4.2. Let ηW , W ∈ C(G), be complex roots of unity such that∑
W∈S(U)

ηW = ηU (7)

for all cyclic subgroups U of G with 1 ≤ |U | ≤ pa−1. Then

X =
∑

W∈M(a)

ηWW
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is a BH(G, h) matrix, where h is the least common multiple of all the orders of ηW ,

W ∈ C(G).

Proof. We first show that (7) implies ∑
W∈M(a)
U⊆W

ηW = ηU (8)

for every cyclic subgroup U of G. We prove (8) by backward induction on |U |. For

|U | = pa, the only subgroup in M(a) containing U is U itself, so (8) holds. Now assume

that (8) holds for all U with |U | = pb where 1 ≤ b ≤ a. Let K be a cyclic subgroup of G

of order pb−1.

Since |K ′| = pb for K ′ ∈ S(K), we have∑
W∈M(a)

K′⊆W

ηW = ηK′ (9)

by the induction hypothesis. Note that a subgroup W ∈ M(a) contains K if and only if

W contains exactly one of the subgroups in S(K), that is, we have

{W ∈M(a) : K ⊆ W} = {W ∈M(a) : K ′ ⊆ W for exactly one K ′ ∈ S(K)}.

Using this and (7), (9), we get∑
W∈M(a)
K⊆W

ηW =
∑

K′∈S(K)

∑
W∈M(a)

K′⊆W

ηW =
∑

K′∈S(K)

ηK′ = ηK .

This completes the proof of (8).

From the definition of X, it is clear that X =
∑

g∈G agg with g ∈ Z[ζh]. We now show

that ag ∈ U(h) for all g ∈ G. Let g be any element of G and let U be the cyclic group

generated by g. By the definition of X and (8), we have

ag =
∑

W∈M(a)
U⊆W

ηW = µU

and thus ag ∈ U(h) as required.

Finally, let χ be any character of G and let pb be the order of χ. By Lemma 4.1, there

is a cyclic subgroup T of G such that the following holds for every W ∈M(a).

W ≤ ker(χ) if and only if T ≤ W.

Moreover, note that χ(W ) = pa if W ≤ ker(χ) and χ(W ) = 0 otherwise. Hence

χ(X) =
∑

W∈M(a)
T⊆W

paηW = ηTp
a
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by (8). Hence |χ(X)|2 = p2a for all characters χ of G. Thus X is a BH(G, h) matrix by

Result 2.1.

Corollary 4.3. Let p be a prime and let a, h be positive integers such that p−1, p ∈ Q(h).

Then there is a BH(Zpa × Zpa , h) matrix.

Proof. Write G = Zpa × Zpa . By Theorem 4.2, it suffices to show that there are roots of

unity ηW ∈ U(h), W ∈ C(G), such that∑
W∈S(U)

ηW = ηU (10)

for all cyclic subgroups U of G with 1 ≤ |U | ≤ pa−1. Recall that C(G) is the union

of the pairwise disjoint sets S(U), where U runs over all cyclic subgroups of G with

1 ≤ |U | ≤ pa−1. We construct the necessary roots of unity ηW recursively. For U = {1},
the set S(U) consists of the p + 1 subgroups of G of order p. Let W1, . . . ,Wp+1 denote

these subgroups. We first show that there are η1, . . . , ηp+1 ∈ U(h) with

p+1∑
i=1

ηi = 1. (11)

If h is odd, then (11) has a solution by Theorem 2.3 (b) (ii), since p ∈ Q(h) by assumption.

If h is even, then p+ 2 ∈ Q(h), as p ∈ Q(h) and 2 is a prime divisor of h. Hence (11) has

a solution by Theorem 2.3 (b) (i). This completes the proof of (11). Now set η{1} = 1

and ηWi
= ηi for i = 1, . . . , p+ 1. This solves (10) for U = {1}.

Suppose that ηW ’s have been chosen such that (10) holds for all for all cyclic subgroups

U of G with 1 ≤ |U | ≤ pb and b ≤ a− 2. Recall that p− 1 ∈ Q(h) by assumption. In the

same way as above, we see that there are µ1, . . . , µp ∈ U(h) with
∑p

i=1 µi = 1. Now let U

be any cyclic subgroup of G with |U | = pb+1 and let K1, . . . , Kp the subgroups in S(U).

Setting ηKi
= µiηU for i = 1, . . . , p solves (10) for U . Since the sets S(U) are pairwise

disjoint, we can thus solve (10) for all cyclic subgroups U of G with |U | = pb+1. This

shows that (10) has a solution.

5 Recursive Subspace Construction

The constructions in the previous sections, in particular, yield BH(Zp × Zp, h) matrices

for all primes p. We now use these matrices as an ingredient in a recursive construction

that produces BH(Zpa × (Zp)a, h) matrices for all primes p and positive integers a. A
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second essential ingredient will be subspaces of the maximal elementary abelian subgroup

of Zpa × (Zp)a, when viewed as an finite affine geometry AG(a+ 1, p).

We first fix some notation that we use throughout this section. Let p be a prime and

let a be positive integer. Let Ga denote the group Zpa × (Zp)a, and write

Ga = 〈α〉 × 〈β〉 × 〈γ1〉 × · · · × 〈γa−1〉,

where the order of α is pa and the orders of β, γi, for i = 1, . . . , a− 1, are all equal to p.

The following elementary abelian subgroups of Ga will play a crucial role.

W = 〈αpa−1

, β, γ1, . . . γa−1〉,

U = 〈αpa−1〉,

R = 〈γ1, . . . , γa−1〉,

S = RU = 〈αpa−1

, γ1, . . . , γa−1〉.

Note that 〈αp〉×R ∼= Zpa−1×Za−1
p
∼= Ga−1. Hence we can identify Ga−1 with 〈αp〉×R.

Moreover, W ∼= Za+1
p is the maximal elementary abelian subgroup of Ga. We view W

as an affine geometry AG(a + 1, p) and S as a subgeometry of W . In particular, we

call subgroups of W of order pa hyperplanes of W and subgroups of S of order pa−1

hyperplanes of S. The following is well known and straightforward to prove.

Result 5.1. Using the notation just introduced we have the following.

(a) There are exactly pa−1 hyperplanes of S that do not contain U and exactly pa hyper-

planes of W that do not contain U .

(b) For every hyperplane H of S that does not contain U , there are exactly p hyperplanes

V of W with H ≤ V and U 6≤ V .

(c) Let χ be a character of G that is nontrivial on W . Then χ is trivial on exactly one

hyperplane of W .

Based on Result 5.1, we introduce some more notation.

• By H0, . . . , Hpa−1−1 we denote the hyperplanes of S that do not contain U .

• For each i with 0 ≤ i ≤ pa−1 − 1, let Vi,0, . . . , Vi,p−1 be the hyperplanes of W that

contain Hi and do not contain U .
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Suppose Vi,j = Vi′,j′ with i 6= i′. Then Vi,j contains both Hi and Hi′ and thus S.

But this is impossible, since U ≤ S and U 6≤ Vi,j. This shows that the hyperplanes Vi,j,

i = 0, . . . , pa−1 − 1, j = 0, . . . , p − 1, are pairwise distinct. Using Result 5.1 (a), we

conclude that the Vi,j’s are all the hyperplanes of W that do not contain U .

Theorem 5.2. We use the notation introduced above. Suppose that ζi,j, i = 0, . . . , pa−1−
1, j = 0, . . . , p− 1, are complex roots of unity satisfying

p−1∑
j=0

ζi,j = 0 for i = 0, . . . , pa−1 − 1. (12)

Moreover, suppose that ηi,g, i = 0, . . . , pa−1 − 1, g ∈ R, are complex roots of unity such

that

Y =

pa−1−1∑
i=0

∑
g∈R

ηi,ggα
pi

is a BH(Ga−1, h) matrix. Let gi ∈ R, i = 0, . . . , pa−1 − 1, be arbitrary and let k be any

integer. Then

X =

pa−1−1∑
i=0

(
p−1∑
j=0

ζi,jVi,jgi +
∑
g∈R

ηi,gUg

)
αiβki (13)

is a BH(Ga, h) matrix, where h is the least common multiple of the orders of all ζi,j’s and

ηi,g’s.

Proof. We first show that all coefficients of X are in U(h). Fix any i ∈ {0, . . . , pa−1 − 1}
and set

Xi = Ai +Bi where Ai =

p−1∑
j=0

ζi,jVi,jgi and Bi =
∑
g∈R

ηi,gUg.

Write Xi =
∑

x∈W bx,ix with bx,i ∈ Z[ζh]. We show that bx,i ∈ U(h) for all x ∈ W .

We have Vi,j ∩S = Hi for j = 0, . . . , p− 1, as S and Vi,j are distinct hyperplanes of W

and thus intersect in a hyperplane of S. Hence the sets Vi,j\S, j = 0, . . . , p−1, are pairwise

disjoint and the union of these sets covers exactly p(|Vi,j|−|Hi|) = p(pa−pa−1) = pa+1−pa

elements of W \ S. Since |W \ S| = pa+1 − pa, we conclude
⋃p−1
j=0 (Vi,j \ S) = W \ S. As

gi ∈ R ≤ S, this implies
p−1⋃
j=0

(Vi,jgi \ S) = W \ S (14)

and the left hand side of (14) is a union of pairwise disjoint sets.

First suppose x ∈ W \ S. Note that supp(Bi) = S. Hence all contributions to bx,i

come from Ai. By (14), there is exactly one j such that x ∈ Vi,jgi. Thus bx,i = ζi,j.
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Next, suppose x ∈ S \ Higi. As gi ∈ R ⊂ S, we have Vi,jgi ∩ S = Vi,jgi ∩ Sgi =

(Vi,j ∩ S)gi = Higi for j = 0, . . . , p − 1. As x 6∈ Higi, this shows that Ai does not

contribute to bx,i. Moreover, since
⋃
g∈R Ug = S, there is exactly one g ∈ R with x ∈ Ug.

This implies bx,i = ηi,g.

Finally, let x ∈ Higi. Then x ∈ Vi,jgi for j = 0, . . . , p − 1 and thus the contribution

of Ai to bx,i is
∑p−1

j=0 ζi,j = 0 by (12). Furthermore, as
⋃
g∈R Ug = S, there is exactly one

g ∈ R with x ∈ Ug. This implies bx,i = ηi,g.

In summary, we have shown

bx,i =

{
ζi,j for some j if x ∈ W \ S,
ηi,g for some g ∈ R otherwise.

By the definition of h, this shows that bx,i ∈ U(h) for all x ∈ W .

By (13), we have

X =

pa−1−1∑
i=0

Xiα
iβki =

pa−1−1∑
i=0

∑
x∈W

bx,iα
iβkix.

Since β ∈ W and 1, α, . . . , αp
a−1−1 represent each coset of W in Ga exactly once, the

elements αiβkix, i = 0, . . . , pa−1 − 1, x ∈ W , cover each element of Ga exactly once. As

bx,i ∈ Q(h) for all x ∈ W , this shows that all coefficients of X are in U(h).

Next, we prove that

|χ(X)|2 = p2a for all χ ∈ Ĝ. (15)

First suppose χ ∈ W⊥. Then χ is trivial on all Vi,j’s and on U . Furthermore, we have

χ(β) = χ(g) = 1 for all g ∈ R and χ(α) is a root of unity of order dividing pa−1. Using

(12), we get

χ(X) =

pa−1−1∑
i=0

(
p−1∑
j=0

ζi,j|Vi,j|+
∑
g∈R

ηi,g|U |

)
χ(α)i

= pa
pa−1−1∑
i=0

p−1∑
j=0

ζi,j + p

pa−1−1∑
i=0

∑
g∈R

ηi,gχ(α)i

= p

pa−1−1∑
i=0

∑
g∈R

ηi,gχ(α)i.

(16)

Recall that Y =
∑pa−1−1

i=0

∑
g∈R ηi,ggα

pi is a BH(Ga−1, h) matrix by assumption. As the

order of χ divides pa−1, we have χ(α) = ζtpa−1 for some integer t. Let τ be the character
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of Ga−1 = 〈αp〉 × R determined by τ(αp) = ζtpa−1 and τ(g) = 1 for all g ∈ R. Using (16),

we get

τ(Y ) =

pa−1−1∑
i=0

∑
g∈R

ηi,gζ
ti
pa−1 =

pa−1−1∑
i=0

∑
g∈R

ηi,gχ(α)i =
1

p
χ(X). (17)

By Result 2.1, we have |τ(Y )|2 = p2a−2 and hence (15) follows from (17).

Now, suppose that χ ∈ Ĝ \W⊥. By Result 5.1, we have that χ is trivial on exactly

one of the hyperplanes of W , say V . First suppose that V = Vi,j for some i, j. Then χ

is nontrivial on U since UV = W and χ 6∈ W⊥. Hence χ(X) = |Vi,j|ζi,jχ(giα
iβki) = paζ,

where ζ = ζi,jχ(giα
iβki) is a root of unity and thus (15).

Now assume V 6= Vi,j for all i, j. Then χ is nontrivial on all Vi,j’s and thus χ(Vi,j) = 0

for all i, j. Moreover, U is contained in V and thus χ is trivial on U . Hence the order of χ

divides pa−1 and χ(αβk) is a root of unity of order dividing pa−1. Let τ be the character

of Ga−1 defined by τ(αp) = χ(αβk) and τ(g) = χ(g) for all g ∈ G. Then

χ(X) =

pa−1−1∑
i=0

∑
g∈R

ηi,g|U |χ(g)χ(αβk)i = p

pa−1−1∑
i=0

∑
g∈R

ηi,gτ(αpig) = pτ(Y ).

Hence |χ(X)|2 = p2|τ(Y )| = p2a by Result 2.1.

In summary, we have shown that all coefficients of X are in U(h) and that (15) holds.

Hence is a BH(Ga, h) matrix by Result 2.1.

Note that, by Result 1.3, there are roots of unity ηi,j satisfying condition (12) p ∈ Q(h).

Hence Corollary 3.2 and Theorem 5.2 imply the following.

Corollary 5.3. Suppose that p ∈ Q(h). Then there exists a BH(Ga, h) matrix for all

positive integers a.

6 Construction of Butson Hadamard Matrices over

Zp2 × · · · × Zp2

We now use Galois rings to construct BH(G, h) matrices with G of the form Zp2×· · ·×Zp2 .
We first introduce the necessary background on Galois rings. We refer the reader to [19]

for background and proofs of the assertions made below.

Let p be a prime, let Fp denote the finite field of order p, and let d be a positive

integer. For h ∈ Zp2 [x], let h̄ ∈ Fp[x] be the polynomial that is obtained by reducing the

coefficients of f modulo p. There is a monic polynomial f ∈ Zp2 [x] of degree d such that
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f̄ is a primitive polynomial over Fp and f divides xp
d − 1 in Zp2 [x]. The Galois ring of

degree d over Zp2 is defined as

GR(p2, d) = Zp2 [x]/(f).

Write R = GR(p2, d). There is g ∈ R with gp
d−1 = 1 and gi 6= 1 for 1 ≤ i ≤ pd − 2. The

additive group of R is isomorphic to (Zp2)d and the unique maximal ideal of R is I = pR =

{0, p, pg, . . . , pgpd−2}. The residue class field K := GR(p2, d)/I = {0̄, 1̄, ḡ, . . . , ḡpd−2} is a

finite field of order pd. The set T = {0, 1, g, . . . , gpd−2} is called a Teichmüller system.

Note that T is a complete system of representatives of cosets of I in R. An arbitrary

element α of R can be expressed uniquely as α = α0 + pα1 with α0, α1 ∈ T and α is a

unit of R if and only if α0 6= 0.

Let R∗ be the set of units of R. Then |R∗| = (pd − 1)pd and every element of R∗ has

a unique representation gi(1 + pα) with 0 ≤ i ≤ pd − 2 and α ∈ T . As a multiplicative

group, R∗ is the direct product of H = 〈g〉 and U = {1 +pα : α ∈ T }. Moreover, we have

H ∼= Zpd−1 and U ∼= (Zp)d.

Define the absolute trace function Tr : K → Fp by

Tr(α) = α + αp + · · ·+ αp
d−1

.

for α ∈ K. Let f be any divisor of d and let F be the subfield of K of order pf . The

trace function of K relative to F is denoted by Trd,f . Note that

Trd,f (α) = α + αp
f

+ · · ·+ αp
d−f

.

By transitivity of trace, we have Tr(α) = Tr(Trd,f )(α)) for all α ∈ K.

We now define the ingredients of our construction. Recall that H = 〈g〉 is a subgroup

of R∗ of order pd − 1. The elements of U = {1 + pα : α ∈ T } form a complete set of

representatives of H in R∗ and thus we can label the cosets of H in R∗ as

E0̄ = H and Eḡi = (1 + pgi)H for i = 0, . . . , pd − 2.

Note that |Eḡi | = |H| = pd − 1 for all i.

Let f ≥ 1 be a proper divisor of d and let F be the subfield of K of order pf . As

f < d, there is k̄ ∈ K, k 6= 0̄, with Trd,f (k̄) = 0. Moreover,

V = {x̄ ∈ K : Trd,f (k̄x̄) = 0̄}.
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is a (d/f − 1)-dimensional F -subspace of K. In particular, |V | = pf(d/f−1) = pd−f . It is

straightforward to verify that, as an identity of subsets of the group R∗ (not of group ring

elements), we have Ex̄Eȳ = Ex̄+ȳ for all x̄, ȳ ∈ K. This implies that

D =
⋃
x̄∈V

Ex̄

is a subgroup of R∗. Note that |D| = pd−f (pd − 1). Let D0, . . . , Dpf−1 be the cosets of D

in R∗ where D0 = D. The following was proved in [7, p. 183–185].

Result 6.1. Suppose that χ is an additive character of R.

1. If χ is the trivial character, then χ(I) = pd and χ(Di) = pd−f (pd − 1).

2. If χ has order p, then χ(I) = pd and χ(Di) = −pd−f .

3. If χ has order p2, then χ(I) = 0 and χ(Di) = −pd−f or pd−f (pf − 1). Furthermore,

for a fixed character χ of R of order p2, there is a unique coset Di such that χ(Di) =

pd−f (pf − 1).

Theorem 6.2. Let G be the additive group of GR(p2, d) and let f be a divisor of d with

1 ≤ f < d. Suppose that η, η0, . . . , ηpf−1 are complex roots of unity such that

pf−1∑
i=0

ηi = 0. (18)

Then, using the notation introduced above,

X =

pf−1∑
i=0

ηiDi + ηI

is a BH(G, h), where h is the least common multiple of the orders of all the η and ηi’s

Proof. By definition, the cosets D0, . . . , Dpf−1 partition R∗ and we have G is the disjoint

union of I and R∗. Hence all coefficients of X are in U(h). By Result 2.1, it remains to

show that

|χ(X)|2 = |G| = p2d for all χ ∈ Ĝ. (19)

First suppose that the order of χ divides p. Then

χ(X) =

pf−1∑
i=0

ηiχ(Di) + ηχ(I) = χ(D0)

pf−1∑
i=0

ηi + pdη = pdη

by Result 6.1 and (18). Thus (19) holds.
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Now suppose that χ has order p2. Then, by Result 6.1, there is a unique j with

0 ≤ j ≤ pf − 1, such that χ(Dj) = pd−f (pf − 1) and χ(Di) = −pd−f for all i 6= j.

Moreover, we have χ(I) = 0. Hence

χ(X) = pd−f (pf − 1)ηj −
pf−1∑
i 6=j

pd−fηi = pdηj − pf−d
pf−1∑
i=0

ηi = pdηj,

by (18) and thus (19) holds. This completes the proof.

From Result 1.3 and Theorem 6.2 we get the following.

Corollary 6.3. Let p be a prime and let d, h be positive integers. Suppose there is divisor

f of d with 1 ≤ f < d such that pf ∈ Q(h). Then there exists a BH((Zp2)d, h) matrix.

7 Folding Construction

It was shown in [13] that certain bijections between nonisomorphic groups preserve char-

acter sums (up to multiplication with roots of unity). We now use this idea to extend our

constructions of group invariant Butson Hadamard matrices to further abelian p-groups.

As a preparation, we consider a useful property of character values of group ring

elements.

Lemma 7.1. Let p be a prime, let a be a positive integer, and G = Zpa ×H where H is

an elementary abelian p-group. Let h be a positive integer with p2 - h and D ∈ Z[ζh][G].

Let χ be a character of G order pb, 1 ≤ b ≤ a, and let W be the subgroup of Zpa of order

pa−b+1. Write D =
∑pb−1−1

i=0 Diα
i with Di ∈ Z[ζh][W ×H] where α is a generator of Zpa.

If χ(D) = µm where µ is a root of unity and m is an integer, then there is a j such

that

χ(D) = χ(Djα
j) and χ(Di) = 0 for all i 6= j. (20)

Proof. Note that χ(α) is a primitive pbth root of unity. Hence, without loss of generality,

we can assume χ(α) = ζpb . Write h = ptk with t ∈ {0, 1} and (p, k) = 1. As χ(D) ∈
Z[ζpbk], we have µ ∈ Q(ζpbk) and thus µ = ±ζu

pb
ζwk for some integers u,w. Using the

assumptions, we get

pb−1−1∑
i=0

χ(Di)ζ
i
pb =

pb−1−1∑
i=0

χ(Di)χ(α)i = χ(D) = µm = (±ζwk m)ζupb . (21)

Note that χ(Di) ∈ Q(ζpk) for all i, since the order of χ restricted to W is pb/(pa/|W |) =

pb−a+(a−b+1) = p and H is elementary abelian. As ±ζwk m ∈ Q(ζpk) and {1, ζpb , . . . , ζp
b−1−1
pb

}
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is independent over Q(ζpk), we conclude from (21) that χ(Di) = 0 whenever i 6≡ u (mod

pb−1). Hence χ(D) = χ(Djα
i) by (21) where j is the unique index with j ≡ u ( mod pb−1).

This completes the proof of (20).

We now define the non-homomorphic bijections between groups that we will work

with. Let p be prime and let a be a positive integer. Let P be an abelian group of order

pa and write P = Zpt1 ×· · ·×Zpts where a =
∑s

i=1 ti and Zpt1 = 〈αi〉, i = 1, . . . , s. Define

a lexicographic order on P by

αx11 · · ·αxss > αy11 · · ·αyss ⇔ xj > yj for j = min{i : xi 6= yi},

where 0 ≤ xi, yi ≤ pti − 1 for all i.

Consider a cyclic group Zpa = {1, α, . . . , αpa−1}. For n = 0, . . . , pa − 1, let f(αn) be

the nth element of P in the lexicographical order. We call the bijection f : Zpa → P, αn 7→
f(αn) a folding of Zpa . For a group H and a folding f of Zpa , we extend f to a map

Zpa ×H → P ×H by to G by f(gh) = f(g)h for all g ∈ P and h ∈ H and call this map a

folding of Zpa ×H. Foldings are extended to bijections of group rings by linearity, that

is, for X =
∑

g∈G agg with ag ∈ Z[ζt], we set

f(X) =
∑
g∈G

agf(g). (22)

As above, let P = 〈α1〉 × · · · × 〈αs〉 ∼= Zpt1 × · · · × Zpts . We say that a subgroup U of

P is left full if it has the form

U = 〈α1, ..., αr−1, α
l
r〉

for some l and some r ∈ {1, ..., s}. The following is proved in [13, Lem. 4.1, 4.3].

Result 7.2. Let p be a prime, let a be positive integer, and let α be a generator of Zpa.

Suppose that f : Zpa ×H → P ×H is a folding.

(a) Let U be a left full subgroup of P and let W be the subgroup of Zpa of order |U |. Then

f(αiw) = f(αi)f(w)

for 0 ≤ i < pa/|U | and all w ∈ W .

(b) Let χ be a character of P ×H which is nontrivial on P and let U be the maximal left

full subgroup of P contained in the kernel of χ. Let W be the subgroup of Zpa of order

p|U |. Then there is a character τ of Zpa ×H such that

τ(x) = χ(f(x))

for all x ∈ W ×H and τ has order pa/|U | when restricted to Zpa.
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Now we are ready to prove the main result of this section. The proof is similar to that

of [13, Thm. 4.6], but we include it for the convenience of the reader, as the setting is

slightly different.

Theorem 7.3. Let p be a prime, let a, h be positive integers with h 6≡ 0 (mod p2), and

let G = Zpa ×H where H is an elementary abelian group of order pa. Suppose that there

exists a BH(G, h) matrix X such that

χ(X) = µχp
a for some root of unity µχ for all characters χ of G. (23)

Let P be any abelian p-group of order pa and let f : G→ P ×H be the corresponding

folding. Then f(X) is a BH(P ×H, h) matrix.

Proof. As f is a bijection, the group ring elements of X and f(X) have the same set of

coefficients. Hence all coefficients of f(X) are in Q(h). By Result 2.1, it remains to show

|χ(f(X))|2 = |P ×H| (24)

for all characters χ of P ×H.

First assume that χ is trivial on P . Define the character τ of G by τ(g) = 1 for

g ∈ Zpa and τ(h) = χ(h) for all h ∈ H. Then χ(f(X)) = τ(X) and (24) holds, since

|τ(X)|2 = |G| by Result 2.1 and |G| = |P ×H|.

Now suppose that χ is nontrivial on P . Let U be the maximal left full subgroup of P

contained in the kernel of χ. Note that |U | < pa, since χ is nontrivial on P . Let W be the

subgroup of Zpa of order p|U |. By Result 7.2 (b), there is a character τ of G such that

τ(x) = χ(f(x)) for all x ∈ W ×H (25)

and τ has order pa/|U | when restricted to Zpa . Let Y be any element of Z[ζh][W × H]

and write Y =
∑

x∈W×H axx with ax ∈ Z[ζh]. Using (22) and (25), we get

χ(f(Y )) =
∑

x∈W×H

axχ(f(x)) =
∑

x∈W×H

axτ(x) = τ(Y ). (26)

Write pa/|U | = pb and let α be a generator of Zpa . As pa/|W | = pb−1, we can write

X =
∑pb−1−1

i=0 Xiα
i with Xi ∈ Z[ζh][W ×H] for all i. Note that

χ(f(Xi)) = τ(Xi) (27)

for all i by (26). Moreover, by (23) and Lemma 7.1, there is a j such that

τ(X) = τ(Xjα
j) and τ(Xi) = 0 for all j 6= i. (28)
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Fix i with 0 ≤ i ≤ pb−1 − 1 and write Xi =
∑

w∈W
∑

k∈H aw,kwk with aw,k ∈ Z[ζh].

Recall that f(gk) = f(g)k for all g ∈ Zpa and k ∈ H, as the restriction of f to H is the

identity map. By Result 7.2 (a), we have f(αiw) = f(αi)f(w) for all w ∈ W and thus

f(Xiα
i) =

∑
w∈W

∑
k∈H

aw,kf(wkαi) =
∑
w∈W

∑
k∈H

aw,kf(wαi)k

=
∑
w∈W

∑
k∈H

aw,kf(w)f(αi)k =

(∑
w∈W

∑
k∈H

aw,kf(wk)

)
f(αi)

= f(Xi)f(αi).

(29)

Using (27), (28), and (29), we compute

χ(f(X)) = χ

pb−1−1∑
i=0

f(Xiα
i)

 = χ

pb−1−1∑
i=0

f(Xi)f(αi)

 =

pb−1−1∑
i=0

χ(f(Xi))χ(f(αi))

=

pb−1−1∑
i=0

τ(Xi)χ(f(αi)) = τ(Xj)χ(f(αj)) = τ(X)χ(f(αj))τ(α−j).

We have |τ(X)|2 = |G| = |P × H| by Result 2.1 and χ(f(αj))τ(α−j) is a root of unity.

This completes the proof of (24).

Corollary 7.4. Let p be a prime and let a, h be positive integers with p ∈ Q(h). Then

BH
(
P × Zap, h

)
matrix exists for every abelian group P of order pa.

Proof. By Corollary 5.3 there is a BH(Zpa × (Zp)a, h) matrix. The proof of Theorem 5.2

shows that this matrix satisfies condition (23). Hence there is a BH
(
P × Zap, h

)
matrix

by Theorem 7.3.

A Appendix: Proof of Theorem 2.3

Part (a) of Theorem 2.3 is just Result 1.3. To prove part (b), we first show the sufficiency

of each of the conditions (i)-(iii).

Assume that (i) holds, that is, h is even and m + 1 ∈ Q(h). By part (a), there are

η1, . . . , ηm+1 ∈ U(h) with
∑m+1

i=1 ηi = 0. Thus
∑m

i=1(−ηm+1ηi) = 1 and this shows that (4)

has solution.

Suppose that (ii) holds, that is, h is odd and m − 1 ∈ Q(h). By part (a), there are

η1, . . . , ηm−1 ∈ U(h) with
∑m−1

i=1 ηi = 0. Setting ηm = 1 thus gives a solution of (4).

Now suppose that (iii) holds. Then

(ζq1 + · · ·+ ζq1−1
q1

)(ζq2 + · · ·+ ζq2−1
q2

) = (−1)(−1) = 1 (30)
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gives a solution of (4), since the number of roots of unity obtained by expanding the left

hand side of (30) is (q1 − 1)(q2 − 1) = m. In summary, we have shown the sufficiency of

conditions (i)-(iii).

To prove necessity, assume that (4) holds. Note that (4) can be written in the form

m+1∑
i=1

ηi = 0 with ηm+1 = −1. (31)

First assume that h is even. Then ηm+1 = −1 ∈ U(h) and thus m+ 1 ∈ Q(h) by (31) and

part (a). Hence condition (i) of Theorem 2.3 is satisfied.

Hence we can assume that h is odd. Suppose that condition (ii) of Theorem 2.3 does

not hold, that is,

m− 1 6∈ Q(h). (32)

To complete the proof, we have to show that condition (iii) of Theorem 2.3 holds.

We need to employ results from [17] and thus need some preparations. Let G = 〈g〉
be a cyclic group of order h and let ρ : Z[G] → Z[ζh] be the homomorphism determined

by ρ(g) = ζh. Let q1, . . . , qt be the distinct prime divisors of h and let Qi be the subgroup

of order qi of G, i = 1, . . . , t. By [17, Thm. 2.2], we have

ker(ρ) =

{
t∑
i=1

XiQi : Xi ∈ Z[G]

}
. (33)

First suppose that h is a prime power, say h = qb where q is a prime. Note that, in

this case, the kernel of ρ is {XQ : X ∈ Z[G]} where Q = 1 + gq
b−1

+ · · · + g(q−1)qb−1
. As

ηi ∈ U(h) for all i by assumption, we can write ηi = ζaih with ai ∈ Z. We have

ρ

(
−1 +

m∑
i=1

gai

)
= −1 +

m∑
i=1

ζaih = −1 +
m∑
i=1

ηi = 0

by (31) and thus

−1 +
m∑
i=1

gai = QH (34)

for some X ∈ Z[G]. Applying the trivial character of G to (34), we get m−1 ≡ 0 ( mod q).

But this contradicts (32).

Hence we can assume that h has at least two distinct prime divisors. Let q1, q2, q1 < q2,

be the two smallest prime divisors of h. If m− 1 ≥ (q1 − 1)(q2 − 1), then m− 1 ∈ Q(h)

by [17, Lem. 5.1], contradicting (32). Thus we have

m ≤ (q1 − 1)(q2 − 1). (35)
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The proof is done if we can show that m ≥ (q1 − 1)(q2 − 1). Set

Z≥0[G] =

{∑
g∈G

agg ∈ Z[G] : ag ≥ 0 for all g ∈ G

}
.

Consider Y =
∑q1−1

i=1 g(h/q1)i +
∑m

i=1 g
ai . Observe that Y ∈ Z≥0[G] and

ρ(Y ) =

q1−1∑
i=1

ζ iq1 +
m∑
i=1

ζaih = −1 +
m∑
i=1

ηi = 0

by (31). Thus Y ∈ Z≥0[G] ∩ ker(ρ). We claim that, in fact,

q1−1∑
i=1

g(h/q1)i +
m∑
i=1

gai = Y =
t∑

j=1

YjQj for some Yj ∈ Z≥0[G]. (36)

If h has only two distinct prime divisors, then (36) follows directly from [17, Thm. 3.3].

Thus assume that h has at least three distinct prime divisors, say q1 < q2 < q3. Using

(35) and the assumption that q1 and q2 are the smallest prime divisors of h, we conclude

m− 1 + q1 ≤ (q1 − 1)(q2 − 1)− 1 + q1 = q1q2 − q2 < q1q2 − q1 − q2 + q3.

By [17, Cor. 4.9], this implies (36). Hence (36) holds in all cases.

If gaj = 1 for some j, then

ρ

 m∑
i=1
i 6=j

gai

 = ρ(Y )− ρ

(
q1−1∑
i=0

g(h/q1)i

)
= 0−

q1−1∑
i=0

ζ iq1 = 0.

Using part (a), we conclude that m− 1 ∈ Q(h), which contradicts (32). Hence we have

gai 6= 1 for all i. (37)

By (36) and (37), the support of Y1Q1 does not contain 1. Thus, by (36), for each

i ∈ {1, . . . , q1−1}, there is j(i) ≥ 2 such that gi(h/q1)Qj(i) ⊂ supp(Y ). Note that the cosets

gi(h/q1)Qj(i), i = 1, . . . , q1−1 are pairwise disjoint, since j(i) 6= 1 for all i and gi(h/q1) ∈ Q1.

Hence, by (37),

|supp(Y )| ≥
q1−1∑
i=1

∣∣gi(h/q1)Qj(i)

∣∣ ≥ (q1 − 1)|Q2| = (q1 − 1)q2.

On the other hand, by the definition of Y , we have |supp(Y )| ≤ q1− 1 +m. We conclude

m ≥ (q1 − 1)q2 − (q1 − 1) = (q1 − 1)(q2 − 1) and this completes the proof. 2
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