Towards Ryser’s conjecture
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Abstract. Ryser’s conjecture asserts that there is no (v, k, A)-difference set
with ged(v, k—A) > 1 in any cyclic group. We survey what is known on this
conjecture and obtain progress towards it by improving the exponent bound
for difference sets in [12]. As a consequence, with three possible exceptions,
Ryser’s conjecture is true for all parameters of known (v, k, A)-difference sets
with £ < 5-10'°. In particular, the circulant Hadamard matrix conjecture
holds for orders < 10!, also with only three possible exceptions. Finally, we
obtain the first necessary and sufficient condition known in the literature for
the existence of an infinite class of difference sets not relying on the self-
conjugacy assumption.

1. Introduction

In 1938, Singer discovered that the desarguesian projective geometry PG(n,q)
admits a cyclic regular automorphism group, nowadays called the Singer cycle of
PG(n,q). Such an automorphism group is equivalent to a certain difference set in
a cyclic group. Here a (v, k, \)-difference set means a k-subset D of a group G of
order v such that every nonidentity element g of G has exactly A representations
g = didy ! with di,d> € D. We call D abelian, cylic etc. if G has this property.
The parameter n := k — A is called the order of D. For convenience, n sometimes
is added to the parameters, and we speak of a (v, k, A, n)-difference set. Difference
sets with n = 0,1 are called trivial and will be excluded from our considerations.

Singer’s discovery of an infinite family of difference sets inspired the devel-
opment of an existence theory for these objects. First only cyclic groups were
considered, later the theory was extended to noncyclic finite groups. In this pa-
per, we mainly will be interested in the cyclic case. Until recently, only two main
methods for the study of difference sets were known: Hall’s multiplier theorem [3,
1947] and Turyn’s self-conjugacy approach [16, 1965]. Both methods work well for
small parameters (v, k,A,n). Thus it was possible to settle the existence problem
for cyclic difference sets with k£ < 100 already in the 60s [2, 1969]. These results
and the fact that no cyclic (v, k, A, n)-difference set with ged(v,n) > 1 has ever
been found motivate the following conjecture of Ryser [11] from 1963.

Conjecture 1.1 (Ryser’s conjecture) There is no cyclic (v,k, A, n)-difference set
with ged(v,n) > 1.



2 Bernhard Schmidt

Ryser’s conjecture is still open, only some partial results are known. Despite
many efforts, there had not been any new results since Turyn’s work [16, 1965] until
substantial progress was obtained in [12]. In the present paper, we will improve
upon [12].

Ryser’s conjecture implies two further longstanding conjectures, namely, the
Barker and the circulant Hadamard matrix conjecture. A circulant Hadamard
matrix of order v is a matrix of the form

al a2 - av
a a e Qy—
H = v 1 v—1
as as PR ay

with a; = +1 and HH? = vI where I is the identity matrix. It is conjectured that
no circulant Hadamard matrix of order v > 4 exists. A sequence (a;)Y_;, a; = %1,
is called a Barker sequence of length v if |Zf:_1] aai+j| < 1lfor j=1,...,v—1.
The Barker conjecture asserts that there are no Barker sequences of length v > 13.
Storer and Turyn [15] proved the Barker conjecture for all odd v. The following is
well known, see [1, Rem. 14.13].

Result 1.2 Ryser’s conjecture implies the circulant Hadamard matriz conjecture
which in turn implies the Barker conjecture.

In [12], the Barker conjecture was verified for v < 4 - 10'2. In the present
paper, we will show that the circulant Hadamard matrix conjecture holds for
v < 10! with only three possible exceptions. We will also show that, again with
only three possible exceptions, Ryser’s conjecture is true for all parameters of
known difference sets with k < 5- 1010,

Let us briefly discuss the previous work related to Ryser’s conjecture. Hall’s
table of difference sets [3, 1956] shows that Ryser’s conjecture is true for & < 50
with eleven possible exceptions. These eleven cases were eliminated by the in-
dependent and overlapping work of Mann [6], Rankin [10], Turyn [16], and Ya-
mamoto [18]. Thus, in 1965, it was known that Ryser’s conjecture is true for
k < 50. Baumert [2, 1969] extended the table for difference sets in cyclic groups
to k <100 and, in particular, showed that Ryser’s conjecture holds in this range.
The two most difficult cases (v, k,\) = (441,56,7) and (891,90, 9) were excluded
by H. Rumsey (unpublished) by extensive computations, see [2]. Baumert’s table
was extended by Vera Lopez and Garcia Sanchez [17, 1997] to k < 150. Together
with the previously known results, their table shows the following.

Result 1.3 Ryser’s conjecture is true for k < 107.

To my knowledge, the following are the only open cases for Ryser’s conjecture
with k < 150: (v, k, \) = (429,108, 27), (715,120,20), (351,126, 45), (465, 150, 50),
see [17]. We will be able to exclude the third of these cases later.

The most important result on Ryser’s conjecture aside from [12] is the fol-
lowing due to Turyn [16]. We recall that a prime p is called self-conjugate modulo
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an integer w if —1 is a power of p modulo the p-free part of w. A composite integer
m is called self-conjugate modulo w if every prime divisor of m has this property.

Result 1.4 Assume the existence of a cyclic (v, k, \,n)-difference set. Let m and
w be positive integers with (m,w) > 1 such that m? divides n, w divides v, and m
is self-conjugate modulo w. Then

271y

w

m <

where r is the number of prime divisors of (m,w).

Turyn’s result shows that Ryser’s conjecture is true in the case of self-
conjugacy:

Corollary 1.5 If there is a prime p dividing (v,n) which is self-cojugate modulo v,
then there is no cylic (v, k, \,n)-difference set.

We note that the self-conjugacy assumption is very rarely satisfied if v has
many prime divisors. In the present paper, we will obtain a result which does not
need severe assumptions like self-conjugacy and thus is of broader applicability.

2. Characters

The standard method for the study of difference sets in abelian groups is the use
of complex characters. We summarize the necessary facts here, see [7] for proofs.
Let G be a finite abelian group. A complex character of G is a homomorphism
X : G = C*. The character xo defined by xo(g) = 1 for all g € G is called the
trivial character. The set of characters of G forms a group G* isomorphic to G
where the group operation is defined by x1x2(9) = x1(9)x2(9)- If x is a character
of G of order e, then x(g) is a complex eth root of unity for all ¢ € G. Any
character of G can be extended to the group ring Z[G] by linearity. A subset D
of G will be identified with 3, ,d € Z[G]. For X =} a49 € Z[G] we write

X1 .= > gec @99~ We use the notation & = e2mi/t,
Lemma 2.1 ([16]) Let D be a (v, k, A, n)-difference set in an abelian group G. Let
X be a character of G of order e. Then x(D) € Z[&.] and

IX(D)* =n.

3. The field descent

Lemma 2.1 has been used in dozens of papers for the study difference sets. Almost
all of these results rely on the self-conjugacy assumption. The main merit of [12]
is to provide a method free from this restrictive condition. The key to this method
is the so-called “field descent”, see [12, Thm. 3.5]. For the formulation of the field
descent, we need a definition.
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Definition 3.1 Let m, n be positive integers, and let m = H§:1 p;i¢ be the prime
power decomposition of m. For each prime divisor q of n let

| pipqpi if mis odd or ¢ =2,
Ma = 4[], 22,,Pi otherwise.

Let D(n) be the set of prime divisors of n. We define F(m,n) = HZ:1 pi% to
be the minimum multiple of H§:1 p; such that for every pair (i,q), i € {1,...,t},
g € D(n), at least one of the following conditions is satisfied.

(a) ¢ =pi and (pi, b;) # (2,1),

() b = ci,
(¢) ¢ #pi and ¢°™*ma() # 1 (mod p}i*).

Result 3.2 (Field descent) Assume |X|*> = n for X € Z[{,) where n and m are
positive integers. Then

X¢}, € Z[p(m,n)
for some j.

In [12], Result 3.2 was used to obtain a general exponent bound for difference
sets. In the Section 5, we will improve upon this bound considerably.

4. Bounding the absolute value

In this section, we will use Result 3.2 to obtain an upper bound on the absolute
value of cyclotomic integers. This bound is an improvement upon [12, Thm. 4.2]. In
the present paper, we will only give the applications of our new bound to abelian
difference sets. Similar applications to relative difference sets, planar functions,
and group invariant weighing matrices can be given [13, Chapter 3].

As a preparation for the proof of our bound, we need a simple lemma on
conjugate characters. Two characters x and 7 of order e of an abelian group G
are called conjugate if there is o € Gal(Q(&.)/Q) with x(g) = 7(9)? for all g € G.
Let ¢ denote the Euler totient function. The following is well known and easy to
prove, see [9, p.6], for instance.

Lemma 4.1 Let x be a character of order e of an abelian group G. Then x has
exactly p(e) distinct conjugates. Furthermore, if x(A) € Q for some A € Z[G],
then 7(A) = x(A) for all conjugates T of x.

The following theorem on cyclotomic integers of prescribed absolute value is
the main result of this paper.

Theorem 4.2 Let X € Z[¢y) be of the form

m—1 )
X=Y al,
i=0
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with 0 < a; < C for some constant C and assume that n := XX is an integer.
Then
2 2
n < C?*F(m,n) _
4p(F(m,n))

Proof. By Theorem 3.2, we can assume X € Z[{] where f := F(m,n). Since

1,&my oo €M7 71 are independent over Q(&f), we have X = E{;()l bi€; where b; :=
im/ - Now we view X also as an element of the group ring Z|G] where G = (&;).
Since XX =n € Q, we have

X(X)x(X) =n (1)

for all (f) characters x of G of order f by Lemma 4.1. Write [ := Z{:_ol b;. The
coefficient of 1 in XX (=1 is 3>/ b2. From the Fourier inversion formula, we get
DN E > req- IT(X)2. Using (1) and xo(X) = for the trivial character xo
of G, we get

£Y_ 02+ o(f)n. (2)
Since 0 < b; < C, we have Y. b7 < Cl. Thus f> b7 —1?> < fCl - 1> < f2C?/4.
Combining this with (2) gives the assertion. O

5. A field descent exponent bound

We now apply Theorem 4.2 to obtain a general exponent bound on abelian groups
containing difference sets. By ¢ we denote the Euler totient function.

Theorem 5.1 Assume the existence of a (v, k, A\, n)-difference D set in an abelian
group G. Then

expG < —2E@n)
2y/ne(F(v,n))
In particular, if G is cyclic, then
F(v,n)

"= 1p(Fo,n)

Proof. Let x be a character of G of order e := expG. By Lemma 2.1, we have
|x(D)|? = n. Also, since the kernel of x on G has order v/e, we have

e—1
X(D) =Y ai&
i=0

with 0 < a; < v/e. Thus, from Theorem 4.2, we get the assertion. O
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6. Application to Ryser’s conjecture

The most interesting test cases for our exponent bound are the parameter se-
ries corresponding to known families of difference sets. In this section, we apply
Theorem 5.1 to all parameter series corresponding to known difference sets with
ged(v,n) > 1. The following is a complete list of these series, see [4, 5] or [1].

(i) Hadamard parameters:
(v,k, A\, n) = (4u?,2u? — u,u? — u, u?)
where u is any positive integer.

(ii) McFarland parameters:
(0,k, A, m) = (qHH LS50 1], 42200 gag'=d goay
where ¢ = pf # 2 and p is a prime.

(iii) Spence parameters:
d+1 d+1 d
(0, k, A, n) = (3¢+13-1 3d8™041 3d5'41 524

where d is any positive integer.

(iv) Chen/Davis/Jedwab parameters:

_ —_ 2t—1
(v,k, A n) = (4g2 L=t AL 1 1], 2 (g — 1) L) 42

where ¢ = pf, pis a prlme, and ¢ is any positive integer.

We do not allow ¢ = 2 for the McFarland parameters since then (v, k, A\,n) =
(22442 92d+1_9d 92d_ 9d 92d) and these are Hadamard parameters with u = 2¢.
Hadamard difference sets are known to exist for every u of the form u = 223%r2
where a,b > 0 and r is any positive integer, see [5]. Here we will consider arbitrary
positive integers u. McFarland and Spence difference sets are known for any prime
power ¢ and any positive integer d, see [5]. Difference sets of type (iv) are known to
exist only if f is even or p < 3, see [1, 5]. However, here we will consider arbitrary
f and p.

Now we come to the application of Theorem 5.1. The next theorem shows
that Ryser’s conjecture is true for most parameters of known difference sets.

Theorem 6.1

a) If there is a Hadamard difference set in a cyclic group of order v = 4u>
then F(v,u)?/o(F(v,u)) > v.

b) If there z's a difference set with McFarland parameters in a cyclic group of

order qd+1[q +1],q=pf, thenp>2,d=f =1 and
p+2 12
PEE Sy 22 3
e(p+2) = p+2 ®)

In particular, p + 2 has at least 20 distinct prime divisors and p > 2 - 1028,
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¢) There are no difference sets with Spence or Chen/Davis/Jedwab parame-
ters in any cyclic groups.

Proof. a) This is immediate from Theorem 5.1.

¢) See [12, Thm. 6.3].

b) Assume the existence of a difference set with McFarland parameters in a
cyclic group G of order v = qd+1[%
first show f =d = 1.

If we take p; = p in Definition 3.1 then by = 1if pis odd and b; =2if p= 2.

+ 1] where ¢ = p¥, and p is a prime. We

In both cases f := F(v,n) divides ;zo(qd;_ll_1 +1) since qd:_ll_l +1is even for p = 2.
Thus
f<2pfitt, 4)
Since 2-3-5/(1-2-4) < 4, and since 72/25 > r/(r — 1) for all r > 7, we have
< g2/%

4p(z)
for all integers & > 1. From Theorem 5.1 and (4) we thus get
P < (2pFat1)27/25,

This implies fd = 1 or fd = 2 and p = 2. In the latter case we have f = 2 and
d = 1 since we assumed ¢ = p’ # 2 for McFarland parameters. A direct application
of Theorem 5.1 shows that this case cannot occur. Thus we have shown fd = 1.
Now let fd = 1. Then p # 2 since ¢ # 2, and we have v = p%(p + 2). Thus
f = F(v,n) divides p(p + 2). Theorem 5.1 gives p*> < p*(p + 2)?/[4p(p(p + 2))]
proving (3). Let Y = 3-5-- - 73 be the product of the 20 smallest odd primes. Then
Y/p(Y) < 3.97 and Y > 2-1028. This implies the remaining assertions of part b.
O

Remark 6.2

a) Theorem 6.1 eliminates the open case (v, k,\) = (351,126, 45) mentioned
in the introduction since these are Spence parameters with d = 2. The nonexistence
of a cyclic difference set with these parameters also follows directly from Theorem
5.1 since F'(351,81) = 39.

b) A heuristic argument [12, Rem. 3.6] shows that the order of magnitude
of F(v,n) “usually” is the product of the primes dividing v. This indicates that
Theorem 6.1 a should rule out “almost all” cyclic Hadamard difference sets. The
next result, in particular, confirmes this claim.

Corollary 6.3 For k < 5-10'°, Ryser’s conjecture is true for all parameters (v, k, \)
of known difference sets (see the list (i)-(iv) above) with the possible exception of
(v,k, A) = (4u?, 2u? — u,u® — u) with u € {165,11715,82005}.

Proof. For McFarland, Spence and Chen/Davis/Jedwab parameters, this imme-
diately follows from Theorem 6.1. For Hadamard parameters, the result follows
from a computer search using Result 1.4 and Theorem 6.1 a. O
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Corollary 6.4 There is no circulant Hadamard matriz of order v, 4 < v < 101,
with the possible exceptions v = 4u?, u € {165,11715,82005}.

Proof. The existence of a circulant Hadamard matrix of order v implies the ex-
istence of a Hadamard difference set in the cyclic group of order v, see [1, Rem.
14.13]. Thus the assertion follows from Corollary 6.3. O

We conclude this paper with a necessary and sufficient condition for the
existence of McFarland difference sets with f = d = 1. It is the first necessary and
sufficient condition for a (presumably) infinite family of difference sets known in
the literature which does not rely on the self-conjugacy argument.
Corollary 6.5 Let p be an odd prime such that p + 2 is squarefree and

p+2 12

Y 5

e(p+2) p+2 ®
Then a (P2(p+2),p(p+1),p+ 1)-difference set in an abelian group G exists if and
only if

G = (Z/pZ)* x (Z](p+ 2)Z).

Proof. The existence of a (p?(p+2),p(p+1),p+ 1,p?)-difference set in (Z /pZ)? x
(Z/(p+ 2)Z) is due to McFarland [8]. The necessary part follows directly from
Theorem 6.1 b. O
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