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Multispectral optoacoustic imaging of dynamic
redox correlation and pathophysiological
progression utilizing upconversion nanoprobes
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Yuanjin Zheng4, Mingyuan Gao3 & Bengang Xing1,2

Precise and differential profiling of the dynamic correlations and pathophysiological impli-

cations of multiplex biological mediators with deep penetration and highly programmed

precision remain critical challenges in clinics. Here we present an innovative strategy by

tailoring a powerful multispectral optoacoustic tomography (MSOT) technique with a

photon-upconverting nanoprobe (UCN) for simultaneous visualization of diversely endo-

genous redox biomarkers with excellent spatiotemporal resolution in living conditions. Upon

incorporating two specific radicals-sensitive NIR cyanine fluorophores onto UCNs surface,

such nanoprobes can orthogonally respond to disparate oxidative and nitrosative stimulation,

and generate spectrally opposite optoacoustic signal variations, which thus achieves com-

pelling superiorities for reversed ratiometric tracking of multiple radicals under dual inde-

pendent wavelength channels, and significantly, for precise validating of their complex

dynamics and correlations with redox-mediated pathophysiological procession in vivo.
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Currently, early disease theranostics in clinics demands the
capability to comprehensively understand the intricate
signaling pathways in many health-threatening illnesses,

and to precisely track their physiological and pathological
development in real time1. Considering the heterogeneous and
complex nature of living systems, the bioassay reporters addres-
sing single biological pathway may not be able to fully reveal the
biodiversity. In addition, lack of sufficient sensitivity and speci-
ficity to represent multiple pathophysiological variations may
greatly restrict their effective validation of disease pathogenesis at
the different stages2. Development of specific and unified strate-
gies that allow multiplex screening of various biomarkers, and,
importantly, to precisely reflect the dynamic correlations of dif-
ferent signaling bioregulators associated with the etiology of
diseases and procession remains challenging in the fields.

As an essential signaling mediator in human beings, multiple
redox radicals, including reactive oxygen and nitrogen species
(ROS/RNS), have been extensively authenticated as significant
functional regulators involved in many essential physiological
processes such as cellular communication, signal transduction,
intermediary metabolism, and immune or inflammatory
response3. The altered redox balances may cause severe oxidative
or nitrosative stress that could be closely implicated in the
etiology and pathologies of diverse human diseases4. Moreover,
mounting investigations have indicated that the generation of
ROS or RNS is not static, but rather, their excess or shortage, or
even spatiotemporal distributions and correlations are always
processing in a highly dynamic and programmed precision. Such
biological diversities of free radicals provide great possibilities to
act as ideal endogenous biomarkers for spatiotemporally dynamic
profiling of the pathophysiological implications in complicated
living settings.

Conventional strategies through individual radical sensing
encountered technical concerns that may critically prevent their
implementation for direct determination of multiple free radicals
within a programmed and longitudinal resolution5–8. Although
monitoring of both oxidative and nitrosative stress could be initially
achieved through combination of different sensing moieties9,10,
in vivo imaging of dynamic changes of different redox species
orthogonally and real-time tailoring of their close correlations with
pathophysiological processing remain challenging. The lack of
“smart” and unified tools for concurrent recognition of various
radicals in deep-seated tissue is still an obvious impediment, and
relevant investigations are thus highly desired.

Recently, the lanthanide-doped upconversion nanocrystals
(UCNs) have been extensively applied in biosensing, molecular
imaging, and nanomedicine, due to their extraordinary capability
to convert near-infrared (NIR) photonic excitations into multi-
plexed emissions ranging from UV to NIR windows11–14. Such
unique tissue-penetrable, emission-tunable, and remarkably
multiplexing optical properties, featured by a single photonic
excitation, can ideally realize a precise interrelation and meet
complex biological demands by fitting different sensing moieties
into one rationally integrated nanomatrix, thus rendering UCNs a
superior multispectral reporter to simultaneously read out
numerous analytes (e.g., ROS and RNS) in highly complex and
dynamic living environments15–17.

As an amazing imaging modality, multispectral optoacoustic
tomography (MSOT), which can supply reliable anatomy
information to the disease theranostics in pre-clinical trials, has
recently attracted considerable attention in biomedical sci-
ences18–20. MSOT can construct accurate tomographic images
in vivo by utilizing non-ionizing NIR radiation to generate
broadband ultrasonic waves, which provides promising signal-
to-noise ratio and high-resolution exquisite images at depths in
living animals that are hardly accessible by conventional optical

imaging approaches21–23. Importantly, MSOT demonstrates
multi-wavelength option that can be selectively performed to
concurrently exploit different absorbing agents with a well-
defined spatiotemporal resolution, thus providing more
information-rich feasibility to monitor dynamic phenomena
through multiple sensing channels, which therefore promote
the exploration of biological progressions and theranostic
development in clinics24–27.

In this work, we present an innovative approach for simultaneous
screening of various redox species, and, significantly, for dynamic
profiling of their intricate correlations with pathophysiological
implications by using NIR light-mediated UCNs as optoacoustic
(OA) nanoprobes and multispectral signal acquisition through
MSOT imaging. By taking advantages of multiplexing luminescence
of UCNs converted from NIR laser illumination, two specific ROS-
and RNS-sensitive NIR cyanine fluorophores with their absorbance
overlapping the upconverted UCNs emissions were individually
incorporated onto the nanoprobe surface. Such unique chromogenic
modification guaranteed UCNs with a broad absorbance in NIR
region and made it a unique probe to monitor the MSOT signal
variations. Under oxidative or nitrosative stimulation, the radical
oxidations triggered the structural rearrangement or degradation in
fluorophores, which thus contributed spectrally opposite MSOT
response for reversed ratiometric tracking of multiple radicals with a
longitudinal resolution, and, meanwhile, for dynamic profiling of
their correlations with the pathogenesis in live mice.

Results
Design of UCNs to differentiate disparate redox species. Here, a
rational design by integration of NIR photon-mediated UCNs
with a unified MSOT imaging was demonstrated to orthogonally
identify disparate oxidative or nitrosative radicals (e.g., O2

•− or
ONOO−) in a highly spatiotemporal precision (Fig. 1). Different
from conventional probing systems via “on or off” concept for
radicals sensing, the rationale of current imaging probes mainly
relies on the unique spectral features of two different NIR
fluorophores on the UCN surface, which can concomitantly
respond to ROS and RNS stimulation to produce OA signals in
opposite directions at different wavelengths. Such different redox-
triggered spectral changes could be interlocked in a ratiometric
precision, providing great benefits for simultaneous MSOT ima-
ging of ROS and RNS dynamics under two independent optical
channels.

Typically, a specific NIR light-mediated upconversion platform
was fabricated by embedding two ROS/RNS-responsive substrates
in a branched polymer layer on the surface of lanthanide-doped
UCNs via hydrophobic interaction28. Upon ROS treatment, the
hydrocyanine substrate (HCy5) regenerated the π-conjugation in
Cy5 with maximum absorbance at 640 nm29, leading to enhanced
OA signal at the same wavelength. While upon RNS stimulation,
another specific cyanine substrate (Cy7) with maximal absor-
bance at 780 nm underwent the structural degradation, causing
OA signal reduction at 800 nm30. Moreover, considering the
multicolor emissions of UCNs under 980 nm irradiation, the
upconverted luminescence (UCL) decreased at 660 nm with ROS
treatment, and increased at 800 nm with RNS incubation via the
processes of energy transfer31. Such promising imaging strategies
through MSOT and UCL provide a multiplex signal readout for
different radicals at NIR spectral window, thus facilitating the
non-invasive multiple radicals detection within deep tissue in
complex living conditions.

In vitro characterization of UCNs. The upconversion nano-
platforms with multiple emissions at 660 and 800 nm were
established by doping core-shell UCNs with Er3+ and Tm3+
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ions32. Transmission electron microscopy (TEM) images indi-
cated a spherical morphology of UCNs with narrow size dis-
tribution at ~20 nm (Supplementary Fig. 1). These core-shell
nanostructures were further modified with branched poly-
ethylenimine (PEI25000) and polyethylene glycol acid (PEG5000-
COOH) to enhance biocompatibility and to facilitate the incor-
poration of radical-responsive HCy5/Cy7 into the particle struc-
ture (Fig. 2a and Supplementary Fig. 2). Laser irradiation (e.g., at
980 nm) of the polymer-modified UCNs emitted UCL lumines-
cence at 660 and 800 nm (Supplementary Fig. 3), which decreased
upon HCy5 or Cy7 coating on the particle surface due to the
process of energy transfer between fluorophores and UCNs
(Supplementary Figs 3 and 4). The obvious absorbances of cya-
nine fluorophores were used to determine the optimal loading,
and there were 8.9% HCy5 and 12.2% Cy7 found on the UCN
surface (Supplementary Fig. 5). The dynamic light scattering
(DLS) and zeta potential analysis indicated a uniform hydro-
dynamic diameter (100 ± 27 nm) and positive charge surface
(21.8 ± 2.8 mV) (Fig. 2a and Supplementary Fig. 6), which also
exhibited great stability in phosphate-buffered saline (PBS) buffer
solution (Supplementary Fig. 7).

We first evaluated the capabilities of UCNs to differentiate
multiple radicals in buffers (pH 7.4). Prior to treatment with
radicals, UCNs alone presented a strong absorbance of Cy7 at
780 nm (Fig. 2b). In the presence of typical ROS, for example,
superoxide anion (O2

•−, 100 μM), a significant absorbance
enhancement at 640 nm was observed, mainly due to the

HCy5 structural regeneration induced by rapid oxidation
(Supplementary Fig. 8), while similar ROS treatment will not
alter Cy7 structure in UCNs, and there was no obvious spectral
change at 780 nm, suggesting the selective O2

•− recognition
between HCy5 and Cy7. Conversely, in the presence of RNS, for
example, peroxynitrite (ONOO−, 100 μM), almost no absorbance
change at 640 nm, but progressive absorbance decrease at 780 nm
was detected on UCNs due to the irreversible oxidative
degradation of Cy7 structure (Fig. 2b and Supplementary Fig. 9).
Moreover, the combined stimulation of UCNs with ROS
(e.g., O2

•−, 20 μM) and RNS (e.g., ONOO−, 20 μM) led to the
selective absorbance increase at 640 nm and decrease at 780 nm
simultaneously (Fig. 2b), suggesting that the opposite absorbance
change triggered by specific radicals would provide unique
advantages for ratiometric mapping of the ROS/RNS dynamics in
living settings. Furthermore, apart from a certain similarity
between O2

•− and •OH, as well as the oxidative Cy7 degradation
between ONOO− and OCl−, no obvious response was observed
upon other radical treatment, including ROO•, NO, and H2O2,
and so on (Fig. 2c), clearly showing the beneficial specificity of
UCNs for simultaneous sensing of ROS (e.g., O2

•−) and RNS
(e.g., ONOO−) separately.

We also examined the capability of UCNs as OA nanoprobes
to differentiate ROS/RNS species under physiological conditions.
Typically, we incubated UCNs with O2

•− and ONOO− in PBS
(pH 7.4). Then, the radical-triggered OA changes were collected
by a unique MSOT setup with NIR excitation at the range of
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Fig. 1 Illustration of the multiple radical-sensitive approach for dynamic profiling of pathophysiology implications in vivo. a Design of near-infrared (NIR)
light-mediated upconversion nanoprobe by incorporating reactive oxygen and nitrogen species (ROS)-responsive HCy5 and reactive nitrogen species
(RNS)-responsive Cy7 onto upconversion nanocrystal (UCN) surface. Upon radical stimulation, HCy5 and Cy7 underwent the structural regeneration and
degradation, respectively, leading to ratiometric upconverted luminescence (UCL) and optoacoustic (OA) signal variations in NIR spectral region.
b Dynamic profiling of pathophysiological implications to explore the underlying radical-induced inflammations by tailoring multispectral optoacoustic
tomography (MSOT) with optical properties of UCNs in live mice
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680–980 nm, which were further processed through mathematical
deconvolution for specific differentiation of ROS and RNS
response at different wavelengths33. As shown in Fig. 2d and
Supplementary Fig. 10, UCNs treated with O2

•− demonstrated
significant OA signal enhancement at 680 nm, but negligible
change at 800 nm, leading to a ratiometric value ((ΔOA680+
ΔOA800)/OA800) of 0.59 ± 0.06. However, the addition of
ONOO− obviously decreased the maximum OA signal at 800
nm rather than that at 680 nm, thus contributing a dramatic
reverse ratiometric change ((ΔOA680+ ΔOA800)/OA800=−0.63
± 0.04) (Fig. 2d). Such opposite OA signal changes supplied an
ideal amenability to dual-channel sensing of ROS and RNS at 680
and 800 nm, respectively34. The OA response was also linearly
correspondent to different radicals in buffers with sensing limit
down to 85 and 168 nM for O2

•− and ONOO−, respectively
(Fig. 2e, f). Moreover, considering the complexities of multiple
radical generation and distribution in vivo, the oxidative response
of simultaneous radicals was also evaluated by the multiplexing
UCL signals upon NIR irradiation of UCNs at 980 nm. As shown
in Fig. 2g, stimulation of UCNs with O2

•− led to a reduced UCL
emission at 660 nm due to the energy transfer between UCNs and
regenerated Cy5 triggered by ROS oxidation. However, ONOO−

treatment degraded Cy7 structure on the UCN surface, which
therefore caused the recovery of UCL emissions at 660 and 800
nm, respectively. To mimic the clinical skin penetration, we
examined the UCL and OA signals with pork tissues at different
thickness. An 8-mm-thick tissue significantly reduced the UCL
emission at 660 nm (~75%), while only ~16% drop at 800 nm
after 980 nm irradiation. Notably, only the minor OA

attenuations were presented at 680 nm (~7% decrease) and 800
nm (~4% decrease) in MSOT imaging with negligible ratiometric
variations, suggesting a superior penetration depth achieved by
MSOT as compared to UCL imaging (Supplementary Fig. 11).
The consistent MSOT and UCL analysis demonstrated the great
feasibility of UCNs as promising multimodality nanoprobes for
simultaneous imaging of oxidative and nitrosative stresses in
complex living conditions.

UCN response to endogenous redox species in live cells. We
further investigated the capability of UCNs to monitor the
endogenously generated radicals in murine RAW264.7 macro-
phage cells through both MSOT and optical UCL imaging.
Briefly, the excessive O2

•− and ONOO− generation in cells was
achieved by pretreating with phorbol 12-myristate 13-acetate
(PMA) and a mixture of lipopolysaccharide (LPS)/interferon-γ
(INF-γ)/PMA, respectively (Fig. 3a). Upon confirmation of cel-
lular radical stimulation by standard fluorimetric peroxynitrite
(green) and superoxide (red) assay (Supplementary Fig. 12)6,35,
the cells were collected for MSOT measurement after 4 h incu-
bation with UCNs. As shown in Fig. 3b and Supplementary
Fig. 13, cellular inflammation triggered by PMA produced O2

•−

species (group 3), which presented an obvious OA enhancement
at 680 nm, but less change at 800 nm, leading to a dramatic
ratiometric signal ((ΔOA680+ ΔOA800)/OA800) change with a
value of 0.25 ± 0.03. However, the cell stimulation with LPS/IFN-
γ/PMA for ONOO− generation (group 5 in Fig. 3c) displayed an
obvious attenuation at 800 nm, but less change at 680 nm,
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resulting in a reverse ratiometric signal of −0.83 ± 0.03. Addi-
tionally, cellular treatment with a scavenger (e.g., Mn(III) tetrakis
(4-benzoic acid) porphyrin (MnTBAP) for O2

•− or mercap-
toethyl guanidine (MEG) for ONOO−) caused a less OA change
with the ratiometric value (e.g., 0.06 ± 0.02 and 0.05 ± 0.01)
similar to the cells under resting states. The UCL signal changes
corresponding to ROS/RNS treatment were also examined by
confocal microscopy upon 980 nm excitation (Fig. 3d). A pro-
gressive loss of UCL emissions was observed at 660 nm with PMA
stimulation, indicating the energy transfer between UCNs and
regenerated Cy5 after ROS oxidation, while the cellular treatment
with LPS/IFN-γ/PMA led to the ONOO− oxidation of RNS-
responsive Cy7 degredation and thus enhanced the UCL emission
at 800 nm. Both the radical-responsive UCL changes could be
inhibited by O2

•− and ONOO− scavengers (Supplementary
Figs 14 and 15). Moreover, the cell viability studies showed
negligible cytotoxicity after incubation with UCNs (0.1 mgmL−1)
for 24 h (Supplementary Fig. 16). The significant ratiometric OA
and UCL signals could easily characterize resting and stress cells,
demonstrating the feasibility of UCNs to selectively differentiate
the ROS and RNS generation in different cell environments.

We also explored the potential mechanism of ROS/RNS-
induced pathology in live cells by determi ning the mitochondrial
membrane potential (Δψm) with a commercial kit (JC-1), which

mainly keeps as aggregates with red fluorescence in healthy cells,
but monomers with green fluorescence after mitochondrial
damage36,37. The flow cytometry results showed that the
macrophage cell population is mainly located at the lower-right
quadrant after ROS (group 3) and RNS (group 5) production
(Fig. 3e). As a control, negligible signals were determined in the
presence of UCNs (group 2), scavenger of O2

•− (group 4), and
ONOO− (group 6), respectively, suggesting the association of
over-produced radicals with the mitochondrial dysfunction and
initial cell damage in pathological processes.

Simultaneous screening of multiple radical dynamics in vivo.
The in vivo MSOT and UCL imaging were performed for
simultaneous screening of ROS and RNS dynamics via intrave-
nous (i.v.) injection of UCNs (5 mgmL−1 in 100 μL saline) into
live Balb/c nude mice (n= 5). The OA and UCL imaging were
captured to monitor the distribution of UCNs in live mice, which
consistently showed the obvious particle accumulation in the liver
(Supplementary Figs 17–19), suggesting the feasibility of UCN
nanoprobes to real-time correlate the radical dynamics in hepa-
tocytes with various stages of inflammatory progression. As a
proof of concept, LPS, a bacterial endotoxin from Gram-negative
pathogens, which can induce ROS over-production in vivo (e.g.,
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O2
•−) or acetaminophenol (APAP), a typical anti-pain/fever

drug, to stimulate excessive RNS (e.g., ONOO−), were intraper-
itoneally (i.p.) injected into the mice to mimic early-stage
inflammation38. Upon subsequent tail-vein administration of
UCNs, the MSOT imaging was performed at different time
intervals, and the anatomy of OA signals at the region of interest
(ROI) in liver cross-sections was evaluated at 680 and 800 nm
with pseudo-color processing (Fig. 4a) and mathematical
deconvolution (Fig. 4d, e)33. As shown in Fig. 4b, the radical
stimulation showed negligible OA changes at both 680 and
800 nm over the course of imaging at initial 120min post injection
of UCNs alone, suggesting the reliable baseline and great stability
of UCNs in the liver. Nevertheless, LPS stimulation presented a
significant enhancement at 680 nm and minimal change at
800 nm with a ratiometric value of 0.42 ± 0.08 at 90min, while
APAP treatment led to an obvious signal attenuation at 800 nm,
but negligible change at 680 nm with a reverse ratiometric value of
−1.88 ± 0.09 at 90min after UCN injection (Fig. 4c).

Such redox-responsive ratiometric OA changes and UCL
imaging were also used to monitor the dynamic processing of
ROS/RNS in LPS/APAP-triggered inflammation animals after
tail-vein injection of UCNs. Typically, LPS stimulation resulted

in a gradual ROS increase in mouse liver over the imaging
process (Fig. 4d). As compared to the signal variations in the
control group, APAP treatment displayed slight OA enhance-
ment at 680 nm related to ROS production (e.g., O2

•−) at initial
injection of UCNs. However, a dramatically decreasing trend
towards ROS response occurred, and continuous ONOO−

increment was easily observed within 3 h of APAP administra-
tion (Fig. 4e), suggesting the dynamic correlation between ROS
and RNS, and the process of RNS generation was later than that
of ROS. When N-acetyl-cysteine (NAC), a glutathione precursor
well known to scavenge reactive metabolites in hepatocyte
cells39, was used to treat live mice together with LPS or APAP
stimulation, both the OA signals at 680 and 800 nm returned to
the levels close to the control group done by UCNs itself,
suggesting the effective inhibition of radical over-production by
NAC. Meanwhile, the UCL signal also showed an obvious drop
(~4.4-folds) at 660 nm in LPS-treated mice and a significant
increment (~4.7-folds) at 800 nm in APAP-stimulated mice
owing to energy transfer process (Fig. 4f, g and Supplementary
Fig. 20), further confirming the great potential of UCNs as a
promising nanoprobe for ratiometric screening of radical
dynamic in vivo.
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In vivo monitoring of radical dynamics in pathological set-
tings. Inspired by in vivo results in standard inflammation animal
models for redox species screening, it was highly essential to
investigate the heterogeneity of multiple radicals in inflammation
development, and, importantly, to correlate their dynamic
changes with the pathological progression in living subjects. To
this end, isoniazid (INH), a most commonly used anti-
tuberculosis drugs40, and tacrine (THA), a Food and Drug
Administration (FDA)-approved agent for Alzheimer’s disease
treatment41, have been chosen to mimic the different inflam-
mation stages. INH and THA can induce oxidative or nitrosative
stress, which are associated with severe hepatotoxicity in clinics,
while the detailed mechanisms have not been fully elucidated42.
By using UCNs as nanoprobes, we performed a dynamic MSOT
imaging of ROS/RNS in the liver upon overdose of INH and THA
administration. As shown in Fig. 5a, INH treatment (e.g., 200
mg kg−1) presented a short-lived oxidative burst at 680 nm
within 30 min ((ΔOA680+ ΔOA800)/OA800= 0.19 ± 0.08) and an
obvious nitrosative stress-induced attenuation at 800 nm within
120 min ((ΔOA680+ ΔOA800)/OA800=−1.26 ± 0.07) after UCN
injection. Similarly, the UCL imaging in INH-treated mice also
displayed a noticeable emission reduction at 660 nm and an
enhancement (~2.9-folds) at 800 nm upon 980 nm excitation
(Fig. 5c and Supplementary Fig. 21). The consistent imaging
results (Fig. 5d, e) suggested a threshold dose-type generation of
ROS (e.g., O2

•−) at an early stage, but a dose-dependent excessive
RNS (e.g., ONOO−) generation at prolonged duration. Unlike
INH, THA administration (30 mg kg−1) exhibited a sustained OA
increment at 680 nm within 60 min ((ΔOA680+ ΔOA800)/
OA800= 0.33 ± 0.06), while a slight reverse variation at 800 nm
up to 120 min ((ΔOA680+ ΔOA800)/OA800=−0.35 ± 0.09)

(Fig. 5b). Furthermore, the UCL imaging displayed considerable
emission drop (~3.7-folds) at 660 nm, but less change at 800 nm
(Fig. 5c), demonstrating more predominant ROS production than
that of RNS in the liver upon overdose of THA treatment.

Exploring metabolic mechanism and inflammation procession.
It has been established that redox species in living systems closely
link to a variety of pathophysiological events from intrinsic
metabolism to acute inflammation, and they can also directly
reflect the etiological processing of many chronic diseases
(Fig. 6a)3. In line with the dynamic ROS and RNS changes
in vivo, the unique redox-responsive ratiometric MSOT imaging
at 680 and 800 nm could serve as an ideal strategy to real-time
track the changes of multiple radicals, and to investigate the
correlations between ROS/RNS variations and inflammation
development in highly complicated living conditions (Fig. 6b).
We first examined the inflammation procession in the liver by
monitoring two typical metabolism-mediated enzymes activities:
cytochrome P450 (CYP450), one major redox source for most
phase I drug metabolism, and uridine 5′-diphospho-glucuronosyl
transferases (UGTs), a key player for phase II glucuronidation to
facilitate the drug biotransformation in vivo43,44. As shown in
Fig. 6c, d, gradual production of CYP450 and rapid consumption
of UGTs were observed at the incipient 60 min after individual
administration of APAP, INH, and TNH, indicating that the
intensive drug metabolism occurred in the liver. As a model
hepatotoxin, APAP mainly undergoes phase II metabolism
pathway before its excretion via glucuronidation and sulfation.
Only a small proportion of CYP450-dependent phase I metabo-
lism was presented to produce a metabolic iminoquinone, N-
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acetyl-p-benzoquinone imine, which induced the mitochondrial
dysfunction and subsequently initiated nitrosative stress in
overdose42.

Compared to APAP, a similar CYP450 level along with a
dramatic depletion of UGT activities was determined upon INH
treatment for 60 min (Fig. 6d), suggesting that the metabolism of
INH in vivo would mainly go through phase II pathway, while a
fraction of INH oxidation via phase I metabolism led to initial
radical generation including ROS/RNS, as indicated in ratio-
metric MSOT analysis (Fig. 6b). Additionally, different from
APAP, more significant CYP450 enhancements and UGT
suppression were observed upon THA stimulation for 60 min
(Fig. 6c, d), indicating the possibility of both phase I and II

pathways occurred in THA metabolism, and the higher phase I
metabolism could induce more oxidation of THA for radical
generation (e.g., ROS) (Fig. 6b). These data corroborated the
controversial metabolic mechanism that THA would be mainly
excreted through the glucuronidation process in phase II
pathway, and the relevant THA bioactivation involved the
CYP450-mediated oxidation to form 1-hydroxytacrine, a reactive
metabolite that caused obvious hepatotoxicity with an increasing
radical production45.

Typically, upon drug stimulation, the innate immune responses
will initialize the liver tissue injury and repair by releasing the
hepatotoxic pro-inflammatory cytokines (e.g., interleukin-6, IL-6)
and the hepatoprotective anti-inflammatory cytokines (e.g.,
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interleukin-10, IL-10)46, which will provide valuable insights on
real-time investigation of different inflammation stages in vivo.
As shown in Fig. 6e and Supplementary Fig. 22, the lower
expression levels of IL-6 and IL-10 were observed right after
different hepatotoxin injection. However, a significant increase of
these cytokines was detected ~60 min post injection, and such
high expression remained up to 120 min with the continuous
inflammation upon drug stimulations, indicating the presence of
both pro- and anti-inflammation that correlated with the radical
production upon drug stimulation. Notably, the animal treatment
with APAP, INH, or THA for 60 min indicated comparable
cytokine levels in the body, while the ratiometric MSOT imaging
of the dynamic redox changes within 60 min drug treatment
showed completely different profiling (Fig. 6b), showing that the
ratiometric MSOT ROS/RNS imaging could precisely differenti-
ate the early inflammation in vivo.

Moreover, we also performed the liver tissue histological and
immunohistochemical analysis at 60 and 180 min to evaluate the
inflammatory response after animals were treated with different
drugs. H&E) staining indicated a minimum hepatotoxicity within
60 min upon treatment with APAP, INH, and THA (Supple-
mentary Fig. 23); however, the typical lobular hepatocyte
structures were dramatically destroyed and the disparate
histological changes, such as centrilobular vein fibrosis, swollen
hepatocytes, sinusoidal congestion, and inflammatory infiltration,
were readily observed up to 180 min after drug injection (Fig. 6f
and Supplementary Fig. 24). Such severe hepatotoxicity was
further confirmed by alanine transaminase (ALT) and aspartate
aminotransferase (AST) analysis, both of which are standard
biomarkers in clinics for the diagnosis of liver diseases
(Supplementary Figs 25 and 26). These studies suggested that
the definite hepatotoxicity occurred later than the systematic drug
metabolism and initial inflammation reaction, which is the
process well accepted in drug-induced livery injury (DILI)
(Fig. 6a)42.

In order to validate the correlations between the dynamic
redox changes and inflammation procession in DILI, a specific
hallmark of ROS over-production in vivo, 4-hydroxynonenal (4-
HNE) assay, was used to examine the oxidative-mediated cell
damage. Moreover, as a product of tyrosine nitration in protein,
3-nitrotyrosine was considered as another specific biomarker of
nitrosative stress in vivo. As shown in Fig. 6g, h, negligible
histological changes in 4-HNE and 3-nitrotyrosine were observed
in liver tissues before and after APAP or INH treatment within
60 min. However, slight production of 4-HNE-positive foci and
obvious generation of nitrotyrosine-positive lesion were detected
at 180 min, indicating the occurrence of both oxidative and
nitrosative stress after administration of APAP or INH.
Furthermore, both APAP and INH stimulation caused more
significant 3-nitrotyrosine staining in the liver (n= 5), demon-
strating the major roles of RNS (e.g., ONOO−) in the observed
inflammation.

Unlike APAP or INH, as an acute hepatotoxic drug withdrawn
by FDA41, THA stimulation led to fewer nitrosative-positive foci,
while more 4-HNE-positive lesions were observed at 60 and 180
min, indicating that the oxidative stress may predominantly
contribute to the THA-induced liver injury. This histological
analysis was in good accordance with the ratiometric MSOT
analysis acquired at initial 180 min (Fig. 6b), suggesting the close
correlations of ROS/RNS during the DILI processes of each drug,
that is, the APAP or INH treatment in mice may induce the quick
burst of ROS and high conversion to RNS, while THA-treated
mice will undergo more ROS but minor RNS generation. These
results demonstrated the great potential of UCN as a multi-
spectral nanoprobe to real-time monitor the dynamic redox
changes and correlations of various ROS/RNA biomarkers, and,

importantly, to precisely map the different inflammation stages at
initial hepatotoxic conditions.

Discussion
As essential messenger regulators, ROS and RNS are tightly
associated with various pathophysiological processes, ranging
from the intermediary metabolism to inflammatory response, and
even to the pathobiological evolution of critical diseases47–49. A
detailed understanding of the heterogeneity of redox signaling
and precisely deciphering their sophisticated correlations in
pathogenesis demands the multiplex identification of various
radical dynamics in complex living settings with high specificity
and excellent tissue transparency. Therefore, development of
unified and cutting-edge imaging modalities, which possess
competent capability to dynamically map different radical var-
iations in real time, and to spatiotemporally profile the redox-
mediated pathophysiological implications at different stages, are
still highly essential in clinics.

By taking advantages of the unique multiplexing emissions in
NIR light-mediated UCNs and improved in vivo imaging depth
in MSOT modality, herein, we created a promising strategy by
technically anchoring the ROS-responsive HCy5 and RNS-
responsive Cy7 fluorophores onto UCN nanocrystals with their
maximum absorptions matching the upconverted emissions at
660 and 800 nm, respectively. Such effectively spectral overlap
facilitated efficient energy transfer for optical imaging of RNS/
ROS in one unified system. Importantly, the HCy5-Cy7 mod-
ification endowed UCNs with a broader chromogenic capability,
which guaranteed their feasibility for simultaneous MSOT ima-
ging of ROS/RNS with deeper penetration than traditional
modalities through fluorescence or bioluminescence techniques.

Indeed, upon radical treatment, the ROS-responsive HCy5 on
UCN surface regenerated the π-conjugation in Cy5, leading to an
enhanced OA signal at 680 nm, but a decreased UCL signal at
660 nm. At the same time, the Cy7 moiety underwent structural
degradation, resulting in a decreased OA change and recovery of
UCL emission at 800 nm. Such significant OA and UCL changes
mediated by radical oxidation allowed the rapid redox recogni-
tion with reasonable sensitivity down to a nanomolar range, thus
providing an ideal nanoprobe for dynamic differentiation of ROS/
RNS and further validation of their correlations with various
inflammation stages in real time.

During MSOT imaging of radical stresses stimulated by LPS or
APAP, the HCy5-Cy7-coated UCNs exhibited different signal
response towards ROS/RNS reaction, in which the ROS pro-
duction (e.g., by LPS) resulted in Cy5 regeneration on the particle
surface, thus presenting a time-dependent signal enhancement at
680 nm, but little change at 800 nm concomitantly, while the
nitrosative stress (e.g., by APAP) caused Cy7 degradation, indi-
cating an obvious OA decrease at 800 nm and negligible change at
680 nm. Such opposite trend in two-channel OA alternations
made UCN a remarkable nanoprobe for ratiometric monitoring
of ROS/RNS distribution and variations in a highly precise
manner.

We further examined the possibility of multiple radicals as
intrinsic biomarkers to map out the undefined mechanisms of
drug inactivation and closely track the dynamic inflammation
processes upon diverse hepatotoxin administration. The extensive
studies demonstrated that both APAP and INH treatment led to
the initial enhancement of ROS along with more predominant
RNS increasing subsequently in APAP or INH-treated mice.
Compared to APAP, INH exhibited a similar CYP450 expression,
suggesting that the radical production mainly occurred in phase I
metabolism. However, more significant UGT consumption
observed in INH metabolism implied the disparate metabolic
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pathways between APAP and INH, and the glucuronidation-
dominated pathway in phase II metabolism might be the main
process to excrete INH from the body.

Interestingly, different from APAP and INH, live mice treated
with THA, one FDA withdrawn anti-Alzheimer drug owing to its
severe hepatotoxicity with the mechanisms under less elucidation,
exhibited a major ROS but negligible RNS generation. Meanwhile,
the THA metabolism resulted in more hepatic CYP450 expres-
sion and UGT consumption, as evident by the significant drug
metabolism in phase I and II pathways. The pathological analysis
through different inflammatory cytokines (e.g., IL-6 and IL-10)
and liver injury indicators (e.g., ALT and AST) further demon-
strated that THA would trigger more acute inflammation
response and liver damage than those of APAP and INH, clearly
suggesting the specific pathways of THA metabolism, which
involved in phase I CYP450-mediated oxidation and the reactive
metabolite (e.g., 1-hydroxytacrine, etc.) transformation, would be
the potential reason for the acute hepatotoxicity45. These results
demonstrated the reality of multiple redox species preceding the
occurance of inflammation and histologically determined liver
damage, thus enabling ROS/RNS as endogenous biomarkers to
differentiate the dynamic drug metabolism and diseases patho-
physiology at the early stages.

In summary, we present an innovative strategy by integration
of unique NIR light-mediated upconverting nanoprobe with
multispectral MSOT imaging for reversed ratiometric tracking
of disparate oxidative and nitrosative stresses in vitro and
in vivo. Such a promising strategy realizes the multiplex
screening of diverse endogenous biomarkers and precise
interrelation their dynamic correlations in complex living set-
tings through one unified imaging modality, which is particu-
larly meaningful to systematically exploit the underlying
metabolism pathways and to orthogonally map out pathological
implications towards the diseases at their different stages. This
study not only facilitates better understanding of the patho-
physiological roles of various redox species in living animals
with non-invasive manner, but, more importantly, it also pro-
moted the development of MSOT technology towards the
exploration of undefined mechanism of potential pathogenesis
in clinics, which may thus boost the pharmaceutical industry
for high-throughput drug screening and pathological profiling
of dynamic inflammation processing to benefit the healthcare
communities in the future.

Methods
General. Synthetic procedures and chemical characterizations of all the fluor-
ophores and nanoplatforms are described in the Supplementary Methods.

Endogenous radical species monitoring in live cells. The murine macrophages
RAW264.7 cell lines were from American Type Culture Collection (ATCC, cat. no.
TIB-71) and checked for mycoplasma contamination, which was not listed by
International Cell Line Authentication Committeeas misidentified cell lines. The
cells were seeded in confocal dish overnight at a density of 1 × 105 cells mL Dul-
becco’s modified Eagle’s medium. The excessive ROS (e.g., O2

•−) was activated by
incubating cells with PMA (200 ng mL−1) for 1 h, and RNS (e.g., ONOO−) was
achieved by stimulating with LPS (1 μg mL−1) and INF-γ (50 ng mL−1) for 4 h,
followed by PMA (10 nM) treatment for 0.5 h. These radicals could be scavenged
by pretreating with MnTBAP (100 μM) for O2

•− and MEG (100 μM) for ONOO−

at 1 h before stimuli addition. After refreshing the medium, the cells were incu-
bated with UCNs (100 μg mL−1) for 4 h, and the UCL imaging was performed in
Nikon confocal microscopy using a continuous-wave 980 nm laser as excitation
source (5W cm−2). The OA signals were collected by a commercial MSOT ima-
ging system (iThera Medical, Germany) using a 128-element concave transducer
array spanning a circular arc of 270° with the optimal excitation wavelength at
680–980 nm.

Simultaneous screening of multiple radical dynamics in vivo. All animal
experimental procedures were performed in accordance with the protocols
approved by the Institutional Animal Care and Use Committee of Soochow

University. Female Balb/c nude mice (~6–8 weeks old) were purchased from
Shanghai Laboratories Animal Center in China. The mice were fasted overnight
and i.p. injected with saline containing various drugs including LPS (20 mg kg−1),
APAP (300 mg kg−1), INH (200 mg kg−1), and THA (30 mg kg−1), respectively,
which could be pre-treated with NAC (200 mg kg−1) as radical scavenger at 1 h
before drug stimulation (n= 5). Fifteen minutes after drug treatment, the mice
were tail vein injected with UCNs (5 mgmL−1 in 100 μL saline) and anesthetized
with 3% isoflurane for UCL imaging at 660 and 800 nm on the IVIS Lumina II
imaging system with specific filters upon 980 nm excitation (10W cm−2). The
in vivo MSOT imaging was further performed by whole-body screening along the
long axis of mice (0.3 mm step distance, 10 repeat pulse per position) from 680 nm
to 980 nm at designed time points after drug and UCN administration, and the
averaged OA signal intensity in ROI region of liver was measured by the iThera
MSOT imaging software.

Histological, metabolic, and inflammatory analysis in vivo. The mice were
euthanized at 60 and 180 min upon UCN, APAP, INH, and THA treatment as
described above. The organs including liver, heart, spleen, lung, and kidney were
harvested and placed into 4% formalin solutions overnight for further H&E and
immunohistochemical staining (4-HNE and 3-nitrotyrosine) by following the
manufacturer’s methods. All images were acquired using an Olympus IX53
inverted fluorescence microscope equipped with a Nuance (CRi Inc.) hyperspectral
camera capable of bright field full-color imaging. Moreover, the livers were resected
at designed time points after drug treatment and homogenized in ice-cold PBS for
the assays of several hepatic biomarkers (e.g., CYP450, UGTs, IL-6, and IL-10) by
enzyme-linked immunosorbent assay kit according to the standard protocols. The
blood was also collected from the vena cava of live mice at different time points
after drug treatment, and the serum was separated immediately to measure AST
and ALT by following the manufacturer’s procedures (n= 5).

Statistical analysis. Quantitative data are represented as mean ± standard devia-
tion (SD). All of the measurements are taken from distinct samples, and the
statistical significance are assessed by a Student’s t -test (heteroscedastic, two-
sided): *p < 0.05, **p < 0.01, ***p < 0.001).

Data availability
The authors declare that all the data supporting the findings of this study are available
from the authors on reasonable request.
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