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NIST definition: Cloud Computing 

Cloud computing is a model for enabling 
ubiquitous, convenient, on-demand network 
access to a shared pool of configurable 
computing resources (e.g., networks, servers, 
storage, applications, and services) that can be 
rapidly provisioned and released with minimal 
management effort or service provider 
interaction 
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Cloud: Inside Out 
⌘ Outside view 
     - ubiquitous, convenient,  
       on-demand 
⌘ A single/exclusive entity 
     - Access through a  
      “demilitarized zone” 
     - API based 
     - Agnostic to multi-tenancy 

⌘ Elastic/infinite resources 
     - Pay as you use 

⌘ Often web based 
     - Any time any where any device 

⌘ Inside view 
     - shared pool of configurable 
       computing resources  
⌘ Rapid provisioning, minimal  
     management 
     - New compute units  
        joining, old ones retiring 
     - Adaptive: loads, faults, … 

⌘ Multi-tenancy 
     - Virtualization, migration, … 

⌘ Scaled-out infrastructure 
     - e.g., GFS, Dynamo, Azure … 
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Cloud: In many flavors 

Source: Gartner 
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A new stack 

Distributed file systems 

NoSQL 
e.g., Map-Reduce, 

Hadoop, DynamoDB, 
BigTable, Hbase, 

Cassandra … 

SQL Implementations 
e.g., PIG (relational 
algebra), HIVE, … 

	
  

Applications 

 Distributed Physical Infrastructure  
Storage & Compute Nodes, Interconnect, … 

Reliable storage service 
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Distributed physical infrastructure 

Source: Cisco 
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Many levels of fault-tolerance 

Source: Amazon 

Availability 
Zone 

Availability 
Zone 

Availability 
Zone 

Region 
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Huge physical infrastructure 
⌘ Requires matching 
     software solutions 
     - data storage  
       and management 
       (among many other 
       aspects) 
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One size does not fit all 
⌘ Workload based designs 
     The why decides  
     the how and the what! 
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Not only SQL 
⌘ RDBMS may not be suitable 
     - overkill for a purpose 
     - scale(out) issues    

⌘ Application & workload specific custom  
     solutions for storage and data management 
     - object stores, tuple stores,  
       key-value stores, graph data bases, …     
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Some influential papers 

GFS  
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F1 
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2014 

f4 
Chubby 

Scale Cloud 
Evolution of   technology for 

Storage 
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A closer look  

GFS  
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GFS 
Amazon’s 
Dynamo 

Facebook’s 
Haystack 

Google’s 
File System GOOGLE FILE SYSTEM 
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Reference 

The Google File System  
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung  
SOSP 2003 
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Workload characteristics 
⌘ Bulk data processing in batches 
     Throughput (high sustained bandwidth)  
     is more important than latency 

GFS was designed (circa 2002-3) 
primarily for processing the 
crawled web pages, when Google 
(almost) exclusively worked on web 
search.  
 
Over time, Google’s workload 
characteristics have changed 
drastically with the evolution of 
the i r bus iness and produc t 
offerings, which in turn has led to 
many further innovations and 
c h a n g e s i n t h e u n d e r l y i n g 
infrastructure, e.g. Megastore, F1, 
Spanner, BigTable, Colossus, etc. 

⌘ Few million files 
     Mostly > 100 MB 
     Multi-GB files very common 

⌘ Support for small files needed 
     But no optimization required 
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Read/Write characteristics 

⌘ Two kinds of reads 
     Large streaming reads 
     - 100s of KBs, > 1MB 
     Small random reads 

⌘ Successive operations from a client 
     read contiguous region of a file 

⌘ Applications can sort small reads  
     to advance steadily through a file 
     Avoid going back & forth 

⌘ Writes 
     Mainly when a file is being created 
     - Once written, seldom modified 
     Small writes at arbitrary position 
     - needs to be supported  
     - do NOT have to be efficient 

⌘ Multiple clients 
     Append concurrently 
     - Producer-consumer queues  
     - many-way merging 
       e.g., map-reduce operations 
     - needs atomicity 
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KISS: Keep it simple, stupid 

⌘ Not standard (POSIX) compliant 
     Some basic operations adequate 
     - create, delete, open, close, read, write files 
     - snapshot, record append  

⌘ Single master (centralized) 
     Simplifies system design 
     - Can carry out sophisticated data placement 
        and replication decisions using global 
        knowledge 
     - But what about fault-tolerance, bottleneck? 
 
⌘ Multiple chunk servers and multiple clients 
     Could be running on the same machine 

HDFS (Hadoop Distributed 
File System) follows a very 
similar architecture.  
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GFS files and chunks 

⌘ Files divided into fixed sized chunks 
     Each chunk is identified by an  
     immutable and globally unique  
     64 bit chunk handle  

⌘ Chunk servers store chunks on local disks 
     - As Linux files 
     - Chunks are replicated across multiple 
       servers (Default: Three replicas) 
 

Data reliability is maximized 
by storing replicas across 
different racks.  
 
Such a placement also helps 
aggregate bandwidth of 
racks during read operations.  
 
However, it causes multi-
rack write traffic.  
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Clients and master 

⌘ Clients interact with master for metadata 
     - Interacts with chunk servers directly 
       for actual data manipulation 
 

⌘ Caching 
     - Clients cache metadata 
     - Chunk servers have  
        automatic Linux caching 
     - Any other caching not meaningful nor 
        feasible (for the specific workloads) 
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The single master 

⌘ Maintains all system metadata  
     in main memory 
     - Namespace 
     - Mapping from files to chunks 
     - Current locations of chunks 
 

Advantages of holding all system metadata 
in main memory include: 
-  Performance 
-  Easy and efficient scans for 

* Garbage collection 
* Re-replication 

      * Migration for rebalance 
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The single master 

⌘ Maintains all system metadata  
     in main memory 
     - Namespace 
     - Mapping from files to chunks 
     - Current locations of chunks 
 

If the mapping information is lost, then, 
even if the chunks survive, the file system is 
useless. 
 
This information is thus stored 
persistently, logging mutations in an 
operations log stored in a local disk (of the 
master) and at master replicas.   
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The single master 

⌘ Maintains all system metadata  
     in main memory 
     - Namespace 
     - Mapping from files to chunks 
     - Current locations of chunks 
 

Periodic HeartBeat with chunk servers to 
keep track of status, chunk locations, etc.  
 
It is very hard to keep all the information 
synched persistently, and it is thus best for 
the chunk servers to claim ownership, and 
when a (new) Master reboots, it needs to 
gather this information from chunk servers 
before starting regular operations. 
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Chunk size choice 

⌘ Reduces clients’ need to interact with master 
     - Many operations are contiguous/sequential 
       on a file, and involves the same chunk server 
     - Client can cache chunk locations for 
        even a multi-TB working set 

64MB  

Chunks 

⌘ Clients likely to carry out more operations  
     on same chunk 
     - Amortizes network connection costs  
       (persistent TCP connection with chunk servers) 

⌘ Reduces size of metadata stored at master 
     - Fits in memory è Significant performance boost 
       (<64 bytes metadata per chunk at Master) 
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Large chunk implications 

64MB  

Chunks 

There is the chance of fragmentation, 
and poor utilization of space. This 
however happens infrequently for the 
specific workloads (large file sizes, so 
only last chunk wastes space). Lazy 
space allocation further mitigates 
wastage of space. 
 
There are also possibilities of hotspots 
(due to small but popular file). 
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GFS Architecture 

May include info on  
immediate next chunks  

⌘ Client determines chunk index based on  
     fixed chunk size and byte offset from application 
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Namespace and Locks 

⌘ GFS Namespace 
     - No per directory data structure 
     - Lookup table:  
       * Maps full path name to metadata 
       * Prefix compression  

⌘ Each Namespace node has  
     associated read/write lock 
     To manipulate /d1/d2/…/dn/leaf 
     - Obtain read locks for /d1, /d1/d2, … /d1/d2/…/dn 
     - Obtain read or write lock for /d1/d2/…/dn/leaf  

Since it does NOT use any 
inode-like data structure: 
 
File creation does not 
need write lock on parent 
directory, and allows 
concurrent mutations in 
same directory. 
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Snapshot 

⌘ Uses copy-on-write (COW) 
     - Upon receiving snapshot request 
        Master revokes outstanding leases 
     - Future write requests through Master 
       who then creates new copy just before write 
     - New chunk copy is created locally at  
       each affected chunk server 

The locking mechanism prevents a file /home/user/foo from being created while /
home/user is being snapshotted to /save/user. The snapshot operation acquires 
read locks on /home and /save, and write locks on /home/user and /save/user. 
  
The file creation acquires read locks on /home and /home/user, and a write lock 
on /home/user/foo. The two operations will be serialized properly because they try 
to obtain conflicting locks on /home/user.  

Excerpt of COW  
example from ZFS 
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Leases (for mutation) 

⌘ Chunk replica given lease 
     to act as primary replica 
     - Typically for 60sec  
        * renewable 
        * over HeartBeat 
     - Master can revoke lease 

⌘ Global mutation order 
     - Lease grant order 
     - Serial order inside a lease 
        (determined by primary)  

Multiple clients 
Simultaneously   Data is pipelined.  

Disentangled from 
control messages  
Optimized for 
network topology 
leveraging on full-
duplex links, 
providing 
1MB Tx in ~80ms 
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Several other considerations 

⌘ Atomic record appends 
     Special/different from writes, since  
     Google had append heavy workload 

⌘ Consistency model 

⌘ Data integrity, stale data 

⌘ Garbage collection 

⌘ Replica (re)creation, re-balancing 
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Drastic change of landscape 

⌘ Early Google 
     - Latency insensitive batch processes 
     - Applications seeking document “snippets” 

⌘ Google on its way to Alphabet 
     - Many kinds of workload, e.g. 
       Gmail: Seek heavy, latency sensitive 
       Docs: Live collaboration in small groups 
       Google Cloud Platform: Cloud service 

⌘ GFSv2 
     - Colossus: Uses Reed Solomon codes (1.5x) 
     - Sharded metadata layer 

The work on GFS has been 
followed by many subsequent 
systems developed at Google, 
such as replacement GFSv2, 
a.k.a. Colossus, as well as 
functionalities built on top of 
(or in addition to) the file 
system – e.g. , BigTable 
(structured storage), Spanner 
(database), Megastore (strong 
consistency w/ ACID), F1 
(distributed SQL DB) etc.  
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DYNAMO 
Amazon’s 
Dynamo 

Facebook’s 
Haystack 

Google’s 
File System KEY-VALUE STORE 
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Reference 

Dynamo:  Amazon’s Highly Available Key-value Store  
DeCandia et al. 
SOSP 2007 
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Need for speed 
⌘ Latency sensitive 
     e.g., Shopping cart service 
     - 10s of millions of requests per day 
     - Millions of checkouts each day 
     - Hundreds of thousands of concurrent 
        activities 
 
⌘ A single page request 
     100s of services 
     - Multiple service dependencies 
 
⌘ Stringent SLAs for each service 
     99.9th percentile < 300 ms 
     - mean/std. deviation inadequate 
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Need for extremely high availability 
⌘ The show must go on 
     Downtime è Lost business 
 

“customers should be able to 
view and add items to their 
shopping cart even if disks are 
failing, network routes are 
flapping, or data centers are 
being destroyed by tornados” 
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The show must go on 
⌘ Infrastructure comprises of millions of components 
     - tens of thousands of servers located  
       across many data centers world-wide 
     - a small but significant number of server and network 
       components that are failing at any given time 
 
⌘ Redundancy for fault-tolerance 
     CAP theorem 
     - Trade-off choice: Availability over consistency 

⌘ An always writable data store 
     Conflict resolution complexity at reads 
     - Unlike most traditional DBs 
     - Typically handled at clients (based on application logic) 
     - default fall-back option “last write wins” 
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KISS: Keep it simple, stupid! 
⌘ Both stateful (needing persistent storage)  
     and stateless services 
 
⌘ Most data manipulation using primary keys 
     - No need for complex queries 
     - Individual operations don’t  
       span multiple data items 
     - Relatively small objects (<1MB) 

⌘ RDBMS is an overkill  
     - Much more expensive & complex 
     - Hard to scale (out) 
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Dynamo design considerations 
⌘ Incremental scalability 
     Partitioning load using consistent hashing  

⌘ Symmetric role of constituent machines 
     Simpler system design, provisioning & maintenance 

Changes need to be well thought out! 

⌘ Decentralized 
     No single point of failure/bottleneck 
     Self-organizing 

⌘ Heterogeneity friendly 
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Dynamo: DHT Interface 
⌘ get(key) 
     Locate object replicas associated with the key  
     Return object/list of objects, with context 

⌘ put(key, context, object) 
     Context encodes system meta-information, e.g., version 

⌘ MD5[Caller key] à 128 bit identifier  
                                       (to determine storage nodes) 
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Dynamo: Architecture 
⌘ Zero-hop DHT 
     Consistent hashing based data partitioning 
     All nodes know all other nodes 

⌘ Multiple `tokens’ per node  
     Virtual node instances 
     - Easy to handle heterogeneity 
     - Better load-distribution  
       when nodes arrive/depart 

⌘ Configurable replication 
     For any given key: preference list 
     - Ensure distinct physical nodes 
     - Choice to choose across  
       multiple data centers 
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Dynamo: Data versioning 
⌘ Many potential coordinators per key 
     Coordinators:  
     Nodes handling reads/writes  

⌘ Versions: Vector clocks 

⌘ Reconciliation 
     - syntactic 
     - semantic 

syntactic 

semantic 
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Dynamo: Executing get(), put() 
⌘ Symmetry: Client sends get/put request 
     for any key to any Dynamo node 

⌘ Sloppy quorum: First N healthy nodes 
                                from the preference list 

⌘ Upon receiving put() request 
     - coordinator generates vector clock 
       & writes locally      
     - sends to N highest-ranked reachable nodes 
     - W-1 acks implies a successful write 

R+W >N 

Object availability, 
consistency & 

 durability trade-offs 
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Dynamo: Executing get(), put() 
⌘ Symmetry: Client sends get/put request 
     for any key to any Dynamo node 

⌘ Sloppy quorum: First N healthy nodes 
                                from the preference list 

⌘ Upon receiving get() request 
     - coordinator requests for all existing  
       versions from N highest-ranked nodes 
     - waits for R responses, gathers all versions, 
       and sends (to client) all causally unrelated versions 

Hinted handoff 
(replication) for always 
writable (availability) & 
durability. 
 
Syntactic reconciliation 
at Dynamo node, 
semantic one at client. 

R+W >N 
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Heuristic optimizations 
⌘ Gossip algorithms 
     - Failure detection 
     - Membership information propagation        

⌘ Buffered writes 
     - Writes stored in main memory buffer,  
        periodically written to storage 
     - Improves latency, risks durability 
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Dynamo in action 
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Dynamo wrap up 
⌘ Dynamo provides a  
     bare-bone storage service 
     Key-Value Store 

⌘ Foundations for DynamoDB 

⌘ High availability (always write) 
     Sacrifices consistency,  
     durability 
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HAYSTACK 
Amazon’s 
Dynamo 

Facebook’s 
Haystack 

Google’s 
File System OSN PHOTO STORAGE 
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Reference 

Finding a needle in Haystack: Facebook’s photo storage  
Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel  
OSDI 2010 
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Workload characteristics 
⌘ 260 billion images (~20 petabytes of data) 
     65 billion images, stored in four different sizes 

Facebook’s stats 
from 2009-10  

⌘ Serves ~ one million images per second at peak 

⌘ One billion new images images per week 
     (~60 terabytes) 

Excessive  
disk I/Os  
due to  

meta-data lookup 

Reduce  
per-photo metadata. 

  
All metadata  
lookups in  

main memory  

Conserve disk 
operations  
for reading  
actual data 

Traditional design pain point Guiding design principle Ultimate objective 
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NAS mounted over NFS 
⌘ POSIX based file system is an overkill  
     unused metadata: directories, permissions, … disk I/Os due to  

meta-data lookup 
in order to find 
and access the 

actual file 

Multiple I/Os 
for  

Filename è 
inode number 

 

Read inode 
from disk 

Read the 
actual file 

⌘ Disk IOs for metadata cause bottleneck 
     - Poor read throughput 
     - Insignificant in small scale, but  
     - Significant for billions of files and 
       millions of read operations per second 
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Typical NAS over NFS design 
⌘ CDN is good for hot data 
     OSNs have a long tail request pattern 

⌘ Caching at any level has 
     limited benefit with long tail requests 
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Haystack: Big picture 
⌘ Three components 
     Store, Directory & Cache 

⌘ Physical volumes 
     e.g., 10 TB server as  
             100 physical volumes of 100GB 

⌘ Logical volumes 
     - group physical volumes from  
     different machines 
     - photo stored on a logical volume 
       è written to all corresponding  
            physical volumes 
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Haystack: Big picture 
⌘ Physical volumes 
     e.g., 10 TB server as  
             100 physical volumes of 100GB 

⌘ Logical volumes 
     - group physical volumes from  
     different machines 
     - replication based fault-tolerance 

Store 
machine 

Uses RAID within 
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Haystack: Big picture 
⌘ Webserver uses directory 
     to create URL for each photo 

http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/
⟨Logical volume, Photo⟩ 

- Tells: Which CDN to use? Or to use  
           the cache directly 
- IF not found in CDN and/or cache 
  THEN contact machine 

Persistent storage 
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Haystack: Directory 
⌘ Provides mapping from  
     logical volumes to physical volumes 
     Web servers use this mapping when  
     - uploading pictures 
     - constructing image URLs for a page request 

⌘ Load balance 
     - writes across logical volumes 
     - reads across physical volumes 

http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/
⟨Logical volume, Photo⟩ 

⌘ CDN or cache? 
     - adjust dependence on cache 

http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/
⟨Logical volume, Photo⟩ 

⌘ Identifies read-only logical volumes 
     - operational reasons 
     - reached storage capacity 

Replicated database + memcache 
accessed via PHP  
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Haystack: Cache 
⌘ HTTP requests from both CDN or browser - Organized as a DHT 

- PhotoID as key 

•  Experience: Post-DCN caching ineffective 
•  CDN miss unlikely to result in a hit for 

internal cache either 

•  Shelter write-enabled Store machines 
•  Photos are mostly accessed just after upload 
•  Underlying file-system performance for the 

given workloads is better when carrying out 
only reads or only writes, rather than both 

Request	
  is	
  
from	
  user	
  
(not	
  CDN)	
  

Photo	
  
fetched	
  from	
  

write-­‐
enabled	
  
machine	
  

⌘ Cache complements (and not supplement) CDN 

Possible optimization: Prefetch/Proactively push new pictures to Cache 
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Haystack: Store 
⌘ Multiple physical volumes per Store machine 
     - each volume is essentially a very large file    
       (~100GB) 
     - holds millions of photos  

⌘ Each Needle: Representing a photo 

Machines maintain an in-
memory data structure for 
each volume, mapping key-
pairs to needle’s flags, 
volume offset and size.  
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Haystack: Store – photo read 
⌘ Read request to Store machine  
     comes from a Cache machine 
     Why?  

Volume ID, 
Key,  

Alt Key,  
Cookie 

Look up 
metadata  

in-memory 

Cache  
machine 

Store 
machine •  If file present, read the 

needle (based on offset & 
size), check integrity and 
return 

•  If file deleted or 
corrupted, return Error Cookie prevents  

random lookups 
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Haystack: Store – photo write 
⌘ Web server provides to each Store machine 
     - logical volume ID, key, alt key, cookie  
     - data (the actual photo) 

⌘ Each Store machine synchronously appends  
     needle images to the right physical volume 
     - update local in-memory mappings 

Complications from append-
only restriction: Photo 
modifications (e.g., rotate) 
stored as new needle with 
same keys.  
-  If new needle is in same 

logical volume, Store 
machines use highest 
offset to determine latest 
version.  

-  If new needle is in 
different logical volume, 
Directory updates 
metadata, future requests 
never fetch old versions. 
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Haystack: Store – photo delete 
⌘ Store machine sets delete flag  
     - in the in-memory mapping information 
     - in the volume file 
       (why is flag maintained in two places?) 

Most deletions happen for 
“young” photos, and ~ 25% 
photos are deleted. 
Compaction is thus desirable 
and useful. 
 
But what are the implications 
of such a lazy garbage 
collection? The photo may 
continue to survive in the 
system long after an user has 
“deleted” it. This has privacy 
implications, and may have 
legal implications too!! 

⌘ Storage space is temporarily wasted 
     - A separate compaction operation to 
       reclaim space 
     - Copy a volume file, omitting  
       duplicate entries (obsolete versions) and 
       deleted entries 
     - Freezes the volume from further 
       modifications 
     - Meta-data structures updated accordingly  
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Haystack: Rebooting Store machines 
⌘ Reading physical volumes to reconstruct 
     in-memory mappings is a slow process 
     - All the data in the disk has to be read 
     - Instead maintain a check-point file  
       (index file) per physical machine 

During machine restarts:  
Store machine sequentially 
examines only all orphans (follows 
immediately after the last needle 
entry in the index file).  
 
In-memory mappings initialized 
accordingly, using the index file. 
 
During normal operations: 
Deleted photos are read from 
volume but not returned (based on 
flag inside needle). Memory 
mapping for the needle is updated 
upon first access.  

⌘ Index file is updated asynchronously 
     - May be stale and exclude some needle  
       entry (orphans) 
     - Does not contain deletion information 
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Haystack: Concluding remarks 
⌘ Underlying RAID-6 striping may 
     necessitate multiple disk IOs  

⌘ Batching multiple writes together can  
     further improve throughput 

⌘ Several other optimizations and practical  
     considerations 
     pruning in-memory data structure info,  
     choice of file system on Store machines, 
     etc. 
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4 years later … f4 

⌘ Haystack: Hot storage using replication 
     (OSDI 2010) 

⌘ f4: Erasure coding for not so hot data 
     (OSDI 2014) 
     reducing effective-replication-factor  
     from 3.6 to either 2.8 or 2.1  
 

⌘ From 20 petabytes to 65 petabytes 
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⌘ Huge Physical Infrastructure  
     Requires matching software solutions 
     Work in progress, but many solutions  
      already in place  

Conclusion: Cloud scale storage 


