
CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Anwitaman DATTA
SCE, NTU Singapore

CLOUD
scale storage

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

NIST definition: Cloud Computing

Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network
access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider
interaction

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Cloud: Inside Out
⌘ Outside view
 - ubiquitous, convenient,
 on-demand
⌘ A single/exclusive entity
 - Access through a
 “demilitarized zone”
 - API based
 - Agnostic to multi-tenancy

⌘ Elastic/infinite resources
 - Pay as you use

⌘ Often web based
 - Any time any where any device

⌘ Inside view
 - shared pool of configurable
 computing resources
⌘ Rapid provisioning, minimal
 management
 - New compute units
 joining, old ones retiring
 - Adaptive: loads, faults, …

⌘ Multi-tenancy
 - Virtualization, migration, …

⌘ Scaled-out infrastructure
 - e.g., GFS, Dynamo, Azure …

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Cloud: In many flavors

Source: Gartner

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

A new stack

Distributed file systems

NoSQL
e.g., Map-Reduce,

Hadoop, DynamoDB,
BigTable, Hbase,

Cassandra …

SQL Implementations
e.g., PIG (relational
algebra), HIVE, …

	

Applications

 Distributed Physical Infrastructure
Storage & Compute Nodes, Interconnect, …

Reliable storage service

Th
e

bo
un

da
rie

s a
re

 o
fte

n
bl

ur
ry

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Distributed physical infrastructure

Source: Cisco

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Many levels of fault-tolerance

Source: Amazon

Availability
Zone

Availability
Zone

Availability
Zone

Region

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Huge physical infrastructure
⌘ Requires matching
 software solutions
 - data storage
 and management
 (among many other
 aspects)

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

One size does not fit all
⌘ Workload based designs
 The why decides
 the how and the what!

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Not only SQL
⌘ RDBMS may not be suitable
 - overkill for a purpose
 - scale(out) issues

⌘ Application & workload specific custom
 solutions for storage and data management
 - object stores, tuple stores,
 key-value stores, graph data bases, …

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Some influential papers

GFS

2003

2004

2006
Map

Reduce

BigTable

2007

Dynamo
2008

PNUTS

2009

Cassandra
2010

Spark

Haystack

Hive

ZooKeeper

2011

Azure

Megastore

2012

F1
Spanner

2014

f4
Chubby

Scale Cloud
Evolution of technology for

Storage

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

A closer look

GFS

2003

2004

2006
Map

Reduce

BigTable

2007

Dynamo
2008

PNUTS

2009

Cassandra
2010

Spark

Haystack

Hive

ZooKeeper

2011

Azure

Megastore

2012

F1
Spanner

2014

f4
Chubby

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

GFS
Amazon’s
Dynamo

Facebook’s
Haystack

Google’s
File System GOOGLE FILE SYSTEM

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Reference

The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
SOSP 2003

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Workload characteristics
⌘ Bulk data processing in batches
 Throughput (high sustained bandwidth)
 is more important than latency

GFS was designed (circa 2002-3)
primarily for processing the
crawled web pages, when Google
(almost) exclusively worked on web
search.

Over time, Google’s workload
characteristics have changed
drastically with the evolution of
the i r bus iness and produc t
offerings, which in turn has led to
many further innovations and
c h a n g e s i n t h e u n d e r l y i n g
infrastructure, e.g. Megastore, F1,
Spanner, BigTable, Colossus, etc.

⌘ Few million files
 Mostly > 100 MB
 Multi-GB files very common

⌘ Support for small files needed
 But no optimization required

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Read/Write characteristics

⌘ Two kinds of reads
 Large streaming reads
 - 100s of KBs, > 1MB
 Small random reads

⌘ Successive operations from a client
 read contiguous region of a file

⌘ Applications can sort small reads
 to advance steadily through a file
 Avoid going back & forth

⌘ Writes
 Mainly when a file is being created
 - Once written, seldom modified
 Small writes at arbitrary position
 - needs to be supported
 - do NOT have to be efficient

⌘ Multiple clients
 Append concurrently
 - Producer-consumer queues
 - many-way merging
 e.g., map-reduce operations
 - needs atomicity

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

KISS: Keep it simple, stupid

⌘ Not standard (POSIX) compliant
 Some basic operations adequate
 - create, delete, open, close, read, write files
 - snapshot, record append

⌘ Single master (centralized)
 Simplifies system design
 - Can carry out sophisticated data placement
 and replication decisions using global
 knowledge
 - But what about fault-tolerance, bottleneck?

⌘ Multiple chunk servers and multiple clients
 Could be running on the same machine

HDFS (Hadoop Distributed
File System) follows a very
similar architecture.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

GFS files and chunks

⌘ Files divided into fixed sized chunks
 Each chunk is identified by an
 immutable and globally unique
 64 bit chunk handle

⌘ Chunk servers store chunks on local disks
 - As Linux files
 - Chunks are replicated across multiple
 servers (Default: Three replicas)

Data reliability is maximized
by storing replicas across
different racks.

Such a placement also helps
aggregate bandwidth of
racks during read operations.

However, it causes multi-
rack write traffic.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Clients and master

⌘ Clients interact with master for metadata
 - Interacts with chunk servers directly
 for actual data manipulation

⌘ Caching
 - Clients cache metadata
 - Chunk servers have
 automatic Linux caching
 - Any other caching not meaningful nor
 feasible (for the specific workloads)

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

The single master

⌘ Maintains all system metadata
 in main memory
 - Namespace
 - Mapping from files to chunks
 - Current locations of chunks

Advantages of holding all system metadata
in main memory include:
-  Performance
-  Easy and efficient scans for

* Garbage collection
* Re-replication

 * Migration for rebalance

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

The single master

⌘ Maintains all system metadata
 in main memory
 - Namespace
 - Mapping from files to chunks
 - Current locations of chunks

If the mapping information is lost, then,
even if the chunks survive, the file system is
useless.

This information is thus stored
persistently, logging mutations in an
operations log stored in a local disk (of the
master) and at master replicas.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

The single master

⌘ Maintains all system metadata
 in main memory
 - Namespace
 - Mapping from files to chunks
 - Current locations of chunks

Periodic HeartBeat with chunk servers to
keep track of status, chunk locations, etc.

It is very hard to keep all the information
synched persistently, and it is thus best for
the chunk servers to claim ownership, and
when a (new) Master reboots, it needs to
gather this information from chunk servers
before starting regular operations.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Chunk size choice

⌘ Reduces clients’ need to interact with master
 - Many operations are contiguous/sequential
 on a file, and involves the same chunk server
 - Client can cache chunk locations for
 even a multi-TB working set

64MB

Chunks

⌘ Clients likely to carry out more operations
 on same chunk
 - Amortizes network connection costs
 (persistent TCP connection with chunk servers)

⌘ Reduces size of metadata stored at master
 - Fits in memory è Significant performance boost
 (<64 bytes metadata per chunk at Master)

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Large chunk implications

64MB

Chunks

There is the chance of fragmentation,
and poor utilization of space. This
however happens infrequently for the
specific workloads (large file sizes, so
only last chunk wastes space). Lazy
space allocation further mitigates
wastage of space.

There are also possibilities of hotspots
(due to small but popular file).

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

GFS Architecture

May include info on
immediate next chunks

⌘ Client determines chunk index based on
 fixed chunk size and byte offset from application

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Namespace and Locks

⌘ GFS Namespace
 - No per directory data structure
 - Lookup table:
 * Maps full path name to metadata
 * Prefix compression

⌘ Each Namespace node has
 associated read/write lock
 To manipulate /d1/d2/…/dn/leaf
 - Obtain read locks for /d1, /d1/d2, … /d1/d2/…/dn
 - Obtain read or write lock for /d1/d2/…/dn/leaf

Since it does NOT use any
inode-like data structure:

File creation does not
need write lock on parent
directory, and allows
concurrent mutations in
same directory.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Snapshot

⌘ Uses copy-on-write (COW)
 - Upon receiving snapshot request
 Master revokes outstanding leases
 - Future write requests through Master
 who then creates new copy just before write
 - New chunk copy is created locally at
 each affected chunk server

The locking mechanism prevents a file /home/user/foo from being created while /
home/user is being snapshotted to /save/user. The snapshot operation acquires
read locks on /home and /save, and write locks on /home/user and /save/user.

The file creation acquires read locks on /home and /home/user, and a write lock
on /home/user/foo. The two operations will be serialized properly because they try
to obtain conflicting locks on /home/user.

Excerpt of COW
example from ZFS

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Leases (for mutation)

⌘ Chunk replica given lease
 to act as primary replica
 - Typically for 60sec
 * renewable
 * over HeartBeat
 - Master can revoke lease

⌘ Global mutation order
 - Lease grant order
 - Serial order inside a lease
 (determined by primary)

Multiple clients
Simultaneously Data is pipelined.

Disentangled from
control messages
Optimized for
network topology
leveraging on full-
duplex links,
providing
1MB Tx in ~80ms

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Several other considerations

⌘ Atomic record appends
 Special/different from writes, since
 Google had append heavy workload

⌘ Consistency model

⌘ Data integrity, stale data

⌘ Garbage collection

⌘ Replica (re)creation, re-balancing

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Drastic change of landscape

⌘ Early Google
 - Latency insensitive batch processes
 - Applications seeking document “snippets”

⌘ Google on its way to Alphabet
 - Many kinds of workload, e.g.
 Gmail: Seek heavy, latency sensitive
 Docs: Live collaboration in small groups
 Google Cloud Platform: Cloud service

⌘ GFSv2
 - Colossus: Uses Reed Solomon codes (1.5x)
 - Sharded metadata layer

The work on GFS has been
followed by many subsequent
systems developed at Google,
such as replacement GFSv2,
a.k.a. Colossus, as well as
functionalities built on top of
(or in addition to) the file
system – e.g. , BigTable
(structured storage), Spanner
(database), Megastore (strong
consistency w/ ACID), F1
(distributed SQL DB) etc.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

DYNAMO
Amazon’s
Dynamo

Facebook’s
Haystack

Google’s
File System KEY-VALUE STORE

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Reference

Dynamo: Amazon’s Highly Available Key-value Store
DeCandia et al.
SOSP 2007

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Need for speed
⌘ Latency sensitive
 e.g., Shopping cart service
 - 10s of millions of requests per day
 - Millions of checkouts each day
 - Hundreds of thousands of concurrent
 activities

⌘ A single page request
 100s of services
 - Multiple service dependencies

⌘ Stringent SLAs for each service
 99.9th percentile < 300 ms
 - mean/std. deviation inadequate

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Need for extremely high availability
⌘ The show must go on
 Downtime è Lost business

“customers should be able to
view and add items to their
shopping cart even if disks are
failing, network routes are
flapping, or data centers are
being destroyed by tornados”

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

The show must go on
⌘ Infrastructure comprises of millions of components
 - tens of thousands of servers located
 across many data centers world-wide
 - a small but significant number of server and network
 components that are failing at any given time

⌘ Redundancy for fault-tolerance
 CAP theorem
 - Trade-off choice: Availability over consistency

⌘ An always writable data store
 Conflict resolution complexity at reads
 - Unlike most traditional DBs
 - Typically handled at clients (based on application logic)
 - default fall-back option “last write wins”

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

KISS: Keep it simple, stupid!
⌘ Both stateful (needing persistent storage)
 and stateless services

⌘ Most data manipulation using primary keys
 - No need for complex queries
 - Individual operations don’t
 span multiple data items
 - Relatively small objects (<1MB)

⌘ RDBMS is an overkill
 - Much more expensive & complex
 - Hard to scale (out)

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo design considerations
⌘ Incremental scalability
 Partitioning load using consistent hashing

⌘ Symmetric role of constituent machines
 Simpler system design, provisioning & maintenance

Changes need to be well thought out!

⌘ Decentralized
 No single point of failure/bottleneck
 Self-organizing

⌘ Heterogeneity friendly

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo: DHT Interface
⌘ get(key)
 Locate object replicas associated with the key
 Return object/list of objects, with context

⌘ put(key, context, object)
 Context encodes system meta-information, e.g., version

⌘ MD5[Caller key] à 128 bit identifier
 (to determine storage nodes)

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo: Architecture
⌘ Zero-hop DHT
 Consistent hashing based data partitioning
 All nodes know all other nodes

⌘ Multiple `tokens’ per node
 Virtual node instances
 - Easy to handle heterogeneity
 - Better load-distribution
 when nodes arrive/depart

⌘ Configurable replication
 For any given key: preference list
 - Ensure distinct physical nodes
 - Choice to choose across
 multiple data centers

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo: Data versioning
⌘ Many potential coordinators per key
 Coordinators:
 Nodes handling reads/writes

⌘ Versions: Vector clocks

⌘ Reconciliation
 - syntactic
 - semantic

syntactic

semantic

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo: Executing get(), put()
⌘ Symmetry: Client sends get/put request
 for any key to any Dynamo node

⌘ Sloppy quorum: First N healthy nodes
 from the preference list

⌘ Upon receiving put() request
 - coordinator generates vector clock
 & writes locally
 - sends to N highest-ranked reachable nodes
 - W-1 acks implies a successful write

R+W >N

Object availability,
consistency &

 durability trade-offs

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo: Executing get(), put()
⌘ Symmetry: Client sends get/put request
 for any key to any Dynamo node

⌘ Sloppy quorum: First N healthy nodes
 from the preference list

⌘ Upon receiving get() request
 - coordinator requests for all existing
 versions from N highest-ranked nodes
 - waits for R responses, gathers all versions,
 and sends (to client) all causally unrelated versions

Hinted handoff
(replication) for always
writable (availability) &
durability.

Syntactic reconciliation
at Dynamo node,
semantic one at client.

R+W >N

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Heuristic optimizations
⌘ Gossip algorithms
 - Failure detection
 - Membership information propagation

⌘ Buffered writes
 - Writes stored in main memory buffer,
 periodically written to storage
 - Improves latency, risks durability

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo in action

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Dynamo wrap up
⌘ Dynamo provides a
 bare-bone storage service
 Key-Value Store

⌘ Foundations for DynamoDB

⌘ High availability (always write)
 Sacrifices consistency,
 durability

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

HAYSTACK
Amazon’s
Dynamo

Facebook’s
Haystack

Google’s
File System OSN PHOTO STORAGE

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Reference

Finding a needle in Haystack: Facebook’s photo storage
Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel
OSDI 2010

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Workload characteristics
⌘ 260 billion images (~20 petabytes of data)
 65 billion images, stored in four different sizes

Facebook’s stats
from 2009-10

⌘ Serves ~ one million images per second at peak

⌘ One billion new images images per week
 (~60 terabytes)

Excessive
disk I/Os
due to

meta-data lookup

Reduce
per-photo metadata.

All metadata
lookups in

main memory

Conserve disk
operations
for reading
actual data

Traditional design pain point Guiding design principle Ultimate objective

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

NAS mounted over NFS
⌘ POSIX based file system is an overkill
 unused metadata: directories, permissions, … disk I/Os due to

meta-data lookup
in order to find
and access the

actual file

Multiple I/Os
for

Filename è
inode number

Read inode
from disk

Read the
actual file

⌘ Disk IOs for metadata cause bottleneck
 - Poor read throughput
 - Insignificant in small scale, but
 - Significant for billions of files and
 millions of read operations per second

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Typical NAS over NFS design
⌘ CDN is good for hot data
 OSNs have a long tail request pattern

⌘ Caching at any level has
 limited benefit with long tail requests

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Big picture
⌘ Three components
 Store, Directory & Cache

⌘ Physical volumes
 e.g., 10 TB server as
 100 physical volumes of 100GB

⌘ Logical volumes
 - group physical volumes from
 different machines
 - photo stored on a logical volume
 è written to all corresponding
 physical volumes

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Big picture
⌘ Physical volumes
 e.g., 10 TB server as
 100 physical volumes of 100GB

⌘ Logical volumes
 - group physical volumes from
 different machines
 - replication based fault-tolerance

Store
machine

Uses RAID within

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Big picture
⌘ Webserver uses directory
 to create URL for each photo

http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/
⟨Logical volume, Photo⟩

- Tells: Which CDN to use? Or to use
 the cache directly
- IF not found in CDN and/or cache
 THEN contact machine

Persistent storage

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Directory
⌘ Provides mapping from
 logical volumes to physical volumes
 Web servers use this mapping when
 - uploading pictures
 - constructing image URLs for a page request

⌘ Load balance
 - writes across logical volumes
 - reads across physical volumes

http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/
⟨Logical volume, Photo⟩

⌘ CDN or cache?
 - adjust dependence on cache

http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/
⟨Logical volume, Photo⟩

⌘ Identifies read-only logical volumes
 - operational reasons
 - reached storage capacity

Replicated database + memcache
accessed via PHP

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Cache
⌘ HTTP requests from both CDN or browser - Organized as a DHT

- PhotoID as key

•  Experience: Post-DCN caching ineffective
•  CDN miss unlikely to result in a hit for

internal cache either

•  Shelter write-enabled Store machines
•  Photos are mostly accessed just after upload
•  Underlying file-system performance for the

given workloads is better when carrying out
only reads or only writes, rather than both

Request	
 is	

from	
 user	

(not	
 CDN)	

Photo	

fetched	
 from	

write-­‐
enabled	

machine	

⌘ Cache complements (and not supplement) CDN

Possible optimization: Prefetch/Proactively push new pictures to Cache

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Store
⌘ Multiple physical volumes per Store machine
 - each volume is essentially a very large file
 (~100GB)
 - holds millions of photos

⌘ Each Needle: Representing a photo

Machines maintain an in-
memory data structure for
each volume, mapping key-
pairs to needle’s flags,
volume offset and size.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Store – photo read
⌘ Read request to Store machine
 comes from a Cache machine
 Why?

Volume ID,
Key,

Alt Key,
Cookie

Look up
metadata

in-memory

Cache
machine

Store
machine •  If file present, read the

needle (based on offset &
size), check integrity and
return

•  If file deleted or
corrupted, return Error Cookie prevents

random lookups

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Store – photo write
⌘ Web server provides to each Store machine
 - logical volume ID, key, alt key, cookie
 - data (the actual photo)

⌘ Each Store machine synchronously appends
 needle images to the right physical volume
 - update local in-memory mappings

Complications from append-
only restriction: Photo
modifications (e.g., rotate)
stored as new needle with
same keys.
-  If new needle is in same

logical volume, Store
machines use highest
offset to determine latest
version.

-  If new needle is in
different logical volume,
Directory updates
metadata, future requests
never fetch old versions.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Store – photo delete
⌘ Store machine sets delete flag
 - in the in-memory mapping information
 - in the volume file
 (why is flag maintained in two places?)

Most deletions happen for
“young” photos, and ~ 25%
photos are deleted.
Compaction is thus desirable
and useful.

But what are the implications
of such a lazy garbage
collection? The photo may
continue to survive in the
system long after an user has
“deleted” it. This has privacy
implications, and may have
legal implications too!!

⌘ Storage space is temporarily wasted
 - A separate compaction operation to
 reclaim space
 - Copy a volume file, omitting
 duplicate entries (obsolete versions) and
 deleted entries
 - Freezes the volume from further
 modifications
 - Meta-data structures updated accordingly

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Rebooting Store machines
⌘ Reading physical volumes to reconstruct
 in-memory mappings is a slow process
 - All the data in the disk has to be read
 - Instead maintain a check-point file
 (index file) per physical machine

During machine restarts:
Store machine sequentially
examines only all orphans (follows
immediately after the last needle
entry in the index file).

In-memory mappings initialized
accordingly, using the index file.

During normal operations:
Deleted photos are read from
volume but not returned (based on
flag inside needle). Memory
mapping for the needle is updated
upon first access.

⌘ Index file is updated asynchronously
 - May be stale and exclude some needle
 entry (orphans)
 - Does not contain deletion information

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

Haystack: Concluding remarks
⌘ Underlying RAID-6 striping may
 necessitate multiple disk IOs

⌘ Batching multiple writes together can
 further improve throughput

⌘ Several other optimizations and practical
 considerations
 pruning in-memory data structure info,
 choice of file system on Store machines,
 etc.

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

4 years later … f4

⌘ Haystack: Hot storage using replication
 (OSDI 2010)

⌘ f4: Erasure coding for not so hot data
 (OSDI 2014)
 reducing effective-replication-factor
 from 3.6 to either 2.8 or 2.1

⌘ From 20 petabytes to 65 petabytes

CE 7490 ADVANCED TOPICS IN DISTRIBUTED SYSTEMS

⌘ Huge Physical Infrastructure
 Requires matching software solutions
 Work in progress, but many solutions
 already in place

Conclusion: Cloud scale storage

