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Abstract ―  Identifying individuals in evidence images, where their faces are covered or obstructed, is a 

challenging task. In the legal case, United States v. Michael Joseph Pepe (2008), Craft and Kong, who 

served as expert witnesses, used pigmented skin marks to identify a suspect in evidence images. Their 

expert opinions were challenged, partially because the blocking artifacts generated by the standard JPEG 

algorithm adversely affect the visibility of the small skin marks. In addition to this case, a huge amount of 

JPEG compressed child pornography is posted on-line every day. Although many methods have been 

developed to remove blocking artifacts, they are ineffective for our target application. In this paper, a 

knowledge-based (KB) approach, which simultaneously removes JPEG blocking artifacts, and recovers 

skin features, is proposed. Given a training set containing both original and compressed skin images, the 

relationship between original blocks and compressed blocks can be established. This prior information is 

used to infer the original blocks of compressed evidence images. A Markov-model-based algorithm and a 

faster one-pass algorithm were developed to make inference, and a block synthesis algorithm was 

developed to handle the cases where compressed blocks are not contained in the training set. An indexing 

mechanism was also proposed to deal with large datasets efficiently. Extensive experiments were 

conducted on images with different characteristics and compression ratios. Both subjective and objective 

evaluations demonstrated that the KB approach is more effective than other methods. In summary, the KB 

approach is capable of removing blocking artifacts to recover useful skin features.  

Index Terms – Markov model, pornography, vein pattern, skin mark, biometrics 
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1. Introduction 

Recent technological advances have led to a proliferation of digital media. This media is commonly used 

during investigations and as evidence in legal cases. Improving the capacity and quality of processing this 

media for criminal and victim identification is becoming an important task. In some cases (e.g. child 

pornography and masked gunmen), faces of criminals cannot be seen because they are covered or 

obstructed. Biometric traits in skin (e.g. skin marks and veins) could be important features for personal 

identification. Two authors (N.C. and A.K.) were recruited by the U.S. Department of Justice as expert 

witnesses for a legal case, United States v. Michael Joseph Pepe (2008), which involved sexual acts with 

seven pre-teen girls in Cambodia [1]. N.C. (a board-certified dermatologist) identified pigmented and 

vascular skin marks in digital images (evidence images) collected from a crime scene.  Because the face of 

the criminal in the evidence images could not be observed, N.C. also identified similar skin marks on a 

suspect in custody for personal verification. Although prosecuted under the “Prosecutorial Remedies and 

Other Tools to end the Exploitation of Children Today” or PROTECT Act of 2003, the suspect was 

returned to the U.S., convicted, and was sentenced to 210 years in prison. During the legal proceedings, the 

defense attorneys raised several issues including the fact that digital blocking artifacts could adversely 

influence the visibility of skin marks in the evidence. 

        In addition to this case, a significant amount of child pornography has been posted on the Internet. In 

Canada alone, 30,000 cases of child pornography have been reported [2]. The U.S. Customs Service 

estimated that 100,000 websites offer child pornography [3]. The Bureau of Justice Statistics reported that 

child sex offenses are the fastest growing offenses of the Federal criminal caseload, and child pornography 

made up 69% of child sex offenses [4]. The exact statistics concerning the percentage of JPEGs in 

pornography is unavailable. However, because the JPEG algorithm is an international standard and has 

been widely installed in digital cameras, we believe most of the still images used for child pornography are 

compressed by the JPEG algorithm.  

        Using biometric traits from the skin for criminal and victim identification highly depends on the 

quality of evidence images, because the size of these traits in the images is usually very small. Digital 
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images, taken by consumer cameras, are always compressed by the JPEG algorithm. Blocking artifact is a 

well-known problem caused by this algorithm. As a result, vein patterns can be broken, and skin marks can 

be blurred, or even totally removed, especially under high compression ratios. Fig. 1 illustrates the effects 

of blocking artifacts on pigmented skin marks and vein patterns. Thus, technology to remove blocking 

artifacts could improve images before any forensic analyses.  

 
(a) (b) (c) (d) 

Fig. 1 Illustration of the effects of blocking artifacts on pigmented skin marks and veins. (a) Uncompressed color 
image with a common nevus and (c) 1V component with a clear vein pattern. (b) is the JPEG compressed image of (a) 
with compression ratio of 102.51 and quality factor of 25. (d) is the JPEG compressed image of (c) with compression 
ratio of 95.63 and quality factor of 25.  
         

      There is a considerable amount of research on approaches to remove JPEG blocking artifacts. These 

approaches can be classified into two categories [5]. The first category addresses the problem at the 

encoder side. These are known as pre-processing methods. These can be further sub-classified into two 

groups: “pre-filtering” [6]-[7], which removes unnoticeable details in source images so that less 

information has to be coded, and special “encoding/transformation”, such as perceptual-based coding [8] 

and poly-harmonic local cosine transformation [9].  These methods are impractical for use in forensic 

applications, because they require modifications to the encoder (camera).  However, during forensic 

analysis of digital images, the photographs involved in the crimes have already been compressed. 

      The second category uses post-processing techniques at the decoder side. Generally speaking, they can 

also be sub-classified into two groups: image enhancement and image restoration. The goal of the image 

enhancement algorithms is to improve the perceived quality subjectively. They take into account the 

special structure of blocking artifacts and human visual sensitivities. The most popular and straightforward 

enhancement method is to apply low-pass filters to the region where artifacts occur. Filtering can be 

                                                            
1 The JPEG algorithm transforms an image from RGB space to YUV space before performing the DCT Transform.  
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performed either in the spatial domain [10]-[11] or in the frequency domain [12]-[13]. Other filtering 

methods integrate neural networks or fuzzy schemes [14]-[15]. For these methods, adaptivity is necessary 

to avoid image blurring. However, the adaptation to local statistics relies on a good classification scheme, 

which is usually sensitive to quantization and compression ratio. Poor estimation and adaptation can 

sometimes cause image quality degradation. Another enhancement approach is to recover quantized AC 

coefficients from DC coefficients of a given block and its neighboring blocks [16]. This method can 

considerably reduce the blocking artifacts in smooth areas, but the prediction is not reliable in the 

neighborhood of edges. 

        Post-processing through image restoration aims to recover the lost information based on prior 

knowledge. A number of classical image restoration algorithms have been tailored for deblocking artifacts. 

They can be further sub-classified into two approaches: criterion-based methods and constraint-based 

methods. The basic concept of the criterion-based methods is to find an optimal image from a JPEG 

compressed image based on some predefined criteria. For generic images, the best criterion is usually 

perceptual image quality. However, modeling perceptual image quality is still an on-going research topic. 

The minimum mean square error (MSE) [17] and maximum a posteriori (MAP) probability [23] are the 

commonly used criteria. The major drawback with MSE-based methods is that MSE is not very well 

matched to perceptual visual quality [27]. For the MAP-based methods, previous models were designed for 

generic images, and therefore, prior knowledge from new target images cannot be used to recover the lost 

information. 

        The basic idea behind the constraint-based methods is to impose constraints on compressed images 

and to restore them accordingly. The projection onto convex sets (POCS) method is a typical example. The 

constraint sets are defined as closed convex sets, whose elements are consistent with prior knowledge of 

original images. A feasible solution in the intersection of all the sets can be found via an iterative process 

[18]-[19]. POCS-based methods have two limitations. Firstly, users are required to define the projection 

operation for every constraint set [20]. Improper operations may lead to divergence and ultimately provide 
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results even worse than compressed images. Secondly, their computational complexity is extremely high, 

because they perform both forward and inverse DCT calculations during each cycle of an iterative process. 

        All the current deblocking methods were designed for generic images, and therefore, cannot utilize 

prior knowledge from target images. In fact, these methods make the situation even worse, because they 

generally smooth images, including biometric traits, to alleviate blocking artifacts. Fig. 2 shows resultant 

images from some of these methods. In addition, the difference between original (uncompressed) images 

and their resultant images may be even larger than that between original images and compressed images in 

terms of quantized Discrete Cosine Transform (QDCT) coefficients. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Fig. 2 Illustration of the smoothing effect of traditional deblocking methods on skin images. (a) Uncompressed color 
image with a common nevus and (e) V component with a clear vein pattern. (b) is the JPEG compressed image of (a) 
with compression ratio of 115.32 and quality factor of 25. (f) is the JPEG compressed image of (e) with compression 
ratio of 120.15 and quality factor of 25. (c) and (g) are respectively the results of (b) and (f) from a post-filtering 
method [25]. (d) and (h) are respectively the results of (b) and (f) from a MAP-based method [23]. 
 

      To overcome the deblocking issues outlined above, we developed a new approach to remove blocking 

artifacts in skin images. We use a non-parametric approach to extract prior knowledge, i.e., the block 

relationship between compressed blocks and their original counterparts, and the neighborhood relationship 

among adjacent original blocks. We then developed two different algorithms to make inferences based on 

this prior knowledge. The first one uses a Markov model and the belief propagation algorithm. This 

algorithm may be more accurate but requires more time. The second one is faster and is a one-pass 
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algorithm utilizing spatial and frequency relationships simultaneously. Both algorithms require that at least 

one compressed block in a training set shares the same QDCT with the input compressed block. To remove 

this requirement, a block synthesis algorithm is proposed.  

        The rest of this paper is organized as follows. Section 2 introduces the prior knowledge in skin images. 

Section 3 presents our knowledge-based (KB) approach including the Markov-model-based, the one-pass 

and the block synthesis algorithms. We also present an indexing mechanism to improve the speed of the 

algorithms. Section 4 reports objective and subjective experimental results. Section 5 offers some 

concluding remarks. 

         

2. Prior Knowledge in Skin Images  

To exploit prior knowledge in skin images, we constructed a large database composed of skin images 

collected from different body sites, including the hand, arm, foot, leg, chest and back. We divided the 

database into a training set and two testing sets. We extracted prior information from the training set to 

develop the KB approach and then used the testing sets to evaluate its function. 

 

2.1. Database 

Our database consists of two parts. The first part (Asian database) was collected in Singapore from 97 

Asians with both genders and diverse ages, occupations, and body mass indices (BMI). The ethnic groups 

include Chinese, Malay, Indian, and Javanese. They are between 12 and 70 years old. Their occupations 

include students, professors, and manual workers, and their BMIs range from 18 to 40. The camera model 

was Nikon D70s, and the images were taken under normal daylight or fluorescent light. The second part 

(Caucasian database) was collected in the United States from 10 Caucasians under Institutional Review 

Board approval from the Los Angeles Biomedical Research Institute. The camera model was Nikon D80, 

and the imaging configuration such as illumination and image distance was also different from the settings 

in Singapore. We used images from 71 randomly selected subjects in the Asian database to form a training 

set. Five of them are females. Their races include Chinese, Malay, Indian and Javanese. Their ages range 
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from 18 to 59, and BMIs range from 19 to 27. The images were taken from different body parts, including 

the hand, arm, thigh, leg, chest and back (see Fig. 3). We only used images in the Asian database to form 

the training set in order to demonstrate that the proposed KB approach can work well, even when input 

images and training images have very different characteristics (e.g. different imaging conditions and races). 

This experimental design is more appropriate because in legal cases, we cannot guarantee evidence images 

and training images will have the same characteristics. The remaining 26 subjects’ images in the Asian 

database comprised the first testing set. The images in the Caucasian database comprised the second 

testing set. Each set has participants from both genders and all age groups. These images were stored in the 

JPEG format with a very high quality factor of 99 and without noticeable blocking artifacts. The original 

images from the cameras are referred to as uncompressed images.  

        For the training set, because a large part of the raw images is background, we cropped sub-images 

with 256×256 pixels containing only areas of visible skin.  This relatively small size was chosen to reduce 

redundant information and improve the speed of the algorithms. Then we used the JPEG algorithm to 

compress the sub-images resulting in image pairs. Each pair has one original skin image and the 

corresponding JPEG compressed image. After cropping, the training set contained 5,662 image pairs. Fig. 

4 illustrates a raw image (4a) and a pair of skin sub-images obtained from it (4b and 4f). The KB approach 

is operated in the YUV space because the JPEG compression is performed in this space. Fig. 4(h) and Fig. 

4(i) show that the blocking artifacts in the U and V components are more significant. These artifacts are 

caused primarily because of the down-sampling process in the JPEG algorithm and because of larger 

quantization steps. By further cutting the image pairs into 8×8 pixel blocks, we have 5,797,888 block pairs 

in the training set. By choosing different compression quality factors we then obtained different training 

sets. 

        For the first testing set, we cropped 500 skin sub-images with size of 448×512 or 512×448 pixels 

from the raw images of the 26 Asian subjects. We chose the larger sizes in order to cover more skin 

features. For the second testing set, we cropped 262 skin sub-images with size of 256×256 pixels from the 

raw images of the 10 Caucasians. Because Caucasians have more pigmented skin marks, we used the 
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second testing set to evaluate the performance of the KB approach on skin marks. We chose the smaller 

size so that skin marks can be easily observed.  

   
(a) (b) (c) (d) (e) (f) (g) 

   

 

(h) (i) (j) (k) (l) (m)  
Fig. 3 Illustration of some images in the training set. (a)-(b) hands of a female (Indian, 20 years old), (c)-(d) arms of a 
male (Chinese, 23 years old), (e)-(h) thighs of a female (Chinese, 21 years old), (i)-(k) legs of a male (Chinese, 33
years old), (l) chest, and (m) back of a male (Chinese, 23 years old). 
 

    

 
(b) (c) (d) (e) 

 
(a) (f) (g) (h) (i) 

Fig. 4 Illustration of a raw image and a pair of skin images obtained from it. (a) A raw image of the inner right 
forearm of a male (Chinese, 52 years old, BMI = 25).  (b) The skin image cropped from the red rectangle in (a). (c), 
(d) and (e) are the Y, U and V components of (b). (f) is the JPEG compressed image of (b) with the compression ratio 
of 41.98 and quality factor of 50. (g), (h) and (i) are the Y, U and V components of (f). 
 

2.2. Training Blocks   

The relationship between an original block and its compressed result is that they have the same QDCT 

coefficients. In general, only several coefficients in the upper left corner of a QDCT matrix are non-zero 

integers. We call them effective coefficients, and use them to form an index vector. Fig. 5 illustrates a 

QDCT coefficient matrix, the effective coefficients, and the corresponding index vector. Because the 

quantization is a many-to-one mapping, different original blocks can have the same QDCT coefficients 

and index vector. Fig. 6(a) shows a compressed block in the V component. Figs. 6(b)-(k) are some original 

blocks which can be compressed to Fig. 6(a). All their index vectors are [13  0  0  0  0  0  0  0  0], where 

only the DC term is non-zero and therefore, Fig. 6(a) has only one intensity value. This many-to-one block 
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relationship implies that only the local information inside one block is not sufficient to uniquely determine 

corresponding original blocks. We also considered the relationship between neighboring blocks. For each 

original block, we defined two neighborhoods: a frequency neighborhood, which is composed by the index 

vectors of the 8 neighboring blocks; and a spatial neighborhood, which is composed by the 36 pixels in the 

8 neighboring blocks which are connected with the target block (as illustrated in Fig. 7).  

        These block and neighborhood relationships represent the prior knowledge in skin images. They are 

extracted from the training set to infer original blocks in evidence images. We developed two algorithms to 

make inference, which will be discussed in the following section.  

 
Fig. 5 Illustration of QDCT coefficient matrix, effective coefficients, and index vector. 

 

          
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

 
         

 (k) (l) (m) (n) (o) (p) (q) (r) (s) 
Fig. 6 Illustration of a compressed block and its corresponding original blocks. (a) is a compressed block, (b)-(s) are 
the corresponding original blocks of (a). 
 

 
Fig. 7 Illustration of spatial and frequency neighborhoods. 
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3. The Two Inference Algorithms based on Prior Knowledge  

In this section, we present two algorithms to make inference based on prior knowledge: one is based on a 

Markov model, while the other is a one-pass algorithm. We also present a block synthesis algorithm to 

handle the cases where the training set does not contain input compressed blocks. To speed up these 

algorithms, an indexing mechanism was also developed. 

 

3.1. An Algorithm based on a Markov Model 

The first algorithm uses the traditional Markov model illustrated in Fig. 8, where the circles represent 

network nodes, and the lines indicate statistical dependencies between nodes [21]. Let compressed blocks 

be observation nodes, y, and original blocks with corresponding QDCT coefficients be the different states 

of hidden nodes, x, which we seek to estimate [22]. For this network, the probability of any choice of 

original blocks is proportional to the product of functions ( )iii yx ,ϕ  relating each observation to the 

underlying hidden states, and compatibility functions ( )ii xψ  relating the possible states of neighboring 

hidden nodes i.e., 

( ) ( ) ( )∏∏
==

∝
M

i
ii

M

i
iii xyxyxP

11

,| ψϕ ,                                                   (1) 

where M is the number of blocks. The function ( )iii yx ,ϕ  can be specified by the JPEG compression 

algorithm: 

( ) ( )[ ] ( )[ ]{ }iiiii yDCTQxDCTQyx −= δϕ , ,                                      (2) 

where ( )⋅DCT  represents the DCT transform, [ ]⋅Q  is the quantization operator, and δ  is a delta function. 

The function ( )ii xψ  represents the spatial compatibility between neighboring original blocks. Let s
ijp  be 

pixels in the spatial neighborhood (see Fig. 7) of block i which overlap with the neighboring block j 

( ( )iNj ∈ , where ( )iN  is the 8 neighbors of block i ). Let jip  be pixels in the neighboring block j which 

overlap with the spatial neighborhood of block i. The compatibility function is defined as: 
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The optimal original blocks are the collection that maximizes the probability of the Markov network. 

Finding the global optimal solution is computationally intractable, so we used belief propagation to obtain 

a suboptimal solution. The σ in the Eq. 3 can be removed from the optimization formulation because iϕ  

can be considered as constraints and all iψ s are multiplied together in Eq. 1. 

        Fig. 9 illustrates the performance of the algorithm based on the Markov model. Fig. 9(a) is the V 

component of an original skin sub-image where one can observe a patterned distribution of hemoglobin in 

the veins of the skin. However, in the compressed image, the pattern is destroyed (see Fig. 9(b)). We used 

belief propagation to infer original blocks. At the beginning (zero iteration), a resultant image consists of 

the original blocks in the training set which have the same index vectors as the compressed blocks. Spatial 

smoothness is not considered in this initialization. Because there may be more than 10,000 candidate 

blocks corresponding to one compressed block, we used frequency neighborhoods (see Fig. 7) as a 

constraint to reduce the searching range. However, the result was still noisy and had many repeated blocks 

(see Fig. 9(c)). A high compression ratio of 86.92 produces large areas with the same intensity value (see 

Fig. 9(b)) leading to this effect. In the following iterations, more than half of these estimated blocks are 

subsequently corrected by belief propagation based on spatial smoothness constraints. It quickly converges 

after four to five iterations and significantly improves the quality of the result (see Figs. 9(d)-(h)). The vein 

pattern in the skin is successfully recovered, and the blocking artifacts are completely removed.  

      Most of other Markov-model-based deblocking algorithms formulate the problem as a minimization 

based on the Gibbs distribution, but they do not use the relationship between original and compressed 

blocks. Consequently, they cannot guarantee that compressed images and their resultant images have the 

same QDCT coefficients. The proposed KB approach uses the functions iϕ  to represent the JPEG 
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compression constraints, which ensure that deblocked images and corresponding compressed images have 

the same QDCT coefficients. In addition, it utilizes information from the training database extensively.   

 

 
Fig. 8 A Markov network model.  

 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Fig. 9 Illustration of the performance of the Markov-model-based algorithm. (a) The V component of an original skin 
sub-image. (b) is a compressed version of (a) with the compression ratio of 86.92 and quality factor of 50. (c)-(h) are 
respectively the results after 0, 1, 3, 6, 9 and 18 iterations.  

 

3.2. A One-Pass Algorithm  

Although the belief-propagation algorithm converges quickly, it still needs several iterations to produce a 

satisfactory result. We also developed a one-pass algorithm that infers original blocks based on combined 

spatial and frequency information. Assume that a compressed image is processed block by block in a 

raster-scan order – from left to right and from top to bottom. Thus, for a compressed block target, three 

upper and one left neighboring blocks have already been processed (illustrated in Fig. 10). The spatial 

information in the processed blocks (blocks 1-4 in Fig. 10) and the frequency information in the to-be-
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processed blocks (blocks 5-8 in Fig. 10) were used as smooth constraints to search the best original block 

in the training set. The pixels in the processed blocks that are connected to the target block represent the 

spatial neighborhood. The index vectors of the to-be-processed blocks represent the frequency 

neighborhood. Together these form the “hybrid neighborhood” of the target block. Thus, each original 

block in the training set has a hybrid neighborhood determined from the source image (as depicted in Fig. 

11). In this way, each record in the training set contains an original block, its hybrid neighborhood, and its 

compressed block. 

        In the testing stage, for a target block w, we used its index vector to find a group of candidate original 

blocks, G(w) = {z | QDCT[z] = QDCT[w]}. Then we searched an optimal candidate according to the hybrid 

neighborhood of the target block. This search was carried out in two steps. Firstly, we used the frequency 

neighborhood to narrow down the group i.e., 

( ) ( ){ }uw FFwGuwG =∈=′ | ,                                                   (4) 

where Fw (or Fu) represents the frequency neighborhood of w (or u). If it was an empty set, we searched 20 

candidate blocks from  whose frequency neighborhoods are the nearest to Fw to form G’. Then we 

used the spatial neighborhood to find the optimal original block  i.e., 

     
( )

( )wt
wGt

SSdt ,minarg*

′∈
= ,                                                                (5) 

where Sw (or St) represents the spatial neighborhood of w (or t), and d represents L1-norm. 

        To compare the one-pass algorithm with the Markov-model-based algorithm, we used the same 

testing image (see Fig. 9(b)) to evaluate the one-pass algorithm (see Fig. 12). Theoretically, the result from 

the Markov-model-based algorithm should be more accurate because it optimizes the probability in Eq. 1. 

However, Fig. 12(c) and Fig. 12(d) demonstrate that the difference between the two results is difficult to 

discern with normal human vision. The one-pass algorithm had similar performance but is 12 times faster 

than belief propagation. Thus, the one-pass algorithm was used for the following evaluations. Fig. 13 

illustrates some blocks from Fig. 12. Original blocks in the first row correspond to the compressed blocks 

in the second row. The high compression ratio causes great information loss. The third and fourth rows are 

( )wG

*t
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the resultant blocks from the Markov-model-based and one-pass algorithms, respectively. For the one-pass 

algorithm, the hybrid neighborhood is sufficient to recover the lost information.  

 

Fig. 10 Illustration of hybrid neighborhood in the testing 
process. 

Fig. 11 Illustration of hybrid neighborhood in training set 
construction. 

 

 
(a) (b) (c) (d) 

Fig. 12 Illustration of the performance of the one-pass algorithm. (a) The V component of an original skin sub-image. 
(b) is a compressed version of (a) with the compression ratio of 86.92 and quality factor of 50. (c) is the result from 
the Markov-model-based algorithm. (d) is the result from the one-pass algorithm.
 

original blocks 
        

compressed 
blocks 

        

Markov-model-
based algorithm 

        

one-pass 
algorithm 

        
Fig. 13 Illustration of corresponding blocks from Fig. 12. In the first row are the original blocks. In the second row are 
the corresponding compressed blocks. In the third row are the resultant blocks obtained by the Markov-model-based 
algorithm. In the fourth row are the resultant blocks obtained by the one-pass algorithm.
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3.3. A Block Synthesis Algorithm 

Both Markov-model-based and one-pass algorithms require that at least one compressed block in the 

training set shares the same QDCT coefficients with the input compressed block. The variation of 

compressed skin blocks and the completeness of our training set are important for the KB approach. In this 

subsection, we first estimate the variation of compressed skin blocks and present our block synthesis 

algorithm to remove this requirement.  

      To estimate the variation of compressed skin blocks and completeness of our training set, we 

calculated the ranges of QDCT coefficients in our database and assume that all QDCT coefficients are 

statistically independent. Note that QDCT coefficients are integers. Using the ratios of the estimated total 

number of different compressed blocks to the total number of compressed blocks in our database as an 

index, we noted that the variation of compressed blocks is very limited in U and V components, but it is 

very large in Y component. Under the quality factor of 25, the ratios in U and V components are 0.009% 

and 0.02%, respectively. Under the quality factor of 50, the ratios in U and V components are 3.21% and 

5.11%, respectively. However, for Y component, the ratios under either quality factor are larger than 100%. 

When the quality factor is higher than 50, the loss of information is not significant, so there is no need for 

blocking artifact removal. 

      To handle the cases where input compressed blocks cannot be found in our training set, two or three 

training blocks were used to synthesize a new block with the same index vector as the input block. Fig. 14 

illustrates this block synthesis algorithm. The search of low (high) frequency coefficients was from the 

rightmost (leftmost) element in the index vector to the left (right) until the quantized coefficients did not 

match. As a result, the number of overlapping coefficients was maximized to achieve the best 

compatibility with two blocks. If more than one block had the same number of matched coefficients, we 

used the hybrid neighborhood as a constraint to select the best one. After that we combined their DCT 

matrices and took inverse DCT transform to obtain the synthetic block. For the overlapping part, we used 

the DCT coefficients of the low frequency block. If two source blocks were not sufficient to cover the 

index vector, the third one would be used for the remaining coefficients. An iterative process was used to 
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identify this block. In each iteration, the search was performed in three situations: one coefficient was 

removed from the rightmost part, the leftmost part, and each part. If no candidate was found, the 

coefficients were continuously removed until one block was found. In our experiment, more than 99.9% of 

the compressed blocks could be replaced with a source block or a synthetic block from two or three source 

blocks. With the increase in the database size, we can further reduce the percentage of non-replaced blocks. 

Note that we used 1D index vector instead of 2D plane to find coefficients because the former is easier to 

handle and offers higher searching speed. Fig. 15 shows some results of this algorithm. The first row 

contains original blocks and the second row contains the corresponding compressed blocks. The third row 

contains the synthetic blocks obtained from the source blocks shown in the fourth and fifth rows. These 

results demonstrate that our algorithm has the capability to synthesize new blocks whose compressed 

blocks are not in the training set. Therefore, the KB approach can recover skin patterns “unknown” to the 

database. The synthetic blocks in Fig. 15 are more similar to their high frequency blocks than their low 

frequency blocks because (1) human vision is more sensitive to high frequency information such as edges, 

and (2) the number of effective coefficients in the synthetic blocks from the low frequency blocks is less 

than that from the high frequency blocks. Note that the variation of low frequency coefficients is larger. 

Whether the synthetic coefficients are from the high frequency blocks or the low frequency blocks is not 

an issue. Most importantly, the synthetic blocks and the input index vectors have same QDCT coefficients 

and the compatibility between different source blocks have been optimized.  

 

 
Fig. 14 Illustration of the block synthesis algorithm.  
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original 
blocks 

        

compressed 
blocks 

        

synthetic 
blocks 

        

source 
blocks 1 

        

source 
blocks 2 

        
Fig. 15 Illustration of the block synthesis results. In the first row are original blocks of Y component. In the second 
row are the corresponding compressed blocks with the compression ratio of 86.92 and quality factor of 50.  In the 
third row are the synthetic blocks. In the fourth and fifth rows are source blocks from the training set. 

 

3.4. An Indexing Mechanism to Speed up the Algorithms 

To make inference based on prior knowledge, a large training set is essential. Our training set contained 

more than 5 million block-pairs. It would be extremely time-consuming (about 20 hours) to search the 

entire training set exhaustively for each testing block. To speed up the searching, we propose an indexing 

mechanism using a multi-dimensional structure to store the information of each original block in the 

training set. The number of dimensions corresponds to the length of index vectors. Each entry represents 

one index vector and stores the information of the corresponding original blocks. This includes their 

positions in the source images and their hybrid neighborhoods. For a testing block, its index vector 

immediately leads us to the corresponding entry in the structure. This mechanism is faster than matching it 

with all the blocks in the training set.  

This indexing mechanism cannot be used directly in the Y component, because its quantization steps 

are much smaller than those in U and V components. As a result, the number of different index vectors is 

too large to be stored in a multi-dimensional structure due to memory constraints. We preprocess the Y 

components of the original images by normalizing their intensity values to zero mean and unit variance. 
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Then we recalculate their index vectors whose varying range decreases significantly. This normalization 

step clusters the index vectors in Y components into a limited number of groups allowing storage in a 

multi-dimensional structure. In each entry of the subsequent structure, the un-normalized index vectors are 

added as extra information to distinguish individual blocks. This indexing mechanism makes it possible to 

handle such a large training set quickly and efficiently. The one-pass algorithm with the indexing 

mechanism were implemented using MATLAB on a PC embedded with an Intel® Core™2 Quad 

processor (3.0 GHz). Only one core was used in our implementation. Removing blocking artifacts in the Y, 

U and V components of a 448×512 image, it uses respectively 20, 5 and 5 minutes. Generally speaking, 

computational speed is not vital for forensic analysis. In the mentioned legal case, Kong and Craft had 

several weeks to process the evidence images.  

 

4. Experimental Results 

To evaluate the KB approach, we performed extensive experiments and compared it with four other 

popular deblocking methods. The other methods were Sun et al.’s maximum a posteriori method based on 

a Field of Experts prior (FOE) which achieves higher PSNR gain [23], Foi et al.’s Pointwise Shape-

adaptive DCT method (SADCT) which is one of the latest deblocking techniques [24],  Luo et al.’s 

adaptive processing method (ADPROC) which is efficient at reducing blocking artifacts in smooth regions 

[25], and Chou et al.’s nonlinear filtering method (NLF) which is fast and robust for different images and 

quantization strategies [26]. These methods and the KB approach were analyzed using the two testing sets. 

The first testing set with 500 images was compressed with the JPEG quality factor of 50, and the average 

compression ratio was 72.55. The second testing set with 262 images was compressed with the JPEG 

quality factor of 25, and the average compression ratio was 126.93. As a result of this high compression 

ratio in the second set, most skin features were destroyed. As was mentioned in Section 3.2, the one-pass 

algorithm has similar performance to the Markov-model-based algorithm, but is much faster. Thus, the 

one-pass algorithm was used for the following evaluations. The U and V components were down-sampled 
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before deblocking,  and their results were up-sampled and combined with the deblocked Y component. The 

same training set from the Asian database was used to generate all the experimental results.  

        In Figs. 16-21, we compare the original images (a), the compressed images (b), the results from FOE 

(c) [23], SADCT (d) [24], ADPROC (e) [25], and NLF (f) [26] methods.  Additionally, the results from the 

KB approach (g) are shown. These six sets of skin images are shown for visual comparison. Figs. 16-18 

are respectively Y, U and V components, and Figs. 19-21 are color images. The red circles in Figs. 19-21 

denote skin marks identified by dermatology experts in the uncompressed images. The compression ratios 

of Figs. 16-21 are respectively 76.12, 69.50, 50.84, 115.32, 126.97, and 121.16. These figures show that 

FOE and SADCT methods have strong smoothing effect, which occasionally result in unrecognizable or 

absent vein patterns and skin marks; ADPROC and NLF methods have less smoothing effect, but they do 

not change the compressed images significantly; the KB approach removes the blocking artifacts and 

successfully recovers lost skin information, including the vein patterns and pigmented skin marks. 

Although in this paper, we emphasize blocking artifacts, the proposed KB approach is also capable of 

removing ringing artifacts because it is, in fact, a restoration algorithm.  

        To quantify these visual comparisons, we can either use image quality indices or carry out a 

subjective evaluation. It is well-known that the traditional point-wise comparison measures such as mean 

square error (MSE) or peak signal-to-noise ratio (PSNR) are not very well matched to perceived visual 

quality [27]. Other image quality indices, such as SSIM [28] attempt to mimic the extremely complicated 

human vision system (HSV). It is very difficult, if not impossible, to perfectly model HSV [29]. To avoid 

modeling defects, we carried out one subjective evaluation and three objective evaluations on the resultant 

images.  

 
(a) (b) (c) (d) 
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(e) (f) (g)  
Fig. 16 Evaluation of deblocking performance in the Y component. (a) The Y component of an original skin image. 
(b) A compressed version of (a) with the compression ratio of 76.12 and quality factor of 50. (c)-(f) are the results 
from FOE [23], SADCT [24], ADPROC [25], and NLF [26] methods respectively. (g) The result from the KB 
approach. 

 

 
(a) (b) (c) (d) 

 

 

(e) (f) (g)  
Fig. 17 Evaluation of deblocking performance in the U component.  (a) The U component of an original skin image. 
(b) A compressed version of (a) with the compression ratio of 69.50 and quality factor of 50. (c)-(f) are the results 
from FOE [23], SADCT [24], ADPROC [25], and NLF [26] methods respectively. (g) The result from the KB 
approach. 

 

 
(a) (b) (c) (d) 

 

 

(e) (f) (g)  
Fig. 18 Evaluation of deblocking performance in the V component. (a) The V component of an original skin image. 
(b) A compressed version of (a) with the compression ratio of 81.61 and quality factor of 50. (c)-(f) are the results 
from FOE [23], SADCT [24], ADPROC [25], and NLF [26] methods respectively. (g) The result from the KB 
approach. 
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(a) (b) (c) (d) 

 

 

(e) (f) (g)  
Fig. 19 Evaluation of deblocking performance in color images (example 1).  (a) An original skin sub-image. The red 
circle denotes a pigmented skin mark identified by dermatology experts in the uncompressed image.  (b) A 
compressed version of (a) with the compression ratio of 115.32 and quality factor of 25. (c)-(f) are the results from 
FOE [23], SADCT [24], ADPROC [25], and NLF [26] methods respectively. (g) The result from the KB approach. 

 

 
(a) (b) (c) (d) 

 

 
 

 

(e) (f) (g)  
Fig. 20 Evaluation of deblocking performance in color images (example 2).  (a) An original skin sub-image. The red 
circle denotes a pigmented skin mark identified by dermatology experts in the uncompressed image. (b) A 
compressed version of (a) with the compression ratio of 126.97 and quality factor of 25. (c)-(f) are the results from 
FOE [23], SADCT [24], ADPROC [25], and NLF [26] methods respectively. (g) The result from the KB approach. 

 

 
(a) (b) (c) (d) 
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(e) (f) (g)  
Fig. 21 Evaluation of deblocking performance in color images (example 3).  (a) An original skin sub-image. The red 
circle denotes a pigmented skin mark identified by dermatology experts in the uncompressed image.  (b) A 
compressed version of (a) with the compression ratio of 121.16 and quality factor of 25. (c)-(f) are the results from 
FOE [23], SADCT [24], ADPROC [25], and NLF [26] methods respectively. (g) The result from the KB approach. 

 

4.1. Subjective Evaluation 

Twenty-three observers participated in this experiment. Three of them had dermatological knowledge (one 

was a board-certified dermatologist and the other two were medical students studying dermatology); 

twelve of them were familiar with image processing; and the rest of them had computer science 

background. All the testing images were prepared by one person. It should be emphasized that there are no 

so-called skin mark examiners, like fingerprint examiners. Law enforcement agents, including the U.S. 

Department of Justice, recruit board-certified dermatologists to recognize skin marks in legal cases. The 

experiment was carried out in Y, U, V components and color images. In each case, 25 groups of images 

were presented. For Y, U and V components, 20 groups were from the first testing set, and 5 groups were 

from the second testing set, while for color images, 5 groups were from the first testing set, and 20 groups 

were from the second testing set. Totally 100 groups were evaluated. In each group, we presented an 

original uncompressed image (as reference), the corresponding compressed image, and the 5 resultant 

images (4 from the other methods and 1 from the KB approach) to the unbiased observers. We asked the 

observers to rate the images using a 10-point scale. For the Y, U and V components, the observers were 

required to rate the resultant images according to their similarity with the references. Higher grades (i.e., 

10) represent more similarity between original uncompressed images and resultant images. For color 

images, skin marks in reference images were highlighted. An example is given in Fig. 19. Observers were 

asked to compare skin marks. As with the Y, U and V components, the same grading scheme was 

employed. Ten observers participated in the Y, U and V evaluation, and the other ten participated in the 
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color evaluation. The three dermatological professionals participated in all evaluations. The average scores 

from the dermatological professionals and from other participants are illustrated in Fig. 22 and Fig. 23, 

respectively. They show clearly that the KB approach provides the greatest visual quality improvement. 

These results pinpoint clearly that the KB approach is effective not only for generic skin images, but also 

for skin marks. They further confirm our visual comparison in Figs. 16-21. 

(a) (b) 

(c) (d) 
Fig. 22 Illustration of subjective evaluation results from the three dermatological professionals. Higher scores 
represent more similarity to the original image. (a) Y component, (b) U component, (c) V component, (d) color 
image. 
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(a) (b) 

(c) (d) 
Fig. 23 Illustration of subjective evaluation results from the other participants. Higher scores represent more 
similarity to the original image. (a) Y component, (b) U component, (c) V component, (d) color image. 

       

      The application of the KB approach could improve confidence in diagnosis from digital images in real 

cases. The KB approach could reduce unnecessary debates in real cases because it significantly improves 

the visual quality of skin marks and other features for identification. The visual quality of images is 

important for accurate identification. Dermatology training is mostly based on “in person” physical exams 

and even enhanced visualization with dermatoscopes.  Thus, digital diagnostic training is best performed 

when using uncompressed images. Although there is no absolute threshold for useable resolution, previous 

research demonstrates that image resolution is most important when trying to accurately identify small 

pigmented lesions such as those used in the test cases here [35]. 
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4.2. Objective Evaluation based on Phase Information 

In the previous experiment, we evaluated the KB approach in terms of the visual quality. In this 

experiment, we used phase information to obtain an objective evaluation. Phase is extremely important 

information for biometric recognition. The famous IrisCode is based on coarse representation of Gabor 

phases [30]. In addition to IrisCode, phases are also employed for palmprint and face recognition [31][32]. 

Behar et al. pinpoint that images can be reconstructed from localized phase [33]. Phase also has strong 

relationship with edges. Thus, we evaluated phases in the resultant images. To extract pure phase 

information in images I and J, where I is an original image, and J is a resultant image from one of the 

methods, we took the 2D Fourier Transform of I and J, and removed their magnitude information in the 

Fourier domain. Then, we took the inverse 2D Fourier Transform. Once we obtained the phases of I and J, 

the function  

                                   ( ) ( ) ( )jyBixBJjyBixBIJIS p
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i
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1

0

1

0 1 1
,                        (6) 

where Ip (or Jp) is the phase of I (or J), B is a block size, and N and M are numbers of blocks in the column 

and row, respectively, is used to evaluate the similarity between the magnitude of the pure phase 

information in the two images. We divided the phase images into different blocks, because JPEG is a 

block-based algorithm. The block size varied from 8×8 pixels to 256×256 pixels. The higher value of S 

indicates more similarity between phases of I and J. We also evaluated the similarity of the entire image. 

The average measures for the Y, U and V components of the testing images are illustrated in Fig. 24. The 

standard deviations of the measures are illustrated in Fig. 25. The block synthesis algorithm was deployed 

for the Y component. The average percentage of synthetic blocks per image is 26.3% for the first testing 

set and 3.6% for the second testing set. In all settings, the results from the KB approach are clearly 

superior. In general, the similarity measures of the Y component were higher than those of the U and V 

components, due to the lower compression ratio in Y. In addition, for most of the results, the distributions 

of the results from the KB approach had the smallest standard deviations. This implies that the KB 
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approach performed more consistently on varying images. This objective evaluation demonstrates that the 

KB approach can successfully recover the phase information. 

 

(a) (b) 

(c) (d) 

(e) (f) 
Fig. 24 Illustration of the average of similarity measures. (a), (b) and (c) are the results from the Y, U and V 
components of the 1st testing set; (d), (e) and (f) are the results from the Y, U and V components of the 2nd testing 
set. 
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(a) (b) 

(c) (d) 

(e) (f) 
Fig. 25 Illustration of the standard deviation of similarity measures. (a), (b) and (c) are the results from the Y, U and 
V components of the 1st testing set; (d), (e) and (f) are the results from the Y, U and V components of the 2nd testing 
set. 
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4.3. Objective Evaluation based on Automatic Skin Mark Detection 

In this subsection, an evaluation of recoverability of the proposed KB approach for skin marks is reported. 

Note that skin marks are important biometric traits for forensic analysis. For this evaluation, an automatic 

skin mark detection algorithm was designed. Given one training image (original image) and one testing 

image (original image or deblocked image) from the same body part of the same person, an image patch 

with a skin mark was cropped from the training image. The size of the image patch was 19×19 pixels. We 

used the 2D Fourier Transform to remove the magnitude information and used the pure phase information 

for detection. We also employed the same approach to remove the magnitude information in the testing 

image. The cosine measure was utilized to obtain the similarity between the skin mark patch from the 

training image and all possible 19×19 pixel image patches in the testing image. In an ideal case, the 

corresponding skin mark in the testing image should have the highest similarity. Because some of the 

testing images had more than one skin mark, if the corresponding skin mark in the testing image had the 

highest or the second highest similarity, it was regarded as a correct detection. For each deblocking 

algorithm, 150 image pairs (one is an original image and the other is a resultant image) from the Caucasian 

database were examined. The image size was 256×256 pixels. Table 1 lists the detection rates. It is clear 

that the proposed KB approach performed much better than other algorithms and its detection rate is close 

to that from matching two original images of the same person. These results indicate that the KB approach 

can effectively recover skin marks from compressed images to overcome quantization noise. 

 
Table 1.  Evaluation results of automatic skin mark detection rate 

Original Compressed FOE [23] SADCT [24] ADPROC [25] NLF [26] KB 
95.3% 49.3% 82.5% 80.2% 54.6% 62.1% 90.1% 
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4.4. Objective Evaluation based on a Blockiness Index 

To evaluate discontinuity between blocks, we calculated the blockiness index [34] of the original, 

compressed, and resultant images. The range of this index is between zero and one. A higher value 

represents more serious discontinuity between blocks. The indices for the Y, U and V components of the 

two testing sets are listed in Table 2. Note that the block synthesis algorithm was used for the Y 

component. The KB approach is always the best compared with other methods and its resultant images are 

comparable to the original images.  

Table 2.  Evaluation results of the blockiness index 

 The first testing set The second testing set 
Y U   V Y U V 

Original 0.1311 0.1893 0.1472 0.2208 0.1898 0.1997 
Compressed  0.3402 0.9565 0.9443 0.6861 0.9485 0.9584 

FOE [23] 0.3607 0.5253 0.4315 0.4889 0.4190 0.4772 
SADCT [24] 0.2274 0.5669 0.5078 0.4906 0.5100 0.6136 

ADPROC [25] 0.2501 0.7353 0.6786 0.5932 0.7037 0.7748 
NLF [26] 0.3092 0.6716 0.5983 0.3739 0.5957 0.8377 

KB 0.1615 0.1914 0.1336 0.3676 0.1682 0.2380 
 

5. Conclusion 

In this paper, we have proposed a new knowledge-based approach to remove JPEG blocking artifacts in 

skin images for forensic analysis. This approach extracts prior knowledge of skin images from a training 

set, and uses it to infer original blocks in compressed evidence images. A Markov-model-based algorithm 

and a one-pass algorithm were developed to implement the inference. A block synthesis algorithm was 

designed to handle the cases where input compressed blocks are not contained in the training set. An 

indexing mechanism was employed to speed up these algorithms. The KB approach was evaluated on skin 

images from people with different races, genders and ages, taken under different imaging configurations, 

and with different compression ratios. Evaluations for visual quality, phase information, automatic skin 

mark detection and blockiness index demonstrated that the KB approach outperforms other deblocking 

methods. It successfully removes blocking artifacts and recovers lost skin mark information. Using the KB 
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approach, the visual quality of biometric features such as pigmented skin marks can be significantly 

improved.  
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