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Abstract— Biometric authentication systems are widely applied 

because they offer inherent advantages over classical knowledge-
based and token-based personal identification approaches. This 
has led to the development of products using palmprints as 
biometric traits and their use in several real applications. 
However, as biometric systems, are vulnerable to replay, database 
and brute-force attacks, such potential attacks must be analyzed 
before biometric systems are massively deployed in security 
systems. This paper proposes a projected multinomial distribution 
for studying the probability of successfully using brute-force 
attacks to break into a palmprint system. To validate the 
proposed model, we have conducted a simulation. Its results 
demonstrate that the proposed model can accurately estimate the 
probability. The proposed model indicates that it is 
computationally infeasible to break into the palmprint system 
using brute-force attacks. 

 
Index Terms— brute-force attack, palmprint, passwords, 

secure authentication. 
 

I. INTRODUCTION 

urrent security systems which automatically identify 
individuals commonly use either tokens of private 

knowledge such as a password or a private possession such as 
a smart card. Such tokens are insecure in that they can be lost, 
shared, stolen, or duplicated. In this respect, biometric 
authentication approaches that use physiological and 
behavioral characteristics such as the iris, retina, fingerprint, 
palmprint, signature, or gait [2] are much more secure. They 
are not, however, invulnerable. For example, they are open to 
database, replay, and brute-force attacks. 

Fig. 1 shows a number of points, Points 1-8, all being 
vulnerable points as identified by [4-5]. The potential attack 
points are between and on the common components of a 
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biometric system, input sensor, feature extractor, matcher and 
database and are especially open to attack when biometric 
systems are employed on remote, unattended applications, 
giving attackers enough time to make complex and numerous 
attempts to break in. At Point 1, a system can be spoofed using 
fake biometrics such as artificial gummy fingerprints and face 
masks [6]. At Point 2, it is possible to avoid liveness tests in 
the sensors by using a pre-recorded biometric signal such as a 
fingerprint image. This is a so-called replay attack. At Point 3, 
the original output features can be replaced with a predefined 
feature by using a Trojan horse to override the feature 
extraction process. At Point 4, it is possible to use both brute-
force and replay attacks, submitting on the one hand numerous 
synthetic templates or, on the other, prerecorded templates. At 
Point 5, original matching scores can be replaced with 
preselected matching scores by using a Trojan horse. At Point 
6, it is possible to insert templates from unauthorized users 
into the database or to modify templates in the database. At 
Point 7, replay attacks are once again possible. At Point 8, it is 
possible to override the system’s decision output and to collect 
the matching scores to generate the images in the registered 
database [15]. 

 
Fig. 1 Potential attack points in a biometric system 

 
Recently, many biometric and security researchers have 

proposed techniques for preventing and detecting these attacks 
[3-5, 7-9, 12, 17, 22-23]. Some researchers have employed 
watermarking and encryption to prevent replay attacks at 
Points 2, 4, and 7 [9, 17, 22] and have developed anti-spoofing 
techniques for specific biometrics to prevent attacks at Point 1 
[3, 12]. Other researchers have produced analyses of specific 
attack types vis-à-vis specific biometrics, for example, brute-
force attacks at Point 4 of fingerprint systems [4-5, 7]. 
Unfortunately, the analysis of brute-force break-ins against 
fingerprint systems is not applicable to palmprint systems 
since the template formats of fingerprints and palmprints are 
different.   
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 Given the commercial potential of palmprint systems as 
security applications, the wide variety of capture devices that 
now exist, and the diversity of preprocessing, feature 
extraction, matching and classification algorithms [1,10-
11,16,18-20] that have been produced in the field over the last 
seven years, it is certainly the case that any security issues 
should be systematically addressed prior to their widespread 
deployment. In this paper, we respond to this need by being 
the first to our knowledge to successfully consider security 
issues in palmprint systems. Initially, we concentrate on brute-
force attacks at Point 4. We will discuss other potential attacks 
in forthcoming papers.  
 To prevent brute-force attacks, security systems based on 
passwords allow limited number traits within a period of time. 
The systems block the access for a certain amount of period if 
the limit is over. However, this scheme is not suitable for 
identification systems (1-to-many matching systems), as the 
palmprint system described in this paper since this scheme 
would block the accesses of all users.  
 The rest of this paper is organized as the follows. Section 2 
provides a brief summary of our palmprint system. Section 3 
develops a probabilistic model describing the relationship 
between false acceptance rates and the number of attacks. 
Section 4 validates the proposed model and gives the 
experimental results. Section 5 offers some concluding 
remarks. 
 

II. A SUMMARY OF THE PALMPRINT SYSTEM EXPLOITING 
COMPETITIVE CODE 

In this Section, we briefly introduce our system, which 
employs a palmprint identification algorithm known as 
Competitive Code [19]. We choose to analyze Competitive 
Code in the context of brute-force attacks rather than other 
palmprint verification algorithms [13-14, 21] because it is the 
most accurate and the computationally fastest algorithm 
developed by Zhang and his co-workers. The version of 
Competitive Code used in this work has been modified so that 
it can re-issue new templates when original templates have 
been compromised. In other words, the new Competitive Code 
provides cancelable palmprint representation [4-5, 7].  

Like other biometric systems, a typical palmprint 
verification or identification system consists of four 
components: an image acquisition component, a preprocessing 
component, a feature extraction component, and a matching 
component [10-11, 16]. The specifics of the four components 
of our system are as follows. 

1) The image acquirer: This component transmits a 
palmprint image from the palmprint scanner to a computer. 
Fig. 2(a) shows a palmprint scanner developed by the 
Biometrics Research Centre of The Hong Kong Polytechnic 
University. Its design principles can be found at [10]. 

2) The preprocessor: This component detects the two key 
points between fingers to establish a coordinate system for 
aligning different palmprint images. The coordinate system is 
then used to extract the central parts of palmprint images. Fig. 
2(b) shows the key points and the coordinate system and Fig. 
2(c) shows a preprocessed palmprint image.  

3) The feature extractor: Our original algorithm applies six 
real Gabor filters with fixed orientations to a preprocessed 
palmprint image, I(x,y) [19] to estimate the local orientation 
field as features. The filters are defined as 
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where x’=(x-x0)cos�+(y-y0)sin�, y’=-(x-x0)sin�+(y-y0)cos�, 
(x0, y0) is the center of the function, ω is the radial frequency in 
radians per unit length, and � is the orientation of the Gabor 

filters in radians. � is defined as 
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the half-amplitude bandwidth of the frequency response. The 
original orientations of the six filters, θv are vπ/6, where v=0, 
1, 2, 3, 4 and 5. The orientation of a local region is estimated 
using a competitive rule, 

)),,,,,,(*),((arg(min 00 κθωψ vv yxyxyxIk =  where * 

represents convolution and k is called the winning index. To 
achieve cancelable representation, we embed a random field 

),( 00 yxα following uniform distribution with support 0, π/6, 

2π/6, 3π/6, 4π/6 and 5π/6. The value of ),( 00 yxα  depends on 

the filter center (x0, y0). As the result, the competitive rule 
becomes 

))),,(,,,,,(*),((arg(min 0000 καθωψ yxyxyxyxIk vv += . When 

we re-issue a new template, we need only to replace the 
original random field with a new random field. Fig. 2(d) shows 
a final feature code. The random field destroys all the line 
features and therefore looks like a noisy image. We still refer 
to the final feature code as Competitive Code. 

4) The angular comparer: This component compares two 
Competitive Codes by using angular distance. Table 1 gives all 
the possible angular distances between two winning indexes. 
Summing up all the angular distances at different positions, we 
have the angular distance between two Competitive Codes 
defined as  
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where Px,y (Qx,y) is a winning index of Competitive Code, P(Q) 
at position (x, y) and ),( ,, yxyx QPA  is the angular distance 

between the two winning indexes. To support real-time 
identification in large databases, we provide a coding scheme 
to encode the winning indexes so that we can implement 
angular distance using Boolean operators. Table 2 gives the 
coding scheme. The corresponding bitwise angular distance is 
defined as  

���
= = =

⊗=
32

1

32

1

3

1

),(),(),(
x y i

b
i

b
if yxQyxPQPA  (3) 

where )( b
i

b
i QP  is the ith bit plane of P(Q) and ⊗  is bitwise 

exclusive OR. Occasionally, as a result of the incorrect 
placement of hands, some palmprints contain non-palmprint 
pixels. All the non-palmprint pixels are black since they 
belong to the capture device. We can use a simple threshold to 
classify them. We use a bit plane as a mask to denote the non-
palmprint pixels. Finally, the bitwise angular distance is 
defined as  
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where ∩ is bitwise AND and PM(QM) is the mask of P(Q). 
Obviously, Af is between 0 and 1. For perfect matching, the 
angular distance is zero. To account for alignment 
imperfections, we generate 25 translated Competitive Codes 
by translating the preprocessed image. In other words, we have 
25 angular distances when we match two palmprints. The 
minimum of these distances is regarded as the final angular 
distance, 

FA . Using a 3GHz processor, the bitwise angular 
distance can make 100,000 comparisons per second. 
 

    
(a)           (b) 

    
(c)           (d) 

Fig. 2 A palmprint identification system using Competitive Code. a) A 
palmprint scanner developed by the Biometrics Research Centre, The Hong 
Kong Polytechnic University, b) the key points and coordinate system for 
palmprint segmentation and alignment, c) a preprocessed palmprint image for 
feature extraction and d) a Competitive Code, where different colours 
represent different orientations. 
 

TABLE 1 ALL POSSIBLE ANGULAR DISTANCES BETWEEN 
DIFFERENT WINNING INDEXES 

Winning indexes, Px,y Angular 
Distance  

A(Px,y, Qx,y) 
0 1 2 3 4 5 

0 0 1 2 3 2 1 
1 1 0 1 2 3 2 
2 2 1 0 1 2 3 
3 3 2 1 0 1 2 
4 2 3 2 1 0 1 

 
 

Winning 
indexes 

Qx,y 
5 1 2 3 2 1 0 

 
TABLE 2 BITWISE REPRESENTATION OF THE COMPETITIVE CODE 

Winning indexes Bit 1 Bit 2 Bit 3 
0 0 0 0 
1 0 0 1 
2 0 1 1 
3 1 1 1 
4 1 1 0 
5 1 0 0 

 

III. A PROBABILISTIC MODEL FOR ANALYZING 
BRUTE-FORCE BREAK-INS 

The study of brute-force break-ins requires a probabilistic 
model that describes the relationship between the number of 
attacks and the probability of a false acceptance. Therefore, it 
is necessary to establish a probabilistic model for the angular 
distance given in Eq. 4. To simplify the model, we assume that 
all preprocessed palmprint images are clear and devoid of non-
palmprint pixels. This will allow us to neglect the masks and 
the normalization terms. We could get exactly the same result 
for this analysis by using either the integer representation or 
the bitwise representation of Competitive Code, but for 
purposes of presentation it is more convenient to use the 
integer representation. Thus, we consider the angular distance 
given in Eq. 2 for the following analysis.  

Let ],,,[ 321 wwwwW o=  be a random vector where iw  is the 

number of iQPA yxyx =),( ,,
 in Eq. 2 and let pi be the 

probability of iQPA yxyx =),( ,,
. As a result, the angular distance 

described in Eq. 2 can be rewritten as T
f WKQPA =),( , where 

]3,2,1,0[=K . We assume that pi is stationary and 

),( ,, yxyx QPA  is independent. By stationary we mean that pi 

does not depend on the position (x, y). Using these 
assumptions, we infer that W follows multinomial distribution 
i.e. 
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where n is equal to 1024, the size of the Competitive Codes. 
Thus, the probability density function of the angular distance, 

),( QPA f
 is 
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Since f is a multinomial distribution and the summation can 

be regarded as a projection on the line tWK T = , we call this 
distribution “projected multinomial distribution”. 

Let )()),(Pr( tFtQPA f =<  and therefore 

)(1)),(Pr( tFtQPA f −=≥ , where F(t) is the cumulative 

distribution of ),( QPA f
. The probability of the final angular 

distance FA  being greater than the threshold t is  
m

F tFtQPA )),(1()),(Pr( −=≥  (7) 
where m, the number of translated matchings is 25. If we make 
z independent comparisons, the probability of all the final 
angular distances being greater than or equal to t is 

,))(1(),...,1|),(Pr( mz
iiF tFzitQPA −==∀≥  (8) 

where Pi and Qi represent different Competitive Codes. 
Consequently, the probability of at least one of the final 
angular distances being shorter than t is  

,))(1(1))),((Pr(min mz
iiFi tFtQPA −−=<  (9) 

We can now analyze brute-force attacks against our palmprint 
system using Eq. 9. For verification, each attackers’ template, 
Pi is compared only with the templates associated with a 
particular user. We assume that each user only has one 
template, Q, in the database and to attack the system the 
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hackers submit z templates. The probability of a false 
acceptance for verification is 

,))(1(1)),(Pr(min mz
iFi tFtQPA −−=<  (10) 

the same as in Eq. 9.  
 For identification, each submitted templates, Pi as a brute-
force attack is compared with all the templates in the database. 
Let the templates in the database be Qj where j=1,.., b. As in 
the previous discussion, we let the number of templates for the 
brute-force attack be z. Therefore, the probability of false 
acceptance occurring in an identification system with b 
templates in the database is  

,))(1(1)),(Pr(min ,
mzb

jiFji tFtQPA −−=<  (11) 
Eq. 10 for verification and Eq. 11 for identification each share 
the same form so, for simplicity of presentation, in the 
following experiments we shall consider only verification.  
 

IV. MODEL VALIDATION AND EXPERIMENTAL RESULTS 

The use of the probabilistic model to analyze brute-force 
attacks requires us to make some assumptions when obtaining 
the model parameters pi. We assume that the winning indexes 
of Competitive Code Q follow independent uniform 
distributions. In other words, 6/1)Pr( , == vQ yx

, for all v=0, 1, 

2, 3, 4, and 5. This assumption holds since the random field is 
formed by independent uniform distributions. We do not make 
any assumptions as to the winning indexes of the artificial 
Competitive Codes, Pi. Let cv be the probability of the winning 
index of Pi being equal to v. Using Table 1, we can infer that 
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 Now that we have all the model parameters, we run a 
simulation to validate the proposed model. For this simulation, 
we collect 11,074 palmprint images from 568 different palms. 
The images are 384×284 and they have a resolution of 75dpi. 
First of all, we use 100 different random fields to compute the 
Competitive Codes. Then, we use uniform distribution to 
generate 100 artificial Competitive Codes to attack each 
Competitive Code. Each artificial Competitive Code is 
matched with the true Competitive Code as a brute-force 
attack. Using the true Competitive Codes, we estimate the 
distribution of the winning indexes in Table 3 demonstrating 
that the winning index follows uniform distribution. We also 
estimate p0, p1, p2, and p3 at different positions in Fig. 3, where 
black represents probability zero while white represents 
probability one. Fig. 3 demonstrates that the stationary 
assumption for pi is held. The empirical distribution and the 
proposed theoretical distribution of non-translated matchings 
are given in Fig. 4(a). We also plot the predicted cumulative 
probability against the observed cumulative probability from 
non-translated matchings and translated matchings in Figs. 
4(b) and (c), respectively. Figs. 4(a)-(c) demonstrate the 
predictive power of the proposed model.   
 Now we can use the proposed model to estimate the 
probability of successful break-ins. Fig. 4(d) plots the 

probability of false acceptance against different thresholds. We 
show only the threshold between 0.36 and 0.39 since our 
system generally operates in this range. Assume that our 
system can make 1 million comparisons, 10 times faster than 
our current implementations. The corresponding computation 
times for z=1011, 1012, 1013, 1014 and 1015 are 1.16 days, 11.5 
days, 115 days, 3.17 years and 31.7 years, respectively. The 
computation times and the probabilities of false acceptances 
demonstrate that it is impossible to use brute-force to break 
into our system. 
 

TABLE 3 DISTRIBUTION OF WINNING INDEXES 

Winning index 0 1 2 3 4 5 
Probability 0.166 0.167 0.168 0.166 0.166 0.167 
 

       
(a)     (b)     (c)     (d) 

Fig. 3. (a)-(d), the estimated p0-p3 at different positions, respectively, where 
black represents probability zero while white represents probability one 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 4 Model validation and predications (a) empirical and theoretical 
distributions from non-translated matchings, (b) a plot of predicted 
cumulative probability against observed cumulative probability for non-
translated matchings, (c) a plot of predicted cumulative probability against 
observed cumulative probability for translated matching and (d) the 
probability of false acceptances against different thresholds. 
 

V. CONCLUSION 

This paper presents a systematic analysis of brute-
force break-ins directed against our palmprint system. 
Using Competitive Code as the features and angular 
distance as the matching scheme, we set up a projected 
multinomial distribution to describe the relationship 
between the probability of false acceptance and the 
number of attacks. According to our analysis, when the 
system threshold is set to lower than 0.39, it is 
computationally infeasible to break into our palmprint 
system using brute-force attacks. 
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