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Abstract 

The development of accurate and reliable security systems is a matter of wide interest, and in this context 
biometrics is seen as a highly effective automatic mechanism for personal identification. Among 
biometric technologies, 1 IrisCode developed by Daugman in 1993 is regarded as a highly accurate 
approach, being able to support real-time personal identification of large databases. Since 1993, on the 
top of IrisCode, different coding methods have been proposed for iris and fingerprint identification. In 
this research, I extend and generalize IrisCode for real-time secure palmprint identification.  

PalmCode, the first coding method for palmprint identification developed by me in 2002, directly 
applied IrisCode to extract phase information of palmprints as features. However, I observe that the 
PalmCodes from the different palms are similar, having many 45o streaks. Such structural similarities in 
the PalmCodes of different palms would reduce the individuality of PalmCodes and the performance of 
palmprint identification systems. To reduce the correlation between PalmCodes, in this thesis, I employ 
multiple elliptical Gabor filters with different orientations to compute different PalmCodes and merge 
them to produce a single feature, called Fusion Code. Experimental results demonstrate that Fusion Code 
performs better than PalmCode. Based on the results of Fusion Code, I further identify that the orientation 
fields of palmprints are powerful features. Consequently, Competitive Code, which uses real parts of six 
Gabor filters to estimate the orientation fields, is developed. To embed the properties of IrisCode, such as 
high speed matching, in Competitive Code, a novel coding scheme and a bitwise angular distance are 
proposed. Experimental results demonstrate that Competitive Code is much more effective than other 
palmprint algorithms. 

Although many coding methods have been developed based on IrisCode for iris and palmprint 
identification, we lack a detailed analysis of IrisCode. One of the aims of this research is to provide such 
analysis as a way of better understanding IrisCode, extending the coarse phase representation to a precise 
phase representation, and uncovering the relationship between IrisCode and other coding methods. This 
analysis demonstrates that IrisCode is a clustering process with four prototypes; the locus of a Gabor 
function is a two-dimensional ellipse with respect to a phase parameter and the bitwise hamming distance 
can be regarded as a bitwise angular distance. In this analysis, I also point out that the theoretical 
evidence of the imposter binomial distribution of IrisCode is incomplete. I use this analysis to develop a 
precise phase representation which can enhance iris recognition accuracy and to relate IrisCode and other 
coding methods. By making use of this analysis, principal component analysis and simulated annealing, 
near optimal filters for palmprint identification are sought. The near optimal filters perform better than 
Competitive Code in term of d’ index. 

Identical twins having the closest genetics-based relationship are expected to have maximum similarity 
in their biometrics. Classifying identical twins is a challenging problem for some automatic biometric 
systems. Palmprint has been studied for personal identification for many years. However, genetically 
identical palmprints have not been studied. I systemically examine Competitive Code on genetically 
identical palmprints for automatic personal identification and to uncover the genetically related palmprint 
features. The experimental results show that the three principal lines and some portions of weak lines are 

                                                      
1 In this thesis, IrisCode interchangeably refers to the method and features of iris recognition developed by Daugman.  
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genetically related features but our palms still contain rich genetically unrelated features for classifying 
identical twins.  

As biometric systems are vulnerable to replay, database and brute-force attacks, such potential attacks 
must be analyzed before they are massively deployed in security systems. I propose projected 
multinomial distribution for studying the probability of successfully using brute-force attacks to break 
into a palmprint system based on Competitive Code. The proposed model indicates that it is 
computationally infeasible to break into the palmprint system using brute-force attacks. In addition to 
brute-force attacks, I address the other three security issues: template re-issuances, also called cancellable 
biometrics, replay attacks, and database attacks. A random orientation filter bank (ROFB) is used to 
generate cancellable Competitive Codes for templates re-issuances. Secret messages are hidden in 
templates to prevent replay and database attacks. This technique can be regarded as template 
watermarking. A series of analyses is provided to evaluate the security levels of the measures.  
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Chapter 1 Introduction to Biometrics 

Biometrics refers to the technology for personal identification or authentication based on 
our physiological and/or behavioral characteristics. Biometrics overcomes the 
weaknesses of traditional personal identification schemes including token-based 
approaches and knowledge-based approaches. In this chapter, a brief introduction to 
biometrics is presented. Further information can be found at [79, 152].  

 

1.1 Introduction 

The rapid growth in the use of Internet applications and the great concern of security require reliable and 
automatic personal identification. Traditional automatic personal identification schemes can be divided 
into two categories: knowledge-based, such as a password and token-based, such as a physical key, an ID 
card and a passport. However, these approaches have limitations. In the knowledge-based approach, to 
some extent, the “knowledge” can be guessed, forgotten or shared. In the token-based approach, the 
“token” can be easily stolen or lost. These weaknesses generate serious financial damage to companies 
and societies. The following are some interesting statistics: 

 
• According to Nilson report, in 2005, MasterCard, Vise, American Express and Discover incurred 

US$ 1.14 billion in fraud losses. [153] 

• Between 20% and 50% of all helpdesk calls are for password resets and each password reset costs 
about US$70 [154].  

• In 2005, 9.3 million US citizens suffered from identity theft. The loss is US$54.4 billion [155]. 

 

These figures strongly indicate that we need a more effective and reliable solution for human identity 
management. Biometrics is regarded as the potential solution. Many large-scale human identity 
management projects such as US-visit program, EU biometric passport and Hong Kong identity card 
involve biometrics. Biometrics is also applied to many other applications including access control, 
computer login and financial transactions authentication. As a result, the biometric market is expanding 
drastically. In 2003, the annual global biometric revenues were US$719 million only while the projected 
revenues in 2008 are US$4,639 million. This dramatic increase in demand requires a matching increase in 
biometrics research [165]. 

 

1.2 Biometric Traits 

Many human characteristics proposed as biometric traits have both advantages and disadvantages. There 
is no so-called optimal biometric trait. The selection of biometric traits depends on requirements of 
applications. In this Section, a brief summary of different biometric traits is presented. 
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• Deoxyribonucleic Acid (DNA), a nucleic acid containing all genetic instructions for 
development of organs, is commonly applied to forensic applications such as criminal 
investigation and corpse identification. Everyone has unique DNA pattern, except identical twins. 
DNA can be extracted from blood, hair, and skin etc, which can always be collected in crime 
senses. One of major concerns of using DNA for personal identification is privacy since DNA can 
be collected unintentionally and contains all genetic information including genetic disorder.   

• Face is a widely acceptable biometric trait, which can be captured from distance and even 
without users’ cooperation. Nevertheless, face contains limited information for personal 
identification. Identical twins have very similar facial features. Another inherent difficulty of 
using face for personal identification is that face images of a person can change a lot due to facial 
expression, capture environment and aging. As a result, current face recognition systems cannot 
support high security applications but it is an important component in surveillance systems.  

• Fingerprint, the pattern on fingertips, is the most mature biometric technology. Fingerprints have 
been used for personal identification for many centuries and current automatic fingerprint systems 
have achieved high performance. These patterns containing rich features including orientation 
field, minutiae points and pores are unique for everyone. Even identical twins sharing the same 
DNA also have different fingerprints. The other advantage of fingerprint recognition is that 
fingerprint scanners are inexpensive and small, which can be embedded in laptops, mobile phones 
and personal digital assistants. Fingerprints are selected for many large-scale human identity 
management projects including the US-visit program and the Hong Kong identity card. Although 
fingerprint recognition has many advantages, it is still not perfect. A small portion of the 
population cannot provide clear fingerprint images due to aging and genetic problems.  

• Iris, the color pattern in eyes bounded by pupil and limbus, is a highly informative biometric 
trait. This pattern is unique and stable in whole lifetime. Current iris recognition systems can 
support real-time large-scale identification up to million records and capture iris images up to 3m. 
Almost all the commercial iris recognition systems are based on IrisCode developed by 
Daugman. Chapter 5 presents a detailed discussion and an analysis of IrisCode.  

• Hand geometry systems recognize a person based on the measurements taken from a user’s hand 
such as width and length of fingers and size of palms. Hand geometry is a widely acceptable and 
robust biometric. It is commonly applied to access control. Nevertheless, the geometric features 
have only limited information so it is suitable only for verification, 1-to-1 comparisons. The size 
of the capture device is another problem limiting its applications.  

• Palmprint, the inner surface of palms, has rich features including principal lines, wrinkles, 
minutiae points, singular points and texture. These features can be used for uniquely identifying a 
person. Currently, there are two types of palmprint research, high resolution approach and low 
resolution approach. High resolution approach is suitable for forensic applications while low 
resolution approach is suitable for commercial applications. Chapter 2 gives detailed discussion 
about palmprint recognition. 

• Signature, a behavioral biometric, is widely accepted in governmental, legal and commercial 
transactions. Each person can have several signatures for different applications. Nevertheless, a 
signature cannot uniquely identify a person. Many factors can influence the consistency of 
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signatures such as emotional and physical conditions. Furthermore, professional forgers are 
capable of reproducing signatures to fool recognition systems.  

• Voice regarded as a combination of behavioral and physiological biometrics is based on the size 
and shape of the appendages that generate sound. Voice recognition is commonly applied to 
phone-based applications and therefore, no extra input sensor is required. However, voice 
recognition faces several difficulties. Voice is neither distinctive nor stable. Current voice 
recognition systems cannot separate identical twins. Voice also changes due to medical condition, 
emotional state and aging.  

• Other biometrics including gaits, lip prints, brain signals, ears, teeth, retinas, odor, keystrokes, 
heights, weights and genders have been proposed. They have different characteristics and 
different potential applications. 

 

1.3 Terminology  

In this Section, a set of terms commonly used in the biometric community is listed. Figure 1.1 illustrates 
some of them.  

 

• Genuine user is a user who registers in a biometric system 

• Imposter user is a person who does not register in the system but attempts to use it. 

• Template is a representation of biometric features stored in a database of the system. 

• Matching score is a numerical value that represents similarity or dissimilarity between two 
biometric signals. 

• Genuine matching score is a matching score which is generated by matching two biometric 
signals (e.g. face images) from the same biometric trait (e.g. face).  

• Imposter matching score is a matching score which is generated by matching two biometric 
signals from two different biometric traits.  

• Genuine distribution is a distribution of the genuine matching scores. 

• Imposter distribution is a distribution of the imposter matching scores. 

• Verification system is a biometric system which performs one-to-one matching. Users are 
required to provide user identities, smart cards or other tokens to retrieve their templates in the 
database. According to the matching score generated by comparing an input biometric signal and 
the retrieved template, the system either accepts or rejects that they are from the same biometric 
trait  

• Close-set identification system is a biometric system which performs one-to-many matching. An 
input biometric signal is matched with all the templates in the database. The system ranks the 
templates according to their matching scores.  
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• Open-set identification system is a combination of a close-set identification system and a 
verification system. It retrieves the first rank of the template and then performs verification. In 
this thesis, I generally refer identification to open-set identification. 

• Genuine acceptance rate (GAR) is the probability or the percentage of a verification system 
correctly verifying a genuine user.  

• False acceptance rate (FAR) is the probability or the percentage of a verification system 
recognizing an imposter user as a genuine user.  

• False rejection rate (FRR) is the probability or the percentage of a verification system 
recognizing a genuine user as an imposter user. 

• Threshold a numerical value, determines whether to accept two biometric signals from the same 
trait or not. For dissimilarity measures, if a matching score of two biometric signals is greater 
than a threshold, they are considered to be from two different traits. Otherwise, they are 
considered to be from the same trait. For similarity measure, if the matching score of two 
biometric signals is greater than the threshold, they are considered from the same trait. Otherwise, 
they are considered from different traits. 

• Receiver operating characteristic (ROC) curve is a plot of genuine acceptance rate or false 
rejection rate against false acceptance rate for all possible operating points.  

 

Figure 1.1 Illustration of common terms used in biometric community 
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1.4 Design of Biometric System  

Five objectives, cost, user acceptance and environment constraints, accuracy, computation speed and 
security should be considered when designing a biometric system. They are inter-related, as is shown in 
Figure 1.2. Reducing accuracy can increase speed. Typical examples are hierarchical approaches. 
Reducing user acceptance can improve accuracy. For instance, users are required to provide more samples 
for training the system. Increasing cost can enhance security. More sensors can be embedded to collect 
different signals for liveness detection. In some applications, some environmental constraints such as 
memory usage, power consumption, size of templates, and size of devices have to be factored into a 
design. A biometric system installed in a PDA (personal digital assistant) requires low power and 
memory usage, but these requirements are not essential for access control. A practical biometric system 
should balance all these aspects. 

 

Figure 1.2 The inter relationships between different objectives for designing a biometric system 

 

1.5 Biometric Security 

Biometrics is much more secure than traditional authentication methods. They are not, however, 
invulnerable. For example, they are open to database, replay, and brute-force attacks. Figure 1.3 shows a 
number of points, Points 1-8, all being vulnerable points as identified by [26, 95, 145]. The potential 
attack points are between and on the common components of a biometric system, input sensor, feature 
extractor, matcher and database and are especially open to attack when biometric systems are employed 
on remote, unattended applications, giving attackers enough time to make complex and numerous 
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attempts to break in. At Point 1, a system can be spoofed using fake biometrics such as artificial gummy 
fingerprints and face masks [146]. At Point 2, it is possible to avoid liveness tests in the sensors by using 
a pre-recorded biometric signal such as a fingerprint image. This is a so-called replay attack. At Point 3, 
the original output features can be replaced with a predefined feature by using a Trojan horse to override 
the feature extraction process. At Point 4, it is possible to use both brute-force and replay attacks, 
submitting on the one hand numerous synthetic templates or, on the other, prerecorded templates. At 
Point 5, original matching scores can be replaced with preselected matching scores by using a Trojan 
horse. At Point 6, it is possible to insert templates from unauthorized users into the database or to modify 
templates in the database. At Point 7, replay attacks are once again possible. At Point 8, it is possible to 
override the system’s decision output and to collect the matching scores to generate the images in the 
registered database [150].  

 

 

Figure 1.3 Potential attack points in a biometric system [26, 95, 145] 

 

1.6 Problems Raised by Biometrics  

In addition to the potential illegitimate access by imposters, biometric systems raise issues including 
unintended functions, unintended applications and template sharing [156]. 

 

• Unintended functions: Our biometric traits contain rich private information, which can be 
extracted from biometrics for non-authentication purposes. DNA containing all genetic 
information including sex, ethnicity, physical disorder and mental illness can be employed for 
discrimination. Certain patterns in palm lines also associate with mental disorders such as Down 
syndrome and schizophrenia [36] 

• Unintended applications: Some biometric traits can be collected without user cooperation. Face 
and iris are two typical examples. Governments and organizations can employ them for tracking.  
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• Template sharing: Biometric templates in databases of authorized agents are possible to be 
shared by unauthorized agents.  

1.7 Motivation and Summary of the Work 

Palmprint recognition has been studied for many years and a real-time large-scale palmprint identification 
algorithm has not been developed. IrisCode developed in 1993, and continuously modified, by Daugman 
demonstrates the ability for real-time large-scale iris identification. To develop such an algorithm for 
palmprint recognition, in this thesis, I investigate the properties of palmprints and analyze IrisCode.  

PalmCode, a palmprint identification algorithm directly applying IrisCode to palmprints, was 
developed by me in 2002 [1, 7]. Even though PalmCode is regarded as an important algorithm in 
palmprint research, the accuracy of PalmCode can support only 1-to-100 palmprint identification. In this 
thesis, I firstly identify that the performance of PalmCode is suppressed by its highly correlated features. 
To break this correlation, I propose a new coding algorithm called Fusion Code, which combines different 
PalmCodes generated by Gabor filters with different directions. Experimental results show that Fusion 
Code performs better than PalmCode. Nevertheless, both Fusion Code and PalmCode are based on the 
phase features in palmprints. To develop an accurate palmprint identification algorithm, effective 
palmprint features have to be identified. Based on the results of Fusion Code, I identify that orientation 
field of palmprints is a powerful feature. This feature is ignored by previous palmprint research. Using 
orientation field as a feature, I develop a new coding algorithm, called Competitive Code. The original 
bitwise hamming distance used in IrisCode, PalmCode and Fusion Code is not suitable for comparing 
orientation fields. For high speed matching, I develop a new coding scheme and bitwise angular distance 
specifically for Competitive Code. Comparing other palmprint algorithms including Fusion Code and 
PalmCode, Competitive Code is the best in terms of accuracy.  

Although the performance of Competitive Code is excellent, a general theory for the coding methods is 
still missing. Since all the coding methods including those proposed by other authors are developed on the 
bases of IrisCode, analyzing IrisCode is essential for establishing such a general coding framework. This 
analysis demonstrates that all coding methods are in fact clustering processes; bitwise angular distance 
and bitwise hamming distance are equivalent; the locus of a Gabor function is a two-dimensional ellipse 
with respect to a phase parameter and a Gabor filter can be regarded as a steerable filter [129]. 
Furthermore, I show that the theoretical evidence of binomial imposter distribution of IrisCode is not 
enough. As a result, the theoretical imposter distributions of other coding methods are possible to follow 
other distributions, not binomial distribution. Based on this analysis, I develop a learning algorithm to 
automatically generate the filters for the coding methods.  

In addition to development of palmprint identification algorithms, studying identical twins’ palmprints 
are also important. Classifying identical twins is a challenging problem for some automatic biometric 
systems. However, this issue is ignored in the previous palmprint studies. I examine Competitive Code on 
genetically identical palmprints and show that Competitive Code can effectively classify them. 
Furthermore, I identify that the three principal lines and some portions of wrinkles are genetically 
dependent features but palmprints contain rich genetically unrelated features. 

Figure 1.3 illustrates that biometric systems are vulnerable to various attacks. To develop an actual 
palmprint identification system, security issues should be addressed. In the last part of this thesis, I 
address four security issues: template re-issuances, also called cancellable biometrics, brute-force attacks, 
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replay attacks, and database attacks. A random orientation field is inserted in the feature extractor of 
Competitive Code for template re-issuances. This random orientation field can generate much more than 
enough cancellable Competitive Code. A projected multinomial distribution is proposed for studying the 
probability of successfully using brute-force attacks to break into a palmprint system based on 
Competitive Code. This model indicates that it is computationally infeasible to break into the palmprint 
system using brute-force attacks. One time pad regarded as perfect secrecy is used to defend against 
replay attacks. Secret messages are hidden in templates for detecting database attacks. This technique can 
be regarded as template watermarking. A series of analyses is provided to evaluate the security levels of 
the measures. 

 

1.8 Organization of the Thesis 

The rest of this thesis is organized as follows. Chapter 2 gives a comprehensive survey of palmprint 
recognition. Chapter 3 presents Fusion Code. Chapter 4 describes Competitive Code and compares it with 
other palmprint algorithms. Chapter 5 analyzes IrisCode and reveals the relationship between different 
coding methods. Chapter 6 further generalizes the coding methods and mentions an algorithm for learning 
the filters in the coding methods. Chapter 7 studies the genetically identical palmprints. Chapter 8 reports 
the analysis of brute-fore break-ins and proposes security measures for defending against replay and 
database attacks and analyzes their effectiveness. Chapter 9 points out some further directions. Chapter 10 
offers conclusive remarks. Figure 1.4 illustrates the organization of this thesis.  
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Figure 1.4 The organization of the thesis, where the links show the relationships between chapters and 
other research works.  
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Chapter 2 Survey of Palmprint Recognition 

Palmprint recognition has been investigated over the past eight years. During this period, 
many different problems related to palmprint recognition have been addressed. 
Researchers have focused on developing accurate verification algorithms. Various feature 
extraction and matching algorithms have been proposed. To achieve high verification 
accuracy, researchers combine different biometric traits with palmprints and combine 
different features in palmprints. Researchers also address a more challenging problem, 
real-time palmprint identification in large databases. In this context, both accuracy and 
recognition speed are important. Recently, the biometric community has also emphasized 
on the security of biometric systems. Pioneers have proposed some measures to protect 
palmprint systems. In addition to summarizing the current palmprint research, other 
related issues including performance evaluation and privacy involved with palmprints are 
discussed. The aims of this chapter are to give an overview of the current palmprint 
research. 

 

2.1 Introduction 

Palmprint, the inner surface of our palm normally contains three flexion creases, secondary creases and 
ridges. The flexion and secondary creases are also called principal lines and wrinkles, respectively. The 
flexion creases and the main creases are formed between the 3rd and 5th months after conception [36] and 
superficial lines appear after birth. These creases are not genetically deterministic. Even identical twins 
who share the same DNA sequences have different palmprints [2, Chapter 7]. These non-genetically 
deterministic and complex patterns have rich information for personal identification.  

Human beings were interested in the palm lines for fortune telling long time ago. In this century, 
scientists discovered that the palm lines were associated with some genetic diseases including Down 
syndrome, Aarskog syndrome, Cohen syndrome and fetal alcohol syndrome [68]. Scientists and 
fortunetellers name the lines and the regions differently, as shown in Figure 2.1 [30].  

There are two types of palmprint recognition research, high resolution and low resolution approaches. 
High resolution approach employs high resolution images while low resolution approach employs low 
resolution images. High resolution approach is suitable for forensic applications such as criminal 
detection [24], while low resolution is more suitable for civil and commercial applications such as access 
control. Generally speaking, high resolution refers to 400 dpi or more and low resolution refers to 150 dpi 
or less. Figure 2.2 illustrates a part of a high resolution palmprint image and a low resolution palmprint 
image. In high resolution images, researchers can extract ridges, singular points and minutia points as 
features while in low resolution images, they generally use principal lines, wrinkles and texture. At the 
beginning of palmprint research, the high-resolution approach was the focus [69-70] but almost all current 
research is focused on the low resolution approach because of the potential applications. In this chapter, 
we concentrate only on the low resolution approach since it is the current focus.  
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The rest of this chapter is organized as the follows. Section 2.2 provides an overview of the current 
palmprint research including, palmprint scanners, preprocessing, feature extraction, matching, fusion, 
identification in large databases and security. Section 2.3 discusses performance evaluation, comparison 
and privacy issues related to palmprint recognition. Section 2.4 offers some concluding remarks. 

 
(a) 

 
(b) 

Figure 2.1 Definitions of palm lines and regions (a) from scientists and (b) from fortune-tellers. 
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(a) 

 
(b) 

Figure 2.2 Palmprint features in (a) a high resolution image and (b) a low resolution image 

 

2.2 Current Research 

2.2.1 Overview  

A palmprint recognition system generally consists of four parts: palmprint scanner, preprocessing, feature 
extraction and matcher. Palmprint scanner is to collect palmprint images. Preprocessing is to setup a 
coordinate system to align palmprint images and to segment a part of palmprint image for feature 
extraction. Feature extraction is to obtain effective features from the preprocessed palmprints. Finally, a 
matcher compares two palmprint features. 

 

2.2.2 Palmprint Scanners  

Researchers utilize four different types of sensors to collect palmprint images, CCD-based palmprint 
scanners, digital cameras, digital scanners and video cameras. So far, only two research teams have CCD-
based palmprint scanners [7, 9]. Figure 2.3 shows a CCD-based palmprint scanner developed by the Hong 
Kong Polytechnic University. Generally speaking, CCD-based palmprint scanners capture high quality 
palmprint images and align palms accurately since the scanners have pegs for guiding placement of 
hands. Digital scanners are cost-effective to collect palmprint images. However, they cannot support real-
time verification because of the scanning time. Digital cameras and video cameras are two ways to collect 
palmprint images without contact. Figure 2.4(a) is a palmprint image collected by a CCD-based palmprint 
scanner and Figure 2.4(b) is a palmprint image collected by a digital scanner.  

 

Singular points 

       Minutiae points 

Ridges 
Principal lines 

Wrinkles 
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Figure 2.3 A CCD-based palmprint scanner 

 

   
           (a)       (b) 

Figure 2.4 Two palmprints collected by (a) a CCD-based palmprint scanner, and (b) a digital scanner 

 

2.2.3 Preprocessing 

Preprocessing is used to align different palmprint images and to segment the central parts for feature 
extraction. Most of the preprocessing algorithms employ the key points between fingers to set up a 
coordinate system. Preprocessing involves generally five common steps, 1) binarizing the palm images, 
2) extracting the contour of hand and/or fingers, 3) detecting the key points, 4) establishing a coordination 
system and 5) extracting the central parts. Figure 2.5(a) illustrates the key points and Figure 2.5(b) shows 
a preprocessed image. The first and second steps in all the preprocessing algorithms are similar. However, 
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the third step has several different implementations including tangent-based [7], wavelet-based [10] and 
bisector-based [16, 48] to detect the key points between fingers. Furthermore, Han detects points in the 
middle of fingers and constructs lines passing through fingertips and the points to setup a coordinate 
system [9]. All these approaches utilize only the information on the boundaries of fingers, while Kumar et 
al. propose to use all information in palms [50]. They fit an ellipse to a binary palmprint image. 
According to the orientation of the ellipse, a coordinate system is established. After obtaining the 
coordinate systems, central parts of palmprints are segmented. Most of the preprocessing algorithms 
segment square regions for feature extraction, but some of them segment circular [61] and half elliptical 
regions [41]. 

 

 

 
(a) 

 
(b) 

Figure 2.5 Illustration of preprocessing. (a) the key points based on finger boundary and (b) the central 
parts for feature extraction. 

 

2.2.4 Feature Extraction and Matching 

Comparing with image collection and preprocessing, the research of feature extraction and matching is 
more diverse. Feature extraction algorithms can be classified into five categories, line-based, subspace-
based, local statistical-based, global statistical-based and coding-based approaches. However, some of 
them cannot be classified.  

 

2.2.4.1 Line-Based Approach 

Palm lines are obvious features in palmprints. Researchers employ existing edge detection methods and 
develop edge detectors to extract the palm lines [34, 44, 52-53, 58-60]. The extracted palm lines are either 
matched directly or represented in other formats for effective matching. Although at the beginning of 
palmprint research, some researchers concentrate on line-based approach, it is not the focus of current 
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palmprint research since it is difficult to accurately extract palm lines from low-resolution palmprint 
images.  

2.2.4.2 Subspace-Based Approach 

Subspace-based approach (also called appearance-based approach in the literature of face recognition) 
involves generally in principal component analysis (PCA), linear discriminant analysis (LDA) and 
independent component analysis (ICA) [8, 12-13, 18, 42, 62-63, 66-67]. The subspace coefficients are 
considered as features. Various distance measures and classifiers are used to compare the features. In 
addition to applying PCA, LDA and ICA directly to palmprint images, researchers embed wavelets, 
discrete cosine transform (DCT) and kernels in their methods [8, 18, 39, 42]. A comprehensive 
comparison can be found in [8]. Researchers also develop new subspace algorithms and examine them on 
palmprints [71-73]. Generally speaking, subspace-based approach does not make use of any prior 
knowledge of palmprints. 

 

2.2.4.3 Statistical Approach 

Statistical approach can be further divided into local and global statistical approaches. Local statistical 
approach transforms images into another domain and then divides the transformed images into small 
regions [10, 15, 33, 45, 50-51, 63-64]. Local statistics such as means and variances of each small region 
are calculated and regarded as features. Gabor filters, wavelets and Fourier transforms have been 
examined. The small regions are commonly square but some of them are elliptical and circular [29, 64]. 
According to the collected papers, so far, no one investigates high order statistics for this approach. In 
addition to local statistics, researchers also employ global statistics, which are computed from whole 
transformed images [11, 14, 46, 49, 54]. Moments, centers of gravity and densities are considered as the 
global statistical features. 

 

2.2.4.4 Coding Approach 

Coding approach encodes filter responses as features [1, 3-4, 7, 56, 75]. Gabor filters are commonly 
applied in this approach. Phase [1, 4, 7, 75, Chapter 3] and orientation [3, 56, Chapter 4] features have 
been encoded. The encoding process is to construct a bitwise representation for high speed matching. The 
high speed matching is performed by bitwise hamming distance or bitwise angular distance [3]. These 
two bitwise distances are equivalent [38]. In fact, these coding methods are clustering processes [38, 
Chapter 5] and can be considered as extensions of IrisCode [25, Chapter 5].  

Although Wu et al. use the term, code to describe their methods, I do not regard them as coding 
methods since their feature representation and matching functions are not bitwise [57, 74]. In fact, the 
design of their methods is flawed. They use code words 1, 2, 3, 4 to represent four directions, 0, π/4, π/2 
and 3π/4, respectively and use hamming distance (non-bitwise) to match the code words. According to 
their hamming distance, both distance between code words 1 and 3 and distance between code words 1 
and 2 are one. They ignore the distance between the codes. Competitive code and its generalization have 
taken into account this issue [3, 38]. However, Wu et al. ignore my works.  
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2.2.4.5 Other Approaches 

In addition to the previous approaches, some algorithms are difficult to be classified [9, 31-32, 43, 47, 55, 
78]. These algorithms combine several image-processing methods to extract palmprint features and 
employ standard classifiers such as neural networks to make the final decision. In addition, Kumar and 
his coworkers apply correlation filter for palmprint recognition [43]. In fact, correlation filter is a 
classifier. 

 

2.2.4.6 Matching  

Many existing classifiers including neural networks [10], hidden Markov models [48] and correlation 
filters [43] and various measures including cosine measure, weight Euclidean distance, Euclidean 
distance and hamming distance have been examined. Only limited researchers try to develop special 
distances or classifiers for palmprint recognition. Bitwise angular distance may be the only one [3]. 

 

2.2.5 Fusion 

Fusion is a promising approach to increase accuracy [77]. Many biometric traits including finger surface 
[19, 39], face [20, 62, 66] and hand shape [17, 39, 50, 61, 76] have been combined with palmprints at 
score level or at representation level. Combining other hand features such as hand geometry and finger 
surface with palmprints has an inherent advantage since these features and palmprints can extract from a 
single hand image. Only one sensor is needed. Researchers have examined various fusion rules including 
sum, maximum, average, minimum, support vector machines and neural networks. In addition to 
combining different biometric traits with palmprints, researchers also fuse different features including 
appearance-based, line and texture features from palmprints [21, 29]. Kumar et al. even fuse user identity 
[62]. Table 2.1 summarizes the existing fusion approaches. Although fusion is an effective way to 
increase accuracy, it generally increases computation cost and template sizes and reduces user acceptance.  
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Table 2.1 Summary of palmprint fusion 

Biometric traits and features Level of fusion Ref 
Hand geometry and palmprint Score  17 
Finger + palmprint Score 19 
Face + palmprint Score 20 
Gabor + Line features + PCA features from palmprints Score 21 
Gabor + Line + Haar wavelet features from palmprints Score/decision 29 
Hand geometry + palmprint + knuckleprint Feature 39 
Hand geometry + palmprint Feature/score 50 
Face + palmprint + Claimed identity Score 62 
Face + palmprint Feature 66 
Hand geometry + palmprint Feature/score 76 

 

2.2.6 Identification in Large Databases 

Real-time identification in large databases is a more challenging problem. Three different approaches, 
hierarchy, classification and brute-force, have been proposed to attack this problem. Hierarchical 
approach employs simple but computationally effective features to retrieve a sub-set of the templates in a 
given database for further comparison [14-16]. Although hierarchical approach increases matching speed, 
it sacrifices accuracy. Target palmprints are possible to be removed by the classifiers using the simple 
features.  

Classification is another approach to address this problem. Each palmprint in a given database is 
assigned to a class. Wu et al. define six classes based on number of principal lines and number of their 
intersections [22]. The six classes are illustrated in Figure 2.6. However, using their definitions and 
technique for identification is ineffective because the six classes are highly unbalanced e.g. about 80% of 
palmprints belonging category 5 shown in Figure 2.6(e) and their algorithm has high bin error of 4%.  

The last one is brute-force approach [1, 3-4, 7, 56]. Brute-force approach uses one matching function to 
search entire databases. The advantage of this approach is to avoid introducing errors from the 
classification or hierarchical systems. The major challenge is to design the matching function and to 
identify effective features for this matching function. Daugman, the inventor of IrisCode, has 
demonstrated that bitwise hamming distance can achieve this goal, real-time brute-force identification in 
large databases [25]. Following the idea of IrisCode, PalmCode and Fusion Code employ bitwise 
hamming distance to match encoded phase information [1, 4, 7]. Bitwise angular distance in Competitive 
Code is designed to match encoded orientation features [3]. 
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(a)     (b) 

 

 
(c)     (d) 

 
(e)     (f) 

Figure 2.6 The six classes of palmprints defined by Wu et al. [22] 
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2.2.7 Security 

Ratha and his coworkers pinpoint that biometric systems are vulnerable to many attacks including replay, 
database and brute-force attacks [26]. Comparing verification, fusion and identification, only limited 
works are related to palmprint security.  

I analyze the probability of successfully using brute-force attack to break into a palmprint identification 
system [5] and propose cancellable palmprints for template re-issuance and template watermarking to 
defend replay attacks and database attacks [Chapter 8]. Sun et al. apply watermarking techniques to hid 
finger features in palmprint images for secure identification [40]. Connie et al. combine pseudo-random 
keys and palmprint features to generate cancellable palmprint representation [27] and claim that their 
method can achieve zero equal error rates. This result is based on an assumption that the pseudo-random 
keys are never lost or shared [6]. It is in fact an unrealistic assumption. In addition to palmprints, they 
publish a series of papers based on this assumption and report zero equal error rates for different 
biometric traits [28]. A detailed analysis is given in [6]. 

 

2.3 Other Issues Related to Palmprint Recognition 

2.3.1 Performance Evaluation 

Evaluating biometric systems is an important topic [23]. Some researchers report impressive results even 
using simple methods for palmprint recognition. For example, Wu et al. report an identification rate of 
99.55% in a database with 3,000 images from 300 different palms based on LDA [12]; Lu et al. report an 
identification rate of 99.15% in a database with 3056 images from 382 palms based on PCA [13]. 
However, Jing et al. report identification rates of only 71.34% for PCA and 90.91% for LDA from a 
database with 3040 images from 190 palms [18]. It should be pointed out that Jing et al’s 
implementations are slightly different from Wu et al.’s and Lu et al.’s implementations. However, it is not 
the major problem. The major performance differences are due to the difference in their evaluation 
schemes. Jing et al.’s database contains palmprints collected from two occasions, but Wu et al. and Lu et 
al. employ palmprints collected in the same occasion. In actual applications, input palmprints and 
templates in a database are always collected at different occasions. For reliable performance evaluation, 
palmprint systems should be examined by palmprints collected from different occasions. Moreover, 
potential imposters would not provide their palmprints to train the systems in actual applications, so 
palmprints for training the systems and for evaluation should be collected from different palms. Gibbons 
et al. demonstrate that the performance of open systems trained by imposter’s biometrics is overestimated 
[37]. Systems should also be examined by genetically identical palmprints since some features including 
the principal lines are genetically dependent [2, Chapter 7]. The algorithms highly relying on the principal 
lines may not able to classify genetically identical palmprints [14]. More detailed discussion about 
evaluating palmprint systems can be found at [35].  
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2.3.2 Privacy  

Biometric traits contain information not only for personal identification but also for other applications. 
For example, deoxyribonucleic acid (DNA) and retina are useful for diagnosing genetic problems and 
diabetes, respectively. Palmprints are also related to some genetic disorders. Most of the previous medical 
research concentrates on the abnormal flexion creases, Simian line and Sydney line shown in Figure 2.7 
[68]. These abnormal palm lines always associate with Down syndrome, Aarskog syndrome, Cohen 
syndrome and fetal alcohol syndrome [68] but about 3% of normal population has abnormal flexion 
creases. Medical researchers also discover the association between density of secondary creases and 
schizophrenia [36]. To protect our private information in palmprints, databases have to store encrypted 
templates only since the line features are possible to be reconstructed from raw templates. Both traditional 
encryption techniques and cancellable biometrics can be used for encryption. The difference between 
these two approaches is that cancellable biometrics performs matching in transform domains while 
traditional encryption techniques require decryption before matching. In other words, decryption is not 
necessary for cancellable biometrics. When matching speed is an issue, e.g. identification in a large 
database, cancellable biometrics is more suitable for hiding the privacy information.  

 

  

Figure 2.7 Abnormal palmprints. 

 

2.4 Conclusion 

In this chapter, a summary of the current palmprint research including sensors, preprocessing, feature 
extraction, matching, identification in large databases, fusion and security is presented and the related 
issues including privacy and performance evaluation are discussed.  

 

 

Simian line Sydney line 
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Chapter 3 Palmprint Identification Using Feature-Level 

Fusion 

In this chapter, I propose a feature-level fusion approach for improving the efficiency of 
PalmCode. Multiple elliptical Gabor filters with different orientations are employed to 
extract the phase information on a palmprint image, which is then merged according to a 
fusion rule to produce a single feature called the Fusion Code. The similarity of two 
Fusion Codes is measured by their normalized hamming distance. A dynamic threshold is 
used for the final decisions. Comparing the previous non-fusion approach, PalmCode and 
the proposed method, improvements in verification and identification are ensured.  

 

3.1 Introduction 

I directly applied IrisCode to palmprints in 2002 [1]. This algorithm is referred to PalmCode in biometric 
community. The experimental results show that the accuracy of PalmCode can support only middle size 
databases [7]. To further enhance the performance, in this chapter, I firstly analyze PalmCodes and then 
propose a new coding method called, Fusion Code. The following is a brief summary of PalmCode. A 
detailed implementation can be found at [1, 7]. 

 

1. An adjusted circular Gabor filter is applied to the preprocessed palmprint images. 

2. The signs of the filtered images are coded as a feature vector, and 

3. Two PalmCodes are measured using the normalized hamming distance. 

 

Figure 3.1 (d)-(i) show three PalmCodes derived from the three different palms in Figure 3.1(a)-(c). We 
can observe that the PalmCodes from the different palms are similar, having many 45o streaks. Intuitively, 
we might conclude that such structural similarities in the PalmCodes of different palms would reduce the 
individuality of PalmCodes and the performance of the palmprint identification system.  

To reduce the correlation between PalmCodes, in this chapter, a fusion rule is employed to select one 
of elliptical Gabor filters for coding the phase information. To further enhance the performance of the 
system, I replace the fixed threshold used in PalmCode by a dynamic threshold for the final decisions. 
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(a)     (b)     (c) 

     

(d)    (e)     (f) 

     

(g)    (h)    (i) 

Figure 3.1 Three typical samples of PalmCodes: (a)-(c) original images, (d)-(f) real parts of PalmCodes, 
(g)-(i) imaginary parts of PalmCode. 

 

A palmprint identification system based on Fusion Code consists of two parts: a palmprint scanner for 
on-line palmprint image acquisition and an algorithm for real-time palmprint identification. The system 
structure is illustrated in Figure 3.2. The four main steps in the system are as follows.  

1) Transmit a palmprint image to a computer from a palmprint scanner.  

2) Determine the two key points between the fingers and extract the central parts based on the 
coordinate system established by the key points. As a result, different palmprint images are 
aligned.  

3) Convolute the central parts using a number of Gabor filters. Merge the filter outputs, then 
code the phases as a feature vector called Fusion Code. 

4) Use the normalized hamming distance to measure the similarity of two Fusion Codes and use 
a dynamic threshold for the final decision. 
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In this chapter, the preprocessing algorithm to segment the central parts of palmprints described in [7] 
is employed. The proposed method will directly operate on the central parts of palmprints. 

This chapter is organized as follows. Section 3.2 presents the step-by-step implementation of Fusion 
Codes. Section 3.3 presents the bitwise hamming distance for matching two Fusion Codes and the 
dynamic threshold for final decision. Section 3.4 provides a series of experimental results including, 
verification and identification. Section 3.5 discusses the assumption for the development of the dynamic 
threshold. Section 3.6 offers concluding remarks.  

 

 

Figure 3.2 Block diagram of palmprint identification system based on Fusion Code. 
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3.2 Implementation of Fusion Code 

3.2.1 Filtering 

First, a preprocessed palmprint image is passed to a Gabor filter bank. The filter bank contains a number 
of Gabor filters, which have the following general formula: 
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where, x’=(x-x0)cos�+(y-y0)sin�, y’=-(x-x0)sin�+(y-y0)cos�, (x0, y0) is the center of the function, u is the 
radial frequency in radians per unit length and � is the orientation of the Gabor function in radians. σ and 
β are the standard deviations of the elliptical Gaussian along x and y axes, respectively. As in the 
implementation of PalmCode, the Gabor filters are adjusted to zero DC (direct current). The parameter � 
in the Gabor filters is j � /v, where j=0, 1,...,v-1 and v is the total number of Gabor filters in the bank. The 

other parameters are optimized for d’ index defined as ( ) 2//' 2
2

2
121 σσµµ +−=d , where µ1 and µ2 

are the means of genuine and imposter distributions, respectively and σ1 and σ2 are their standard 
deviations. For convenience, we use Gj, to represent the Gabor filters. 

 

3.2.2 Fusion Rule Design and Feature Coding 

The filtered images contain two kinds of information: magnitude Mj and phase Pj, which are defined as 
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where “ � ” represents complex conjugate, “*” is an operator of convolution and I is a preprocessed 
palmprint image. Because of the zero DC Gabor filters, both of phase and magnitude are independent of 
the DC of the image. DC relies on the brightness of the capturing environment. Phase is also independent 
of the contrast of the image but the magnitude is not. These properties can be observed from the following 
equations. 

Let AI be a preprocessed image, where A, a positive number, controls the contrast of the image. The 
magnitude and the phase of the filtered palmprint image are: 

),(*),(*),( yxAIGyxAIGyxAM jjj ×= ,        (3.4) 

and 
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respectively. As a result, since the PalmCode only uses the phase information, it is stable for two 
properties: variation in the contrast, and the DC of palmprint images. To design a fusion coding scheme 
inheriting these two properties, I employ the magnitude for fusion and the phase for the final feature. 
Thus, I propose a fusion rule: 

)),((maxarg yxMk j
j

= ,         (3.6) 

and coding equations: 

2/),(0)1,1(),( π<≤= yxPifhh kir ,         (3.7) 

ππ <≤= ),(2/)1,0(),( yxPifhh kir ,         (3.8) 

2/3),()0,0(),( ππ <≤= yxPifhh kir ,         (3.9) 

ππ 2),(2/3)0,1(),( <≤= yxPifhh kir ,         (3.10) 

where hr and hi are bits in the real and the imaginary parts of the Fusion Code. A Fusion Code is 
illustrated in Figure 3.3, which is generated by two elliptical Gabor filters. 
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(a) 

 

       
 (b) 

 

       
(c) 

 

    
(d) 

Figure 3.3 Procedure of how the Fusion Code is generated: (a) original palmprint image, (b)-(c) real parts 
(Column 1) and imaginary parts (Column 2) of the filtered images, and real parts (Column 3) and 
imaginary parts (Column 4) of PalmCodes and (d) Fusion Code. 

3.3 Comparisons of Fusion Codes 

In terms of the feature format, the proposed Fusion Code is exactly the same as that of the PalmCode. 
Consequently, the normalized hamming distance for the PalmCode is still useful for the Fusion Code. To 
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describe the matching process clearly, a feature vector that consists of two feature matrices, a real one and 
an imaginary one is used to represent Fusion Code. A normalized hamming distance is adopted to 
determine the similarity measurement for palmprint matching. Let P and Q be two palmprint feature 
vectors. The normalized hamming distance can be described as: 
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where PR (QR), PI (QI) and PM(QM) are the real part, the imaginary part, and the mask of P(Q), 
respectively. The mask is used to denote the non-palmprint pixels such as the boundary of the device 
which result from incorrect placement of user’s hand. The result of the Boolean operator XOR ( ⊗ ) is 
equal to zero, if and only if the bit, PR(I)(i,j), is equal to QR(I)(i,j). The symbol ∩ represents the AND 
operator, and the size of the feature matrices is N×N. It is noted that s is between 1 and 0. For the best 
matching, the normalized hamming should be zero. Because of imperfect preprocessing, one of the 
features is translated vertically and horizontally and matched again. The ranges of the vertical and the 
horizontal translations are defined from –2 to 2. The minimum s value obtained from the translated 
matching is treated as the final matching score. 

In the original PalmCode, a fixed threshold is used to make the final decision. If the minimal translated 
matching score is greater than the fixed threshold, ts the system rejects the statement that two PalmCodes 
are from the same palm; otherwise, the system accepts it. When the effective matched bits are different, 
the fixed threshold has different statistical confidences for different decisions. To take into account this 
point, I use the following dynamic threshold  

mtt sssd /2048)( ×−−= µµ        (3.12) 

Eq. 3.12 is derived based on the assumption that the imposter matching score, s follows binominal 
distribution, B(n, µs), where n is the degrees-of-freedom and µs is the probability of success in each 
Bernoulli trail. Mathematically, the distribution is defined as  
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where S is the integer part of n×s. In Section 3.5, this assumption will be discussed. Let s1 be an imposter 
matching score and the corresponding number of effective matched bits is m. It is also assumed that s1 

follows B(a,µs) and its degrees-of-freedom, a is proportional to m. If n and a are large enough, the 
binomial distributions can be approximated by the normal distributions and obtain the following equation 
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Simplifying Eq. 3.15 and using the assumption that the degrees-of-freedom is proportional to the number 
of the effective matched bits, Eq. 3.12 can be obtained. For matching two non-translated and clear 
palmprints, the number of matched bits should be 2048. IrisCode also uses a similar dynamic threshold 
but all the mathematical derivations have not been disclosed clearly [86].    

 

3.4 Experimental Results and Comparisons 

3.4.1 Palmprint Database 

Palmprint images from 284 individuals using the palmprint capture device as described in [7] are 
collected. In this dataset, 186 people are male, and the age distribution of the subjects is: about 89% are 
younger than 30, about 10% are aged between 30 and 50, and about 1% are older than 50. The palmprint 
images were collected on two separate occasions, at an interval of around two months. On each occasion, 
the subject was asked to provide about 10 images each of the left palm and the right palm. Therefore, 
each person provided around 40 images, resulting in a total number of 11,074 images from 568 different 
palms in our database. The average time interval between the first and second occasions was 73 days. The 
maximum and the minimum time intervals were 340 days and 1 day, respectively. The size of all the test 
images used in the following experiments was 384×284 with a resolution of 75dpi. The database is 
divided into two datasets, training and testing. Testing set contained 9,599 palmprint images from 488 
different palms and training set contained the rest of them. The training set is used to adjust the 
parameters of the Gabor filters only. All the experiments were conducted on the testing set. I should 
emphasize that matching palmprints from the same sessions was not counted in the following 
experiments. In other words, the palmprints from the first session were only matched with the palmprints 
from the second session. A matching is counted as a genuine matching if two palmprint images are from 
the same palm; otherwise it is counted as an imposter matching. Number of genuine and imposter 
matching are 47,276 and 22,987,462 respectively.  

 

3.4.2 Comparisons of Different Types and Different Numbers of Gabor Filters 

In this experiment, different numbers of elliptical and circular Gabor filters are examined. The parameters 
in the elliptical Gabor filters are optimized based on d’ index. For the circular Gabor filters, I use the 
previous parameters [7, 75] for these comparisons. Figure 3.4(a) shows the four ROC curves obtained 
from elliptical Gabor filters. Each of the ROC curve represents different numbers of Gabor filters used in 
the fusion rule. Figure 3.4(b) shows the results obtained from the circular Gabor filters. In this test, the 
static threshold is used, rather than the dynamic threshold. According to Figure 3.4, we have two 
observations. 1) The elliptical Gabor filters perform better than the circular Gabor filters. 2) Using two 
filters for fusion is the best choice for both cases. The first observation can be easily understood. The 
elliptical Gabor filters have more parameters so that they can be well tuned for palmprint features. The 
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reason for the second observation is not obvious. Therefore, another set of experiments is conducted. In 
this set of experiments, the elliptical case is considered only. First of all, the imposter distributions 
without considering translated matching are plotted in Figure 3.5(a). We can see that the imposter 
distributions from two to four filters are very similar. Their means, µs are 0.497 and standard deviations, 
σs are around 0.0258. However, the imposter distribution from a single filter has a relatively large 
variance. If binomial distribution is used to model the imposter distributions, the imposter distributions 
from two to four filters have around 370 degrees-of-freedom. However, the imposter distribution from the 
single filter only has 250 degrees-of-freedom. The degrees-of-freedoms are estimated by µs(1-µs)/σs

2. 
These values demonstrate that using more than two filters cannot improve the imposter distributions but 
increasing number of filters from one to two can get a great improvement. Although increasing number of 
filters can reduce the variances of the imposter distributions, it would adversely influence the genuine 
distributions. Given two patches of palmprints from the same palm and same location, if the number of 
filters is increased, the fusion rule has high probability to select different filters for coding. To 
demonstrate this phenomenon, all the palmprints from the same hand is matched. If the fusion rule selects 
the same filter, the matching distance of these local patches is zero; otherwise it is one. Then, the local 
matching distances are summed as a global matching distance for comparing two palmprints. The global 
matching distance is normalized by the matching area as Eq. 3.11. In other words, the matching function 
is still a hamming distance. Figure 3.5(b) shows the cumulative distributions of the genuine hamming 
distances. We see that the fusion rule using four filters is the easiest to select different filters. When the 
hamming distance is shorter than 0.3, the fusion rule using three filters performs better than that using two 
filters. It contradicts our expectation. The reason is that the direction of one of the three filters is close to 
one of the principal lines. Thus, it provides an extra robustness to the filter selection. Nevertheless, when 
the hamming distance is longer than 0.3, fusion rule using two filters performs better. This range is more 
important since false acceptance tends to happen in that region. Combining the influences for the 
imposter and genuine distributions, the best choice is to employ two filters for fusion. In the following 
experiments, I study only the two elliptical filters case. 
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(a) 

 

(b) 

Figure 3.4 Comparisons between different numbers of filters used in fusion, (a) elliptical Gabor filters and 
(b) circular Gabor filters. 
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(a) 

 
(b) 

 
 

Figure 3.5 Analysis of different numbers of filters for fusion. (a) Comparison between imposter 
distributions using different numbers of elliptical Gabor filters for fusion. (b) The cumulative 
distributions of hamming distance for studying the fusion rules selecting different filters for coding.  

 

3.4.3 Comparison of Static and Dynamic Thresholds 

In this experiment, the proposed dynamic threshold and original static threshold are compared. For 
graphical presentation convenience, I dynamically scale the hamming distances rather than the threshold. 
In fact, they have the same effect. Figure 3.6 shows their ROC curves. We can see that dynamic threshold 
effectively improves the accuracy. Combining all the proposed improvements including elliptical Gabor 
filters, fusion rule and dynamic threshold, the proposed method obtains around 15% improvement for 
genuine acceptance rate when the false acceptance rate is 10-6%. Table 3.1(a) lists some false acceptance 
rates and false rejection rates and the corresponding thresholds. The results demonstrate that the proposed 
method is comparable with the previous palmprint approaches and other hand-based biometric 
technologies, including hand geometry and fingerprint verification [7, 82]. It is also comparable with 
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other fusion approaches [84-85]. A detailed comparison between Fusion Code and other palmprint 
algorithms can be found in Chapter 4. 

 

Table 3.1 Genuine and false acceptance rates with different threshold values, (a) Verification results and 
(b) 1-to-488 identification results 

 (a) 

Threshold False Acceptance Rate False Rejection rate 

0.317 1.2×10-5% 7.77% 

0.324 1.3×10-4% 6.07% 

0.334 1.0×10-3% 4.15% 

0.350 1.0×10-2% 2.32% 

 

(b) 

Threshold False Acceptance Rate  False Rejection Rate 

0.309 6.91×10-3% 4.56% 

0.315 1.38×10-2% 3.67% 

0.323 1.24×10-1% 2.61% 

0.333 9.68×10-1% 1.74% 
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Figure 3.6 Comparison between dynamic and static thresholds 

 

3.4.4 Identification 

Identification is a one-against-many, M comparisons process. To establish the identification accuracy of 
the proposed method, we need to specify M. In the following identification test, I set M=488, which is the 
total number of different palms in the testing database. Generally, a practical biometric identification 
system stores several users’ templates in its database for training the system so that the system can 
recognize noise or deformed signals. The original testing database is divided into the registering database 
and the identification database. Three palmprint images collected on the first occasion are selected for the 
registering database and all the palmprint images collected on the second occasion are put in the 
identification database. The registering and identification databases contain 1,464 and 4,821 palmprint 
images, respectively. Each palmprint image in the identification database is compared with all images in 
the registering database. Since each palm has three palmprint images in the registering database, each 
testing image can generate three correct verification hamming distances. The minimum of them is 
regarded as a correct identification hamming distance. Similarly, each testing image can generate 1,461 
incorrect verification hamming distances. The minimum of them is regarded as an incorrect identification 
hamming distance. Thus, both the numbers of the correct and incorrect identification hamming distances 
are 4,821. To obtain more statistically reliable results by generating more incorrect and correct 
identification hamming distances, this identification test selecting other palmprint images collected on the 
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first occasion for the registering database is repeated three times. The genuine and imposter identification 
distributions are generated by 14,463 correct and 14,463 incorrect identification hamming distances, 
respectively. The corresponding ROC curve is depicted in Figure 3.7. As the verification test shown in 
Figure 3.6, the ROC curve of PalmCode is also plotted for comparison. Table 3.1(b) provides the 
numerical values of false rejection and false acceptance rates with the  corresponding thresholds for this 
test. The ROC curve of Fusion Code and the table show that in 1-to-488 identification, the proposed 
method can operate at a genuine acceptance rate of 96.33% and the corresponding false acceptance rate is 
1.38×10-2%. Comparing the two ROC curves, there is no doubt that the proposed Fusion Code is much 
better than PalmCode.  

 

Figure 3.7 1-to-488 identification results 

 

3.5 Discussion on the Imposter Distribution 

In Section 3.3, the assumption that the imposter distribution follows binomial distribution is used to 
develop the dynamic threshold. To examine this assumption, the cumulative binomial probabilities are 
plotted against the observed cumulative probabilities. This plot is shown in Figure 3.8. If the assumption 
was valid, the plot would give a straight line, as the reference line in Figure 3.8. This figure shows that 
the observed imposter distribution is close to the binomial distribution in many regions. However, if we 
use Kolmogorov-Smirnov test to compare the two distributions, the test rejects that they are from the 
same distribution [87]. Although this assumption is not true, the dynamic threshold still effectively 
improves the accuracy. The further discussion of the imposter distributions of coding methods is given in 
Chapter 5.   
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Figure 3.8 Plot of the observed cumulative probability versus the predicated binomial cumulative 
probability. 

 

3.6 Conclusion 

In this chapter, a feature-level coding scheme for palmprint identification is presented. On the top of 
PalmCode [7], a number of improvements for developing Fusion Code is made. 1) The circular Gabor 
filter in PalmCode is replaced by a bank of elliptical Gabor filters. 2) A feature level fusion scheme is 
proposed to select a filter output for feature coding. 3) The static threshold in PalmCode is replaced by the 
dynamic threshold. A series of experiments has been conducted to verify the usefulness of each 
improvement.   

In the testing database containing 9,599 palmprint images from 488 different palms, the proposed 
method achieves around 15% verification improvement for genuine acceptance rate when the false 
acceptance rate is 10-6%. This result is also comparable with those of other hand-based biometrics 
technologies, such as hand geometry, fingerprint verification and of other fusion approaches. For 1-to-488 
identification, our method can operate at a low false acceptance rate (1.38×10-2%) and a reasonable 
genuine acceptance rate (96.33%).  
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Chapter 4 Competitive Coding Scheme for Palmprint 

Identification 

IrisCode, PalmCode and Fusion Code all are based on phase information for iris or 
palmprint identification. These two different biometric traits in fact should have different 
discriminative information. In this chapter, an effective palmprint feature, the orientation 
field of palmprints constituted by palm lines, is revealed. Using this feature, a coding 
method called Competitive Code is developed, which utilizes multiple 2-D Gabor filters 
to extract the orientation fields, a novel coding scheme to generate a bitwise feature 
representation and bitwise angular distance to compare two feature codes. The 
experimental results demonstrate that Competitive Code performs better than other 
palmprint recognition algorithms including PalmCode and Fusion Code. 

 

4.1 Introduction 

A palmprint contains various features, including principal lines, wrinkles, ridges, minutiae points, 
singular points and texture. Lines and texture are the most clearly observable features in low-resolution 
palmprint images (such as 100 dpi). Lines are more appealing than texture for the human vision. When 
human beings compare two palmprint images, they instinctively compare line features. This action 
motivates me to develop a coding scheme for the palm lines.  

A line contains various information including type, width, position, magnitude and orientation. There 
are two types of lines: positive (brighter pixels in the center of the line) and negative (darker pixels in the 
center of the line) [159]. All the lines in palmprints are of the negative lines category. Palm lines do have 
a certain width. Generally, principal lines are wider than wrinkles but this information was not regarded 
as a useful feature in the previous palmprint research. On top of types and width, line position is often 
considered as an important feature, especially for the line-based approach [Chapter 2]. Magnitude of the 
lines has also been investigated in the previous palmprint research [10]. It is worthwhile to note that no 
previous palmprint research has investigated the orientation information of the palm lines for palmprint 
identification/verification before the conference version of this chapter [3].  

This chapter considers only feature extraction and matching. The detailed information about palmprint 
capture and preprocessing can be referred to the previous chapters. The rest of this chapter is organized in 
the following sections. Section 4.2 presents the extraction of the orientation field based on a winner-take-
all rule. Section 4.3 describes the angular matching for comparing the codes and its effective 
implementation. Section 4.4 reports experimental results including verification, comparison and matching 
speed. Section 4.5 summarizes the main results of this chapter and offers concluding remarks. 

4.2 Extracting Orientation Field of Palmprints 

Some tunable filters are appropriate for capturing the orientation information from palmprints. Gabor 
filters are a good choice. Based on the neurophysiological evidence from the visual cortex of mammalian 
brains and wavelet theory, Lee reformed the Gabor functions as the following form [103]: 



 37

�
�

�

	






�

�
−=

−+−
2

)4(
8

2

'
2'2'

2

2

2
),,,,,,(

κ
ωκ

ω

κπ
ωκθωψ eeeyxyx x

yx

oo ,       (4.1) 

where x’=(x-x0)cos�+(y-y0)sin�, y’=-(x-x0)sin�+(y-y0)cos�; (x0, y0) is the center of the function; ω is the 
radial frequency in radians per unit length and � is the orientation of the Gabor functions in radians. The �  

is defined by ��
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which, according to neurophysiological findings, is between 1 and 1.5 octaves [103]. When � and � are 
fixed, � can be derived from ω=κ/σ. These neurophysiology-based Gabor functions are the same as the 
general Gabor functions but the choices of parameters are limited by neurophysiological findings and the 
DC of the functions are removed. Since palm lines are negative type [159], only the negative real part of 
the Gabor, which is defined as  
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is needed. Using these filters, the orientation of a region of palmprint can be estimated using a rule,  

� �= dxdyyxyxyxIj pooR
p

),,,,,,(),(maxarg κθωψ .          (4.3) 

where j is called the winning index, an integer representation of the orientation and I is a preprocessed 
image. Since it is a winner-take-all rule, I call this rule as competitive rule. According to the 
neurophysiological findings, the simple cells are sensitive to specific orientations with approximate 
bandwidths of �/6 [103]. Thus, six Gabor filters with orientations, �p=pπ/6, where p={0, 1,…,5} are 
selected for the competition. The competitive rule is applied to code each sample point to obtain feature 
vectors with the same dimension. The proposed feature and the algorithm are named as Competitive 
Code.  An example of Competitive Code is illustrated in Figure 4.1.  
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(a)   (b) 

 

   
(c)   (d)   (e) 

 

    
(e)   (g)   (h) 

Figure 4.1 An example of Competitive Code. (a) Preprocessed image. (b) Competitive code. (c)-(h) are 
the winning indexes 0, 1, 2, 3, 4 and 5, respectively. 

 

4.3 Angular Matching with Effective Implementation 

Identifying a palm from a large database in real-time is a major challenge in designing matching 
algorithms. Some have tried to exploit hierarchical and classification approaches [14-16, 22] to increase 
matching speed but have sacrificed accuracy. To achieve the goal of real-time identification and to 
overcome the problems of previous approaches, following the idea of IrisCode [25], Boolean operators 
are exploited to design a matching scheme for Competitive Code, which can support real-time brute force 
searching in a large database.  

The winning indexes are integer representations of the local orientations of palmprints. When 
comparing two winning indexes, it is natural to employ angular distance. The angular distances between 
different winning indexes are given in Table 4.1. Summing up all the angular distances at different 
positions, the angular distance between two Competitive Codes can be defined as 
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where Px,y (Qx,y) is a winning index of Competitive Code P(Q) at position (x, y); N by N is size of 
Competitive Code, and ),( ,, yxyx QPA  is the angular distance between the two winning indexes.  

To employ Boolean operators for rapid comparison, the integer representation is converted into bitwise 
representation. The coding scheme is given in Table 4.2, where three bits are used to represent one 
winning index. Using bitwise representation, angular distance is defined as  
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where )( b
i

b
i QP  is the ith bit plane of P(Q) and ⊗  is bitwise exclusive OR. In addition to employing the 

Boolean operators for rapid comparison, I take in advance of the 32-bit architecture of current computers 
to further speed up the matching process. This is the major reason that N is set to 32. Using the bitwise 
implementation is not only effective for matching but also for storage. If an 8-bit integer is used to 
represent a winning index, the size of a Competitive Code is 1024 bytes. Now, bitwise representation 
needs only 384 bytes.  

Sometimes, a preprocessed palmprint image contains non-palmprint pixels as described in [7]. One bit 
mask is used to denote the non-palmprint pixels. Finally, the angular distance is defined as  
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where PM and QM are the masks of P and Q, respectively and ∩ is bitwise AND. The range of Af is 
between 0 and 1 and the angular distance is zero for perfect matching. Twenty-five translated Competitive 
Codes generated by shifting the preprocessing image are computed for alignment imperfections. Thus, 25 
angular distances are obtained when two palmprints are matched. The minimum of these distances is 
considered as the final angular distance, FA . 
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Table 4.1 All possible angular distances between different winning indexes 

Winning indexes, Px,y Angular Distance  

A(Px,y, Qx,y) 0 1 2 3 4 5 

0 0 1 2 3 2 1 

1 1 0 1 2 3 2 

2 2 1 0 1 2 3 

3 3 2 1 0 1 2 

4 2 3 2 1 0 1 

 

 

Winning 

indexes 

Qx,y 

5 1 2 3 2 1 0 

 
 

Table 4.2 Bitwise representation of the Competitive Code 

Winning indexes Bit 1 Bit 2 Bit 3 

0 0 0 0 

1 0 0 1 

2 0 1 1 

3 1 1 1 

4 1 1 0 

5 1 0 0 

 

4.4 Experimental Results 

4.4.1 Verification 

To estimate the verification accuracy of the method, each of the palmprint images was compared with all 
of the palmprint images in the database described in Chapter 3. To clearly demonstrate the performance 
of the proposed method, two different comparison schemes are defined. The first scheme is to match the 
palmprint images from the same occasions. The second scheme is to match palmprint images from 
different occasions. The number of genuine and imposter matchings from comparisons on the same 
occasion are 48,707 and 30,605,025, respectively and the number of genuine and imposter matchings 
from comparisons on different occasions are 54,081 and 30,603,388 respectively. Figure 4.2(a) and (b) 
show the genuine and imposter distributions estimated by the genuine and imposter matchings and Figure 
4.2(c) and (d) show their corresponding receiver operating characteristic (ROC) curves. The genuine and 
imposter distributions in Figure 4.2(a) and (b) are well separated. Table 4.3 lists some thresholds and the 
corresponding false acceptance rates (FAR) and false rejection rates (FRR). From the ROC curves, we 
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know that it is more difficult to match palmprints from different occasions but the Competitive Code still 
can operate at an extremely low false acceptance rate of 1×10-4% and a reasonably high genuine 
acceptance rate of 98.5%.  

 

 

(a)       (b) 

 

(c)       (d) 

Figure 4.2 Verification test results. Genuine and imposter distributions of comparisons made on (a) the 
same and (b) different occasions. (c) and (d) are their corresponding ROC curves. 
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Table 4.3 False Acceptance Rate (FAR) and False Rejection Rate (FRR) at different thresholds in 
verification test 

 
Matching on the same occasion Matching on the different occasions 

Threshold FAR (%) FRR (%) Threshold FAR (%) FRR (%) 

0.398 1×10-4 0.137 0.400 1×10-4 1.487 

0.402 1×10-3 0.120 0.403 1×10-3 1.336 

0.412 1×10-2 0.095 0.412 1×10-2 0.981 

0.424 1×10-1 0.0595 0.412 1×10-1 0.610 

 
 

4.4.2 Comparison 

To demonstrate the accuracy of the proposed method, the palmprint verification methods developed by 
Zhang and his co-workers and published in major journals [4, 7, 12-13, 15-16, 18] are re-implemented for 
comparisons. I do not compare the algorithms developed by other researchers since their palmprint 
images have different resolutions or contain all hand geometric features for fusion. Most importantly, the 
comparison may not be fair for them since the quality of my re-implementation may not be as high as the 
original implementation, especially setting the parameters for a different dataset. More detailed discussion 
about fair comparison can be found in Section 5.6. The preprocessing algorithm described in [7] is 
employed to obtain the preprocessed images for this comparison so that we can clearly observe the 
performance differences related to feature extraction, which is the major difference between the 
algorithms. For the hierarchical approaches [15-16], only the last recognition modules is implemented 
since the retrieval modules are used to speed up the identification process. Four palmprint images from 
the first occasion are used to train the subspace approaches [12-13, 18]. The ROC curves of the different 
methods are given in Figure 4.3. It is clear that the Competitive Code is the best in terms of accuracy. 
Several approaches including [12-13, 15, 18] can perform well for the same occasion comparison but they 
cannot survive comparison across different occasions. It should be noted that the best approaches are the 
three coding methods, Competitive Code, Fusion Code and PalmCode [7], whose designs are based on 
highly localized and robust feature representation.  

Even though Competitive Code is a coarse representation of local orientation, completely ignoring the 
magnitude information, it still performs better than other methods. Competitive Code and all the coding 
methods designed by me exploit the position information. However, the subspace methods depend only 
on the training images. They have not taken advances from this prior information. Furthermore, the 
subspace methods require estimating a huge covariance matrix. For images of size 64 by 64, the size of 
covariance matrix is 4096 by 4096. The number of parameters that need to be estimated is 8,390,656, 
much more than the images in the database. The accuracy of this estimation is questionable. Although the 
use of phase in PalmCode and Fusion Code is powerful for iris recognition [25], phase is not as 
discriminative as orientation for palmprints. In addition, the size of Competitive Code is 384 bytes while 
both the sizes of PalmCode and Fusion Code are 256 bytes. Thus, Competitive Code can store more 
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discriminative information. The method described in [16] extracts the features from the frequency 
domain, completely ignoring the position information. Furthermore, the dimension of its feature vector is 
very low.  

 

4.4.3 Speed 

The computation time of the major component of the method is given in Table 4.4. These times are 
estimated using an ASUS notebook embedded Intel Pentium III Mobile processor (933MHz). Using 
bitwise angular distance, 38,500 comparisons per second can be made. On a 3-GHz computer, 100,000 
comparisons per second can be made. It should be noted that I do not completely optimize the program 
code for preprocessing and feature extraction. It is possible to further improve the computation speed.  

 

Table 4.4 Execution time of a system using Competitive Code 

Operations Time 

Preprocessing 267ms 

Feature extraction and Coding 178 ms 

Angular matching 26 µs 
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(a) 

 

(b) 

Figure 4.3 Comparisons of the proposed method and other palmprint verification approaches. (a) and (b) 
are the results of matching palmprints from the same and different occasions, respectively. (color figure) 
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4.4.4 Comparison with Bitwise Angular Distance and Integer Angular Distance 

To demonstrate the necessity of using XOR, the integer and bitwise angular distances are compared. The 

integer angular distance is 
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y
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)),(),,((),(  where P and Q are two Competitive 

Codes and A(P(x, y), Q(x, y)) is the angular distance between two winning indexes. In this experiment, a 
look up table is used to implement A(P(x, y),Q(x, y)). The bitwise angular distance, 
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),(),(),(  is given Eq. 4.5. In this experiment, the masks and translated 

matching are not considered. The testing environment is a COMPAQ, Presario R3000 laptop embedded 
Mobile Inter Pentium 4 processor with 2.4GHz. Visual C++ is used to implement all the programming 
code. Bitwise angular distance needs only 0.7µs for one comparison while integer angular distance needs 
10.6µs. Bitwise angular distance is 1500% faster than integer angular distance. The experimental result 
demonstrates the necessity of the bitwise representation. 

 

4.5 Conclusion 

A novel feature extraction method called Competitive Code for palmprint identification is presented in 
this chapter. This method extracts the orientation information from the palmprints and stores it in a 
feature code. Angular distance with an effective implementation is developed for comparing two feature 
codes. Using an ASUS laptop embedded Intel Pentium III Mobile processor (933MHz) and the bitwise 
representation, angular matching can make over 38,500 comparisons in about 1s. Total execution time for 
verification is about 0.5s, which is fast enough for real-time applications. In addition to matching speed, 
Competitive Code has been compared with other palmprint recognition algorithms including PalmCode 
and Fusion Code, described in the previous chapters. This comparison demonstrates that Competitive 
Code performs better than the others.  
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Chapter 5 An Analysis of IrisCode 

IrisCode is an iris recognition algorithm developed in 1993 and continuously improved 
by Daugman. It has been extensively applied to commercial iris recognition systems. 
IrisCode representing an iris based on coarse phase has a number of properties including 
rapid matching, binomial imposter distribution and a predictable false acceptance rate. 
Because of its successful applications and these properties, many similar coding methods 
have been developed for iris and palmprint identification as described in the previous 
chapters. However, we lack a detailed analysis of IrisCode. The aim of this chapter is to 
provide such an analysis as a way of better understanding IrisCode, extending the coarse 
phase representation to a precise phase representation, and uncovering the relationship 
between IrisCode and other coding methods. This analysis demonstrates that IrisCode is a 
clustering process with four prototypes; the locus of a Gabor function is a two-
dimensional ellipse with respect to a phase parameter and the bitwise hamming distance 
can be regarded as a bitwise angular distance. In this analysis, I also point out that the 
theoretical evidence of the imposter binomial distribution of IrisCode is incomplete and 
use this analysis to develop a precise phase representation which can enhance accuracy. I 
relate IrisCode and other coding methods and discuss the issues of making fair 
comparisons between IrisCode and other iris recognition methods.  

 

5.1 Introduction 

Various biometric systems have been developed for governmental and commercial applications. Most of 
these systems can verify, 1-to-1 match or identify a person in a small database, 1-to-many match. Real 
time large-scale identification is still a challenging problem in terms of matching speed and accuracy. Of 
existing biometric technologies, IrisCode developed in 1993 and continuously improved by Daugman 
[25, 86] is able to identify a person in an extremely large database in real time and its false acceptance 
rate is always zero [106-107]. As a result, it has been extensively deployed in commercial iris recognition 
systems for various security applications. Following the key idea of IrisCode, researchers have developed 
different coding methods for iris and palmprint recognition [4, 7, 56, 108-116]. 

Firstly a brief computational summary is given for those who are not familiar with IrisCode. Two 
dimensional Gabor filters with zero DC are applied to an iris image in dimensionless polar coordinate 
system, I(ρ, φ). Using the following inequalities, the complex Gabor response is encoded into two bits. 
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where r0, �0, ω, α and β are the parameters of the Gabor filters [86]. Bitwise hamming distance is used to 
measure the difference between two IrisCodes. The first version of bitwise hamming distance is defined 

as 2048/)(
2048
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ii BAHD , where Ai and Bi are the bits in two IrisCodes; ⊗ represents bitwise 

operator, XOR. The current IrisCode uses a mask to denote the corrupted bits from eyelashes, reflection, 
eyelids and low signal-to-noise ratio [86]. The hamming distance between two IrisCodes is redefined as  







=

=

∩

∩∩⊗
= 2048

1

2048

1

)(

))()((

i

M
i

M
i

i

M
i

M
iii

BA

BABA
HD ,         (5.5) 

where AM and BM are the masks of IrisCodes, A and B, respectively and ∩ represents bitwise operator 
AND.  

It is noted that IrisCode has a number of desirable properties. It is robust against local brightness and 
contrast variations because of the zero DC Gabor filters and the coding scheme. In rotating between any 
adjacent phase quadrants, only a single bit in IrisCode changes. It can enhance the robustness of the 
genuine distribution. In rotating between one phase quadrant to the opposite phase quadrant, both two bits 
in IrisCode change. In other words, the distances between phase quadrants are retained. This 
representation is referred to cyclic representation. One of the well-known properties of IrisCode is the 
2binomial imposter distribution with high degrees-of-freedom. Making use of this property, the decision 
threshold is dynamically changed according to a predictable false acceptance rate from the binomial 
imposter distribution. This is the reason why the false match rate of IrisCode is always zero [107]. Based 
on the binomial imposter distribution, some researchers have developed an iris individuality model [123]. 
The bitwise hamming distance is the key to high speed matching. IrisCode can perform 1 million 
comparisons per second using a computer with a 3G Hz processor.  

It is generally believed that the cores of IrisCode are the operators, “≥” and “<” in the Eqs. 5.1-5.4 and 
the bitwise hamming distance. Using these two operators, each feature value is represented by one bit and 
two encoded features are compared by the bitwise hamming. Researchers replace the Gabor filters in 
IrisCode with different filters and transformations including 3quadratic spline wavelet, Haar wavelet 
frame, log Gabor filters, independent component analysis, directional filter banks and dissociated tripole 
filters [108-116] to develop new coding methods for iris recognition. Based on this understanding, some 

                                                      
2 The binomial imposter distribution with high degrees of freedom does not mean high accuracy [128]. 
3 The coding scheme used in [108] does not involve the two operators, “≥” and “<”. In fact, it can be rewritten based 
on these two operators. Readers can refer to appendix 1. 
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researchers claim that IrisCode is a local ordinal feature [109]. Some researchers further believe that the 
imposter distribution of their coding method also follows binomial distribution [117, 164]. However, this 
understanding of IrisCode is incomplete and limits the design of new coding schemes for feature 
representation. A weakness of this understanding is that each filter response or coefficient provides only 
one bit of information. It lacks representational flexibility. Furthermore, some claims are controversial. 
Developing an iris individuality model with solid theoretical foundation also requires a complete 
understanding [123].  

A detailed analysis of IrisCode is important for understanding IrisCode, for designing new coding 
schemes, and for clarifying the relationship between IrisCode and other coding methods. Nevertheless, 
such an analysis has not been found in the literature. In this chapter, I aim to investigate the relationship 
between IrisCode and clustering processes, the property of the Gabor function and the relationship 
between the bitwise hamming distance and bitwise angular distance. The theoretical foundation of the 
binomial imposter distribution is also discussed. Making use of this analysis, an algorithm for precise 
phase representation with effective filtering and matching is developed. Finally, I study the relationship 
between IrisCode and other coding methods and offer a note on the comparison of IrisCode. 

The rest of this chapter is organized as follows. Section 5.2 uncovers the properties of IrisCode for 
understanding. Section 5.3 presents an algorithm for precise phase representation. Section 5.4 discusses 
the theoretical evidence of the binomial imposter distribution. Section 5.5 links up the relationship 
between IrisCode and different coding methods. Section 5.6 mentions some issues about the comparison 
of IrisCode. Section 5.7 offers some concluding remarks. 

 

5.2 Understanding IrisCode from Clustering Point of View. 

In this section, I demonstrate that IrisCode is a clustering process and study the properties of the Gabor 
function. The relationship between bitwise hamming distance and bitwise angular distance is presented in 
Section 5.3.  

 

5.2.1 IrisCode  A Clustering Process 

Let MR(ρ, φ) and MI(ρ, φ) be the real and imaginary parts of a Gabor filter. For convenience, let MR be 
MR(ρ, φ). The same notations are used for other symbols. The definitions of MR and MI are given below: 

( )))(cos(),( 0
/)(/)( 2222

0 φθωφρ βφθαρ −−= −−−− oeeM r
R ,        (5.6) 

( )))(sin(),( 0
/)(/)( 2222

0 φθωφρ βφθαρ −−= −−−− oeeM r
I .         (5.7) 

DC term of Gabor filter in Eq. 5.6 is not removed since in this chapter, it is assumed that the DC of iris 
patch for filtering has been removed.  

A continuous periodic function,  

))sin()(cos()( IR MMZ ϕϕϕ += ,          (5.8) 
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with respect to the parameter, ϕ, where ϕ∈[0, 2π) is defined. Z(ϕ) is called filter-generating function. 
Using Z(ϕ), four filters by substituting 5π/4, 7π/4, π/4, and 3π/4 to ϕ  can be obtained. The four filters are 

2/)()4/5(0 IR MMZZ −−== π ,         (5.9) 

2/)()4/7(1 IR MMZZ −== π ,       (5.10) 

2/)()4/(2 IR MMZZ +== π ,       (5.11) 

2/)()4/3(3 IR MMZZ +−== π .        (5.12) 

These four filters are shown in Figure 5.1 and will later be regarded as the cluster centers. I define 
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ρ φ

ρφρρ iii
ZIddIZj /maxarg  as a clustering criterion, where j is called the winning index and I is 

the iris image in the dimensionless polar coordinate system. The clustering criterion is the cosine measure 
between Zi and ρI. It can be rewritten as  
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since the four filters have the same power, i.e., � � =
ρ φ

φρ CddZi
2 , where C is a constant, which can be 

proved by using the orthogonal property between MR and MI i.e., � � =
ρ φ

φρ 0ddMM RI . The winning 

index is an integer representation of ϕ. For fast matching, the winning index has to be encoded. Table 5.1 
gives the coding table under the heading “Coded winning indexes”. The difference between two encoded 
winning indexes is also measured by their bitwise hamming distance same as IrisCode. Table 5.1 
compares bits of IrisCode and the binary representation of the winning indexes, demonstrating their 
equivalence. In the other words, IrisCode is a clustering process and the cosine measure is the clustering 
criterion.  
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Table 5.1 Comparison of IrisCode, winning index and coded winning index 

 

IrisCode Coded winning indexes 

Imh  Reh  

Winning index 

Bit 2 Bit 1 

0 0 0 0 0 

0 1 1 0 1 

1 1 2 1 1 

1 0 3 1 0 

 

 
(a)     (b) 

 
(c) (d) 

Figure 5.1 The four filters used in IrisCode, a) Z0, b) Z1, c) Z2 and d) Z3. 
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5.2.2 Properties of the Gabor Function 

Let us study the physical meaning of ϕ in the filter generating function. Reordering the terms in Eq. 5.8, 
)(ϕZ  can be rewritten as 

))(cos()( 0
/)(/)( 22

0
22

0 ϕφθωϕ βφθσρ −−−= −−−− eeZ r .       (5.14) 

It is clear that ϕ  is the phase of a Gabor function and the filter generating function can be rewritten as a 
Gabor function. According to Eqs. 5.9-5.12 and 5.14, it is very clear that IrisCode is a periodic feature.  

Now, we study the locus of the filter generating function, also the Gabor function in Eq. 5.14 with 

respect to the phase parameter. Discretizing MR, MI and Z, three vectors, RM
�

, IM
�

 and )(ϕZ
�

 can be 

obtained respectively and two orthonormal vectors, RRR MMv
���

/=  and III MMv
���

/=  are defined. 

Using these two vectors, )(ϕZ
�

 can be rewritten as 
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Obviously, the locus of )(ϕZ
�

 with respect to ϕ  is an ellipse on the two dimensional space. Under 
suitable parameterization, the locus can be further constraint to a circle. Appendix 2 gives the 
mathematical condition.       

   

5.3 Precise Phase Representation 

To design a precise phase representation, I first take more sample points from the filter generating 
function to generate more prototypes for the clustering process. Uniform sampling is used to obtain the 
filters, i.e., )/( ηπ +niZ , where i=0, 1,…2n-1 and η is an offset. The number of prototypes being 2n is 
for the design of bitwise angular distance, where n is called the order of coding scheme. For IrisCode, n is 
2 and η is 5π/4. It should be noted that the clustering criterion is independent of the contrast of the image. 
The brightness of the iris is normalized. To embed the other inherent properties of IrisCode such as rapid 
matching and cyclic representation, I design a novel coding scheme to encode the winning indexes and a 
distance measure for rapid matching. In the following discussion, the offset η is ignored without loss of 
generality. 
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5.3.1 Angular Distance 

Since )(ϕZ
�

 is on a two dimensional ellipse and ϕ is the phase, the distance between )(ωZ
�

 and )(γZ
�

 

can be measured by the angular distance between ω and γ defined as )2,min( γωπγω −−− . If 

uniform sampling is used to obtain )(ωZ
�

 and )(γZ
�

 i.e., np 2/2πω =  and nq 2/2πγ =  where p and q 
are two integers between 0 and 2n-1, the angular distance can be rewritten as 
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. The angular distance can be further simplified as  

( )( )qpnqp −−− 2,min ,        (5.17) 

if π/n is defined as one unit distance. As a result, the angular distance between )(ωZ
�

 and )(γZ
�

 is 
defined only based on their winning indexes, p and q, the integer presentation of their phases. The angular 
distance between any two adjacent winning indexes is 1, as in IrisCode. The cyclic representation has 
been embedded in the precise phase representation.  

 

5.3.2 Bitwise Matching and Coding Scheme 

The bitwise hamming distance supporting high speed matching is one of the keys to large-scale iris 
identification in real time. However, the winning index and angular distance in Eq. 5.17 are integer 
representation. To embed high speed matching to the precise phase representation, I design a new coding 
scheme to encode the integer winning indexes and develop a bitwise angular distance. A coding 
table ][ , jiaA =  is designed for this purpose, where ni ≤≤1 ; nj 21 ≤≤  and ai,j defined as in Figure 

5.2.  

 

jiandnjif <≤≤ 1 , 

  1, =jia  

ninjandnjelseif ≤≤−> , 

  1, =jia  

else  

  0, =jia  

Figure 5.2 Pseudo code of the coding table 
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For illustration, two coding tables for n=3 and 4 are given in Table 5.2. We can observe a structure in 
these coding tables. Each winning index is represented by the column of A with the result that n bits are 
used to encode one winning index.  

It should be noted that when n=1 and n=2, the bitwise winning indexes form a 4cyclic code [132] and a 
gray code. However, when n is greater than two, the bitwise winning indexes do not form a cyclic code 
since cyclically shifting a bitwise winning index can generate a code that does not exist in the coding 
table. For instance, (1 0 0) is a code in Table 5.2a but (0 1 0) does not exist in this table. They also do not 
form a gray code since gray code uses n bits two to represent 2n integers. For example, (1 0 1) is a code in 
gray code but it does not exist in Table 5.2a. Cyclic code and gray code are not essential properties for 
precise phase representation since cyclic representation is embedded in it.  

To achieve high speed matching, a bitwise matching for the encoded winning indexes is needed. I 
discover that angular distance and bitwise hamming distance have an equivalent relationship, i.e. 

)2,min(
1

,, knkaa
n

i
kjiji −=⊗


=
+ . The mathematical proof is given in Appendix 3. This bitwise 

hamming distance for precise phase representation is referred to as the bitwise angular distance since it 
measures the angle between two prototypes in the two dimensional ellipse. 

 

Table 5.2 The coding tables for (a) n=3 and (b) n=4 

(a) 

Winning index 0 1 2 3 4 5 

Bit 0 0 1 1 1 0 0 

Bit 1 0 0 1 1 1 0 

Bit 2 0 0 0 1 1 1 

 

(b) 

Winning index 0 1 2 3 4 5 6 7 

Bit 0 0 1 1 1 1 0 0 0 

Bit 1 0 0 1 1 1 1 0 0 

Bit 2 0 0 0 1 1 1 1 0 

Bit 3 0 0 0 0 1 1 1 1 

 

 

                                                      
4 The definitions of cyclic code [132] and cyclic representation are different. 
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5.3.3 Steerable Filtering 

An algorithm for precise phase representation that embeds the properties of IrisCode including fast 
matching and cyclic representation has been developed. However, the number of filtering increases with 
respect to the precision of the phase. 2n filtering is required if the precision of phase is n bits. When n is 
large, the computation cost increases dramatically. To alleviate this problem, an effective filtering 
approach is needed. Let us consider the clustering criterion, 
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i

, where ),( φρρI  is independent of i and 

)/( niZ π  can be pre-computed. These two terms would not dramatically increase the computational 

burden even when n is large. The major computation cost comes from � �
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Substituting Eq. 5.8 into � �
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Eq. 5.18 shows that )(ϕZ  is a steerable filter [129] and only two filters, RM  and IM  are needed for any 
precision of the phase. The computation complexity of filtering has been successfully reduced from O(n) 

to O(1). If the locus of )(ϕ
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Appendix 4. 

 

5.3.4 Re-implementation of IrisCode. 

To examine the precise phase representation, I re-implement IrisCode including pupil, limbus and eyelid 
detection, eyelash segmentation, normalization, coding and matching for comparison. Accurately re-
implementing IrisCode is highly difficult since it is a complex computer vision system. Moreover, some 
parts have not been disclosed clearly e.g. the computational details of eyelash segmentation. In my re-
implementation, I have made number of modifications of the preprocessing since the 5 CASIA iris 
database is used [118], which has different characteristics from Daugman’s iris databases. This issue will 
be discussed in Section 5.6. The CASIA iris database is selected for this study because it is the most 
widely employed public iris database.  

                                                      
5 I would like to thank CASIA for sharing the iris database for this research. 
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5.3.4.1 Iris Segmentation 

In the re-implementation, the pupil location based on its gray levels is firstly estimated. To localize a 

pupil boundary, the integro-differential operator, �∂
∂

oo
oo yxr r

yxI
yxr ds

r
rG

,, 2
),(

),,( *)(max πσ  reported in 

Daugman’s publications [25] is then applied. This boundary is used to initialize an active contour that can 
be used to accurately estimate the pupil boundary. The center of the mass of the final contour is regarded 
as the center of the pupil for normalization. All the current commercial iris recognition systems using 
IrisCode have employed an active contour for pupil detection [119] but the implementations may not be 
the same. 

After detecting the pupil, the integro-differential operator is used to detect upper and lower eyelids by 
replacing the circular path to a spline with four control points. The eyelashes are detected based on two 
simple criterions. A simple threshold is used to detect the eyelashes. If the distance between eyelashes 
detected by the first criterion and upper eyelid is shorter than a certain threshold, all the pixels between 
them are regarded as eyelashes [120].  

To make use of the detected eyelashes and eyelids for limbus localization, the integro-differential 
operator is modified as follows:  
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where, SL and SR are the parts of left and right circular paths controlled by r, x0 and y0 and L(SL) and L(SR) 
are the lengths of SL and SR, respectively. Any pixels above the upper eyelid, below the lower eyelid or 
corrupted by eyelashes are not included in these two paths. Therefore, the lengths of SL and SR can be 
different. The term 2πr in the original integro-differential operator is replaced with L(SL) and L(SR). Since 
the boundary of the limbus is weak, the parameters in Eq. 5.19 are limited by the parameters of pupil. 
Figure 5.3 shows a segmented iris.  
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Figure 5.3 A segmented iris 

 

5.3.4.2 Normalization and Filtering 

After segmenting an iris, the dimensionless polar coordinate system is used to normalize an iris. Many 
researchers would display the normalized iris as a rectangular sheet. Strictly speaking, the normalized iris 
is the surface of a cylinder and it has only two cuts from the pupil and limbus boundaries. The size of a 
normalized iris is 64 by 512 pixels.  

To each sample point, two Gabor filters are applied. In total, sixteen Gabor filters with different 
parameters, determined by 140 different irises from twenty persons, are employed. In parameter training, 
the Gabor filters have two sizes, 8 by 105 and 24 by 105 pixels. The smaller one is applied to the sample 
points close to pupil and limbus boundaries. The angular sampling frequency is 8 pixels. The d’ index 

defined as 2/)(/' 22
igigd σσµµ +−= , where µg(i) and 2

)(igσ  are the mean and variance of a genuine 

(imposter) distribution, is employed as the objective function for training. The parameters of each filter 
are selected from 13,468 sets of parameters. In the training, one set of parameters for the Gabor filter 
closest to the pupil boundary is selected first. Then, I keep the first optimized parameters and select 
another set of parameters for the same sample points. The other sets of parameters are selected in the 
same way. For precise phase representation, the parameters trained for IrisCode are used. 
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5.3.4.3 Matching 

A raw hamming distance (HDraw) is computed from Eq. 5.5. The number of effective bit matchings is 
different in each comparison because of eyelashes and eyelids. To obtain the same decision confidence, 
Daugman rescales the hamming distance with the following equation,  

911/)5.0(5.0 mHDHD rawnorm −−= ,       (5.20) 

where m is the number of actually compared bits and 911 is the average number of actually compared bits 
[106]. In the CASIA iris database, the average number of actually compared bits is 894 from a 
preliminary training so 911 in Eq. 5.20 is replaced with 894 for training and testing. For precise phase 
presentation, normalized hamming distance is defined as 

))2/894/(()5.0(5.0 nmHDHD rawnorm −−= ,       (5.21) 

where, n is the order of the coding scheme.  

 

5.3.5 Experimental Results 

CASIA iris database contains 756 images from 108 irises. 140 images have been used to train the 
parameters. The remainders are used for the following testing. In the following experiments, d’ index and 
Receiver Operating Characteristic (ROC) curves are used as performance indexes. 

 

5.3.5.1 Validation of Precise Phase Representation  

To validate the precise phase representation, the following experiment is designed. When n=2, the 
performance of precise phase representation and IrisCode should be the same. Figure 5.4 shows the d’ 
indexes of the two approaches, where x-axis represents number of Gabor filters used to compute the d’ 
indexes. First two Gabor filters are applied to the region close to pupil boundaries. The last two Gabor 
filters are applied to the region close to limbus boundaries. From this figure, we see that the performance 
of the two approaches is nearly identical. The slight difference between them is due to the different 
approaches to the normalization of brightness variations. We also observe that the performance improves 
when number of Gabor filters is between 1 and 8 but the performance degrades when the number of 
Gabor filters is between 9 and 16. The best performance is achieved when IrisCode is computed from the 
half of the normalized iris which is close to the pupil boundary. The performance degradation is due to 
poor limbus detection. The two iris images in Figure 5.5 show that eyelashes can significantly affect the 
accuracy of limbus detection. Although some processes are designed for detecting eyelashes, they are not 
perfect. Furthermore, the contrast of eyelashes is much stronger than that of the limbus. This is another 
reason why the integro-differential operator cannot provide good performance in this database. Therefore, 
to obviate the contrast variation, some researchers use the Hough transform to detect the limbus [108]. In 
the following experiments, the first eight Gabor filters are used to compare IrisCode and precise phase 
representation since they provide the best results for IrisCode. 
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Figure 5.4 Validation of precise phase representation 

 

   

Figure 5.5 Poor limbus detection 

 

5.3.5.2 Comparison of IrisCode and Precise Phase Representation 

To examine the effectiveness of precise phase representation, IrisCode is compared with precise phase 
representation for n=3, 4, and 5. I match irises from the same persons and from different persons to 
respectively obtain 1,848 genuine matchings and 187,572 imposter matchings for each representation. 
The genuine and imposter matchings are used to estimate the genuine and imposter distributions. Figure 
5.6(a)-(b) respectively show the genuine and imposter distributions of IrisCode and precise phase 



 59

representation for n=3, 4 and 5. For comparison, Figure 5.7 depicts the corresponding ROC curves. As 
can be seen in Figure 5.7, the precise phase representation of order 4 always provides the most accurate 
performance. Its equal error rate is 0.32%. Comparing IrisCode and precise phase representation of order 
4, precise phase representation of order 4 has 3.1% improvement in genuine acceptance rate when the 
false acceptance rate is 5.3×10-4%. However, increasing the precision of the phase does not always 
improve the accuracy. It is also the case in Eigenface that increasing the number of principal components 
does not always increase accuracy. It should be noted that the matching speed of precise phase 
representation is slower than IrisCode. Roughly speaking, the matching speed of precise phase 
representation of order 4 is half of that of IrisCode since IrisCode uses only two bits to represent one filter 
response while precise phase representation of order 4 requires four bits to represent one filter response. 
For some applications such as identifying a person in a residence building for access control, one million 
comparisons per second is much more than enough. Precise phase representation can be used to achieve 
high accuracy for these applications. I do not claim that precise phase representation performs better than 
IrisCode. Nevertheless, it is a flexible representation to balance speed and accuracy. 

 
 

 
(a)     (b) 

 
(c)     (d) 

Figure 5.6 Genuine and imposter distributions for (a) IrisCode, (b)-(d) precise phase representation for 
n=3-5, respectively 



 60

 

Figure 5.7 ROC curves of IrisCode and precise phase representation for n=3, 4 and 5. 

 

5.4 Theoretical Evidence of Binomial Imposter Distribution 

In the previous sections, I investigated a number of properties of IrisCode and used them to develop an 
algorithm for precise phase representation with effective filtering and rapid matching. However, I have 
not touched upon the most important property in IrisCode, the binomial imposter distribution. This is used 
to predicate the false acceptance rate under different thresholds and different matching condition such as 
variation of actually compared bits. The binomial imposter distribution of IrisCode has been 
experimentally validated on a large database [106]. Some may expect that the imposter distributions of 
the similar coding methods designed for iris and palmprint [4, 7, 56, 108-116] and the precise phase 
representation would also follow a binomial distribution since, as in IrisCode, all their feature values are 
binary and two feature codes are compared using a hamming distance.  

In practice, the imposter distribution of IrisCode is binomial. I am interested in its theoretical 
foundation. Let us review the three assumptions of a binomial distribution. A random variable X 
following a binomial distribution should fulfill the following conditions.  

1. X is defined as 

=1i

iT , where Ti is a Bernoulli variable.  

2. All Ti has the same probabilities of success, p.   

3. All Ti are independent.  

(2) is referred to a stationary condition and (3) is referred to an independent condition. Obviously, the 
hamming distances of IrisCode and other coding methods satisfy condition (1). Daugman validated 
condition (2) in 1993 [25]. However, IrisCode violates the independent condition because of the inherent 
correlation between the texture features and the convolution of Gabor filters. If the sum of correlated and 
stationary Bernoulli variables followed a binomial distribution unconditionally, an imposter distribution 
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of IrisCode would have to be binomial. However, no such mathematical theorem has been discovered. 
Even if the correlation is of the first order Markovian type, the distribution of the sum of correlated 
stationary Bernoulli trails can be bimodal and trimodal shapes [121-122]. This shows that the theoretical 
foundation of the binomial imposter distribution is incomplete. As a result, it cannot be expected that the 
imposter distributions of the other coding methods and precise phase representation also follow binomial 
distributions. Clearly, it is very hard to develop a reasonable iris individuality model [123] if the binomial 
assumption is used.  

Under some conditions and making use of the central limit theorem, the sum of correlated and 
stationary Bernoulli trails could be approximated by a normal distribution [90]. A normal distribution can 
be approximated by a binomial distribution when the number of Bernoulli trials is large. This may be the 
reason why the imposter distribution of IrisCode follows a binomial distribution. However, these 
conditions have not been validated.  

 

5.5 The Relationship between IrisCode and Other Coding Methods.  

Many coding methods have been developed for iris and palmprint identification that are quite similar [4, 
7, 56, 108-116]. The most common approach is to replace the Gabor filters in IrisCode with other linear 
transforms or filters. According to this analysis, IrisCode is a clustering process with four prototypes. As 
it happens, most the other coding methods can also be regarded as a clustering process but with two 
prototypes. Let us formally define these approaches. Let F  be a linear filter used in their coding 
methods. Their coding schemes can be summarized in the following equations,  

� � ≥=
ρ φ

φρ 01 dFIdifh ,       (5.22) 

� � <=
ρ φ

φρ 00 dFIdifh ,       (5.23) 

where h is a resultant bit. This coding scheme is referred to a standard coding scheme. To uncover the 
relationship between IrisCode and the standard coding scheme, a filter generating function F1)1( +− υ , 
where }1,0{∈ν  is defined. This filter generating function can generate only two filters, F and –F. Since 

these two filters have the same power, i.e., FF −= , the clustering criterion can be rewritten as 
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If j=0, then we have � �� � >−
ρ φρ φ

φρφρ dFIddFId  and � �>
ρ φ

φρdFId0 . If j=1, we have 

� �� � −>
ρ φρ φ

φρφρ dFIddFId  and 0>� �
ρ φ

φρdFId . Using the first order coding scheme defined in Figure 

5.2 to encode the winning index j, we obtain Eqs. 5.22 and 5.23.  
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In addition to the standard coding scheme, other coding methods based on Gabor filters and log Gabor 
filters employ the order 2 coding scheme in precise phase representation [110, 113]. I also developed a 
Competitive Code for palmprint identification described in Chapter 4 [3]. Its filter generating function is 
the negative real part of a Gabor function. Different values are assigned to the orientation parameter so as 
to generate six filters and use order 3 coding scheme to encode the winning indexes. Bitwise angular 
distance is employed to measure two different Competitive Codes.  

The standard coding method, IrisCode, and Competitive Code respectively employ the order 1, 2 and 3 
coding schemes in precise phase representation. Their differences are in their filter generating functions. 
It is the fact that most of the existing coding methods including standard coding method, IrisCode, 
Competitive Code and precise phase representation are under the same framework given in Figure 5.8. 
The cores of this framework include filter generating function, clustering, coding scheme and bitwise 
angular matching. This framework is different from the previous frameworks [56, 109]. It is more 
detailed. Furthermore, it should be mentioned that both loci of the filter generating functions of the 
standard coding method and IrisCode are always on two-dimensional planes. However, the locus of the 
filter generating function of Competitive Code is on a higher dimensional plane. 

 

 

Figure 5.8 A common framework employed by most of the existing coding methods. 

 

5.6 Comparison of IrisCode 

Many researchers have re-implemented IrisCode for comparison. I strongly believe that these researchers 
have tried their best to make a fair comparison yet there are three particular issues which should be 
considered when comparing IrisCode with other iris algorithms: the differing properties of different iris 
scanners, the quality of re-implementation, and issues of identification versus verification. 

 

5.6.1 Iris Scanners 

Different iris images captured using different iris scanners have different properties. Let us compare the 
iris images in the CASIA database and those captured using commercial iris scanners. Figure 5.9 shows 
four iris images from the CASIA database and Figure 5.10 shows four iris images from commercial iris 
scanners. The images captured with commercial iris images are provided by Daugman. They are rescaled 
for display but their intensity values are not modified. The CASIA images have an image size of 320 by 
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280 while Daugman’s have an image size of 640 by 480. We can make several observations about these 
two sets of images. Note that the images in Figure 5.10 include a greater width of the eyelids. Daugman 
uses this greater width for more accurate estimation of the eyelid/iris boundaries [124]. The contrast of 
the limbus in Figure 5.10 is also stronger than that in Figure 5.9. It is also noted that each image from the 
CASIA database has a black circle in the pupil and some of these black circles cover the part of iris and 
eyelids, potentially affecting the accuracy of pupil detection. Figure 5.9(c) provides an example of this. 
The black circles also cover the specular reflection. Therefore, automatic detection of the pupils is easier. 
It is important to be aware of these differences in the properties of the CASIA images and Daugman’s 
images because Daugman designed IrisCode based on the properties in his images. Directly applying 
IrisCode on other images may not produce an optimal performance.  

   
(a)      (b) 

   
(c)      (d) 

Figure 5.9 Four irises images from CASIA database 



 64

  

 

  

Figure 5.10 Four irises images from commercial iris scanners. 

 

5.6.2 Quality of Re-implementation 

IrisCode is a commercial algorithm and as a result it is not possible to obtain the source code and compare 
it with executable program. Researchers are restricted to re-implementing IrisCode based on available 
knowledge. With this, it is known that there are some implementations that are especially problematic. 
For instance, some researchers use Gabor filters having various orientations [110, 115, 125, 163] whereas 
IrisCode uses only Gabor filters that have a single orientation in the dimensionless polar coordinate 
system. Another problem is that some parts of IrisCode, including eyelids and eyelashes detection, cannot 
be accurately re-implemented since Daugman has not clearly disclosed them in his publications. Another 
difficulty for accurate re-implementation is that of choosing the parameters for preprocessing. Because of 
the variation of re-implementations, different researchers report different accuracy, even for the same iris 
database [130-131].   
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5.6.3 Identification versus Verification 

When comparing iris algorithms it is important to bear in mind whether their application will focus on 
identification or verification. Some iris algorithms have recently reported high accuracy, such as phase 
matching and correlation filter approaches [126-127, 163] but as far as matching is concerned their 
computational cost is much higher than that of IrisCode and other coding methods. Such approaches are 
more suitable for verification or identification in small databases where speed is not an issue. In contrast, 
coding methods such as IrisCode are designed for large-scale real-time identification where matching 
speed is of the essence. Matching speed of different coding methods can be very different. Precise phase 
representation is one of the examples.  

 

5.7 Conclusion 

IrisCode first appeared thirteen years ago yet to my knowledge this is the first report to provide a detailed 
analysis of this method. The analysis made here makes a number of contributions. It presents a complete 
analysis of IrisCode, demonstrating that IrisCode is a clustering process and that the locus of a Gabor 
function is on a two dimensional ellipse with respect to the phase parameter. It also proves the equivalent 
relationship between the bitwise hamming distance and bitwise angular distance and shows that Gabor 
function can be considered as a steerable filter. It then uses these properties and this relationship to 
develop a precise phase representation algorithm. This algorithm inherits the properties of IrisCode 
including robustness against brightness and contrast variations and rapid matching based on bitwise 
operators and cyclic representation. The experiments showed that given the same quality of preprocessing 
precise phase representation is more accurate than IrisCode. Precise phase representation is a flexible 
representation for balancing the tradeoff between matching speed and identification accuracy. This 
chapter has also presented theoretical evidence regarding the binomial imposter distribution of IrisCode 
and has determined that the theoretical evidence is incomplete. Finally, using the filter generating 
function and the coding scheme defined in this study, I have shown the relationships between IrisCode 
and other iris and palmprint recognition coding methods. 
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Chapter 6 Learning Optimal Feature Filters 

The filters in the coding methods also regarded as cluster centers in Chapter 5, play an 
important role in the coding framework for palmprint and iris identification. The current 
selection of the filters is completely based on human intelligence. In this chapter, I 
propose a learning algorithm for automatically generating the filters for palmprint 
identification and further extend the framework. 

 

6.1 Introduction 

The coding methods described in the previous chapters require a set of filters to generate the bitwise 
feature codes. Currently, all the researchers design or select their filters completely based on human 
intelligence, a methodology which is relatively ah-hoc. To reduce human involvement in the design 
process and to automatically extract information from images, a learning algorithm for automatically 
generating the filters is proposed. Only palmprints will be considered here, since they are the main focus 
of this thesis. 

The coding methods for palmprint and iris identification can be regarded as clustering processes. 
Although there are numerous clustering algorithms such as K-mean, fuzzy c-mean and self-organizing 
map are proposed for classification, knowledge mining and knowledge representation [161], the existing 
clustering algorithms are not suitable for generating the filters since their objective functions do not the 
optimize recognition performance. As a result, a new learning algorithm is needed.  

In designing such a learning algorithm, several aspects must be considered. First of all, an effective 
filter representation is needed. Using the 6standard basis to represent a filter, vi requires large number of 
parameters. For example, if a coding method requires eight filters and the size of the filters is 25 by 25, 
the number of parameters required is 5,000. More parameters can enhance the representation power but 
may inadvertently cause over-learning. Therefore, a more effective representation is essential. In addition 
to representation, selection of a searching algorithm for estimating optimal parameters is equally 
important since it directly influences learning speed and memory requirement. This selection is especially 
vital for large training databases. 

The rest of this chapter is organized as follows. Section 6.2 presents the filter representation. Section 
6.3 provides an effective searching algorithm based on simulated annealing. Section 6.4 extends the 
coding framework from the perspective of topological maps. Section 6.5 reports the experimental results. 
Section 6.6 offers concluding remarks. 

 

                                                      
6 Standard basis is an orthonormal basis where each vector has only one non-zero element, and that element is equal 
to one.    
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6.2 Filter Representation 

A filter vi with size s by s can be represented by a linear combination of a set of basis vectors, }{ kξ , i.e. 

kk iki av ξ
= , where aiks are the filter parameters. If optimal filters can be approximated by a subspace 

basis, the number of parameters can be reduced. Let kk kp bI ξ
=  be a patch of an image. For discrete 

filters and discrete images, the clustering criterion described in Section 5.2.1 can be written as 
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, . In the other words, vi can be approximated by the span of 

>< Jξξξ ,,, 21 �  and the representation of vi can be compressed.  

According to this analysis, the coefficients of the image bk directly affect the solution subspace of vi. In 
the following derivation, the variance of bk is used as a criterion to generate the subspace. Since 
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. Clearly, ξk is a principal component and therefore, principal component 

analysis can be used for compressing the representation of the filters.  

The previous coding methods employ zero DC filters to eliminate brightness variation. However, the 
filter kk iki av ξ
=  generated by principal components is not zero DC since ξk is not zero DC in general. 

To generate zero DC filters and principal components, the DC of training images is removed.  

In addition to zero DC, a Gaussian function is applied to all training images to weight the importance 
of pixels in different positions for imperfect alignment of image patches. The Gaussian function is applied 
before removing the DC of the training images. Once the basis vectors }{ kξ  are generated, all the filters 

vi in the coding methods are represented by 
 =
= J

k kiki av
1

ξ , where J is a predefined parameter. Figure 

6.1 illustrates the first eight principal components learned from the training images described in Section 
6.5.  
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Figure 6.1 The first eight principal components using Gaussian function with standard derivation 11. 

 

6.3 An Optimization Algorithm Based on Simulated Annealing and Effective 

Filtering 

Selecting optimization algorithms depends on objective functions. In the following experiments, d’ index 
is employed as an objective function. There are numerous optimization algorithms but not all of them are 
suitable for this application. For example, optimization algorithms such as gradient descent which involve 
the derivative of the objective function are not applicable since the bitwise operators in the matching 
function are not differentiable. Even though many stochastic optimization algorithms such as simulated 
annealing and genetic algorithms [162] do not require the derivative of the objective function, 
computation complexity is another problem. In each iteration, these stochastic optimization algorithms 
generate at least one set of potential solutions (the filters) and evaluate them based on the objective 
function. In the other words, the filters should be applied to whole training datasets in each iteration. It is 
a very time consuming process. To speed up this process, an effective filtering scheme is proposed. 

 

6.3.1 An Effective Filtering Scheme 

The proposed filtering scheme makes use of the information in the current iteration to improve filtering 

speed in the next iteration. Let 
 =
= J

k kiki av
1

ξ  be a filter in the current iteration and 


 =
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,, ξ , where >< kpI ξ,  being independent of iterations, can be pre-computed 

and stored in main memory of a computer. In stochastic optimization algorithms, solutions in the next 
iteration generally depend on the solutions in the current iteration. It is assumed that only a single filter, vi 
is modified and only M coefficients in vi are changed. Without loss of generality, let the M coefficients be 

ai1, ai2,… and aiM. The new filter, '
iv  is defined as 
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new coefficients generated for the next iteration. The corresponding inner product >< ', ip vI  can be 

obtained in a very effective way. Consider 
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Therefore, computing >< ', ip vI  requires only M subtractions, M multiplications and one addition. If 

M is equal to 1, only three operations are needed. It should be emphasized that >< ipI ν,  and >< kpI ξ,  

should be stored in main memory rather than a hard disk since transferring data from a hard disk to a 
processor is much slower than that from main memory to a processor.  

Using the same approaches, the norms of filters can also be updated effectively. Consider 
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6.3.2 Using Simulated Annealing Optimization 

Although the effective filtering scheme can speed up the filtering process, the memory requirement 
increases with respect to the number of potential solutions in each iteration. Therefore, population based 
optimization algorithms such as genetic algorithms are not suitable. Simulated annealing having only one 
potential solution in each iteration is applicable [160]. The computational details of simulated annealing 
and an effective filtering scheme are summarized in Figure 6.2. To control over-learning, early stopping 
is applied [160].  
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M = The number of parameters to be changed in the next iteration 
Mmax = The maximum number of parameters to be changed in each iteration 
T0 = Initial annealing temperature 
T = Annealing temperature 
η = Learning rate 
Γ = Maximum number of iteration. 
 
Initialization 
1. Compute all >< kpI ξ,  and store them in main memory. 

2. Randomly generate the parameters, aik and compute the norms of the filters iv . 

3. Compute all 
 =
><>=< J

k kpikip IavI
1

,, ξ and store them in main memory. 

4. Compute the winning indexes and perform matching. 
5. Compute d’ index (d’old) . 
6. Set T=T0 and M=1. 
 
Iteration 
1. Randomly select one of the filters, vi and randomly change M of its coefficients from aik 

to a’ik. a’iks are randomly generated. 

2. Compute all >< ', ipI ν  using Eq. 6.1 and compute 
2'

iv  using Eq. 6.2 

3. Compute the winning indexes and perform matching. 
4. Compute d’ index (d’new) using new vi.  

5. Accept the new parameters if d’new is greater than d’old or ��
�

	



�

� −<
T

dd oldnew
''

expγ , where γ 

follows an uniform distribution bounded by 0 and 1. Otherwise reject the new parameters 
and keep the original parameters. 

6. Update the annealing temperature according to TT η= . 

7. Set >>=<< ',, ipip vIvI , '
ii vv = , '

ikik aa =  and M=1 if the new parameters are 

accepted. 
8. Set M=M+1 if the new parameters are rejected and maxMM ≤ . 

9. Stop the iteration if the number of iteration is equal to Γ.  
10. Otherwise, continue. 

 

Figure 6.2 The pseudo-code of the proposed optimization algorithm using simulated annealing and the 
effective filtering scheme. 
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6.4 Using the View of Topological Map to Extend the Coding Framework 

In Chapter 5, I have shown that Gabor phase regarded as a one-dimensional periodic feature is always on 
the circumference of an ellipse. The encoder given in Figure 5.2 is especially designed for this feature. To 
further extend the encoder for other features, another view is provided to understand the framework. The 
filters can be considered as synaptic weight vectors in a topological map and the relationship between 
winning indexes can be considered as the relationship between the neurons. Figure 6.3 illustrates this 
concept. The elliptically topological map presented in Chapter 5 is possible to be replaced with other 
forms of topological maps such as the hypercube. If the relationship between neurons can be measured by 
bitwise hamming distance, high speed matching can be guaranteed.  

 

 

Figure 6.3 Using topological map to extend the coding framework 

 



 72

6.5 Experimental Results 

The palmprint database described in Chapter 3 is divided into three datasets: training set, validation set 
and testing set. Training and validation sets both contain 1,600 palmprints from 160 palms. Each palm in 
training set or validation set has 10 images, 5 from the first occasion and 5 from the second occasion. The 
testing set contains 4,835 images from 248 palms. These three datasets do not overlap in terms of palms 
and images. In other words, images from the same palm would belong to the same datasets. The proposed 
learning algorithm has several parameters including the number of principal components for representing 
the filters, the variance of the Gaussian function for preprocessing the data, the structure of the 
topological map and the parameters listed in Figure 6.2. In the following experiments, 3-bit gray code 
given in Table 6.1 is used to represent a cube illustrated in Figure 6.4. The parameters in Figure 6.2, Mmax, 
T0, η and Γ are 5, 18000, 0.998 and 18000, respectively. Gaussian functions with standard derivations 11 
and 13 are examined and the size of image patch, Ip is 35 by 35. The principal components are estimated 
from 30,000 image patches from the training set and the numbers of principal components to be examined 
are 20, 30 and 40. Table 6.2 lists the parameters and the corresponding d’ indexes from the testing set. 
Comparing the d’ index of Competitive Code of 5.63, the proposed learning algorithm is effective in 
terms of d’ index. The greatest one is 6.08 from experiment (c) and the corresponding filters are given in 
Figure 6.5. Figure 6.6 compares their ROC curves. The ROC curve of Competitive Code is also plotted 
for comparison. In the range of the false acceptance rates between 5×10-1% and 100%, the learned filters 
from experiment (c) perform better than Competitive Code. However, in the range of false acceptance 
rates being smaller than 5×10-1%, Competitive Code performs better. Some may expect that the learned 
filters should perform better than Competitive Code at any false acceptance rate. It should be emphasized 
that the objective function of the learning algorithm is d’ index, not ROC curve. As a result, the learned 
filters perform better than Competitive Code in terms of d’ index while the learned filters do not always 
perform better than Competitive Code in terms of genuine acceptance rates. Some may suggest using 
genuine acceptance rates at a low false acceptance rate e.g. 10-4% as an objective function. However, this 
statistics is difficult to estimate reliably since the number of false matching at that range is very limited. 
In this case, even though early stopping is applied, it is still hard to control over-learning. 

 

Table 6.1 3-bit grey code. 

Winning indexes 0 1 2 3 4 5 6 7 

Bit 1 0 1 1 0 0 1 1 0 

Bit 2 0 0 1 1 1 1 0 0 

Bit 3 0 0 0 0 1 1 1 1 
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Table 6.2 The experimental parameters and the corresponding d’ indexes. 

Experiment ID a b c d e f 

Standard derivation of the Gaussian 11 11 11 13 13 13 

Number of principal components 20 30 40 20 30 40 

d’ index 5.94 6.01 6.08 5.90 6.01 5.9 

 

 

 

Figure 6.4 The topological map of 3-bit gray code 

 

 

 

Figure 6.5 The resultant filters from the experiment (c) 
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Figure 6.6 The ROC curves of the learned filters and Competitive Code. (color figure) 

 

6.6 Conclusion 

In this chapter, I attempt to design a learning algorithm to automatically generate filters for the coding 
framework. The learning algorithm has several components including the principal components for 
representing the filters, a Gaussian function for imperfect alignment, the effective filtering scheme for 
increasing the learning speed, a simulated annealing algorithm for estimating the parameters and an early 
stopping for preventing over-learning. In addition to the learning algorithm, the framework is further 
extended based on the concept of topological maps. The experimental results demonstrate that using d’ 
index as a performance index, the learned filters perform better than Competitive Code.     
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Chapter 7 A Study of Identical Twins’ Palmprints 

The performance of biometric systems highly depends on the distinctive information in 
the biometrics. Identical twins having the closest genetics-based relationship are expected 
to have maximum similarity in their biometrics. Classifying identical twins is a 
challenging problem for some automatic biometric systems. Palmprint has been studied 
for personal identification for many years. Most of the previous research concentrates on 
algorithm development. This chapter systemically examines palmprints from the same 
DNA for automatic personal identification and to uncover the genetically related 
palmprint features. The experimental results show that the three principal lines and some 
portions of weak lines are genetically related features but our palms still contain rich 
genetically unrelated features for classifying identical twins.  

 

7.1 Introduction 

Biometric technologies verifying different people are based on the distinctive information in their 
biometric traits. However, not all biometrics provide sufficient distinctive information to classify identical 
twins, who have the same genetic expression. Studying identical twins’ biometrics is an important topic 
for biometric authentication.  

There are two types of twins, dizygotic and monozygotic twins. Dizygotic twins result from two 
different fertilized eggs resulting in different Deoxyribo Nucleic Acid (DNA). Monozygotic twins, also 
called identical twins are the results of a single fertilized egg splitting into two individual cells and 
developing into two individuals. Therefore, identical twins have the same genetic expressions. The 
frequency of identical twins is about 0.4% across different populations [132]. Some researchers believe 
that this is the performance limit of face recognition systems [133].  

 

7.1.1 From DNA to biometrics 

DNA contains all the genetic information required to create an organ of a species. The mapping from 
DNA to the actual expression of an organ is very complex. Firstly, the genetic information is copied from 
DNA molecule into RNA (Ribo Nucleic Acid) molecule. Then, the RNA is converted into amino acids 
and the amino acids are converted into functioning proteins. The proteins are assembled to be an organ. In 
this decoding process, the final products are affected by not only genetic information but other factors as 
well. As a result, identical twins sharing the same genetic expression have many different biometrics, 
including fingerprint, iris and retina [134-136]. In fact, some biometrics such as face continually change 
after we are born. The changes depend on environmental factors such as living style, diet and climate. 
These environmental factors make identical twins more different as they age. Figure 7.1 shows three pairs 
of identical twins at different ages. The oldest twins in Figure 7.1(c) are the most distinguishable.  
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(a) 

 
(b) 

 
(c) 

Figure 7.1 Three pairs of identical twins at different ages 
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7.1.2 Problems of confusion of twins’ identities 

In spite of the fact that the biometrics of identical twins are affected by many factors, some of them such 
as facial features are still very similar. Some identical twins share not only similar facial features but also 
the same signatures. Confusion over their identities has made it difficult for others to know who owns 
what and who does what. As a result, some identical twins partake in commercial scams such as 
fraudulent insurance compensation. Most importantly, if one of the identical twins commits a serious 
crime, their unclear identities cause confusion and uncertainty in court trials. 

 

7.1.3 Motivations 

Classifying identical twins is crucial for all biometric authentication systems. The systems, which cannot 
handle identical twins, have an obvious security flaw. Figure 7.2 depicts the retinas, irises, fingerprints 
and palmprints of identical twins. The iris and palmprint images are collected using the devices described 
in [7]; the retina images are obtained from Retinal Technologies, 
(http://www.retinaltech.com/technology.html) with permission to reprint; and the fingerprint images are 
collected using a standard optical fingerprint scanner. Figure 7.2 shows that the retinas, irises and 
palmprints are distinguishable to human vision. For the fingerprints, to differentiate the images one must 
pay close attention to the minutiae points (end points and bifurcation points), commonly utilized in 
fingerprint systems. Based on the position and direction of the minutiae points, the twins’ fingerprints are 
also distinguishable.  

In many cases, biometrics are proposed by medical doctors or ophthalmologists [136] but almost all the 
biometric systems are designed by engineers. The features discovered by doctors or ophthalmologists and 
the features applied to authentication systems may not be the same. The iris is a typical example [136-
137]. Therefore, the experimental results or observations given by doctors or ophthalmologists about 
identical twins may not be applicable to automatic biometric systems. Therefore, it is essential to test 
automatic biometric systems on identical twins. There has been research in iris, face, voice and 
fingerprint authentication for identical twins [134, 137-141]; however, identical twins’ palm is ignored. 
This chapter aims at examining an automatic palmprint system on identical twins and identifying their 
genetically related features.  

Competitive Code is employed for this study because it is most accurate palmprint identification 
algorithm according to the comparison in Chapter 4 and because the winning indexes in Competitive 
Code describing the orientation of palm lines can be used to identify the genetically related features in 
palmprints. In this chapter, one of Competitive Code is translated vertically and horizontally to match 
another Competitive Code as described in [3] and Chapter 3 to handle imperfect preprocessing.  

The rest of this chapter is organized as follows. Section 7.2 presents the genetically identical palmprint 
databases. Section 7.3 reports the experimental results and analysis. Section 7.4 offers some concluding 
remarks.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.2 Different identical twin’s biometrics, a) retina, b) iris, c) fingerprint and d) palmprint. 
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7.2 Genetically identical palmprint databases  

There are two possible ways to obtain palmprints generated from the same genetic information. Identical 
twins’ palms are one of them. Left and right palms from the same persons are the other. They are 
generated form the same gene, HOXD13 gene as identical twins. To make this study more complete, 
palmprints are collected in both ways. Figure 7.3 shows four palmprints from a pair of identical twins. 
Three of them are similar for human vision but they are still distinguishable. The other is relatively 
different.  

For this study, two palmprint databases, twin database and general database are prepared. The twin 
database contains 1028 images collected from 53 pairs of identical twins’ palms. The images are collected 
over half year. Around 10 images are collected from each palm. The age range of the subjects is between 
6 and 45. All the images are collected by the palmprint capture device described in [7]. The image size is 
384×284 with 75 dpi.  

The general database contains 7,967 palmprint images from 200 subjects. The palmprint images were 
collected on two separate occasions. The average time interval between the first collection and second 
collection was around two months. On each occasion, each subject was asked to provide about 10 images, 
each of the left palm and the right palm. The image size is also 384×284 and their resolution is 75 dpi. 

 

  
 

  

Figure 7.3 Four palmprints from a pair of identical twins. 

 



 80

7.3 Experimental Results and Analysis 

To study the similarity between identical twins’ palmprints and to obtain a twin imposter distribution, the 
palmprints from the pairs of identical twins’ palms (real twin match) are matched. The palmprints from 
the same palms in the general database are also matched to obtain a genuine distribution of normal (non-
identical) palms. Similarly, the palmprints from different palms in the general database are matched to 
obtain an imposter distribution of normal palms (general match). In addition, different person’s left 
palmprints are matched and different person’s right palmprints are matched to obtain a side imposter 
distribution (side match). The left and right palmprints from the same persons are also matched (virtual 
twin match). For virtual twin match, one of the images is flipped to match the other. For the palmprints in 
the general database, the palmprints from different occasions are matched only. The total number of 
genuine matchings, general imposter matchings, side imposter matchings, virtual twin imposter 
matchings and twin imposter matchings are 39,673, 15,828,599, 7,894,462, 39,671 and 4,900, 
respectively; Figure 7.4(a) shows these distributions. The genuine distribution along with the four 
imposter distributions in Figure 7.4(a) is used to generate the Receiver Operating Characteristics (ROC) 
curves given in Figure 7.4(b). These figures show that palmprints generated from the same genetic 
information are significantly correlated and this correlation is neither due to matching between right 
palms or matching between left palms. However, they still have enough non-genetically related 
information for classification. For example, if we set the threshold at 0.3725 along with the genuine 
acceptance rate of 97%, the corresponding false acceptance rate for general imposters is 4.4×10-5% and 
the corresponding false acceptance rate for identical twin imposters is 2.0×10-2%.  

 
(a) (b) 

Figure 7.4 Experimental results. (a) Distributions of real twin imposter, virtual twin imposter, side 
imposter, general imposter and genuine and (b) the corresponding ROC curves. 
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7.3.1 Identifying the Genetically Related Features. 

The previous experimental results demonstrate that palmprints generated from the same genetic 
information have correlated features. From the observation of Figure 7.3, it is believed that the strong 
lines including the principal lines are the genetically related features. The following experiment 
quantitively justifies this observation.  

In this experiment, the features points (the winning indexes) associating with the strong lines are 
successively removed and the rest of feature points are used to perform matching. Using the filter 
response given in Eq. 4.3, it is easy to identify the strong lines. The corresponding winning indexes are 
denoted by the masks in Eq. 4.6. The masks are superimposed to identify the locations of the strong 
feature points. To provide statistically reliable results, virtual twin matchings are used to investigate the 
correlated features in this experiment since the virtual twin matchings are more. Virtual twin matchings 
and real twin matchings are equivalent from genetic point of view since our left and right palms are 
generated from the same gene as identical twins’ palms.   

The most 100, 200, 300, 400 and 600 significant winning indexes are removed to generate the general 
imposter, side imposter and virtual twin imposter distributions shown in Figure 7.5(b)-(f), respectively. 
Figure 7.5(a) shows the original imposter distributions for comparisons. To measure the dissimilarity 
between virtual twin imposter distribution, p and general imposter distribution q, Bhattacharyya distance 
defined as, ( )�−= dxxqxpqpB )()(log),(  is used. Figure 7.6(a) shows their Bhattacharyya distances. 

Similarly, Figure 7.6(b) shows Bhattacharyya distances between side and general imposter distributions. 
Figure 7.6(a) illustrates that the dissimilarity of the two imposter distributions decreases when the number 
of removed winning indexed increases. Comparing the Bhattacharyya distances in Figure 7.6(a) and (b), 
we know that even though more than half of the significant winning indexes are removed, the 
Bhattacharyya distance between virtual twin and general imposter distributions is relatively large. There 
are two reasons. Some weak lines are also genetically related. Figure 7.7 shows a pair of palms from the 
same person for illustration. The small portions are enhanced for visualization. In addition to the 
correlation of the weak lines, some winning indexes having weak response are generated from principal 
lines. To identify the location of the significant winning indexes, the masks of all left palmprints in the 
general database are superimposed. Figure 7.8 gives the distributions of the significant winning indexes. 
The first 100 significant winning indexes associate with the three principal lines. However, we do not 
observe any clear structure from others significant winning indexes. According to this finding, the 
pervious palmprint recognition methods exploiting only the strong lines as features may not be suitable 
for classifying identical twins [14]. In addition, this finding gives a quantitative evidence for the usage of 
principal lines for genetic research. However, most of the genetic research about palm lines concentrates 
only on Simian and Sydney lines shown in Figure 2.7. [68, 101, 142-143].  
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

Figure 7.5 (a)-(f), virtual twin, side and general imposter distributions obtained by removing the most 0, 
100, 200, 300, 400, and 600 significant winning indexes, respectively. 
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(a)       (b) 

Figure 7.6 (a) The Bhattacharyya distances between general and virtual twin imposter distributions and 
(b) the Bhattacharyya distances between general and side imposter distributions in Figure 7.5(a)-(f). 

 

 

 

  
 

Figure 7.7 Illustration of genetically related weak lines. 
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(a)   (b)   (c) 

Figure 7.8 The distributions of the most (a) 100, (b) 200 and (c) 300 significant winning indexes 

 

7.4 Conclusion 

In this chapter, the palmprints generated from the same genetic information including identical twins’ 
palmprints have been systemically examined. This study shows that they can be distinguished by 
Competitive Code. The quantitative evidence also demonstrates that the three principal lines are 
genetically dependent. This evidence supports the usage of the principal lines for genetic research. It 
implies that the previous palmprint recognition algorithm exploiting only the strong lines as features may 
not be able to distinguish identical twins’ palmpints. In this study, it is also pinpointed that some weak 
lines are also genetically related.  
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Chapter 8 Secure Palmprint Identification 

Biometric authentication systems are widely applied because they offer inherent 
advantages over classical knowledge-based and token-based personal identification 
approaches. However, biometric systems are vulnerable to various attacks, such potential 
attacks must be analyzed before biometric systems are massively deployed in security 
systems. In this chapter, four security issues, including template re-issuances, also called 
cancellable biometrics, brute-force attacks, replay attacks and database attacks are 
addressed for secure palmprint identification. A random orientation random filter bank 
(ROFB) is used for template re-issuance. A projected multinomial distribution is 
proposed for studying the probability of successfully using brute-force attacks to break 
into a palmprint system using Competitive Code. Secret messages are hidden in 
Competitive Codes to prevent replay and database attacks. This technique can be 
regarded as template watermarking. A series of analysis is provided to evaluate their 
security levels.  

 

8.1 Introduction 

Although biometric authentication approaches [79] are much more secure than the traditional approaches, 
they are not invulnerable. For example, they are open to database, replay, and brute-force attacks. Figure 
1.3 shows a number of points, Points 1-8, all being vulnerable points as identified by Ratha and his 
coworkers [95, 145]. Recently, many biometric and security researchers have proposed techniques for 
preventing and detecting these attacks [14, 26, 95, 97-98, 144-145, 147-149, 151]. Some researchers have 
employed watermarking and encryption to prevent replay attacks at Points 2, 4, and 7 [98, 148, 151] and 
have developed anti-spoofing techniques for specific biometrics to prevent attacks at Point 1 [144, 149]. 
Other researchers have produced analyses of specific attack types vis-à-vis specific biometrics, for 
example, brute-force attacks at Point 4 of fingerprint systems [26, 95, 145].  

Given the commercial potential of palmprint systems as security applications, the wide variety of 
capture devices that now exist, and the diversity of preprocessing, feature extraction, matching and 
classification algorithms [Chapter 2] that have been produced in the field, it is certainly the case that any 
security issues should be systematically addressed prior to their widespread deployment. Palmprint 
recognition has been studied for many years and the potential attacks have been identified but only 
limited research work is related to the security of palmprint systems. A group of researchers develop 
cancellable palmprints [27, 96] for template re-issuance and claim that their approaches can achieve zero 
equal error rates. However, their results are based on an unrealistic assumption that users never share and 
lose their token keys. A detailed analysis is given in [6]. In fact, different features require different 
cancellable transforms [99, 158]. It is difficult to apply directly one cancellable transform from one 
feature to another feature. The replay attack and brute-force attack at Point 4 and the database attack at 
Point 6 have not been addressed for palmprint identification systems. Although some security measures 
have been proposed for other biometrics such as fingerprint, they cannot be directly applied to palmprints 
since their feature formats are different [97-98].  
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Cryptography is one possible solution that would allow us to better defend against replay and database 
attacks. Systems protected by cryptography store and transmit only encrypted templates in databases and 
through data links. However, cryptography is not suitable for speed-demanding matching, e.g. real-time 
large-scale identification, since decryption is required before matching. Another potential solution is 
cancellable biometrics. Cancellable biometrics transform original templates into other domains and 
perform matching in the transformed domain. Although cancellable biometrics overcome the weakness of 
cryptography, current cancellable biometrics are still not secure enough for the palmprint identification. 
For example, attackers can still insert stolen templates at Point 4 and Point 6 for replay and database 
attacks before systems can cancel the stolen templates and reissue new templates. Furthermore, current 
cancellable biometrics cannot detect replay and database attacks. In other words, if attackers insert 
unregistered templates into data links or databases, systems cannot discover the unregistered templates. 
To solve these problems, I take advantages of cryptography and cancellable biometrics to design a set of 
security measures to prevent replay and database attacks for secure palmprint identification. 

The rest of this chapter is organized as the follows. Section 8.2 presents cancellable Competitive Code. 
Section 8.3 develops a probabilistic model describing the relationship between false acceptance rates and 
the number of attacks. Section 8.4 presents the security measures including one time pad and template 
watermarking. Section 8.5 presents the experimental results and validates the proposed probabilistic 
model. Section 8.6 evaluates the security levels of the proposed measures. Section 8.7 offers some 
concluding remarks. 

 

8.2 Cancellable Competitive Code 

To avoid attackers to use the line features in original Competitive Code for brute-force attacks, a random 
orientation field is inserted into the feature extractor to generate noise-like feature codes. Thus, the feature 
extractor in Eq. 4.3 becomes  

� � += dxdyyxyxyxIj oopR
p

)),,(,,,(),(maxarg καθωψ ,       (8.1) 

where { }6/5,6/4,6/3,6/2,6/,0),( 00 πππππα ∈yx  is a random field. The six filters form a 

random orientation filter bank (ROFB). This random field would not degrade the original performance of 
Competitive Code since it does not affect the angular distance between two winning indexes. However, 
this random field does not generate a non-invertible cancellable biometrics. It is noted that non-invertible 
cancellable biometrics tends to reduce accuracy [157]. Figure 8.1 shows an original Competitive Code 
and two corresponding cancellable Competitive Codes. It should be mentioned that similar ideas are 
employed for cancellable iris and for generating cryptographic key from biometrics [99-100].  
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(a)   (b)   (c)   (d) 

Figure 8.1 Illustration of cancellable Competitive Codes. (a) Preprocessed Image, (b) Original 
Competitive Code and (c)-(d) Competitive Codes from different random fields. 

 

8.3 A Probabilistic Model for Analyzing Brute-Force Break-ins 

The study of brute-force break-ins requires a probabilistic model that describes the relationship between 
the number of attacks and the probability of a false acceptance. Therefore, it is necessary to establish a 
probabilistic model for the angular distance given in Eq. 4.6. To simplify the model, it is assumed that all 
preprocessed palmprint images are clear and devoid of non-palmprint pixels. This will allow us to neglect 
the masks and the normalization terms. Using either the integer representation or the bitwise 
representation of Competitive Code, this analysis would have the same result, but for purposes of 
presentation it is more convenient to use the integer representation. Thus, the angular distance given in 
Eq. 4.4 is considered for the following analysis.  

Let ],,,[ 321 wwwwW o=  be a random vector where iw  is the number of iQPA yxyx =),( ,,  in Eq. 4.4 

and let pi be the probability of iQPA yxyx =),( ,, . As a result, the angular distance described in Eq. 4.4 can 

be rewritten as T
f WKQPA =),( , where ]3,2,1,0[=K . It is assumed that pi is stationary and 

),( ,, yxyx QPA  is independent. By stationary I mean that pi does not depend on the position (x, y). Using 

these assumptions, it is inferred that W follows multinomial distribution i.e. 
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where n is equal to 1024, the size of the Competitive Codes. Thus, the probability density function of the 
angular distance is 



=∋
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T

wwwwftQPA ),,,()),(Pr( 321 .         (8.3) 

This distribution can be regarded as a projected multinomial distribution. 

Let )()),(Pr( tFtQPA f =<  and therefore )(1)),(Pr( tFtQPA f −=≥ . The probability of the final 

angular distance FA  being greater than the threshold t is  

m
F tFtQPA ))(1()),(Pr( −=≥ ,          (8.4) 
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where m, the number of translated matchings is 25. If z independent comparisons are made, the 
probability of all the final angular distances being greater than or equal to t is 

mz
iiF tFzitQPA ))(1(),...,1|),(Pr( −==∀≥ ,        (8.5) 

where Pi and Qi represent different Competitive Codes. Consequently, the probability of at least one of 
the final angular distances being shorter than t is  

mz
iiFi tFtQPA ))(1(1))),((Pr(min −−=< .        (8.6) 

We can now analyze brute-force attacks against the palmprint system using Eq. 8.6. For verification, each 
attackers’ template, Zi is compared only with the templates associated with a particular user. It is assumed 
that each user only has one template, Q, in the database and to attack the system the hackers submit z 
templates. The probability of a false acceptance for verification is 

mz
iFi tFtQZA ))(1(1)),(Pr(min −−=< ,         (8.7) 

the same as in Eq. 8.6.  

For identification, each submitted templates, Zi as a brute-force attack is compared with all the 
templates in the database. Let the templates in the database be Qj where j=1,.., b. As in the previous 
discussion, the number of templates for the brute-force attack is z. Therefore, the probability of false 
acceptance occurring in an identification system with b templates in the database is  

mzb
jiFji tFtQZA ))(1(1)),(Pr(min , −−=< .        (8.8) 

Eq. 8.7 for verification and Eq. 8.8 for identification each share the same form so, for simplicity of 
presentation, in the following experiments only verification is considered.  

 

8.4 Security Measures 

8.4.1 Replay Attacks 

Although cryptography is not suitable for protecting the whole system, it is good for defending against 
replay attacks at Point 4 since only several templates are required to encrypt and to decrypt in each 
identification process. To protect this data link, a one time pad, which in cryptography is regarded as 
perfect secrecy is applied. Random bits, R with the same size as Competitive Code, PB (bitwise 
representation of a Competitive Code, P) are generated. Mathematically, the encryption process is PB⊗R 
and the decryption process is PB⊗R⊗R. It should be remembered that the random bits R are used one time 
only. 

 

8.4.2 Database Attacks 

When carrying out database attacks, attackers will either insert unregistered templates or modify the 
templates in the database. So that the system can detect these attacks, the templates are embedded secret 
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messages. If each user provides only one template in the database, a part of winning indexes is changed to 
specific values and this acts as the secret message. A secret code is defined as (xi, yi, vi), where i=1,…,m 
and m is the length of the secret message. The original winning indexes at the position, (xi, yi) are replaced 
by vi i.e. iii vyxP =),( . It is important to note that different messages are embedded in different 

templates. Otherwise, attackers can uncover the messages easily.  

If each user has more than one template in the database, the correlation between templates from the 
same user can be used to extract the messages. For example, two different messages are hidden in two 
nearly identical templates. Let the templates with messages be Ps1 and Ps2 and their error map is defined 
as )),(),,((),( 21 yxPyxPAyxe ss= , the angular distance between two winning indexes. Since the two 

templates are nearly identical, the messages have high probability in the positions where 0),( ≠yxe . If 
two templates are very different and the same message is hidden on them, the messages have to be in the 
positions where 0),( =yxe . Therefore, we need a more complex scheme to hide the secret messages. 
The secret messages are constituted by two parts, SID =(xIDi , yIDi, vIDi) and ST =(xTi , yTi, vTi). All the 
templates from the same palm are embedded the same SID. However, their STs are different. To hide SID, 

one of template P0 is selected for aligning other templates and the vertical and horizontal translations (hj, 
vj) between P0 and Pj are computed. To take into account the translation, I set 

IDijIDijIDij vvyhxP =++ ),(  for SID while I set TiTjTij vyxP =),( for ST.  

To further hide the correlation between the templates from the same palm, random bits Rc are used to 
encrypt the cth templates of all users, i.e. PB⊗Rc. Although Rc is not a one-time pad, not perfect secrecy, it 
raises the level of difficulty involved in using the correlation to carry out database attacks. Some may 
immediately think that we need to decrypt the templates for matching. It should be noted that decrypting 
input Competitive Code, QB by Rc i.e. QB⊗Rc and decrypting templates in the database are equivalent 
activities and the number of Rc which is equal to number of templates per user is limited. Therefore, the 
computation cost would not be drastically increased. Secret messages are also hidden in input 
Competitive Codes to detect replay attacks at Point 4.  

 

8.5 Experimental Results 

8.5.1 Model Validation and Experimental Results for Brute-Force Attacks 

The use of the probabilistic model to analyze brute-force attacks requires us to make some assumptions 
when obtaining the model parameters pi. It is assumed that the winning indexes of Competitive Code Q 
follow independent uniform distributions. In other words, 6/1)Pr( , == vQ yx , for all v=0, 1, 2, 3, 4, and 

5. This assumption holds since the random field is formed by independent uniform distributions. 
However, this probabilistic model does not require any assumptions as to the winning indexes of the 
artificial Competitive Codes, Zi. Let cv be the probability of the winning index of Zi being equal to v. 
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Using Table 4.1, we can infer that 6/16/
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Now that all the model parameters are determined, a simulation is run to validate the proposed model. 
11,074 palmprint images from 568 different palms are collected for this simulation. First of all, 100 
different random fields are used to compute the Competitive Codes. Then, uniform distribution is used to 
generate 100 artificial Competitive Codes to attack each Competitive Code. Each artificial Competitive 
Code is matched with the true Competitive Code as a brute-force attack. The distribution of the winning 
indexes of true Competitive Code is listed in Table 8.1 demonstrating that the winning index follows 
uniform distribution. The probabilities, p0, p1, p2, and p3 at different positions are listed in Figure 8.2, 
where black represents probability zero while white represents probability one. Figure 8.2 demonstrates 
that the stationary assumption for pi is held. The empirical distribution and the proposed theoretical 
distribution of non-translated matchings are given in Figure 8.3(a). Figure 8.3(b) and (c) are the plot of 
the predicted cumulative probability against the observed cumulative probability from non-translated 
matchings and translated matchings, respectively. Figure 8.3(a)-(c) demonstrate the predictive power of 
the proposed model.   

Now the proposed model is used to estimate the probability of successful break-ins. Figure 8.3(d) plots 
the probability of false acceptance against different thresholds. Only the threshold between 0.36 and 0.39 
is shown since Competitive Code generally operates in this range. Assume that Competitive Code can 
make 1 million comparisons, 10 times faster than the current implementations. The corresponding 
computation times for z=1011, 1012, 1013, 1014 and 1015 are 1.16 days, 11.5 days, 115 days, 3.17 years and 
31.7 years, respectively. The computation times and the probabilities of false acceptances demonstrate 
that it is impossible to use brute-force to break into the system based on Competitive Code. 

 

       

(a)   (b)   (c)   (d) 

Figure 8.2 (a)-(d), the estimated p0-p3 at different positions, respectively, where black represents 
probability zero while white represents probability one 
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(a)      (b) 

 
(c)      (d) 

Figure 8.3 Model validation and predications (a) empirical and theoretical distributions from non-
translated matchings, (b) a plot of predicted cumulative probability against observed cumulative 
probability for non-translated matchings, (c) a plot of predicted cumulative probability against observed 
cumulative probability for translated matching and (d) the probability of false acceptances against 
different thresholds. 

 

Table 8.1 Distribution of winning indexes 

Winning index 0 1 2 3 4 5 

Probability 0.166 0.167 0.168 0.166 0.166 0.167 
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8.5.2 Security Trade-off 

Although longer messages provide greater security, they can also degrade the recognition performance. In 
this section, the accuracy of Competitive Code with message lengths of, 0, 8, 16, 24 and 32 winning 
indexes are examined. 11,074 palmprint images collected from 284 subjects are collected for this 
experiment. The detailed information about this dataset can be found at Chapter 3. 

To reliably estimate the accuracy of Competitive Code with different messages, each of the palmprint 
images was compared only with all of the palmprint images in the database from different occasions. A 
matching is considered as a genuine matching if two palmprints are from the same palm. Otherwise, it is 
considered as an imposter matching. The number of genuine and imposter matchings in each experiment 
are 54,081 and 30,603,388, respectively. The genuine and imposter distributions are estimated by the 
genuine and imposter matchings and their corresponding receiver operating characteristic (ROC) curves 
are given in Figure 8.4. Figure 8.4 illustrates that the degradation of performance is not serious even when 
the message length is 32 winning indexes.  

 

 

Figure 8.4 Comparison of Competitive Codes with different lengths of messages.(color figure) 
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8.6 Analysis of the Security Measures 

In this section, the effectiveness of the security measures is analyzed. Firstly, the number of effective 
cancellable templates is estimated. Then, probability models are developed to compute the probability of 
break-ins using database attacks. Replay attacks at Point 4 are not considered in this analysis since one 
time pad is regarded as perfect secrecy.  

 

8.6.1 Ability of Template Re-issuance 

The ROFB described in Section 8.2 can generate 61024 ≈10797 different Competitive Codes for one single 
image. Although this number is extremely large, not all the templates can be used for re-issuances. The 
angular distance between compromised and reissued templates can be shorter than the decision threshold. 
Since the random fields are independent, matching compromised templates and reissued templates is 
equivalent to match two random synthetic templates. Therefore, the projected multinomial distribution 
developed for analyzing brute-fore attacks can be applied to estimate the probability of the angular 
distance between compromised and reissued templates being shorter than a threshold T [5]. According to 
this probabilistic model, when the threshold is 0.39, which is generally used in the system, 1015 templates 
can be reissued and corresponding probability of using compromised templates to break in is 10-12 [5]. 
These numbers demonstrate that the probability of a successfully break-in into the system using 
compromised templates is extremely low and the number of effective cancellable templates is numerous.      

 

8.6.2 Analysis of Database and Replay Attacks 

To perform database attacks, attackers firstly need to estimate the random field and the random bits Rc to 
adjust their Competitive Codes from unregistered users, which can be generated based on my 
publications. Then, they either insert the adjusted templates directly into the database or combine the 
unregistered template with registered templates to form a new template and insert it into the database. So 
far, I do not have any effective approaches to estimate the random field and Rc. If the entropies of winning 
indexes are low, attackers are easy to estimate them. The entropy at point (x, y) is defined as 



=

==−=
5

0
,, ))log(Pr()Pr(),(

i
yxyx iPiPyxE . The log is base 2 in the following experiments. Figure 

8.5(a) and (b) show the entropies of winning indexes of left and right palms, estimated by 1,200 images 
from 150 the left and the right palms, respectively. The lowest entropies of both left and right palms are 
2.4. Comparing the maximum entropy bound, 6.2)6/1log( =− , they are still high.  
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(a) (b) 

Figure 8.5 The entropies of winning indexes. (a) left palm and (b) right palm 

 

In the following analyses, I study the probabilities of an insert template and a registered template 
having the same secret messages assuming that attackers can perfectly estimate the random field and the 
random bits Rc. If attackers replace a registered template with an unregistered template directly, the 
probability of the two templates has the same message is 6-m, where m is length of the message. For m=8, 
16, 24 and 32, the corresponding probabilities are 5.9×10-7, 3.5×10-13, 2.1×10-19 and 1.3×10-25, 
respectively.  

Attackers may use a more intelligent approach to increase the probability of successful break-ins. They 
can select some winning indexes from a registered template and the others from an unregistered template 
to form a new template for database attacks. Let us consider a simple case first. Each user has only one 
template in the database. Let the number of winning indexes selected from the registered template be M 
and the number of message codes being selected be u. In other words, the number of winning indexes 
from the unregistered template is 1024-M. If u is considered as a random variable, the probability of the 
M winning indexes containing r secret codes can be computed by hypergeometric distribution, whose 
probability density function is defined as,  

M

rMmrm

C
CC

rh
1024

1024)( −−= .         (8.9) 

Therefore, the probability of the combined template and the registered template have the same secret 

message is rm
m

r

rh −

=

 6/)(

0

. Table 8.2 lists the numerical values. 
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Table 8.2 The probability of combined and registered templates having the same secret message in the 
case that system stores only one template. 

Message length, m Number of winning indexes in 

combined template is drawn from 

registered templates 8 16 24 32 

256 3.8×10-4 1.4×10-7 4.7×10-11 1.5×10-14 

512 1.3×10-2 1.7×10-4 2.1×10-6 2.5×10-8 

 

If each user has more than one template, attackers can make use of the correlation between the 
templates of the same user to further increase the probability of successful break-ins. First of all, they can 
align all templates based on one of the templates and compute the error map defined as 



=

++=
1

0 ),(),,((),(
i

iisis vyhxPyxPAyxe . The locations of the message SID are in the zeros of error 

map and between 302 ≤< x  and 302 ≤< y  because of the translations. Let the number of zeros 
between 302 ≤< x  and 302 ≤< y  be v1. If attackers select all the corresponding winning indexes 
from Ps0, the combined templates have to include SID. Some secret codes of ST are also included in this 
selection process. Let the number of secret codes of ST being selected is v2. The sizes of SID and ST both 
are set to m/2 in this analysis. Thus, the number of secret codes that were not selected is m/2- v2. Since 
attackers have selected v1 winning indexes, the number of selection for the rest of unselected secret codes 
is M-v1 and the number of rest of winning indexes in Ps0 is 1024- v1. The probability of r secret codes 
being selected from the rest of winning indexes is  

11

1212

1024

2/10242/)(
vMv

rvMvmvrvm

C

CC
rg

−−

−−+−−−= .       (8.10) 

Thus, the probability of the combined template and registered template having the same message code is 



−

=

−−
2

2

2/

0

2/6/)(
vm

r

rvmrg . In addition to the parameters M and m, the other two parameters, v1 and v2 are 

needed to compute this probability.  

In the following experiments, the system stores three templates for each palm to estimate v1 and v2. All 
the templates are from palmprints collected the first session. The experiment is repeated 10 times by 
randomly selecting palmprints from the first session to construct the registered templates. In total, 5,680 
sets of v1 and v2 are obtained. Table 8.3(a) and (b) report the average and maximum probabilities of 
combined templates and registered templates having the same message, respectively. Table 8.2 and Table 
8.3 demonstrate that attackers can make use of the correlation between templates to increase the 
probability of successful break-ins. However, the probabilities are still very low if the message length is 
longer than or equal to 32.  

We should remember that database attacks on biometric systems are in fact different from cipher 
attacks. For cipher attacks, attackers have encrypted data and try to recover the original data, such as text. 
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Generally speaking, they can perform unlimited attempts and know the correctness of decrypted data. 
However, attackers of biometric systems have only very limited number attempts available to them in 
which to carry out database attacks since they need to insert the combined templates into databases in 
order to examine them for correctness.  

 

Table 8.3 The average (a) and maximum (b) probability of combined and registered templates having the 
same secret message in the case that system stores only three templates. 

(a) 

Message length, m Number of winning indexes in 
combined template is drawn from 

registered templates 
8 16 24 32 

256 2.8×10-4 1.2×10-6 5.8×10-9 4.2×10-11 
512 2.9×10-2 1.0×10-3 4.6×10-5 1.9×10-6 

 

 

(b) 

Message length, m Number of winning indexes in 
combined template is drawn from 

registered templates 
8 16 24 32 

256 5.0×10-2 4.8×10-4 3.3×10-6 1.4×10-7 
512 3.7×10-1 5.7×10-2 3.1×10-3 1.9×10-4 

 

8.7 Conclusion 

In this chapter, I employ random orientation field bank for template re-issuance, one time pad for 
defending replay attacks and secret messages for detecting replay and database attacks and develop a 
projected multinomial distribution, which describes the relationship between the probability of false 
acceptance and the number of attacks for analyzing brute-force attacks. This study demonstrates that 
random orientation field bank can re-issue numerous templates and secret messages can detect database 
and replay attacks effectively if the message length is longer than or equal to 32. The experimental results 
also show that the presence of messages in the templates results in a low degradation of accuracy. This 
experiment demonstrates once again the trade-off described in Figure 1.2. This study also shows that 
when the system threshold is set to lower than 0.39, it is computationally infeasible to break into the 
palmprint system using brute-force attacks. 
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Chapter 9 Conclusion and Future Directions 

9.1 Summary 

In this thesis, I first modify PalmCode by using multiple elliptical Gabor filters, a fusion rule, and a 
dynamical threshold to develop a palmprint identification algorithm called Fusion Code. Experimental 
results demonstrate that Fusion Code performs better than PalmCode. Although palmprints and irises are 
different biometrics, PalmCode, Fusion Code and IrisCode are all based on phase features. I have found 
that orientation fields of palmprints are powerful features that enhance the performance of coding 
methods for palmprint identification. Using these features, I develop a new coding method called 
Competitive Code. A Gabor filter bank and a winner-take-all rule are used to estimate the orientation 
fields, and a bitwise angular distance is developed for high-speed matching. A comparison demonstrates 
that the Competitive Code performs better than other palmprint recognition methods.  

Although many coding methods have been proposed based on IrisCode for iris and palmprint 
identification, we lack an analysis of IrisCode. To better understand IrisCode and to uncover the theory of 
coding methods, I have analyzed IrisCode. This analysis reveals that 

• the locus of Gabor phase is an ellipse; 

• under suitable parameterization, the locus is a circle; 

• IrisCode is a clustering process with four prototypes; 

• angular distance can be represented by bitwise hamming distance;  

• Gabor filter can be regarded as a steerable filter;  

• IrisCode and other coding methods are under the same framework and 

• the theoretical evidence of the binomial imposter distribution of IrisCode is incomplete.   

Based on this analysis, a precise phase representation inheriting all the properties of IrisCode has been 
developed for iris identification. I also provide a note about fair comparison of IrisCode. 

In addition to developing new coding methods and analyzing IrisCode, I have systemically studied 
genetically identical palmprints. This study shows that palmprints have enough distinctive features for 
classifying identical twins’ palmprints, although principal lines and some wrinkles are genetically 
dependent.  

For protecting and analyzing the security of a palmprint identification system based on Competitive 
Code, I propose projected multinomial distribution, random orientation field, one-time pad and template 
watermarking for investigating brute-force attacks, reissuing new templates, and defending against replay 
and database attacks. The projected multinomial distribution indicates that it is computationally infeasible 
to break into a palmprint identification system based on Competitive Code by brute-force attacks. On the 
other hand, the projected multinomial distribution points out that the random orientation field can re-issue 
more than enough effective templates. Using hypergeometric distribution to model replay and database 
attacks, the analysis demonstrates that the probability of successfully breaking into the system is 
extremely low if the length of secret messages hidden in the templates is longer than 32 winning indexes.   
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9.2 Contribution of this Thesis 

At the end of this thesis, a summary of contribution of thesis is provided, for evaluation only.  

 

• I use fusion rule and multiple elliptical Gabor filters to improve PalmCode. 

• I identify orientation field of palmprints as power features for personal identification.  

• Using orientation field as features, I develop Competitive Code, which is constituted by a novel 
coding scheme and a novel bitwise angular distance. Competitive Code is the first palmprint 
identification algorithm completely employing the orientation field of palmprints as features.  

• I provide a detailed analysis of IrisCode, which first appeared thirteen years ago. This is the 
first and only document that provides a detailed analysis of this method. This analysis is the 
core contribution of this thesis.  

• Making use of the analysis of IrisCode, a framework is provided to link up all the coding 
methods for palmprint and iris identification. 

• Using Competitive Code to examine genetically identical palmprints, I show that they have 
enough distinctive features for classifying identical twins. The genetically dependent features 
are also uncovered. This is the first systematic study of genetically identical palmprints for 
personal identification.  

• I develop a projected multinomial distribution for analyzing brute-force break-ins. 

• I use random orientation field for template re-issuance. 

• I propose template watermarking for defending against replay and database attacks. This is first 
document to consider replay and database attacks against palmprint systems. 

 



 99

9.3 Future Work and Directions 

This thesis has covered various issues in palmprint identification, including accuracy, matching speed, 
template re-issuance, brute-force attacks, replay attacks, database attacks and genetically dependent 
features in palmprints. It has also presented a detailed theoretical analysis of IrisCode and a framework to 
link up the existing coding methods for palmprints and irises. On the base of this thesis, there are several 
potential directions:  

• Accuracy is always an important objective for biometric systems. Further enhancing the 
accuracy of the proposed algorithms in this thesis is not difficult if we sacrifice matching speed. 
I can increase the precision of the orientations in Competitive Code or increase number of 
sample points in Competitive Code. I also can combine different biometrics such fingers and 
hand geometry for fusion. The challenge is to enhance accuracy and maintain the matching 
speed simultaneously. In the coming future, I will make use of the masks of Competitive Code 
to achieve this goal.  

• Coding methods are in fact clustering processes. Their performance highly depends on the 
quality of alignment algorithms. Even though the palmprint alignment algorithm [7, 164] 
developed by me has been widely employed by other researchers, further improving this 
algorithm is necessary.  

• Some palmprint researchers report extremely high accuracy based on very simple methods 
such as PCA. However, the reported accuracies highly depend on evaluation schemes [35]. 
Open and standard evaluation schemes should be established.  

• In Chapter 5, I have pinpointed that the imposter distribution of IrisCode does not theoretically 
follow a binomial distribution. It is valuable to study the theoretical imposter distributions of 
IrisCode and other coding methods. 

• The coding methods have been extensively applied to irises and palmprints. It is possible to 
apply or modify the coding methods for other biometrics such as fingerprint and face. 

• In Chapter 7, I have used Competitive Code to identify the genetically dependent features. In 
dermatoglyphic society, genetically dependent features are identified manually. In fact, we can 
use a computational approach to speed up the process.  

• Some basic issues of using palmprints for personal identification are in fact not well addressed. 
For instance, it is known that ridges in palmprints are, like fingerprints, stable over an entire 
lifetime, but the stability of principal lines and wrinkles has not been systemically investigated. 

• In Chapter 8, I have addressed various security issues, including template re-issuance, brute-
force attacks, replay attacks and database attacks for the palmprint identification system. 
However, current palmprint systems are possible to be spoofed by fake palmprints. Figure 
9.1(a) shows a fake palmprint, which is the first fake palmprint reported in the literature and 
Figure 9.1 (b) shows the corresponding genuine palmprint. It is essential to develop next 
generation palmprint sensors and algorithms for liveness detection.  

• In addition to developing new algorithms and sensors for defending against the attacks, 
analyzing and evaluating vulnerabilities of palmprint systems are also necessary [65].  
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In addition to these further directions, biometric researchers are in fact facing some open problems. 
Most biometric systems are examined only on zero effort attacks (general false acceptance rates). Do they 
still survive if experts attack them? Furthermore, how can we objectively evaluate and compare the 
security levels of biometric systems? It should be recognized that successfully breaking into biometric 
systems depends on money, time and knowledge. Biometric researchers are facing a dilemma. As we 
publish papers to disclose our findings and algorithms for the sake of distributing knowledge to our 
society and the next generation, we are also providing the information that potential attackers require 
breaking into our systems. 

 

    

(a)      (b) 
Figure 9.1 (a) A fake palmprint and (b) the corresponding genuine palmprint. 
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Appendix 1 Ma el al. method based on the operator “≥≥≥≥” and “<” and 

hamming distance 

The appendix shows that the coding method in [108] is based on the operators “≥” and “<” and hamming 
distance. 

Ma et al [108] first apply a quadratic spline wavelet to decompose the one dimensional iris signals into 
several scales but only two scales are used in the their feature extraction process. Ma et al record the 
locations, d, and types of all the local extremum points (minimum and maximum points) as features. To 
obtain stable feature points, they remove pairs of adjacent points having an amplitude difference smaller 
than a predetermined threshold. Since there are only two types of extremum points and since two adjacent 
points of a maximum point must be minimum points, just one pointer, pi, will suffice to denote all the 
type information in scale i. The pointer, pi, is set to 1 if the first extremum point is a minimum point; 
otherwise pi is set to –1. Finally, for each decomposed signal Si, the pointers and locations of feature 
points are stored as the following form 

},;,...,,;,...,...,{ 212121 ppdddddddf nmmmmii +++= .        (A1) 

To exploit XOR operations for effective matching, as in IrisCode, the original features in each scale are 
transformed into a binary feature vector of a fixed length, L. Figure A1 illustrates this process, which is 
called feature transform. If pj is –1, the first d1-1 components in the binary feature vector are set to 0; 
otherwise they are set to 1. Then, all the components in the binary feature vector corresponding to 
maximum and minimum points are set to 0 and 1, respectively. All the other components between di and 
di+1 are set to 0 if di corresponds to a maximum point; otherwise, they are set to 1.  

 

Figure. A1 Illustration of Ma et al’s feature transform 

 

This coding scheme is more complicated than other coding schemes but is very similar to the standard 
coding scheme defined in Eqs. 5.22-5.23. To demonstrate the relationship between the coding scheme of 
Ma et al and other coding schemes, a process is applied to Si, the wavelet transformed signal, to obtain a 
signal vi for coding based on “≥” and “<”. Each extremum point in vi has a corresponding extremum point 
in Si with the same type, location and amplitude but the amplitude difference between each pair of 
adjacent extremum points in vi has to be larger than the predetermined threshold. A simple way to obtain 
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vi is to interpolate the extremum points in Eq. 5.25. Since the maximum and minimum points in Eq. A1 
correspond to the zero-crossings in dxdvi / , their coding scheme can be rewritten as follows. 

If ji xxdxdv =|/ >0, then Bj=1; 

otherwise Bj=0. 

Therefore, the Ma et al coding scheme can be rewritten based on the operators “≥” and “<” and can be 
considered as standard coding scheme. 
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Appendix 2 Condition of Circular Locus of Gabor Phase 

Eq. 5.16 demonstrates that the locus of )(ϕ
→
Z  is an ellipse with respect to ϕ . In fact, the locus can be 

further constrained. Under suitable parameterization, it is a circle. Mathematically, 
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Appendix 3 Equivalent relationship between the bitwise hamming 

distance and the angular distance 

This appendix shows the equivalent relationship between the bitwise hamming distance and the angular 
distance in Eq. 5.17.  

Let two winning indexes be j-1, and j-1+k, where nkjj 21 <+≤≤ . Their angular distance is 
)2,min( knk − . Using the coding scheme given in , the winning indexes are represented by jth and j+kth 

column vectors of matrix A. I would like to prove 
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The number of i satisfying condition (C3) is ),0max( jnkj −−+                 (C4) 
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Appendix 4 Effective Computation of the Phase When the Locus of 

)(ϕ
→
Z  is a Circle 

This appendix shows that when the locus of )(ϕ
→
Z  is a circle, 1)(/)(maxarg ϕϕρφρϕρ
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Using the second order derivative, we can demonstrate that the ϕ i corresponding to the maximum 
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