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Abstract  IrisCode, developed by Daugman in 1993, is the most influential iris recognition algorithm. 

A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled 

by this algorithm and many biometric personal identification and template protection methods have been 

developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a 

convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original 

biometric signal, can be computed by a simple algorithm, which can often be implemented in one 

MATLAB command line. The central ray is an expected ray and also an optimal ray of an objective 

function on a group of distributions. This algorithm is derived from geometric properties of a convex 

polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results 

show that biometric templates, including iris and palmprint templates, produced by different recognition 

methods can be matched through the central rays in their convex polyhedral cones and that templates 

protected by a method extended from IrisCode can be broken into. These experimental results indicate 

that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. 

Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of 

advanced image processing and biometric databases can still break into protected templates and reveal 

relationships among templates produced by different recognition methods.  
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1. Introduction 

IrisCode1 has over 100 million users from approximately 170 countries [1]. As of 4 January 2012, the total 

number of people just in India who have had their iris patterns enrolled by IrisCode is 103 million. The Unique 

Identification Authority of India is enrolling about one million persons per day, at 40,000 stations, and they 

plan to have the entire population of 1.2 billion people enrolled within 3 years [33]. The extraordinary market 

success of IrisCode relies heavily on its computational advantages, including extremely high matching speed 

for large-scale identification and automatic threshold adjustment based on image quality (e.g., number of 

effective bits) and database size [1-3]. In the last two decades, this algorithm influenced many researchers [4-

15]. Many methods modified from IrisCode were proposed for iris, palmprint, and finger-knuckle recognition. 

This paper refers to these methods as generalized IrisCodes (GIrisCode) [4]. The simplest modification 

replaced the Gabor filters in IrisCode with other linear filters or transforms. A more complex modification 

used a clustering scheme to perform feature extraction and a special coding table to perform feature encoding 

[4-5]. With these modifications, feature value precision could be increased, and many IrisCode computational 

advantages could be retained. Another modification replaced the Gabor filters in IrisCode with random vectors 

to construct cancelable biometrics for template protection [16-17]. A complete understanding of IrisCode is 

thus necessary. Though many research papers regarding iris recognition have been published, our 

understanding of this important algorithm remains incomplete. Daugman indicated that the imposter 

distribution of IrisCode follows a binomial distribution, and the bits “0” and “1” in IrisCode are equally 

probable [1]. Hollingsworth et al.2 analyzed bit stability in their iris codes and detected the best bits for 

enhancing recognition performance [18]. Kong and his coworkers theoretically derived the following points: 

IrisCode is a clustering algorithm with four prototypes and a compression algorithm; the Gabor function can be 

regarded as a phase-steerable filter; the locus of a Gabor function is a two-dimensional ellipse with respect to a 

phase parameter and can often be approximated by a circle; the bitwise hamming distance can be considered a 

bitwise phase distance; and Gabor filters can be utilized as a Gabor atom detector, and the magnitude and 

phase of a target Gabor atom can be approximated by the magnitude and phase of the corresponding Gabor 

                                                            
1  In this paper, IrisCode is used interchangeably to refer to both the method and features of iris recognition 
developed by Daugman. 
2 Hollingsworth et al. used 1D log-Gabor wavelets instead of 2D Gabor filters in their study [18]. 
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response [4, 19-20]. Using these theoretical results and information from iris image databases, Kong designed 

an algorithm to reconstruct iris images from IrisCodes [20]. Nevertheless, the geometric structure of IrisCodes 

has never been studied. This paper primarily aims to provide a deeper understanding of the geometric 

structures of IrisCode and its variants and secondarily seeks to analyze the potential security and privacy risks 

from this geometric information.  

 Though the IrisCode computational procedures are well-known, we present a brief computational 

summary for notation consistency. Two-dimensional Gabor filters with zero DC are used to extract phase 

information from an iris image in a dimensionless polar coordinate system, 0( , ) Ι . The complex Gabor 

response is quantized into two bits by the following inequalities:  

2 2 2 2
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where j is the spatial frequency, j and j control the shape of the Gaussian function and 0 0( , )j jr   is the 

center/location of the filter in the spatial domain [2]. One thousand and twenty-four Gabor filters with 

different parameters 0 0( , , , , )j j j j jr      generate 1024 bit pairs ( , )jr jib b  in an IrisCode, and a mask 

excludes the corrupted bits from the eyelashes, eyelids, reflection, and a low signal-to-noise ratio [2]. 

Bitwise hamming distance is employed for high speed matching. Although Eqs. 1-4 are given as 

integrations over a filter kernel, in the rest of this paper, two dimensional functions are expressed in 

discrete form as matrices and that these matrices are expressed as vectors after lexicographic ordering. 

Therefore, all filtering operations will be expressed as inner products. 
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The rest of this paper is organized as follows: Section 2 gives an introduction to convex polyhedral 

cone, presents an algorithm to estimate its central ray and reveals the relationships among the central ray, 

the expected ray and the optimal ray of an objective function on a group of distributions. Section 3 shows 

that a template produced by IrisCode or GIrisCode is a convex polyhedral cone in a hyperspace. Section 4 

reports the experimental results obtained from iris recognition methods, palmprint recognition methods, 

and a security analysis of a template protection method. Section 5 discusses the impact of our theoretical 

and experimental findings.  

 

2. Estimating the Central Ray of a Convex Polyhedral Cone 

For clear presentation, a set of notations is necessary. Given a zero DC Gabor filter jg with parameters

0 0( , , , , )j j j j jr     , which generates a bit pair ( , )j jr jiB b b  in an IrisCode, jrg and jig
 
represent its 

real and imaginary parts. I is used to denote 0 ( , )  Ι . 0Ι  can be computed from I, because  can never 

be zero. For other biometric methods, I represents an original image and biometric signal. Bold font is 

used to denote matrices and both two-dimensional filters and images. For example, jig is an imaginary 

part of a two-dimensional Gabor filter, while jig is a column vector form of jig , and I is a two-

dimensional image, while I is a column vector form of the image. T represents the transpose of a matrix or 

vector. Therefore, the inner product of two real valued vectors (e.g., jrg
 
and krg ) can be defined as 

, T
jr kr kr jrg g g g  .  

 

2.1.   Fundamental Knowledge of a Convex Polyhedral Cone 

Convex polytope, a branch of mathematics, has strong connections with constraint optimization (e.g., 

linear programming) [21-22]. A convex polyhedral cone is a special type of convex polytope. In this 

subsection, we introduce the convex polyhedral cone for readers without background knowledge. 
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 A convex polytope can be defined in several different ways. This paper uses the half-space 

representation, which defines a convex polytope through the intersection of closed half-spaces. Let 

dC  be a convex polytope. Using the half-space representation, { : }dC x x z  Q , where 

m dQ  and mz .  Each row in the inequality system describes a half-space, i.e., k kq x z  [21], 

where kq  is the kth row in Q, and zk is the kth element in z. Note that k kq x z  is a hyperplane. When z is a 

zero vector, C becomes a convex polyhedral cone with apex zero [22]. This paper considers only convex 

polyhedral cones with apex zero; { : 0}dC x x  Q  is thus used as a definition of the convex 

polyhedral cone. Three properties can be derived: (1) C is a convex set; (2) the intersection of convex 

polyhedral cones is also a convex polyhedral cone; and (3) if x C , then x C  , 0  , where x  is 

called a ray. The following discussion uses these three properties. Fig. 1 illustrates convex polyhedral 

cones and other cones. Fig. 2 illustrates that the intersection of convex polyhedral cones is also a convex 

polyhedral cone. 

 
(a) 

 

 
(b) 

  
(c) 

 
(d) 

Fig. 1 Illustration of convex polyhedral cones and other cones. (a) and (b) convex polyhedral cones, (c)  a 
non-convex polyhedral cone and (d) a circular cone.  
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Fig. 2 The intersection of convex polyhedral cones is also a convex polyhedral cone. 

 

 The half-space representation is not unique. In other words, there exists more than one inequality 

system representing the same convex polyhedral cone. For example,  

1 12
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2 2

1 0
: 0

0 1

x x
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x x

                   
,           (5) 

and  
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: 0 1 0

1 1

x x
C

x x

  
                     

,           (6) 

represent the same convex polyhedral cone (Fig. 3), but their inequality systems differ. The inequality 

1 2 0x x    in Eq. 6 is a redundant constraint that can be removed. Note that the number of inequalities 

in the minimal representation is unique [24]. Several ways exist to remove redundant constraints in a 

linear inequality system. A simple one is based on linear programming. Let us consider an inequality 

system 
q

z
x

zq

  
   

   

Q
, where m dQ , dx , mz , 1 dq  , and qz  . If qqx z  is a redundant 

constraint in the linear inequality system, then qz  , where  is defined as 

max subject to
1q

z
qx x

zq


  
        

Q
.            (7) 
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Eq. 7 can be solved by linear programming. Convex hull algorithms can also remove redundant 

constraints [23].   

X1

X2

X1≥0 X1≥0

X2≥0

X2≥0

C1

 
(a) 

 
(b) 

Fig. 3 Illustration of a non-unique representation of a convex polyhedral cone and a redundant constraint. 
(a) the convex polyhedral cone C1 defined by Eq. 5 and (b) the convex polyhedral cone C2 defined by Eq. 
6. 
 
2.2.  A Simple Geometric Algorithm 

In this subsection, a simple geometric algorithm3 is derived to estimate the central ray of a convex 

polyhedral cone. This algorithm is the realization of the idea that a ball is put into a convex polyhedral 

cone. If the ball touches all planes of the cone, it cannot be moved closer to the apex (Fig. 4). By locating 

the centers of balls with different radii, the central ray of the cone can be constructed. Let us 

mathematically formulate this idea. Given a convex polyhedral cone { : 0}dC x x  Q , a set of 

hyperplanes 1 0,q x    and 0mq x  , where kq  is the kth row in Q, can be obtained. Here, we assume 

that 0x Q  is a minimum representation [24]. Given a point dy , the displacement between y and a 

hyperplane 0kq x   can be calculated by 

/k k kq y q  .              (8) 

                                                            
3 Although the geometric algorithm was completely designed by the author without help from other materials, he 
cannot guarantee that there is no other published algorithm for computing the central ray of a convex polyhedral 
cone because geometry is a large field with many years of history and many other fields use it. 
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Note that k  is displacement, not distance, and 0k   when y C . Rewriting Eq. 8 gives k k kq y q . 

Let us seek a point with the same displacement to all hyperplanes, i.e., 1 m     . This point is the 

center of a hypersphere with radius  , which touches all hyperplanes. Using the matrix representation, 

we obtain 

1

m

q

y

q


 
   
  

Q ,             (9) 

where 0  . As with other linear systems, Eq. 9 can have unique, multiple, or no solutions. Eq. 9 has a 

unique solution, meaning that there exists only one position in the cone such that the hypersphere can 

touch all hyperplanes. Eq. 9 has multiple solutions, meaning that there exists more than one position in 

the cone such that the hypersphere can touch all hyperplanes. Eq. 9 has no solution, meaning that no such 

position exists in the cone. Fig. 5 illustrates these three cases.  

 We use the center of the hypersphere to determine the central ray of the convex polyhedral cone. 

Let y be a solution of Eq. 9 for a hypersphere with radius  . It is easily proven that y , where 0  , is 

also a solution for a hypersphere with radius   . Each solution of Eq. 9 produces one central ray, i.e., 

y . Any point on the ray is the center of a hypersphere, which touches all hyperplanes. If Eq. 9 has no 

solution, the least square method can compute y.  

One may suggest generalizing skeletonization algorithms, which were designed for digital 

images, from two-dimensional to d-dimensional domains to find the central ray. It is an ineffective 

approach because these algorithms have to discretize the d-dimensional solution space and label all the d-

dimensional voxels in it. Note that the solution space is unbounded, which makes it impossible to label all 

the voxels in the solution space. In other words, only a subset of voxels can be labeled. If they are not 

selected appropriately, the central ray cannot be obtained, even for over-constrained systems. For under-

constrained systems, this problem is more obvious. 
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Fig. 4 Illustration of the geometric algorithm. 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 5 Geometric explanation of Eq. 9. (a) Unique solution, (b) multiple solutions, and (c) no solution. 

  

2.3 The Relationships among the Central Ray, Expected Ray, and Optimal Ray  

The geometric algorithm to compute central rays has been presented. From the algorithmic point of view, 

the relationship between the central ray and the expected ray4 of a convex polyhedral cone should be 

studied because they are anticipated to be the same ray. From the application point of view, the 

relationship between the central ray and the corresponding optimal ray should also be investigated 

because, if the central ray is far from the optimal ray, it implies that there is some space for improving the 

algorithm. This subsection reveals the relationships among the central ray, the expected ray and the 

optimal ray.  

                                                            
4 The term expected ray refers to the ray generated from the mathematical expectation.  
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 To study their relationships, a distribution of rays has to be defined. Let C be a convex polyhedral 

cone, { : 0}dC x x  Q , where each row of Q is normalized, i.e., 11  dqq   and Q is an 

invertible d by d matrix. Thus, its central ray 5  cR  can be calculated by 1
cR   Q , where 

[1 1 1] .T    Let Rr be a random ray generated by 

1
rR   Q ,           (10) 

where 1[ ]T
d     and 1, , d   are independent and identically distributed random variables 

following a distribution with a probability density function f  whose mean is   and support is ][ ba . 

Thus, the probability density of   is 
1

( )
d

i
i

f 

 . Note that 0a . All random rays generated by Eq. 10 

are in the convex polyhedral cone C. i  represents the distance between the point that is used to construct 

a random ray and the hyperplane 0xqi .  

 Let Rt be a target ray for C. In the following sections, Rt represents the original features and 

images. Note that Rt is an unknown. Without other prior knowledge, each ray in C can be the target ray. 

Assuming that Rt follows the distribution generated by Eq. 10, an optimal ray Ro is defined  

arg max ( )T
o t

R
R R R p d



   ,  subject to 1R  ,         (11) 

where ( )p   represents the probability density of  . The expected inner product is used as an objective 

function because many biometric methods, including the variants of IrisCode, use the inner product to 

measure the similarity between an input biometric signal (e.g., iris image) and a filter (e.g., Gabor filter) 

as a feature extractor. Thus, Eq. 11 uses the inner product to measure the similarity between R  and tR . 

If the norm of R  is not constrained, max ( )T
tR R p d   approaches infinity. Rewriting Eq. 11,  

arg max ( )T
o t

R
R R R p d



   ,  subject to 1R  ,         (12) 

                                                            
5 In the subsection, the term ray also refers to the point that generates the ray. 
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can be achieved. Clearly, ( )tR p d   is the expected ray, and the optimal ray of this objective function is  

( )
.

( )

t

o

t

R p d
R

R p d

 


 


            

(13) 

Thus, the optimal ray and the expected ray are the same ray.   

 Now, we show that the central ray is the expected ray as well as the optimal ray. Substituting Eq. 

10 into ( )tR p d  , we can obtain  

1 ( )p d    Q .           (14) 

Simplifying Eq. 14, 1 1( )p d 
        Q Q , which is the central ray, is derived. Thus, the central 

ray, the expected ray, and the optimal ray of the objective function on the distribution are the same ray. In 

this derivation, we do not specify the probability density function f , so a group of probability density 

functions, including a uniform distribution can be employed as f .  

 For over-constrained systems, the previous random model is not well defined because it is not 

necessary to have an Rt such that tR  Q , where Q  is an over-constrained matrix. Thus, the random 

model has to be revised. Using the least square method,   1T T
tR


  Q Q Q    can be achieved. For the 

sake of convenience, let   1

2
T T

L


Q Q Q Q   . Replacing Rt in Eq. 11 with tR

~
, we can obtain an optimal 

ray 2 2/L L    Q Q , which is also the expected ray, for the objective function,   

arg max ( )T
o t

R
R R R p d



    ,  subject to 1R  .         (15) 

 For under-constrained systems, there is more than one Rt satisfying ˆ
tR  Q , where Q̂  is an 

under-constrained matrix. Let †Q  be the Moore-Penrose pseudoinverse of Q̂  and †ˆ
tR   Q . In the 

following experiments, the Moore-Penrose pseudoinverse was also used for under-constrained systems. 
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Replacing Rt in Eq. 11 with ˆ
tR , we can derive that the optimal ray † †/    Q Q , which is also the 

expected ray, for the objective function, 

ˆarg max ( )T
o t

R
R R R p d



   ,  subject to 1R  .         (16) 

Thus, for all the cases, the central ray is the expected ray as well as the optimal ray.  

 

3. Convex Polyhedral Cones in Different Biometrics Templates  

This section shows that templates produced by IrisCode and GIrisCodes are convex polyhedral cones in 

different hyperspaces and provides an algorithm to project these cones into a lower-dimensional space to 

find a unique solution for Eq. 9 for iris and palmprint templates. Additionally, an algorithm based on the 

intersection of convex polyhedral cones is also offered to demonstrate that protected templates are 

vulnerable. 

 

3.1.  IrisCode and its Low-Order Generalization 

Let us consider IrisCode first. Using the notations provided in Section 2, we can derive the inequalities 

ˆ 0T
jr jrb g I   and ˆ 0T

ji jib g I  , where ˆ 2( 0.5)jr jrb b   and ˆ 2( 0.5)ji jib b   from Eqs. 1-4. ( )
ˆ 1jr ib   

when ( ) 1jr ib   and ( )
ˆ 1jr ib    when ( ) 0jr ib  . The notation r(i) signifies either real or imaginary part 

from the Gabor filter. Each bit in an IrisCode generates one inequality, which associates with a 

hyperplane, i.e., ( ) ( )
ˆ 0T

jr i jr ib g x  . Putting these inequalities into a matrix form, we obtain ˆ 0T
b

I Ψ , 

where ˆ 1 1 1 1
ˆ ˆ ˆ ˆ[ , , , , , ]r r nr nr i i ni nib
b g b g b g b gΨ    and n=1024. An IrisCode is clearly a convex polyhedral 

cone. 
b̂

Ψ  is an N by 2048 matrix, where N equals the total number of pixels in a normalized iris image. 

The central ray of this convex polyhedral cone can be obtained by solving the linear system ˆ
T

b
I   Ψ , 

where [1 1 1]T   and 0  , because all ( )sjr ig  have been normalized, i.e., ( ) 1jr ig  . It is clearly an 
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under-constrained system, because 2048N  . In our experiments, N is 32,768. The result in Section 2 

pinpoints that if y is a solution of the linear system for a hypersphere with radius  , y , where 0  , 

is also a solution of the linear system for the hypersphere with radius   . We can thus set 1   . 

Rewriting the linear system, we obtain  

ˆT I BΨ ,           (17) 

where 1 1
ˆ ˆ ˆ ˆˆ [ , , , , , ]T

r nr i niB b b b b   and  1 1[ , , , , , ]r nr i nig g g gΨ   6 .  Eq. 17 has multiple solutions, 

because it is still an under-constrained linear system.  

 We now seek a particular solution for Eq. 17. Using the results in [20], I can be decomposed as  

2 1

1 1 1

n n N n

jr jr ji ji j j N
j j j

I a g a g c t
 

  

       ,         (18) 

where jra , jia , jc  and t , [1 1 1]T
N   , j  

is a unit vector orthogonal to N  and all krg  and 

,kig i.e., ( ) 0T
j kr ig   and 0T

j N   , where 1 k n  . Note that N  and   are different in size. Eq. 18 

can be simplified as  

2 1

1

N n

j j N
j

I A c t
 



   Ψ ,          (19) 

where 1 1[ ]T
r nr i niA a a a a   . Note that 0T

j Ψ
 
and 0T

N Ψ , where 0s are zero vectors. 

Substituting Eq. 19 and ˆ 2( 0.5 )B B   , where 1 1[ , , , , ]T
r nr i niB b b b b   , into Eq. 17, we obtain  

2( 0.5 )T A B  Ψ Ψ ,           (20) 

where  

                                                            
6 The matrix  can be downloaded from http://goo.gl/mv2EF. 
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1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

T T T T
r r r nr r i r ni

T T T T
nr r nr nr nr i nr niT

T T T T
i r i nr i i i ni

T T T T
ni r ni nr ni i ni ni

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

 
 
 
 
 
 
 
 
 
 

Ψ Ψ

 
     

 
 

     
 

.          (21) 

Let Ι̂ Α= Ψ . If TΨ Ψ  is invertible, we obtain  

  1ˆ 2( 0.5 )TI B


  Ψ Ψ Ψ .          (22) 

Clearly, Î  in Eq. 22 is a solution of Eq. 17. Substituting Eq. 19 into the original convex polyhedral cone

ˆ 0T
b

I Ψ , we obtain another convex polyhedral cone ˆ 0T
b

A Ψ Ψ  with a lower dimension. The 

original cone is projected into the lower-dimensional space because our previous results indicate that the 

space spanned by the Gabor filters 1 1, , , , ,r nr i nig g g g   stores rich iris information [20]. Another two 

points should be mentioned. This derivation uses neither prior knowledge from iris images nor any 

special IrisCode structure. Templates produced by other biometric methods that use 

1 0j jb if f Id d
 

    ,          (23) 

0 0j jb if f Id d
 

    ,          (24) 

where jb  is a bit in their feature codes and jf  represents their filter, as a feature extractor are also convex 

polyhedral cones, and Eq. 22 can compute their central rays. Note that I in Eqs. 23-24 is a two 

dimensional image. Column vectors in the corresponding Ψ  should be normalized. Eq. 22 can be 

implemented in one MATLAB command line, if memory is enough. If other methods can recognize Î , 

the simplicity of Eq. 22 significantly deepens our concern for privacy, because it implies that junior 

hackers with neither advanced image processing knowledge nor biometric databases can still reveal 

relationships among templates produced by different recognition methods. Ψ  is not a secret for many 

methods, because researchers disclosed their Ψ s in their papers.  
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3.2. The High-Order Generalization of IrisCode 

The previous subsection has pinpointed that templates produced by IrisCode and other biometric methods 

that use Eqs. 23 and 24 as feature extractors are convex polyhedral cones in different hyperspaces. This 

subsection shows that templates produced by methods that are high-order IrisCode generalizations are 

also convex polyhedral cones, including Competitive Code and its variants for palmprint, vein and finger-

knuckle recognition and precise phase representation [4-5, 10].  

 The feature extractor of these algorithms can be summarized as  

 ,
0

arg max T
j j k

k S
h I

 
 ,           (25) 

where j  is a feature value to be encoded, ,j kh  is a filter, and S is the total number of filters used to 

compute one feature value. j  
can be encoded by a specially designed code table such that it can be 

represented in a binary format and hamming distance can be used for matching [4]. Each feature value is 

computed from a group of filters, i.e., ,0 , 1, ,j j Sh h  . Competitive Code uses six real parts of Gabor filters 

with different orientations [5]. In other words, for Competitive Code, S is equal to 6 and ,j ih  is a real part 

of a Gabor filter. S-1 inequalities, , , ,
j

T T
j k jh I h I where j k  , can be derived from Eq. 25 for each 

feature value. Rewriting the inequalities, we obtain , ,( ) 0
j

T
j k jh h I  .  For convenience, let 0j   and 

, , ,( )
jj k j j kh h h   . Using a matrix presentation, a linear inequality system 0T I  , where 

1,1 , 1[ ]J Sh h    , can be obtained. Templates produced by Eq. 25 are clearly also convex polyhedral 

cones. If , 0T
j kh I  , then , ,( ) / 0T

k j j kh I h   . Using this fact, another inequality system ˆ 0T I  , where 

1,1 1,1 , 1 , 1
ˆ / /J S J Sh h h h 

        , can be derived.  

 The central ray of this convex polyhedral cone can be determined by solving the matrix equation 

ˆ T I   . As in the previous subsection, let 
1

, , ,
1 1

/
J S

j s j s j s j j
j s j

I u h h w 


 

    , where ,j su  and 
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jw  and , 0, , and .T
j s kh j s k    Substituting 

1

, , ,
1 1

/
J S

j s j s j s j j
j s j

I u h h w 


 

     into ˆ T I   , we 

obtain ˆ ˆT U    , where 1,1 , 1[ ]T
J SU u u   . If   1ˆ ˆT 

   exists, 1ˆ( )TU     . Let ˆI U  , 

which is an approximation of I. Substituting 1ˆ ˆ( )TU      into ˆI U  , we obtain  

1ˆ ˆ ˆ( )TI      .           (26) 

After constructing ̂ , Eq. 26 can also be implemented in one MATLAB command line.  

 

3.3. Using the Intersection of Convex Polyhedral Cones to Break into Protected Templates 

Biohashing, a cancelable biometric method modified from IrisCode, was designed for template protection 

[16-17]. Once a template is compromised, Biohashing attempts to reissue a new template. It is expected 

that Biohashing can issue new templates without limit, compromised templates cannot be matched with 

newly issued templates, and the original biometric signal cannot be revealed from compromised 

templates. In this subsection, we first show that templates produced by Biohashing are also convex 

polyhedral cones. We then provide an algorithm estimating the central ray in the intersection of convex 

polyhedral cones from compromised templates to reveal the protected biometric signal. 

 Biohashing uses the same computational step as IrisCode to produce protected feature vectors. 

Given an original feature vector v, Biohashing uses a random matrix, 1[ , , ]m 


   with size n  by 

m  and m n  , whose 0T
k j   , k j  , 1k  and 1T

k k    k , to project v into a lower-

dimensional random subspace, i.e., T
cW v   and further binarizes Wc as with Eqs. 1-4. In summary, 

each bit in a protected feature vector can be computed through   

0

1

T
j

j T
j

if v
w

if v

 

 

  


,          (27) 

where  was set to zero in the experiments [16]. If one template is compromised, Biohashing replaces the 

random matrix   with another random matrix. It is expected that the original feature vector in a 
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protected template cannot be revealed, even if attackers obtain  . Some researchers attempted to break 

into the protected templates [25-26]. Our experimental results show that if the system threshold is high 

enough, Biohashing can defend their attacks. Using the result in Section 3.1, we can easily derive the 

convex polyhedral cone of Biohashing, i.e., ˆ{ | 0}m TV x x
     , where 1 1

ˆ ˆ ˆ[ , , ]m mw w 
 

     

and ˆ 2( 0.5)j jw w  . As k  has been normalized, i.e., 1k  , the central ray of this convex polyhedral 

cone can be determined by solving the linear system  

2( 0.5 )T v W   ,           (28) 

where 1[ , , ]T
mW w w


  . The derivation of Eq. 28 is same as Eq. 17. Clearly, it is still an under-

constrained linear system. However, if an attacker obtains e compromised templates generated from the 

same biometric signal and corresponding random matrixes 1 1, e  and e , they can simultaneously 

reveal the original biometric signal and finally break into the system. Let the convex polyhedral cone 

associated with k be  ˆ: 0
k

m T
kV x x

    . All convex polyhedral cones must contain the original 

biometric signal. In other words, the original biometric signal must be in the intersection of all convex 

polyhedral cones. The intersection is also a convex polyhedral cone defined as 

1

1
ˆ

: 0

ˆ
e

T

m

T
e

V V x x
 

  
         
  
   





  .          (29) 

Clearly,  

1 1 1 1 2 1
( ) ( ) ( )

e e
v V V V V V V V

                  .        (30) 

Eq. 30 implies that when e increases, the size of the convex polyhedral cone 
1 e

V V    decreases. If 

the convex polyhedral cone is small enough, we can use its central ray to approximate the original 
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biometric signal. If  
1

ˆ

0

ˆ

T

T
e

x

 
 

 
 
 





  is a minimum representation, the central ray of the intersection can be 

obtained by solving the linear system 

11

2 0.5

e

T

T
e

W

v

W





     
           
           





   .          (31) 

In the experiments, we used the Moore-Penrose pseudoinverse to solve Eq. 31. To keep the simplicity of 

the algorithm and simulate junior hackers breaking into Biohashing, we did not use any methods to 

remove redundant constraints.   

 

4. Experimental Results 

Two iris databases, the UBIRIS.v1 and West Virginia University  (WVU) iris databases [27-28], and one 

palmprint database were used to test the proposed algorithms. The UBIRIS.v1 database contains 1,877 

images from 241 irises, and the WVU7 iris database contains 3,099 iris images from 472 irises. All 

images in the WVU iris database were tested in the experiments. However, 48 images from the 

UBIRIS.v1 database were automatically removed, because of their poor quality (Fig. 6). Though some 

extremely low-quality images were discarded, many challenging iris images were retained for evaluation. 

Fig. 7 gives some examples of the challenging images. The UBIRIS.v1 iris images were taken under a 

visible lighting environment, while the WVU iris images were taken under an infrared lighting 

environment. The original images in the UBIRIS.v1 database are color images. We only used their red 

component for evaluation, because the iris texture in this component is the clearest (Fig. 8). The palmprint 

database contains 7,500 images from the right and left palms of 250 persons. Each palm has 15 images in 

the database. Ten images were collected in the first session, and the others were collected in the second 

session. The left palm images were flipped, so all images in this database could be regarded as right 

                                                            
7 Some mislabeled images were corrected. 



19 
 

palms. The central parts of these palmprints were extracted [29]. Fig. 9 gives some examples of the 

preprocessed  palmprints. 

 

Fig. 6 Examples of the discarded iris images in the UBIRIS.v1 database. 

 

Fig. 7 Examples of low-quality iris images for evaluation.  

 
(a) (b) (c) (d) 

Fig. 8 Iris texture in different components. (a) is a color image; (b)-(d) are the R, G and B components of 
(a), respectively. 

    

Fig. 9 Examples of preprocessed palmprints. 
 
4.1.  Evaluation of Iris Recognition Methods  

In this section, six iris recognition methods, IrisCode [2], SVM [11], and Ordinal Code (Di-lobe d=5 and 

d=9 and Tri-lobe d=9 and d=17) [9], were re-implemented to evaluate the proposed algorithm derived in 

Section 3.1 in terms of Receiver Operating Characteristic (ROC) curves. Masks that denote noise pixels, 
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such as eyelids and eyelashes, were used to exclude corrupted bits in all templates generated by these 

methods. The raw hamming distances of the Ordinal Code were rescaled to those in IrisCode [4]. From 

each database, 90 images were used to train the SVM with a Gaussian kernel [11]. The proposed 

algorithm estimated the central rays of IrisCode and Ordinal Code. Ordinal Code is a low-order 

generalization of IrisCode. For the central rays of IrisCode, the SVM approach was used as a tester. We 

matched the central rays of IrisCode with the original images using the SVM approach. The central rays 

of Ordinal Code used IrisCode as a tester. We matched the central rays of Ordinal Code with the original 

images using IrisCode. In each set of experiments, cross-matching between all original images was first 

performed, and the corresponding genuine and imposter distributions were estimated. The central rays 

were then matched with their parent8 images and all other iris images from the same eye. Two genuine 

distributions were obtained. The imposter distributions from the cross-matching between the original 

images and all genuine distributions were used to plot ROC curves. For the same database and method, all 

ROC curves were generated from the same imposter distribution that determines the false acceptance rate 

of a system when a threshold is given. This experimental setting studies the risk of using the central rays 

to break into the systems. For example, attackers can submit a central ray of a compromised template into 

the data link between a biometric sensor and feature extractor, and if they can stop the liveness detector 

and quality checker, they can use the central ray to perform a sensor-level break-in [32]. Note that the 

theory given in this paper can guarantee that an IrisCode computed from an original image and an 

IrisCode computed from the corresponding central ray are no different. Thus, it is impossible to 

distinguish them at the matcher level. For convenience, the ROC curves from the cross-matching between 

the original images are called original ROC curves, the ROC curves from matching the central rays with 

their parent images are called parent ROC curves, and the ROC curves from matching the central rays 

with the original images are called resultant ROC curves. Fig. 10 illustrates the matching processes. Figs. 

11 and 12 show the ROC curves of the SVM approach and IrisCode, respectively. All parent ROC curves 

are above the corresponding original ROC curves, indicating that the errors introduced by the central rays 

                                                            
8 A parent image of a central ray is an image producing a biometric template that is used to compute the central ray.  
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are smaller than those in the original images. If a compromised template and template in a database are 

generated from the same iris image, the central ray of the compromised template performs even better 

than other iris images from the same eye. If the central ray and template are not generated from the same 

image, there is a 70% to 85% chance to break into the systems when the thresholds are set at false 

acceptance rate of 0.001. Using Eq. 22, it can be proven easily that if a central ray is obtained from an 

IrisCode (Ordinal Code) and IrisCode (Ordinal Code) is used as a matcher, the central ray does not 

introduce any additional error bits. The central ray can break into an iris recognition system running 

IrisCode (Ordinal Code) if attackers can stop its liveness detector and quality checker or submit the 

central ray into the data link between its sensor and feature extractor. 

 
 
Fig. 10 Illustration of three different matching processes. The blue, black and red arrows indicate 
respectively the processes of computing genuine matching scores for original, resultant and parent ROC 
curves.  
 

(a) (b) 
Fig. 11 ROC curves of the SVM method. The iris images were estimated from the convex polyhedral 
cones of IrisCode. (a) The results from the UBIRIS.v1 database and (b) the results from the WVU iris 
database.  
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(g) (h) 
Fig. 12 ROC curves of the IrisCode. The first column presents the results from the UBIRIS.v1 database, 
and the second column presents the results from the WVU iris database. Rows 1-4 are results from iris 
images estimated from the convex polyhedral cones of di-lobe (d=5), di-lobe (d=9), tri-lobe (d=9) and tri-
lobe (d=17), respectively.  

 
4.2.  Evaluation of Palmprint Recognition Methods  

In this section, three palmprint recognition methods, Competitive Code [5], Fusion Code [31], and 

PalmCode [29], were re-implemented to evaluate the algorithm presented in Section 3.2. Competitive 

Code is a high-order generalization of IrisCode. In this experiment, the central rays of Competitive Code 

were matched with the original images using Fusion Code and PalmCode. Five thousand palmprint 

images in the database were tested. Half of the images were collected in the first session, and the rest 

were collected in the second session. This experiment studied the risk of using the central rays to reveal 

relationships among templates produced by different palmprint identification methods. If templates 

produced by different methods can be matched, user privacy can be invaded, because the same person 

registered in different systems can be known. If a hamming distance of Fusion Code or PalmCode, 

obtained by matching the central ray of a Competitive Code with an original image, is significantly 

shorter than other hamming distances from matching the central ray with other images, the Competitive 

Code and original image can be regarded as from the same palm. The imposter distributions from the 

cross-matching between the central rays of Competitive Code, and original images, and corresponding 

genuine distributions were used to plot ROC curves. Fig. 13 shows the Fusion Code and PalmCode ROC 
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curves and provides their parent ROC curves. These results indicate that if two palmprint templates 

produced by two algorithms (e.g., Competitive Code and Fusion Code) are from the same image, the 

probability of detecting that they are generated from the same palm is over 0.83, when the probability of 

falsely seeing that two independent templates are from the same palm is 0.001. If two templates are 

generated from different images of the same palm, this probability drops to 0.62 for Fusion Code and 0.48 

for PalmCode. If attackers set the threshold at false acceptance rate of 0.01, these two probabilities 

increase, respectively to 0.79 and 0.7.  

(a) (b) 
Fig. 13 ROC curves of using convex polyhedral cones to reveal relationships among templates from 
palmprint identification algorithms. All convex polyhedral cones were generated by Competitive Code. 
(a) Fusion Code ROC curves and (b) PalmCode ROC curves. 
 
 
4.3.  Evaluation of Biohashing 

In this experiment, 2,500 palmprint images were used to train a feature extractor, and another 2,500 

images were used to test the algorithm derived in Section 3.3; 500 different palms were tested. Each palm 

had 5 images in the training set and 5 in the testing set. We only used images collected in the first session 

in this experiment, because we wished to simulate a system with extremely high accuracy. Linear 

discriminant analysis was used as a feature extractor [30]. The dimension of the original feature vectors 

was 99 [30]. We used cosine distance to match the original feature vectors and generated the 

corresponding ROC curve for comparison. This ROC curve is labeled as LDA+Cosine. The Biohashing 
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template sizes were 60 and 90 bits. Each testing image was matched with 5 training images from the same 

palm to produce five hamming distances, and the smallest distance was considered a genuine hamming 

distance. Similarly, each testing image was matched with all other images. The minimum hamming 

distance from the same palm in the database was considered an imposter hamming distance. The 

corresponding ROC curves were labeled as Biohashing (K bits), where K is the number of bits in the 

templates. We also estimated the central rays of the intersection of the convex polyhedral cones formed 

by compromised Biohashing templates to match newly reissued templates. More clearly, we matched the 

1
1[ , , ]

q

T
mW w w
 

  generated from an original image with the 
1

1
ˆ ˆ ˆ[ , , ]

q

T
mW w w
 

  generated from an 

estimated central ray, where 1q  represents a newly re-issued random matrix. We only matched W with 

Ŵ  from the same palm. Only genuine distributions were produced from these matches. Using these 

genuine distributions with the original Biohashing impostor distributions, the probability of a break-in 

based on the central rays of the intersections of the convex polyhedral cones formed by compromised 

templates can be estimated. The ROC curves generated from the original impostor distributions and these 

genuine distributions are referred to as the ROC curves of the CPC algorithm (CT), where CT denotes the 

number of compromised templates used to compute the central rays. We also implemented a constrained 

optimization method for comparison [26]. To estimate the original biometric vectors protected by 

Biohashing, this method uses information from unrelated feature vectors (e.g., from different persons). In 

this experiment, each original vector was estimated by 100 feature vectors from 100 different palms. 

When the number of comprised templates is one, the CPC algorithm is same as our previous work [25]. 

However, we neither discussed convex polyhedral cones nor used multiple compromised templates to 

estimate original feature vectors in that work [25]. Fig. 14 shows the ROC curves, clearly indicating that 

the CPC algorithm can effectively break into Biohashing. The probability of a successful break-in is over 

40% when the central rays are estimated from only 7 compromised templates with 60 bits and system 

threshold is set at false acceptance rate of 0.001%; the probability of a successful break-in is over 50% 

when the central rays are estimated from only 4 compromised templates with 90 bits and system threshold 
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is set at false acceptance rate of 0.001%. As the number of compromised templates increases, the 

probability of a successful break-in also increases. When the number of compromised templates is 

enough, the CPC algorithm can perform even better than the original Biohashing.  

As mentioned above, Biohashing can defend attacks from the constrained optimization method if 

the decision threshold is high enough [26]. Readers may wonder why the constrained optimization 

method cannot perform better than the CPC algorithm (CT=1) if both use information from one 

compromised template, but the constrained optimization method utilizes additional images from other 

palms to estimate the original features. This phenomenon can be explained by the geometric structure of a 

convex polyhedral cone. The constrained optimization method has two steps. Given a set of unrelated 

feature vectors 1 K  , this method seeks a solution kx  that has a minimum distance from k  and 

fulfills all constraints from a compromised template. Mathematically, kx  is obtained from optimizing 

argmin subject to 0 if 0 and 0 if 1 T T
k k j j j j

x
x x x w x w j         ,        (32) 

where jw  is a bit in a compromised template and j is a column vector from the compromised random 

matrix. Note that both Eq. 32 and the CPC algorithm require information from the compromised random 

matrix Ω. After obtaining kx s, the constrained optimization method computes the weight average, i.e.,   
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
,            (33) 

where dk is the hamming distance between the Biohashing templates of k and kx . To understand why 

this constrained optimization method cannot surpass the CPC algorithm (CT=1), let us consider the case 

of only one unrelated feature 1  first. Because K=1, we can derive that 1.fx x  Note that 1  is a feature 

from another person and 1  therefore cannot fulfill all constraints in Eq. 27, i.e., j  such that 1 0T
j  

 

if  1 jw  or 1 0T
j  

 
if 0 jw  . In other words, 1  is not inside the convex polyhedral cone of the 

compromised template. The solution obtained from Eq. 32 is on the boundary of the convex polyhedral 
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cone (Fig. 15). If more than one unrelated feature is used, the final solution xf is a weighted average of a 

set of points on the boundary of the convex polyhedral cone. It can be considered as a method of 

estimating the central ray of the convex polyhedral cone. If the unrelated feature vectors are used 

appropriately, methods that outperform the CPC algorithm (CT=1) are likely to be developed [20].  

(a) (b) 
Fig. 14 ROC curves of using convex polyhedral cones to attack Biohashing with (a) 60 bits and (b) 90 
bits. 

 
 
Fig. 15 Illustration of the phenomenon that the CPC algorithm (CT=1) and the constrained optimization 
method perform similarly. 

 

5. Discussion  

Though the number of theoretical properties of IrisCode has recently been discovered, our understanding 

of this influential iris recognition algorithm remains incomplete. In this paper, we indicate that templates 
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produced by IrisCode and its generalization are convex polyhedral cones. From a geometric perspective, 

IrisCode cuts down the hyperspace formed by normalized iris images into 22048 convex polyhedral cones. 

Each convex polyhedral cone represents one iris template, but an iris is represented by a set of convex 

polyhedral cones that are near in terms of hamming distance.  

Using the geometric properties of convex polyhedral cones, a simple algorithm that can often be 

implemented in one MATLAB command line has been developed to estimate the central rays of IrisCode 

and GIrisCode. The experimental results show that these central rays can match iris and palmprint 

templates produced by different methods and break into protected biometric templates. They imply that 

the central rays are enough to reveal the relationships among templates produced by different methods 

and break into systems without liveness detectors and quality checkers and that Biohashing has a limited 

capability to reissue new templates. The central rays of a compromised template can also be submitted 

into the data link between a biometric sensor and a feature extractor [32]. Except for replay attack at the 

sensor level, all other attacks do not depend on the visual quality of the preprocessed images (iris image) 

generated from the central rays. For some methods, central rays are, in fact, preprocessed images with 

reasonable visual quality. Fig. 16 shows preprocessed images generated from the central rays of Ordinal 

Codes (di-lobe d=5). The DC and the contrast of the original images are used to display the central rays to 

avoid visual differences caused by these two factors. Because Ordinal Code uses only the left and the 

right parts of an iris, Fig. 16 only shows these two parts [9].  

Without solid security analyses, any biometric template that is a convex polyhedral cone cannot 

be assumed to be secure. The simplicity of the geometric algorithm implies that even junior hackers 

without advanced image processing knowledge can invade a system. Even worse, the central ray is also 

the expected ray and the optimal ray of an objective function on a group of distributions. Finally, it should 

be re-emphasized that this paper aims not to reconstruct high quality images from templates but instead to 

provide a deeper understanding of the geometric structures of IrisCode and its variants and investigate the 

risk from this geometric information.  
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Fig. 16 Visual comparison between the original images and the central rays of Ordinal Code (di-lobe 
d=5). The first column presents the original images, and the second column presents preprocessed images 
from the central rays. 
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