
1

IrisCode Decompression Based on the Dependence between its Bit Pairs
Adams Wai Kin Kong, IEEE Member

Forensics and Security Laboratory, School of Computer Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore, 639798 (Email: adamskong@ntu.edu.sg)

Abstract  IrisCode is an iris recognition algorithm developed in 1993 and continuously improved by

Daugman. Understanding IrisCode’s properties is extremely important because over 60 million persons

have been mathematically enrolled by the algorithm. In this paper, IrisCode is proved to be a compression

algorithm, which is to say, its templates are compressed iris images. In our experiments, the compression

ratio of these images is 1:655. An algorithm is designed to perform this decompression by exploiting a

graph composed of the bit pairs in IrisCode, prior knowledge from iris image databases, and the

theoretical results. To remove artifacts, two post-processing techniques that carry out optimization in the

Fourier domain are developed. Decompressed iris images obtained from two public iris image databases

are evaluated by visual comparison, two objective image quality assessment metrics and eight iris

recognition methods. The experimental results show that the decompressed iris images retain iris texture,

that their quality is roughly equivalent to a JPEG quality factor of ten and that the iris recognition

methods can match the original images with the decompressed images. This paper also discusses the

impacts of these theoretical and experimental findings on privacy and security.

Keywords: Biometrics, iris recognition, compression, Daugman algorithm, template protection

1. Introduction

1IrisCode has drawn significant attention in the last two decades [1-3] because of its great success in

biometric markets, and because of its computational advantages, including high matching speed,

predictable false acceptance rates and robustness against local brightness and contrast variations. Many

methods developed for iris and palmprint identification use the 2core of IrisCode to take advantage of

these properties [6-20]. Researchers developing these methods generally replace the Gabor filters in

1In this paper, IrisCode is used interchangeably to refer to both the method and features of iris recognition developed
by Daugman. Recently, this method has also been called the Daugman algorithm.
2 The core of IrisCode is used to refer to the integrals and the binarization operations in Eqs. 1-4.

2

IrisCode with different filters and transformations. IrisCode is also used for cancelable biometrics [21-22]

to prohibit the recovery of original features from templates. For these reasons, a complete understanding

of IrisCode is extremely important. Although numerous scientific papers regarding iris recognition have

been published, few works are devoted to the analysis of IrisCode. In the original paper [1], Daugman put

significant effort into investigating the imposter distribution. He concluded that it follows a binomial

distribution, and bits “0” and “1” in IrisCodes are equally probable. In addition to Daugman, Yao et al.

attempted to analyze the bandwidth of Gabor filters, which influence the distributions of the bits [23].

They claimed that the Gabor filters are not perfectly band-pass, and therefore, the “1” and “0” bits in

IrisCodes are not equally probable, which contradicts Daugman’s result [1]. Yao et al.’s analysis was

based on non-zero DC (direct current) Gabor filters, while Daugman removed the DC components.

3Hollingsworth et al. studied the stability of bits in their iris codes [43], and they identified the best bits.

Most theoretical results have been derived by Kong and his coworkers [24-25]. They demonstrated that

IrisCode is a clustering algorithm with four prototypes; that the locus of a Gabor function is a two-

dimensional ellipse with respect to a phase parameter and can be approximated by a circle in many cases;

that the Gabor function can be considered a phase-steerable filter; that the bitwise hamming distance can

be regarded as a bitwise phase distance [24]; and that Gabor filters can be used as a Gabor atom detector,

and the phase and magnitude of a target Gabor atom can be approximated by the phase and magnitude of

the corresponding Gabor response [25]. Nevertheless, their analyses specifically focused on the intra-

relationship of bit pairs in IrisCodes.

 Many image compression and representation methods depend on Gabor analysis or phase

information, which are two important components in IrisCode. Daugman demonstrated that Gabor filters

are effective for image compression [26]. Lee extended Gabor filters to Gabor wavelets and proved that

under suitable parameterization of Gabor filters, an image can be perfectly decomposed as

1
,j j

j

I g I g
Z

   , where I is an image, Z is a normalization constant, gj is a Gabor filter and

3 Hollingsworth et al. use 1D log-Gabor wavelets instead of 2D Gabor filters in their study. [43]

3

,jg I  is an inner product of gj and I [27]. Behar et al. showed that images can be reconstructed from

localized phase [28]. Furthermore, Kong et al. proved that IrisCode is a clustering algorithm [24]. It is

well-known that clustering plays an important role in many compression methods. All these research

results imply that IrisCode is a compression algorithm. Nevertheless, these implications have not been

noted in the last two decades. If iris images are decompressed from IrisCodes, they can be used to link

users enrolling in different iris recognition systems and to attack the systems directly. This deepens our

concern for privacy and illegal matching [49-50]. In this paper, we prove that IrisCode is a compression

algorithm. We then use a graph composed of the bit pairs in IrisCodes, prior knowledge from iris image

databases, and the theoretical results to perform decompression.

 We now give a brief computational summary for those who are not familiar with IrisCode

generation. Two-dimensional Gabor filters with zero DC are applied to an iris image in a dimensionless

polar coordinate system, 0 (,) Ι . The complex Gabor response is encoded into two bits by using the

following inequalities:

2 2 2 2
0 0 0() / () / ()

01 Re (,) 0j j j j j jr i
jrb if e e e d d       

 

         
 
  
 
 
  I , (1)

2 2 2 2
0 0 0() / () / ()

00 Re (,) 0j j j j j jr i
jrb if e e e d d       

 

         
 
  
 
 
  I , (2)

2 2 2 2
0 0 0() / () / ()

01 Im (,) 0j j j j j jr i
jib if e e e d d       

 

         
 
  
 
 
  I , (3)

2 2 2 2
0 0 0() / () / ()

00 Im (,) 0j j j j j jr i
jib if e e e d d       

 

         
 
  
 
 
  I , (4)

where 0 0(,)j jr  is the center/location of the filter in the spatial domain, j is the spatial frequency, and j

and j control the shape of the Gaussian function [2]. Daugman uses 1024 Gabor filters with different

parameters 0 0(, , , ,)j j j j jr     to generate 1024 bit pairs (,)jr jib b in IrisCodes and a mask to exclude the

corrupted bits from the eyelashes, reflection, eyelids, and from a low signal-to-noise ratio [2]. These four

4

inequalities quantize phase information and represent it in binary format for high-speed matching. In this

paper, we assume that the masked bits of IrisCode are retained.

 The rest of this paper is organized as follows. Section 2 proves that IrisCode is a compression

algorithm. Section 3 presents a decompression algorithm with two post-processing techniques. Section 4

reports the experimental results obtained from visual comparison, objective image quality metrics and iris

recognition methods. Section 5 discusses the impacts of our theoretical and experimental findings.

2. IrisCode  A Compression Algorithm

For clear presentation, a clear set of notation is essential. The real and imaginary parts of a zero DC

Gabor filter
 jg with the parameters 0 0(, , , ,)j j j j jr     , which generates a bit pair, (,)j jr jiB b b in an

IrisCode, are represented by rjg and ijg , respectively. The entire IrisCode is composed of 1,024 bit pairs,

i.e., 1 2 1024{ , , , }B B B . In Section 3, an additional subscript is employed for the bit pairs to emphasize

that they are generated from a particular image (e.g., (,)kj kjr kjiB b b is a bit pair generated from the image

Ik.). For convenience, we use I to denote 0 (,)  Ι and *
j k j k, d d    g g g g to denote the inner

product of jg and kg , where * represents a complex conjugate. It is clear that 0Ι can be obtained from I

because  can never be zero. Bold font is used to indicate matrices, two-dimensional images and two-

dimensional filters. For example, I represents a two-dimensional image, while I represents the column

vector form of the image and rjg is a real part of a two-dimensional Gabor filter, while rjg is a column

vector form of rjg . Using the vector representation, the inner product can be redefined as

H
j k k jg ,g g g  , where H denotes a complex conjugate transpose. We use T to represent the transpose

of a matrix or vector. Thus, the inner product of two real valued vectors (e.g., rjg

and rkg) can be

defined as T
rj rk rk rjg ,g g g  .

5

In the rest of this section, we prove that IrisCode is a compression algorithm. I can be

decomposed as

1 1 1

n n m

rj rj ij ij j j
j j j

I a g a g c d
  

       , (5)

where rja , ija , jc and d   ; [1 1 1]T   ; n=1,024; j is a unit vector that is orthogonal to  and all

rkg and ikg , i.e., () , 0r i k jg  

and , 0j   , where 1 k n  , and m is a constant.

Mathematically, the vectors 1 1, , ,m   and m , which will be estimated through PCA (see Section 3.4),

span a subspace in the orthogonal complement of the space spanned by 1 1, , , , ,r rn i ing g g g  and  . Eq. 5

is always valid (see the proof in Appendix A). For the sake of convenience, the space spanned by

1 1, , , ,r rn i ing g g g  and  is denoted as  . Using Eq. 5, the inner product of ()r i kg and I can be

expressed as

() () () () ()
1 1 1

, , , , ,
n n m

r i k rj r i k rj ij r i k ij j r i k j r i k
j j j

g I a g g a g g c g d g
  

             . (6)

Because ()r i kg is orthogonal to  and all j , Eq. 6 can be simplified as

() () ()
1 1

, , ,
n n

r i k rj r i k rj ij r i k ij
j j

g I a g g a g g
 

       . (7)

Using a matrix representation, we obtain M A G , where

1 1[, , , ,]T
r rn i inM g I g I g I g I          , 1 1[]T

r rn i inA a a a a   and

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

, , , ,

, , , ,

, , , ,

, , , ,

r r r rn r i r in

rn r rn rn rn i rn in

i r i rn i i i in

in r in rn in i in in

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

        
 
 
        

  
        
 
 
         

G

 
     

 
 

     
 

. (8)

If G is invertible, we can substitute 1A M G into Eq. 5 and obtain

1
1 1

1

[]
m

r rn i in j j
j

I g g g g M c d



   G  . (9)

6

Let 1
1 1 1 1[] []r rn i in r rn i ing g g g     G    . Now, Eq. 9 can be rewritten as

1 1 1

, ,
n n m

rj rj ij ij j j
j j j

I g I g I c d  
  

           . (10)

Clearly, 1 1{ }r rn i in     and 1 1{ }r rn i ing g g g  form a biorthogonal system. Eq. 10 indicates that

IrisCode is a compression algorithm. This compression algorithm uses one bit to store each coefficient of

()r i j , which is () ,r i jg I  , but erases all other coefficients. Eq. 10 also indicates that if all () ,r i jg I 

are known, an approximate iris image can be obtained, i.e.,

1 1

, ,
n n

rj rj ij ij
j j

I g I g I 
 

       . (11)

Eq. 10 is called the IrisCode decompression equation. In this proof, we do not exploit any properties of

Gabor filters, and therefore, this theoretical result is applicable to other methods that use the core of

IrisCode for personal identification and template protection. These methods are, in fact, compression

algorithms, and their templates are compressed biometric images. The only assumption required in the

proof is that G is invertible. Our experimental results show that the G formed by the Gabor filters in

IrisCode is invertible. The invertibility of Gs in other recognition methods should be tested. If they are

non-invertible, other numerical methods (e.g., the least squares method) can be used to solve the system

of linear equations M A G . This proof is only valid for the methods that directly use the core of

IrisCode. The proof given in Appendix B demonstrates that other coding methods generalized from

IrisCode, such as Competitive Code and precise phase representation [8, 24], are also compression

algorithms.

Figure 1 shows two resultant images from Eq. 11 and their corresponding original images. The

resultant images retain some key features, such as iris texture and eyelids. Because Eq. 11 does not

include the brightness component, d, their average intensities are different. In addition, some artifacts are

observable.

The compression ratio of IrisCodes is extremely high. Let the size of a normalized iris image be

64 by 512 pixels and one byte be used to store each pixel. The original size of IrisCodes is 256 bytes, and

7

therefore, the compression ratio is 1:128 (512×64×1/256). IrisCodes can be further compressed without a

loss of information to about 450 bytes [4], which is even smaller than the size of an 8-by-8 patch in an 8-

bit image. Taking into account this significant compression, the compression ratio increases to 1:655

(512×64×1/50). Because of this enormously high compression ratio, decompressing IrisCode is

challenging.

(a)

(b)

(c)

(d)

Figs. 1 (a) and (b) are two normalized iris images, and (c) and (d) are their respective results from Eq. 11.

3. A Decompression Algorithm

We now know that IrisCode is a compression algorithm and that its templates are highly compressed iris

images. In this section, a decompression algorithm with two post-processing techniques are proposed.

Before presenting this algorithm, it should be mentioned that we are not going to recover the coefficient d

(the brightness of I) and
1 1 1

, ,
n n m

rj rj ij ij j j
j j j

g I g I c  
  

        (the contrast of I), which highly depend

on illumination environments, because IrisCodes do not store this lighting information, and there are no

state-of-the-art iris recognition methods that use this information.

There are four major steps to decompress IrisCodes. First, graphs are used to model IrisCodes

from training images (Section 3.1). These graphs will be used to estimate ,rj qg I  and ,ij qg I  ,

where Iq is an image corresponding to an input IrisCode q (Section 3.2). Using Eq. 11, an approximate

image can be obtained from the estimated ,rj qg I  and ,ij qg I  . Finally, two post-processing

techniques are used to remove interference artifacts (Section 3.3) and estimate coefficients cj in Eq. 10

(Section 3.4). Fig. 2 illustrates the proposed decompression scheme.

4 The entropy of IrisCodes is not optimal and therefore, it can be further compressed.

8

Fig. 2 A schematic diagram of the decompression scheme. The black and blue arrows indicate respectively the
information flow of the decompression process and the information flow of the preparation of training images.

3.1. A Graph Formulation

To model the structure of IrisCodes for decompression, a graph, (,)V   , is used, where V is a set of

nodes representing the 1,024 Gabor filters, and  is the unordered pairs of the vertices, which are called

edges. A node j in the graph stores , /kj j k kS g I X  , where kI is a training image in a given database

and
1 1

, ,
n n

k rj k rj ij k ij
j j

X g I g I 
 

       . The corresponding bit pair, (,)kj kjr kjiB b b , is computed

by Eqs. 1-4. kX is the norm of the Gabor components in the image, which depends on the image’s

contrast. The weight of an edge between nodes j and u is defined as the magnitude of , ,j ug g  which

is denoted as ,j ug g  . ,j ug g 

models the impact of node j on node u and vice versa. If

, 0j ug g   , the nodes are regarded as disconnected. We should remember that jg and ug are Gabor

filters in the complex analytical form, and the structure of this graph is fixed for all training images

because its edges do not depend on kI . Figure 3 illustrates this graph. We define an edge weight matrix,

1 1 1

1

, ,

, ,

n

n n n

g g g g

g g g g

    
   
     

Ω


  


, (12)

which summarizes the connections of the nodes and the weights of the edges. To compare the impacts of

different nodes on node j, we sort 1, , , ,j j ng g g g    in descending order such

9

that (,1) (,2) (,), , ,j R j j R j j R j ng g g g g g         , where R is an indexing function. Because all Gabor

filters are normalized, i.e., 1jg  , then (,1)R j j . Using this indexing function, a ranked weight

matrix can be defined as

1 (1,1) 1 (1,)

(,1) (,)

, ,

, ,

R R n

n R n n R n n

g g g g

g g g g

    
 
 
 
     

Ψ



  



. (13)

Given K training images, we have K graphs whose nodes store different bit pairs and S-values, though

they share the same structure, i.e., Ω and Ψ, are the same for all graphs.

, /v k kg I X /,u k kg I X 

, /x k kg I X , /y k kg I X  , /j k kg I X 

, xjg g , yjg g 

,
u

j
g

g




,
u

y

g
g





, vug g 

,x
v

g
g





Fig. 3 Illustration of a graph generated from a training
image Ik

, xjg g , yjg g 

,
u

j
g

g




,
u

y

g
g





,u vg g 

,x
v

g
g





Fig. 4 Illustration of a graph generated from an input
IrisCode, q, for decompression at the initial stage.

3.2. A Graph-based Estimation

The graph constructed in the previous subsection indicates that a node is influenced by its adjacent nodes.

This subsection will use these relationships to recover the magnitude of bit pairs (,rjg I 

and

,)ijg I  in IrisCodes.

Given an IrisCode q consisting of 1024 bit pairs i.e., 1 2 1024{ , , , }q q qB B B , we use the previous

notation to construct a graph whose nodes store its bit pairs. Figure 4 illustrates this graph. In the graph,

all the S-values, which are Gabor responses in the nodes, and the variables E, which are counters, are set

to zero.

Assume we have K graphs from K training images. We use this information to recover the S-

values in the graph generated by the input IrisCode. Our proposed algorithm processes node by node.

10

Figure 5 illustrates this algorithm. Let us consider node j. The bit pairs in the input IrisCode are used as a

searching criterion, which is defined as

(,) (,)
1

(,) argmax max((,))
k

k

T

j j kR j t qR j t
k T

t

k T f B B


 
   

 
 , (14)

where

(,) (,) (,) (,)
(,) (,)

1
(,)

kR j t r qR j t r kR j t i qR j t i
kR j t qR j t

if b b and b b
f B B

otherwise

  


, (15)

kj is an index of an optimal graph and Tj is the maximum number of matched bit pairs. This criterion is

equivalent to searching a graph in the training database, which has the maximum consecutive bit pairs

that match the corresponding bit pairs in the input IrisCode. Once the optimal graph kj is found, the

following updates are performed:

(,) (,) (,)(,)
jqR j t qR j t k R j tS S j t S  Ψ , (16)

(,) (,) (,)qR j t qR j tE E j t  Ψ , (17)

where 1 jt T  and (,)j tΨ is the element at row j and column t in Ψ . Eqs. 14-16 guarantee that

(,) (,)(Re())qR j t qR j t rQ S b and (,) (,)(Im())qR j t qR j t iQ S b , where Q represents the quantization process in

Eqs. 1-4. When all 1,024 nodes are processed, all the S-values are normalized by

/qj qj qjS S E . (18)

Separating the real and imaginary parts in the S-values, we can obtain the estimated ,rj qg I  and

,ij qg I  , respectively denoted as ˆ,rj qg I  and ˆ,ij qg I  , and by using Eq. 11, an approximate Iq can

be obtained. The magnitude of the final qjS may differ greatly from the magnitude of ,j qg I  because

the S-values in the database are normalized. To address this issue, we

compute
1 1

ˆ ˆ ˆ, ,
n n

q rj q rj ij q ij
j j

X g I g I 
 

       and rescale ˆ,rj qg I  and ˆ,ij qg I  by

ˆ ˆ ˆ, , /rj q, rescale rj q qg I g I X   and ˆ ˆ ˆ, , /ij q, rescale ij q qg I g I X   , where  is a given scale

controlling the contrast of the Gabor components in the image. If we know nothing about  , the simplest

11

approach is to set
1

1 K

k
k

X
K




  . Figure 6 shows two results with their corresponding original images. We

use the DC and the contrast of the original images to display our results to avoid perception differences

arising from these two factors. Further experimental results are given in Section 4. We can see that many

features (e.g., eyelids and iris texture) are successfully recovered. However, we can also observe many

artifacts. Some of these artifacts come from the updated process, while others are due to the missing j in

Eq. 10. In the following sub-sections, two post-processing techniques are proposed to remove these

artifacts, and Î represents the resultant images in this subsection.

Fig. 5 Illustration of the graph-based estimation.

(a)

(b)

(c)

(d)

Fig. 6 Decompressed results. (a) and (b) are two original images. (c) and (d) are the respective results from the
graph-based estimation algorithm.

 In Section 2, we used rjg and ijg to derive the decompression equation. In this subsection, we

use the complex Gabor filters jg to develop the algorithm. We do not exploit the complex Gabor filters

to derive the decompression equation so that the theoretical result will be applicable to other coding

methods [7, 9-20]. However, the complex Gabor filters do add extra information to the algorithm because

their phase and magnitude are the approximate phase and magnitude of the target Gabor atoms [25]. Thus,

each (,)jk R j tS can be regarded as one Gabor atom, which gives more precise information than either

(,) , jrR j t kg I  or (,) , jiR j t kg I  alone.

12

It is worth mentioning that Eqs. 14-15 search maximum consecutive instead of maximum bit pairs

that match the corresponding bit pairs in the input IrisCode. This scheme updates simultaneously a group

of S-values in the nodes that are spatially close to each other to capture their spatial dependence. Figure 7

shows the spatial locations of 31 nodes (the locations of the nodes defined by 0 0(,)j jr  in the

corresponding Gabor filters). The large dot is the location of a target node, and the small dots are the

locations of the top 30 nodes with the greatest impact on the target node. Their grey levels indicate the

orders of their impact on the target node. The higher grey levels represent higher impact. Clearly, these

orders imply their spatial relationship with the target node. When Eq. 16 updates a group of S-values, it is

equivalent to spatially copying a 5patch,  (,) (,) (,) (,)
1

1
, ,

j

j j j

j

T

k rR j t k rR j t iR j t k iR j t
k t

U g I g I
X

 


     , from a

training image
jkI to Î . Patch-based methods commonly operate in the spatial domain for texture and

face synthesis [44, 47-48], while the proposed algorithm operates in a graph and guarantees that the

IrisCode generated from Î and the input IrisCode are the same.

Fig. 7 Illustration of the design of Eqs. 14-16. The large dot is the location of a target node, and the small dots are
the locations of the top 30 nodes with the greatest impact on the target node. Their grey levels indicate the orders of
their impact on the target node. Some nodes have duplicated spatial locations. We slightly adjusted their locations
for display purposes.

The IrisCode masks can be directly applied to Eq. 15 [2]. More precisely, the search constraint

based on the masks, i.e., (,) (,) (,) (,)kR j t r qR j t r kR j t i qR j t imask mask and mask mask  can be combined with the

original search constraint (,) (,) (,) (,)kR j t r qR j t r kR j t i qR j t ib b and b b  . This additional constraint would reduce

Tj, the number of nodes updated in each search, and therefore less dependence between the nodes can be

captured. To use the masks in this way, a large database is required. As mentioned before, we assume that

5 The patch here is denoted as

jkU . It is not a rectangular image patch.

13

the masked bits are retained. If these are discarded, the masks and the remaining bits should be used to

estimate the masked bits.

3.3. Interference Artifact Removal

In this and the next subsections, two post-processing techniques are presented. The first technique is to

remove interference artifacts caused by Eq. 16, and the second is to remove the compression artifacts

caused by the missing j in Eq. 10. Both techniques are operated in the Fourier domain because these

artifacts have a strong periodic behavior. Figure 8 gives the log power spectrums of an original image and

the corresponding Î . We can observe that Î contains more energy in the high frequency spectrum, and it

has 16 frequency bands with very high energy. Thus, post-processing techniques that minimize the high

frequency energy are proposed to remove the artifacts.

(a)

(b)

(c)

(d)

Fig. 8 Illustration of the difference between the log power spectrums of an original image and a decompressed

image. (a) is an original image and (b) is the Î of (a). (c) and (d) are the respective log power spectrums of (a) and
(b).

 Let
1 1

ˆ ˆ ˆ, ,
n n

rj rj ij ij
j j

I g I g I 
 

      

be an estimated image from the previous subsection and

2DF be the two-dimensional Fourier transform. Because 2DF is a linear operator,

2 2 2
1 1

ˆ ˆ ˆ() , () , ()
n n

D rj D rj ij D ij
j j

F I g I F g I F 
 

       . Note that we consider 2
ˆ()DF I to be a vector although

F2D is a two-dimensional transform. Using a matrix representation, we obtain

2
ˆ ˆ()DF I M Ζ , (19)

where  2 1 2() ()D r D inF ξ F ξZ  and 1
ˆ ˆ ˆ[, ,]T

r inM g I g I     . Therefore, the energy of Î is given

by

14

2 2
ˆ ˆ ˆ ˆ() ()H H H

D DF I F I M M Z Ζ , (20)

where H represents a complex conjugate transpose. Eq. 20 successfully connects the energy of Î to M̂ .

M̂ is regarded as an independent variable vector in the minimization of the energy of Î . However,

directly minimizing Eq. 20 is ineffective because it mixes together energies from different frequencies.

The frequency is divided into 16 bands, as illustrated in Fig. 9, where only the even bands are labeled.

The frequency between the two 16th bands is not considered because this low frequency information (e.g.,

DC) should not be artifacts.

Fig. 9 Illustration of the 16 frequency bands for artifact removal. The odd bands are not labeled.

The frequency information in each band can be computed by

2 2 1 2
ˆ ˆ(()) [(()) (())]e D e D r e D inF I F F M     , (21)

where e is an operator that selects the elements of an input vector in the eth band.

Let 2 1 2() [(()) (())]e e D r e D inF ξ F ξ   Z  . The total energy in the eth band is

2 2
ˆ ˆ ˆ ˆ(()) (()) () ()H H H

e D e D e eF I F I M M    Z Ζ . (22)

Usually, low frequency components have more energy, but high frequency artifacts are more visually

annoying. Thus, a logarithm function and a weighting function are introduced to form our objective

function, which is defined as

16

1

ˆ ˆ ˆ() () log(() ())H H
e e

e

M w e M M


   Z Z , (23)

where w is a positive weighting function that emphasizes the minimization of energy in the high

frequency bands. It is clear that ˆ [0 0]TM   is a global optimum, but it is not our target solution. We

seek a local optimum that is close to the M̂ obtained from the previous subsection to retain the estimated

structural information while removing the interference artifacts.  is differentiable, and therefore, many

existing methods are available for this optimization. In our experiments, we simply used the gradient

descent method. To guarantee that the input IrisCode and the IrisCode generated from the resultant image

15

of this post-processing technique are the same, updates in each iteration are checked to ensure that

1
ˆ ˆ() ()t tsign M sign M  , where t is an iteration index. For the sake of convenience, the resultant images in

this subsection are denoted as I , and the final M̂ is denoted as M . Figure 10 shows two resultant

images. These images are smoother and more visually appealing. However, many compression artifacts

still exist because of the missing j .

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10 Results from the post-processing technique for removing interference artifacts. (a) and (b) are original
images; (c) and (d) are the corresponding results from Section 3.2; and (e) and (f) are the corresponding results from
the post-processing technique in Section 3.3.

3.4. Compression Artifact Removal

In this subsection, 1 2{ , , , }m   will be constructed, and the corresponding coefficients 1 2{ , , , }mc c c in

Eq. 10 will be estimated. We should remember that 1 1, , m   and m are orthogonal to  and all rkg

and ikg , i.e., () , 0r i k jg  

and , 0j   , where 1 k n  and 1 j m  . To fulfill these

requirements, principal component analysis is used to derive 1 2{ , , , }m   . Given a training image kI , we

first remove all information in 6  , i.e.,

1 1

, ,
n n

k k rj k rj ij k ij
j j

I g I g I d  
 

          . (24)

The variances of 1{ , , }K  along the directions of 1 1, , , , ,r rn i ing g g g  and  are zero, and therefore,

the principal components computed from 1{ , , }K  are automatically orthogonal to

1 1, , , , ,r rn i ing g g g  and  . The space spanned by these principal components is, in fact, within the

intersection between the space spanned by the iris images and the orthogonal complement of  . The

6 We remember that  is a space spanned by 1 1, , ,r rn i ing g g g  and  .

16

computational steps of principal component analysis are well known, so we do not repeat them here.

However, we should remember that the computational trick that is always used in Eigenface calculation

should be considered to properly handle the memory requirement [29].

Let 0 be the mean of 1{ , , }K  and 1 2, ,   and 'm
 be the 'm most significant principal

components. Then,
'

'
0

1

m

v vj j
j

c  


  , where '
vjc is the coefficient of j and 'm m . Figure 11 shows the

top three principal components and the mean estimated from 800 images and their log power spectrums.

The figure clearly demonstrates that the principal components store important information for removing

the compression artifacts.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 11 (a) is the mean of 1{ , , }K  and (c), (e) and (g) are the top three principal components; (b), (d), (f) and (h)

are the log power spectrums of (a), (c), (e) and (g), respectively.

Using 0 1 ', , , m   and M , an iris image can be approximated by
'

1 1 0
1

[]
m

r rn i in j j
j

I M c d     


      . (25)

Let 1 1 0[]r rn i inI M        , 1 2 '[]m    and 1 2 '[]T
mC c c c  . Note that d is zero until the end

of the decompression process. Eq. 25 can be rewritten as I I C   . Because the energy of the

compression artifacts is concentrated on the 7odd frequency bands (see Figs. 9 and 11), we minimize the

7The energy of the compression artifacts is concentrated on the odd frequency bands because of the parameters

0 0(, , , ,)j j j j jr     of the Gabor filters. More precisely, the frequency information that cannot be captured by the

Gabor filters would remain in the PCA components. If different filters are used, these compression artifacts are
different.

17

energy in only these bands through modifying the coefficient vector C. As with the computational steps in

the previous subsection, the energy of I C  is

2 2 2 2() () (())(())H H H H
D D D DF I C F I C C F I C F I           , (26)

where  2 1 2 '() ()D D mF F   , and the energy in eth band is

2 2 2 2(()) (()) (() (()))(() (()))H H H H
e D e D e e D e e DF I C F I C C F I C F I               , (27)

where  2 1 2 '() (()) (())e e D e D mF F      . Finally,

8

1 2 1 2 1 2 2 1 2 1 2
1

() log(() (()))(() (()))H H H
e e D e e D

e

C C F I C F I    


          , (28)

is used as an objective function to minimize the compression artifacts. The weighting function w in Eq.

23 is not included in Eq. 28 because the compression artifacts in different odd bands are equally

important. The weighting function was, in fact, examined for Eq. 28. However, its contribution is limited.

As with the objective function in Eq. 23, this objective function is also differentiable, but the target

solution of Eq. 28 is a near global optimal. Figure 12 shows two final resultant images. These images

demonstrate that the proposed post-processing technique effectively weakens the compression artifacts.

Further experimental results are given in Section 4. For the sake of convenience, the resultant images in

this subsection are denoted as fI .

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12 Final resultant images. (a) and (b) are original images; (c) and (d) are the respective results from the post-
processing technique in Section 3.3; and (e) and (f) are the final results.

18

4. Experimental Results

Two public iris databases, the West Virginia University (WVU) iris database and the UBIRIS.v1 database

[30-31], were used to examine the proposed algorithms. 8The WVU iris database contains 3,099 iris

images from 472 irises, and the UBIRIS.v1 database contains 1,877 images from 241 irises. All the

images in the WVU iris database were employed in the experiments. However, 48 images from the

UBIRIS.v1 database were automatically removed because of their poor quality (some images did not even

have irises). Figure 13 gives examples of the removed iris images. Even though some extremely low

quality images were removed, many challenging iris images remained for evaluation (see Fig. 14). The

WVU iris images were captured under an infrared lighting environment, while the UBIRIS.v1 iris images

were captured under a visible lighting environment. The original images in the UBIRIS.v1 database are

color images. We only employed their red component for evaluation because iris texture in this channel is

the clearest (see Fig. 15).

 In the experiments, we decompressed IrisCodes from these two databases. Given an IrisCode q,

we used all images from other irises in the same database to estimate ,rj qg I  and ,ij qg I  and eight

hundred images from other irises in the same database to compute the principal components. The top 30

principal components were used as 1 2, ,   and 'm . It should be emphasized that we did not exploit any

information from the same eye to perform the decompression. We employed a leave-one-out cross

validation scheme. The decidability index was used as an objective function to optimize the parameters of

the Gabor filters [24].

 To validate our results, we computed the IrisCodes from the original images and the

corresponding resultant images, and we performed a bit-by-bit comparison. As the theoretical predication,

we found that the IrisCodes were completely identical, without any bit error.

8 Some mislabeled images were corrected.

19

(a) (b)

(c) (d)
Fig. 13 Examples of the removed iris

images in the UBIRIS.v1 database
Fig. 14 Examples of low quality iris

images for evaluation
Fig. 15 Iris texture in different

channels. (a) is a color image; (b)-
(d) are the R, G and B components

of (a), respectively
4.1. Evaluation of the Post-Processing Techniques

Some results have already been given in Section 3 for the subjective evaluation of the effectiveness of the

post-processing techniques. In this subsection, an objective evaluation is reported. The error norm ratio

was employed as an objective measure. To compare the results with the original images, the original

contrast and DC were employed in this experiment. Figure 16 shows the distributions of ˆ / DCI I I ,

/ DCI I I , /f DCI I I and /M DCI I I , where I is an original image, DCI I d   , and

1 1

, ,
n n

M rj rj ij ij
j j

I g I g I d 
 

         . We remember that Î , I and fI are the results of Sections

3.2-3.4, respectively. DCI was used as a normalizer because it measures non-DC energy. Floating point

variables were utilized to calculate ,rjg I  and ,ijg I  in MI . Figure 16 clearly demonstrates the

effectiveness of the post-processing techniques. These techniques successfully reduced the error norm

ratios. Figure 16 also shows that for the UBIRIS.v1 database, many of our final results are even better

than MI , while for the WVU iris database, a good portion of our final results are comparable with MI .

Some fI have greater error norm ratios because the low frequency information (e.g., that in the 16th

frequency band (see Fig. 9)) in the original images is not well matched with the low frequency

information in the principal components. The proposed post-processing algorithm in Section 3.4

minimizes the compression artifacts but does not recover the low frequency information in the original

20

images. It should be emphasized that MI was computed from 2,048 floating point numbers, while our

results were obtained from IrisCodes, which have an optimal size of only about 50 bytes [4].

4.2. Visual Quality Assessment

Figure 17 gives more results for visual comparison. As with the previous figures, the DC and the contrast

of the original images are used to display the results. Once again, they show the effectiveness of the

proposed algorithms. Features such as iris texture and eyelids can be observed.

In addition to subjective visual comparison, two state-of-the-art image quality metrics ― Visual

Information Fidelity (VIF) [32] and Information Fidelity Criterion (IFC) [33] ― were employed to

objectively quantify the visual quality of our results. VIF and IFC both use a statistical model and

conditional mutual information to measure differences between a reference image and a distorted image.

VIF is based on a human visual system model. IFC is parameter-free. These two metrics were designed

for full-reference evaluation, meaning that a complete reference image is assumed to be known. In our

evaluation, the original iris images were considered as reference images, and our results were considered

as distorted images. Iris images compressed by the JPEG algorithm with quality factors (QF) of 20, 10

and 5 were employed for comparison. The VIF and IFC values of each image in these two iris databases

were calculated. Their means, summarized in Table 1, indicate that for the UBIRIS.v1 database, the

quality of our results is between the JPEG QFs of 10 and 5, while for the WVU iris database, the quality

of our results is between the JPEG QFs of 20 and 10. In this experiment, the file sizes of the JPEG images

with QFs of 10 and 5 were about 1,140 and 890 bytes, respectively. Our results were decompressed from

IrisCodes that have an optimal size of about 50 bytes, which is even smaller than an 8-by-8 patch in an 8-

bit image. The VIF and IFC values and the file sizes clearly indicate that the density of iris image

information in IrisCodes is extremely high ― 81.92 (512×64/(50×8)) pixels per bit in our experiments.

21

(a)

 (b)
Fig. 17 Results for visual comparison. The first column presents the original images, and the second column

presents the results from the proposed algorithms. (a) results from the UBIRIS.v1 database and (b) results from the
WVU iris database

Table 1 Image Quality Assessment based on VIF and IFC
Database Quality metrics JPEG (QF=20) JPEG (QF=10) JPEG (QF=5) Result

UBIRIS.v1 VIF 0.0826 0.0707 0.0548 0.0650
IFC 0.2861 0.2423 0.1871 0.2200

WVU VIF 0.0564 0.0447 0.0399 0.0566
IFC 0.2593 0.2021 0.1708 0.2322

22

(a)

(b)

Fig. 16 Error norm ratio distributions from (a) the UBIRIS.v1 database and (b) the WVU iris database

4.3. Evaluation by Other Iris Recognition Methods

In this subsection, eight iris recognition methods were re-implemented to evaluate our results in terms of

Receiver Operating Characteristic (ROC) curves: SVM [36]; multiple signature [37]; Ordinal Code (Di-

lobe d=5 and d=9 and Tri-lobe d=9 and d=17) [20]; zero-crossing [35]; and DCT-based [34] methods.

Masks that denoted noise pixels, such as eyelids and eyelashes, were used to exclude corrupted bits in the

Ordinal Code [20] and zero crossing methods [35]. Their raw hamming distances were rescaled to those

in IrisCode [24]. The masks were also used in the SVM method, and 90 images from each database were

used to train the SVM with a Gaussian kernel [36]. Two hundred images were employed to estimate

preliminary threshold sets for the multiple signature method, and the step size for the exhaustive search

was 0.01 [37]. The optimal threshold sets were then selected from these preliminary threshold sets. The

testing images were resized for the methods that required different sizes of normalized iris images. The

original contrast and DC were not used to decompress IrisCodes in these experiments.

In each set of experiments, cross-matching between all original images was first performed, and

the corresponding genuine and imposter distributions were estimated. Then, our results were matched

with their parent images. We also matched our results with all other iris images from the same iris, and

we obtained the corresponding genuine distribution. As with the visual quality assessment, iris images

compressed by the JPEG algorithm with QFs of 20, 10 and 5 were employed for comparison. We

23

matched the JPEG images with the original images from the same iris, but we did not allow them to

match their parent images. In total, for each method and each database, three genuine distributions were

obtained from matching the JPEG images. The imposter distributions from the cross-matching between

the original images and all the genuine distributions were used to plot ROC curves. It should be

emphasized that for the same database and the same method, all the ROC curves were generated from the

same imposter distribution that determines the false acceptance rate of a system when a threshold is

given. For the sake of convenience, the ROC curves from the cross-matching between the original images

are called original ROC curves; the ROC curves from matching our results with their parent images are

called parent ROC curves; the ROC curves from matching our results with the original images are called

resultant ROC curves; and the ROC curves from matching the JPEG images with a quality factor of X

with the original images are called JPEG (QF=X) ROC curves.

Figures 18-22 show, respectively, the ROC curves of the SVM [36], multiple signature [37],

Ordinal Code [20], zero-crossing [35], and DCT-based [34] methods. The parent ROC curves help us note

the differences between our results and the original images in terms of recognition errors. All the parent

ROC curves are higher than the corresponding original ROC curves. The GARs (genuine acceptance

rates) of the 14 parent ROC curves are very close to 100% when their FARs (false acceptance rates) are

0.001, indicating that the errors caused by the decompression process are insignificant compared with the

errors from the original images. The resultant ROC curves indicate the cumulative errors from the original

images and the decompression process. Three of the resultant ROC curves are above or very close to the

JPEG (QF=20) ROC curves; seven are between the JPEG (QF=20) ROC curves and the JPEG (QF=10)

ROC curves; and only one resultant ROC curve is below the JPEG (QF=5) ROC curve; the rest are

between the JPEG (QF=10) ROC curves and the JPEG (QF=5) ROC curves. These results suggest that, in

terms of ROC curves, the quality of the decompressed images is a JPEG quality factor of approximately

10.

24

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(a)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(b)

Fig. 18 ROC curves of the SVM method. (a) presents the results from the UBIRIS.v1 database and (b) presents the
results from the WVU iris database. (color figure)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(a)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(b)

Fig. 19 ROC curves of the multiple signature method. (a) presents the results from the UBIRIS.v1 database and (b)
presents the results from the WVU iris database. (color figure)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=5): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(a)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=5): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(b)

25

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(c)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(d)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(e)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(f)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=17): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(g)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=17): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(h)

Fig. 20 ROC curves of the Ordinal Code method. The first column presents the results from the UBIRIS.v1
database, and the second column presents the results from the WVU iris database. Rows 1-4 are the results of di-
lobe (d=5), di-lobe (d=9), tri-lobe (d=7) and tri-lobe (d=13), respectively. (color figure)

26

10
-1

10
0

10
1

10
2

20

30

40

50

60

70

80

90

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(a)

10
-1

10
0

10
1

10
2

20

30

40

50

60

70

80

90

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(b)

Fig. 21 ROC curves of the zero-crossing method. (a) presents the results from the UBIRIS.v1 database and (b)
presents the results from the WVU iris database. (color figure)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(a)

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e

ra
te

 %

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

(b)

Fig. 22 ROC curves of the DCT-based method. (a) presents the results from the UBIRIS.v1 database and (b)
presents the results from the WVU iris database. (color figure)

5. Discussion and Future Work

The primary aim of this paper is to provide a deeper theoretical understanding of IrisCode, but it does

impact various aspects of iris recognition. Current commercial iris recognition systems randomly flip or

place the bits in IrisCode to form cancelable IrisCodes [39] for privacy protection ― templates of the

same user registered in different systems cannot be matched ― and for system security ― compromised

templates (stolen templates) cannot be matched with re-issued templates. These cancelable transforms are

invertible, if their keys are known, which is not a significant problem, even if attackers obtain the keys,

because the re-issued templates will match neither their compromised templates nor their original

27

templates. Thus, the systems are still protected. However, our results show that once attackers obtain the

original IrisCodes and the 9Gabor parameters, they can obtain the corresponding iris images. These

images can be recognized by IrisCode and even other methods, which implies that they can be used to

attack systems running IrisCode and different iris recognition methods at various levels [38] (e.g., the

sensor level) if they are not well protected. Furthermore, these images can be used to link up users

enrolling in different iris recognition systems. As a result, privacy can be highly compromised. According

to the theoretical and experimental results, we recommend that biometric templates, including IrisCodes

and all templates generated by similar methods, should be protected at the same security level as

enrollment images.

This work not only shows that IrisCode is a compression algorithm, but it also helps us further

understanding the relationship between IrisCode and the related methods. According to Eq. 10, Kong et

al.’s precise phase representation [24] enhances the performance of IrisCode by allocating more bits to

each () ,r i jg I  , which is equivalent to extracting more information from the subspace spanned by

1 1, , , , ,r rn i ing g g g  . Other methods that replace the Gabor filters in IrisCode with other linear filters

either extract information from different subspaces or use different bases to represent the same subspace.

Designing new linear filters to replace the Gabor filters in IrisCode is equivalent to searching an optimal

basis.

 Synthesizing iris images is an important topic in iris recognition [5, 40-42]. Synthesizing saves

time and effort used to collect a large number of iris images for algorithm evaluation and development.

Once an IrisCode is synthesized, we can use the algorithm to obtain an iris image with a predefined

IrisCode. However, decompressing IrisCodes and synthesizing iris images are two different problems.

The bits in an IrisCode and its mask are the only information available for decompressing it, while we can

generate IrisCodes, masks and other information inside and outside  for synthesizing iris images.

9 The Gabor parameters are not a secret, because one can estimate them from public iris databases or use a hill
climbing approach to obtain them if they have a system running IrisCode.

28

Developing algorithms to synthesize IrisCodes, masks and other iris information to generate high quality

iris images is a potential research direction.

 For administrative reasons, compressed enrollment images are always stored [45-46]. If the

quality of our results can be further improved, for example, to a JPEG quality factor of 50, the necessity

of storing these images should be discussed. Using the masks of IrisCodes and other statistical approaches

to infer information inside and outside  should be considered for further improvement.

The theoretical results reported in this paper are applicable to biometric methods that use the core

of IrisCode. More clearly, all the coding methods using the feature extractor generalized from IrisCode

are compression algorithms [24]. However, the post-processing techniques must be modified because they

have different interference and compression artifacts. For example, the methods that encode the

orientation fields of palmprints as features definitely have different artifacts [8-9]. The quality of

decompressed images from these methods depends highly on the information stored in their templates.

Further research is required on decompressing these templates.

Acknowledgements

We would like to thank the University of West Virginia and the University of Beira Interior for sharing

their databases. We also thank Dr. Naif Alajlan for his comments. This work is partially supported by a

consultant contract provided by the King Saud University, Kingdom of Saudi Arabia.

References

[1] J.G. Daugman, “High confidence visual recognition of persons by a test of statistical independence”,

TPAMI, vol. 15, no. 11, pp. 1148-1161, 1993.
[2] J. Daugman, “How iris recognition works”, IEEE TCSVT, vol. 14, no. 1, pp. 21-30, 2004.
[3] J. Daugman, “New methods in iris recognition”, IEEE TSMC Part B, vol. 37, No. 5, pp. 1167-1175,

2007.
[4] J. Daugman, “The importance of being random: statistical principles of iris recognition”, Pattern

Recogn, vol. 36, pp. 279-291, 2003.
[5] S. Shad and A. Ross, “Generating synthetic irises by feature agglomeration”, ICIP, pp. 317-320,

2006.
[6] A. Kong, D. Zhang and M. Kamel, “Palmprint identification using feature-level fusion”, Pattern

Recogn, pp. 478-487, 2006.

29

[7] D. Zhang, W.K. Kong, J. You and M. Wong, “On-line palmprint identification”, TPAMI, vol. 25, no.
9, pp. 1041-1050, 2003.

[8] A.W.K. Kong and D. Zhang, “Competitive coding scheme for palmprint verification”, in Proc.
ICPR, vol. 1, pp. 520-523, 2004.

[9] Z. Sun, T. Tan, Y. Wang and S.Z. Li, “Ordinal palmprint representation for personal identification”,
in Proceedings of IEEE CVPR, vol. 1, pp. 279-284, 2005.

[10] L. Ma, T. Tan, Y. Wang, D. Zhang, “Efficient iris recognition by characterizing key local
variations”, IEEE TIP, vol. 13, no. 6, pp. 739-750, 2004.

[11] Z. Sun, T. Tan and Y. Wang, “Iris recognition based on non-local comparisons”, LNCS, Springer,
vol. 3338, pp. 491-497, 2004.

[12] E. Krichen, M.A. Mellakh, S. Garcia-Salicetti, and B. Dorizzi, “Iris identification using wavelet
packets”, in Proceedings of ICPR, vol. 4, pp. 226-338, 2004.

[13] S.I. Noh, K. Bae, Y. Park and J. Kim, “A novel method to extract features for iris recognition
system”, LNCS, Springer, vol. 2688, pp. 861-868, 2003.

[14] K. Bea, S. Noh and J. Kim, “Iris feature extraction using independent component analysis”, LNCS,
Springer, vol. 2688, pp. 838-844, 2003.

[15] P.F. Zhang, D.S. Li and Q. Wang, “A novel iris recognition method based on feature fusion”, in
Proc. of the 3rd International Conference on Machine Learning and Cybernetics, pp. 26-29, 2004.

[16] T. Ea, A. Valentian, F. Rossant, F. Amiel and A. Amara, “Algorithm implementation for iris
identification”, in Proc. of 48th Midwest Symposium on Circuits and Systems, pp. 1207-1210, 2005.

[17] C.H. Park, J.J. Lee, S.K. Oh, Y.C. Song, D.H. Choi and K.H. Park, “Iris feature extraction and
matching based on multiscale and directional image representation”, LNCS, Springer, vol. 2695, pp.
576-583, 2004.

[18] E. Rydgren, T.E.A.F. Amiel, F. Rossant and A. Amara, “Iris features extraction using wavelet
packets”, in Proc. of ICIP, vol. 2, pp. 861-864, 2004.

[19] L. Masek, Recognition of Human Iris Patterns for Biometric Identification, Bachelor thesis, The
University of Western Australia.

[20] Z. Sun and T. Tan, “Ordinal measures for iris recognition”, TPAMI, vol. 31, no. 12, pp. 2211-2226,
2009.

[21] A.T.B. Jin, D.N.C. Ling and A. Goh, “Biohashing: two factor authentication featuring fingerprint
data and tokenized random number”, Pattern Recogn, vol. 37, pp. 2245-2255, 2004.

[22] A. Kong, K.H Cheung, D. Zhang, M. Kamel and J. You, “An analysis of Biohashing and its
variants”, Pattern Recogn, vol. 39, no. 7, pp. 1359-1368, 2006.

[23] P. Yao, J. Li, X. Ye, Z. Zhuang and B. Li, “An analysis and improvement of an iris identification
algorithm”, in Proceeding of the 18th ICPR, vol. 4, pp. 362-365, 2006.

[24] A.W.K Kong, D. Zhang and M. Kamel, “An analysis of IrisCode”, TIP, vol. 19. No. 2, pp. 522-532,
2010

[25] A. Kong, “An analysis of Gabor detection”, in Proc. of ICIAR, pp 64-72, 2009
[26] J.G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for image analysis and

compression”, IEEE TASSP, vol. 36, no. 7, pp. 1169-1179, 1988
[27] T.S. Lee, “Image representation using 2D Gabor wavelets”, TPAMI, vol. 18, no. 10, pp. 959-971,

1996
[28] J. Behar, M. Porat and Y.Y. Zeevi, “Image reconstruction from localized phase”, IEEE TSP, vol. 40,

no. 4, pp. 736-743, 1992.
[29] M. Turk and A. Pentland, “Eigenfaces for recognition”, J Cognitive Neurosci.vol. 3, no. 1, pp. 71-

86, 1991
[30] H. Proenca and L.A. Alexandre, “UBIRIS: a noisy iris image database” in Pro. of the 13th ICIAP,

vol. 1, pp. 790-977, 2005.
[31] A. Ross and S. Shah, “Segmenting non-ideal irises using geodesic active contours”, in Proc. of

Biometrics Symposium, pp. 1-6, 2006

30

[32] H. R. Sheikh and A. C. Bovik, “Image information and visual quality”, TIP, vol. 15, no. 2, pp. 430-
444, 2006.

[33] H. R. Sheikh, A. C. Bovik and G. de Veciana, “An information fidelity criterion for image quality
assessment using natural scene statistics”, IEEE TIP, vol. 14, no. 12, pp. 2117-2128, 2005.

[34] D.M. Monro, S. Rakshit and D. Zhang, “DCT-based iris recognition”, TPAMI, vol. 29, no. 4, pp.
586-595, 2007.

[35] C. Sanchez-Avila and R. Sanchez-Reillo, “Two different approaches for iris recognition using Gabor
filters and multiscale zero-crossing representation”, Pattern Recogn, vol. 38, pp. 231-240, 2005.

[36] H.A Park and K.R. Park, “Iris recognition based on score level fusion by using SVM”, Pattern
Recogn Lett, vol. 28, pp. 2019-2028, 2007.

[37] H. Proença and L.A. Alexandre, “Toward noncooperative iris recognition: a classification approach
using multiple signatures”, TPAMI, vol. 29, no. 4, pp. 607- 612, 2007

[38] N.K. Ratha, J.H. Connell and R.M. Bolle, “Biometrics break-ins and band-aids”, Pattern Recogn
Lett, vol. 24, no. 13, pp. 2105-2113, 2003.

[39] M. Braithwaite, U.C. von Seelen, J. Cambier, J. Daugman, R. Class, R. Moore and I. Scott,
“Applications-specific biometric template”, in Proceeding of IEEE Workshop on Automatic
Identification Advanced Technologies, pp. 167-171, 2002.

[40] S. Makthal and A. Ross, “Synthesis of iris images using Markov random fields”, in Proceeding of
13th European Signal Processing Conference, 2005

[41] J. Cui, Y. Wang, J. Huang, T. Tan, and Z. Sun, “An iris image synthesis method based on PCA and
super-resolution”, in Proc. 17th ICPR, vol. 4, pp. 471-474, 2004.

[42] J. Zuo, N.A. Schmid and Z. Chen, “On generation and analysis of synthetic iris images”, IEEE TIFS,
vol. 2, no. 1, pp. 77- 90, 2007.

[43] K.P. Hollingsworth, K.W. Bowyer and P.J. Flynn, “The best bits in an iris code”, TPAMI, vol. 31,
no. 6, pp. 964-973, 2009

[44] L. Liang, C. Liu, Y.Q. Xu, B. Guo and H.Y. Shum. “Real-time texture synthesis by patch-based
sampling”, ACM T Graphics, vol. 20, no. 3, pp. 127–150, 2001.

[45] S. Rakshit and D. M. Monro, “An evaluation of image sampling and compression for human iris
recognition”, IEEE TIFS, vol. 2, no. 3, pp. 605–612, Sep. 2007.

[46] J. Daugman and C. Downing, “Effect of severe image compression on iris recognition performance”,
IEEE TIFS, vol. 3, no 1, pp. 52-61, 2008

[47] X. Wang and X. Tang, “Face photo-sketch synthesis and recognition”, TPAMI, vol. 31, no. 11, pp.
1955-1967, 2009.

[48] C. Liu, H.Y. Shum and W.T. Freeman, “Face hallucination: theory and practice”, IJCV, vol. 75, no.
1, pp. 115-134, 2007.

[49] J.D. Woodward, “Biometrics: privacy’s foe or privacy’s friend?”, Proc. of IEEE, vol. 85, no 9, 1997.
[50] B. Schneier, “Security and function creep”, IEEE Security & Privacy, vol. 8, no .1, pp. 88, 2010
[51] W. Cheney and D. Kincaid, Linear algebra theory and applications, Jones and Bartlett Publishers,

Sudbury, Massachusetts, 2009.

Adams Wai-Kin Kong received his PhD from the University of Waterloo, Canada.
Currently, he is an assistant professor at the Nanyang Technological University,
Singapore. His research interests include biometrics, forensics, image processing, and
pattern recognition.

Appendix

A.

This appendix shows that Eq. 5 is always true. Let 1 1[]r rn i ing g g g    , 1 1[]T
d r rn i inA a a a a d   ,

1[]m m   and 1 2[]T
m mC c c c  . Using a matrix representation, Eq. 5 can be rewritten as

d m mI A C   and using the least square method, i.e., min
d

d
A

I A to compute dA , we have

1()T T
dA I   if 1()T  exists. Let the residual of I be 1()T T

dI A I I       . Clearly,

0T  implying that  is orthogonal to  and all rkg and ikg . If T is not invertible, 0T  is

still true because the solutions of min
d

d
A

I A must satisfy the equation ()T T
dA I  . Note that the

0 represents a zero vector.

 It is worth to mention that if G defined in Eq. 8 is invertible, T is also invertible. Note that

[]g   , where 1 1[]g r rn i ing g g g   . Using a block matrix representation,

1

1()
T T

g g gT
T T

g




 

  
    

  



. This inverse exists if T

g g  and 1()T T T T
g g g g

       are

invertible [51]. 1()T T T T
g g g g

       is a positive number and equal to T  because rkg and

ikg are zero DC filters, i.e., 0T
g   . Consequently, the inverse of 1()T T T T

g g g g
      

always exists. We should remember that

T
g g G  . Our experimental results show that the G formed

by the Gabor filters in IrisCode is invertible, implying that T is also invertible.

 Now, we consider a set of images, 1{ , , }KI I and define their residuals as k k kdI A   .

Using the result 0T
k  , we can easily prove that

1

1
() 0

K
T

k
kK




 . In other words, the mean of k is

orthogonal to  and all rkg and ikg . The sample covariance matrix of k can be computed through

1

1 K
T T

k k
kK     


 
 

 
 , where

1

1 K

k
kK 


  . Its principal components j have to satisfy

1

1 K
T T

k k j j j
kK        


 
  

 
 , where j is the corresponding non-zero eigenvalue. Using

1

1 K
T T

k k j j j
kK        


 
  

 
 , 0T

k  and 0T
  , we have

1 1

1 1
0

K K
T T T T T T T T

j k k j k k j
j jk kK K             

  

   
       

   
     . (29)

Thus, I can be decomposed as
1 1 1

n n m

rj rj ij ij j j
j j j

I a g a g c d
  

       , where m   and j is orthogonal

to  and all rkg and ikg , i.e., () , 0r i k jg  

and , 0j   .

B.

This appendix shows that the coding methods generalized from IrisCode such as Competitive Code and

precise phase representation [8, 24] are also compression algorithms. Their feature extractors can be

defined as  ,
0

arg max ,j j k
k s

h I
 

   , where j is a feature value to be encoded, ,j kh is a filter, and s is

the total number of the filters. The relationship between  ,
0

arg max ,j j k
k s

h I
 

   and Eqs. 1-4 can be

found in [24]. Each feature value is computed from a group of filters, ,0 , 1, ,j j sh h  . For example,

Competitive Code uses six filters. Each template from these methods is composed of J feature values,

which can be represented in a binary format for high speed matching [24]. The inequalities,

, ,, ,
jj k jh I h I     , where j k  , can be derived from the feature extractor. For the sake of

convenience, let 0j  . Rewriting these inequalities, we obtain ,
ˆ0 ,j kh I   , where , ,0 ,

ˆ
j k j j kh h h  .

Let
1

, ,
1 1

ˆ
J s

j k j k j j
j k j

I a h c 


 

   , where , ,j k ja c  and j is orthogonal to all ,
ˆ
e kh . As in the proof in

Section 2, we can obtain

1

, ,
1 1 1

ˆ ,
J s

j k j k j j
j k j

I h I c 


  

     , (30)

where

1

1,1 1,1 1,1 , 1

1,1 , 1 1,1 , 1

, 1 1,1 , 1 , 1

ˆ ˆ ˆ ˆ, ,
ˆ ˆ[] []

ˆ ˆ ˆ ˆ, ,

J s

J s J s

J s J s J s

h h h h

h h

h h h h

 





 

  

    
 

  
 
     


    



. Here, we assume that the

inverse exists. Eq. 30 indicates that these coding methods generalized from IrisCode are also compression

algorithms. They use one bit to store each coefficient of ,j k , which is ,
ˆ ,j kh I  , but erase all other

coefficients. Note that different templates, even from the same methods, have different 1,1 , 1{ }J s  

because they have different feature values.

