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Abstract  IrisCode is an iris recognition algorithm developed in 1993 and continuously improved by 

Daugman. Understanding IrisCode’s properties is extremely important because over 60 million persons 

have been mathematically enrolled by the algorithm. In this paper, IrisCode is proved to be a compression 

algorithm, which is to say, its templates are compressed iris images. In our experiments, the compression 

ratio of these images is 1:655. An algorithm is designed to perform this decompression by exploiting a 

graph composed of the bit pairs in IrisCode, prior knowledge from iris image databases, and the 

theoretical results. To remove artifacts, two post-processing techniques that carry out optimization in the 

Fourier domain are developed. Decompressed iris images obtained from two public iris image databases 

are evaluated by visual comparison, two objective image quality assessment metrics and eight iris 

recognition methods. The experimental results show that the decompressed iris images retain iris texture, 

that their quality is roughly equivalent to a JPEG quality factor of ten and that the iris recognition 

methods can match the original images with the decompressed images. This paper also discusses the 

impacts of these theoretical and experimental findings on privacy and security.  
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1. Introduction 

1IrisCode has drawn significant attention in the last two decades [1-3] because of its great success in 

biometric markets, and because of its computational advantages, including high matching speed, 

predictable false acceptance rates and robustness against local brightness and contrast variations. Many 

methods developed for iris and palmprint identification use the 2core of IrisCode to take advantage of 

these properties [6-20]. Researchers developing these methods generally replace the Gabor filters in 
                                                            
1In this paper, IrisCode is used interchangeably to refer to both the method and features of iris recognition developed 
by Daugman. Recently, this method has also been called the Daugman algorithm.  
2 The core of IrisCode is used to refer to the integrals and the binarization operations in Eqs. 1-4.  
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IrisCode with different filters and transformations. IrisCode is also used for cancelable biometrics [21-22] 

to prohibit the recovery of original features from templates. For these reasons, a complete understanding 

of IrisCode is extremely important. Although numerous scientific papers regarding iris recognition have 

been published, few works are devoted to the analysis of IrisCode. In the original paper [1], Daugman put 

significant effort into investigating the imposter distribution. He concluded that it follows a binomial 

distribution, and bits “0” and “1” in IrisCodes are equally probable. In addition to Daugman, Yao et al. 

attempted to analyze the bandwidth of Gabor filters, which influence the distributions of the bits [23]. 

They claimed that the Gabor filters are not perfectly band-pass, and therefore, the “1” and “0” bits in 

IrisCodes are not equally probable, which contradicts Daugman’s result [1]. Yao et al.’s analysis was 

based on non-zero DC (direct current) Gabor filters, while Daugman removed the DC components. 

3Hollingsworth et al. studied the stability of bits in their iris codes [43], and they identified the best bits. 

Most theoretical results have been derived by Kong and his coworkers [24-25]. They demonstrated that 

IrisCode is a clustering algorithm with four prototypes; that the locus of a Gabor function is a two-

dimensional ellipse with respect to a phase parameter and can be approximated by a circle in many cases; 

that the Gabor function can be considered a phase-steerable filter; that the bitwise hamming distance can 

be regarded as a bitwise phase distance [24]; and that Gabor filters can be used as a Gabor atom detector, 

and the phase and magnitude of a target Gabor atom can be approximated by the phase and magnitude of 

the corresponding Gabor response [25]. Nevertheless, their analyses specifically focused on the intra-

relationship of bit pairs in IrisCodes.   

 Many image compression and representation methods depend on Gabor analysis or phase 

information, which are two important components in IrisCode. Daugman demonstrated that Gabor filters 

are effective for image compression [26]. Lee extended Gabor filters to Gabor wavelets and proved that 

under suitable parameterization of Gabor filters, an image can be perfectly decomposed as 

1
,j j

j

I g I g
Z

   , where I is an image, Z is a normalization constant, gj is a Gabor filter and 

                                                            
3 Hollingsworth et al. use 1D log-Gabor wavelets instead of 2D Gabor filters in their study. [43]  
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,jg I   is an inner product of gj and I [27]. Behar et al. showed that images can be reconstructed from 

localized phase [28]. Furthermore, Kong et al. proved that IrisCode is a clustering algorithm [24]. It is 

well-known that clustering plays an important role in many compression methods. All these research 

results imply that IrisCode is a compression algorithm. Nevertheless, these implications have not been 

noted in the last two decades. If iris images are decompressed from IrisCodes, they can be used to link 

users enrolling in different iris recognition systems and to attack the systems directly. This deepens our 

concern for privacy and illegal matching [49-50]. In this paper, we prove that IrisCode is a compression 

algorithm. We then use a graph composed of the bit pairs in IrisCodes, prior knowledge from iris image 

databases, and the theoretical results to perform decompression.  

  We now give a brief computational summary for those who are not familiar with IrisCode 

generation. Two-dimensional Gabor filters with zero DC are applied to an iris image in a dimensionless 

polar coordinate system, 0 ( , ) Ι . The complex Gabor response is encoded into two bits by using the 

following inequalities:  

2 2 2 2
0 0 0( ) / ( ) / ( )

01 Re ( , ) 0j j j j j jr i
jrb if e e e d d       

 

         
 
  
 
 
  I ,           (1) 

2 2 2 2
0 0 0( ) / ( ) / ( )

00 Re ( , ) 0j j j j j jr i
jrb if e e e d d       

 

         
 
  
 
 
  I ,           (2) 

2 2 2 2
0 0 0( ) / ( ) / ( )

01 Im ( , ) 0j j j j j jr i
jib if e e e d d       

 

         
 
  
 
 
  I ,           (3) 

2 2 2 2
0 0 0( ) / ( ) / ( )

00 Im ( , ) 0j j j j j jr i
jib if e e e d d       

 

         
 
  
 
 
  I ,           (4) 

where 0 0( , )j jr   is the center/location of the filter in the spatial domain, j is the spatial frequency, and j 

and j control the shape of the Gaussian function [2]. Daugman uses 1024 Gabor filters with different 

parameters 0 0( , , , , )j j j j jr      to generate 1024 bit pairs ( , )jr jib b  in IrisCodes and a mask to exclude the 

corrupted bits from the eyelashes, reflection, eyelids, and from a low signal-to-noise ratio [2]. These four 
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inequalities quantize phase information and represent it in binary format for high-speed matching. In this 

paper, we assume that the masked bits of IrisCode are retained. 

 The rest of this paper is organized as follows. Section 2 proves that IrisCode is a compression 

algorithm. Section 3 presents a decompression algorithm with two post-processing techniques. Section 4 

reports the experimental results obtained from visual comparison, objective image quality metrics and iris 

recognition methods. Section 5 discusses the impacts of our theoretical and experimental findings.  

 
2. IrisCode  A Compression Algorithm 

For clear presentation, a clear set of notation is essential. The real and imaginary parts of a zero DC 

Gabor filter
 jg with the parameters 0 0( , , , , )j j j j jr     , which generates a bit pair, ( , )j jr jiB b b  in an 

IrisCode, are represented by rjg and ijg , respectively. The entire IrisCode is composed of 1,024 bit pairs, 

i.e., 1 2 1024{ , , , }B B B . In Section 3, an additional subscript is employed for the bit pairs to emphasize 

that they are generated from a particular image (e.g., ( , )kj kjr kjiB b b  is a bit pair generated from the image 

Ik.). For convenience, we use I to denote 0 ( , )  Ι   and *
j k j k, d d    g g g g  to denote the inner 

product of jg  and kg , where * represents a complex conjugate. It is clear that 0Ι  can be obtained from I 

because  can never be zero. Bold font is used to indicate matrices, two-dimensional images and two-

dimensional filters. For example, I represents a two-dimensional image, while I represents the column 

vector form of the image and rjg is a real part of a two-dimensional Gabor filter, while rjg is a column 

vector form of rjg . Using the vector representation, the inner product can be redefined as 

H
j k k jg ,g g g  , where H denotes a complex conjugate transpose. We use T to represent the transpose 

of a matrix or vector. Thus, the inner product of two real valued vectors (e.g., rjg
 
and rkg ) can be 

defined as T
rj rk rk rjg ,g g g  .  
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In the rest of this section, we prove that IrisCode is a compression algorithm. I can be 

decomposed as  

1 1 1

n n m

rj rj ij ij j j
j j j

I a g a g c d
  

       ,            (5) 

where rja , ija , jc  and d   ; [1 1 1]T   ; n=1,024; j is a unit vector that is orthogonal to   and all 

rkg  and ikg , i.e., ( ) , 0r i k jg  
 

and , 0j   , where 1 k n  , and m is a constant. 

Mathematically, the vectors 1 1, , ,m    and m , which will be estimated through PCA (see Section 3.4), 

span a subspace in the orthogonal complement of the space spanned by 1 1, , , , ,r rn i ing g g g  and  . Eq. 5 

is always valid (see the proof in Appendix A). For the sake of convenience, the space spanned by  

1 1, , , ,r rn i ing g g g  and   is denoted as  . Using Eq. 5, the inner product of ( )r i kg  and I can be 

expressed as 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , ,
n n m

r i k rj r i k rj ij r i k ij j r i k j r i k
j j j

g I a g g a g g c g d g
  

             .                  (6)  

Because ( )r i kg  is orthogonal to  and all j , Eq. 6 can be simplified as   

( ) ( ) ( )
1 1

, , ,
n n

r i k rj r i k rj ij r i k ij
j j

g I a g g a g g
 

       .                   (7) 

Using a matrix representation, we obtain M A G , where 

1 1[ , , , , ]T
r rn i inM g I g I g I g I          , 1 1[ ]T

r rn i inA a a a a    and 

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

, , , ,

, , , ,

, , , ,

, , , ,

r r r rn r i r in

rn r rn rn rn i rn in

i r i rn i i i in

in r in rn in i in in

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

        
 
 
        

  
        
 
 
         

G

 
     

 
 

     
 

.          (8) 

If G is invertible, we can substitute 1A M G into Eq. 5 and obtain 

1
1 1

1

[ ]
m

r rn i in j j
j

I g g g g M c d



   G  .           (9) 
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Let 1
1 1 1 1[ ] [ ]r rn i in r rn i ing g g g     G    . Now, Eq. 9 can be rewritten as  

1 1 1

, ,
n n m

rj rj ij ij j j
j j j

I g I g I c d  
  

           .               (10) 

Clearly, 1 1{ }r rn i in      and 1 1{ }r rn i ing g g g  form a biorthogonal system.  Eq. 10 indicates that 

IrisCode is a compression algorithm. This compression algorithm uses one bit to store each coefficient of 

( )r i j , which is  ( ) ,r i jg I  , but erases all other coefficients. Eq. 10 also indicates that if all ( ) ,r i jg I   

are known, an approximate iris image can be obtained, i.e.,  

1 1

, ,
n n

rj rj ij ij
j j

I g I g I 
 

       .                      (11) 

Eq. 10 is called the IrisCode decompression equation. In this proof, we do not exploit any properties of 

Gabor filters, and therefore, this theoretical result is applicable to other methods that use the core of 

IrisCode for personal identification and template protection. These methods are, in fact, compression 

algorithms, and their templates are compressed biometric images. The only assumption required in the 

proof is that G is invertible. Our experimental results show that the G formed by the Gabor filters in 

IrisCode is invertible. The invertibility of Gs in other recognition methods should be tested. If they are 

non-invertible, other numerical methods (e.g., the least squares method) can be used to solve the system 

of linear equations M A G . This proof is only valid for the methods that directly use the core of 

IrisCode. The proof given in Appendix B demonstrates that other coding methods generalized from 

IrisCode, such as Competitive Code and precise phase representation [8, 24], are also compression 

algorithms. 

Figure 1 shows two resultant images from Eq. 11 and their corresponding original images. The 

resultant images retain some key features, such as iris texture and eyelids. Because Eq. 11 does not 

include the brightness component, d, their average intensities are different. In addition, some artifacts are 

observable.   

The compression ratio of IrisCodes is extremely high. Let the size of a normalized iris image be 

64 by 512 pixels and one byte be used to store each pixel. The original size of IrisCodes is 256 bytes, and 
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therefore, the compression ratio is 1:128 (512×64×1/256). IrisCodes can be further compressed without a 

loss of information to about 450 bytes [4], which is even smaller than the size of an 8-by-8 patch in an 8-

bit image. Taking into account this significant compression, the compression ratio increases to 1:655 

(512×64×1/50). Because of this enormously high compression ratio, decompressing IrisCode is 

challenging.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figs. 1 (a) and (b) are two normalized iris images, and (c) and (d) are their respective results from Eq. 11.   
 

3. A Decompression Algorithm  

We now know that IrisCode is a compression algorithm and that its templates are highly compressed iris 

images. In this section, a decompression algorithm with two post-processing techniques are proposed.  

Before presenting this algorithm, it should be mentioned that we are not going to recover the coefficient d 

(the brightness of I) and 
1 1 1

, ,
n n m

rj rj ij ij j j
j j j

g I g I c  
  

         (the contrast of I), which highly depend 

on illumination environments, because IrisCodes do not store this lighting information, and there are no 

state-of-the-art iris recognition methods that use this information.  

There are four major steps to decompress IrisCodes. First, graphs are used to model IrisCodes 

from training images (Section 3.1). These graphs will be used to estimate  ,rj qg I   and ,ij qg I  , 

where Iq  is an image corresponding to an input IrisCode q (Section 3.2). Using Eq. 11, an approximate 

image can be obtained from the estimated  ,rj qg I   and ,ij qg I  . Finally, two post-processing 

techniques are used to remove interference artifacts (Section 3.3) and estimate coefficients cj in Eq. 10 

(Section 3.4). Fig. 2 illustrates the proposed decompression scheme.  

 
 

                                                            
4 The entropy of IrisCodes is not optimal and therefore, it can be further compressed.  
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Fig. 2 A schematic diagram of the decompression scheme. The black and blue arrows indicate respectively the 
information flow of the decompression process and the information flow of the preparation of training images.  

 
3.1. A Graph Formulation  

To model the structure of IrisCodes for decompression, a graph, ( , )V   , is used, where V is a set of 

nodes representing the 1,024 Gabor filters, and   is the unordered pairs of the vertices, which are called 

edges. A node j in the graph stores , /kj j k kS g I X  , where kI  is a training image in a given database 

and 
1 1

, ,
n n

k rj k rj ij k ij
j j

X g I g I 
 

       . The corresponding bit pair, ( , )kj kjr kjiB b b , is computed 

by Eqs. 1-4. kX  is the norm of the Gabor components in the image, which depends on the image’s 

contrast. The weight of an edge between nodes j and u is defined as the magnitude of , ,j ug g   which 

is denoted as   ,j ug g  .  ,j ug g 
 
models the impact of node j on node u and vice versa. If 

, 0j ug g   , the nodes are regarded as disconnected. We should remember that jg  and ug  are Gabor 

filters in the complex analytical form, and the structure of this graph is fixed for all training images 

because its edges do not depend on kI . Figure 3 illustrates this graph. We define an edge weight matrix,  

1 1 1

1

, ,

, ,

n

n n n

g g g g

g g g g

    
   
     

Ω


  


,                (12) 

which summarizes the connections of the nodes and the weights of the edges. To compare the impacts of 

different nodes on node j, we sort 1, , , ,j j ng g g g     in descending order such 
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that ( ,1) ( ,2) ( , ), , ,j R j j R j j R j ng g g g g g         , where R is an indexing function. Because all Gabor 

filters are normalized, i.e., 1jg  , then ( ,1)R j j . Using this indexing function, a ranked weight 

matrix can be defined as   

1 (1,1) 1 (1, )

( ,1) ( , )

, ,

, ,

R R n

n R n n R n n

g g g g

g g g g

    
 
 
 
     

Ψ



  



.         (13) 

Given K training images, we have K graphs whose nodes store different bit pairs and S-values, though 

they share the same structure, i.e., Ω and Ψ, are the same for all graphs.  

, /v k kg I X /,u k kg I X 

, /x k kg I X , /y k kg I X  , /j k kg I X 

, xjg g , yjg g 

,
u

j
g

g




,
u

y

g
g





, vug g 

,x
v

g
g





Fig. 3 Illustration of a graph generated from a training 
image Ik 

, xjg g , yjg g 

,
u

j
g

g




,
u

y

g
g





,u vg g 

,x
v

g
g





Fig. 4 Illustration of a graph generated from an input 
IrisCode, q, for decompression at the initial stage. 

 

 

3.2. A Graph-based Estimation 

The graph constructed in the previous subsection indicates that a node is influenced by its adjacent nodes. 

This subsection will use these relationships to recover the magnitude of bit pairs ( ,rjg I 
 

and 

, )ijg I   in IrisCodes. 

Given an IrisCode q consisting of 1024 bit pairs i.e., 1 2 1024{ , , , }q q qB B B , we use the previous 

notation to construct a graph whose nodes store its bit pairs. Figure 4 illustrates this graph. In the graph, 

all the S-values, which are Gabor responses in the nodes, and the variables E, which are counters, are set 

to zero.  

Assume we have K graphs from K training images. We use this information to recover the S-

values in the graph generated by the input IrisCode. Our proposed algorithm processes node by node. 
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Figure 5 illustrates this algorithm. Let us consider node j. The bit pairs in the input IrisCode are used as a 

searching criterion, which is defined as  

( , ) ( , )
1

( , ) argmax max( ( , ))
k

k

T

j j kR j t qR j t
k T

t

k T f B B


 
   

 
 ,                    (14) 

where  

( , ) ( , ) ( , ) ( , )
( , ) ( , )

1
( , )

kR j t r qR j t r kR j t i qR j t i
kR j t qR j t

if b b and b b
f B B

otherwise

  


,        (15) 

kj is an index of an optimal graph and Tj is the maximum number of matched bit pairs. This criterion is 

equivalent to searching a graph in the training database, which has the maximum consecutive bit pairs 

that match the corresponding bit pairs in the input IrisCode. Once the optimal graph kj is found, the 

following updates are performed:  

( , ) ( , ) ( , )( , )
jqR j t qR j t k R j tS S j t S  Ψ ,          (16) 

( , ) ( , ) ( , )qR j t qR j tE E j t  Ψ ,           (17) 

where 1 jt T   and ( , )j tΨ  is the element at row j and column t in Ψ . Eqs. 14-16 guarantee that  

( , ) ( , )(Re( ))qR j t qR j t rQ S b  and ( , ) ( , )(Im( ))qR j t qR j t iQ S b , where Q represents the quantization process in 

Eqs. 1-4. When all 1,024 nodes are processed, all the S-values are normalized by 

/qj qj qjS S E .           (18) 

Separating the real and imaginary parts in the S-values, we can obtain the estimated ,rj qg I   and 

,ij qg I  , respectively denoted as ˆ,rj qg I   and ˆ,ij qg I  , and by using Eq. 11, an approximate Iq can 

be obtained. The magnitude of the final qjS  may differ greatly from the magnitude of ,j qg I   because 

the S-values in the database are normalized. To address this issue, we 

compute
1 1

ˆ ˆ ˆ, ,
n n

q rj q rj ij q ij
j j

X g I g I 
 

        and rescale ˆ,rj qg I   and ˆ,ij qg I   by  

ˆ ˆ ˆ, , /rj q, rescale rj q qg I g I X    and ˆ ˆ ˆ, , /ij q, rescale ij q qg I g I X   , where   is a given scale 

controlling the contrast of the Gabor components in the image. If we know nothing about  , the simplest 
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approach is to set 
1

1 K

k
k

X
K




  . Figure 6 shows two results with their corresponding original images. We 

use the DC and the contrast of the original images to display our results to avoid perception differences 

arising from these two factors. Further experimental results are given in Section 4. We can see that many 

features (e.g., eyelids and iris texture) are successfully recovered. However, we can also observe many 

artifacts. Some of these artifacts come from the updated process, while others are due to the missing j in 

Eq. 10. In the following sub-sections, two post-processing techniques are proposed to remove these 

artifacts, and Î  represents the resultant images in this subsection.  

 
Fig. 5 Illustration of the graph-based estimation. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Decompressed results. (a) and (b) are two original images. (c) and (d) are the respective results from the 
graph-based estimation algorithm.  
 
 In Section 2, we used rjg  and ijg  to derive the decompression equation. In this subsection, we 

use the complex Gabor filters jg  to develop the algorithm. We do not exploit the complex Gabor filters 

to derive the decompression equation so that the theoretical result will be applicable to other coding 

methods [7, 9-20]. However, the complex Gabor filters do add extra information to the algorithm because 

their phase and magnitude are the approximate phase and magnitude of the target Gabor atoms [25]. Thus, 

each ( , )jk R j tS  can be regarded as one Gabor atom, which gives more precise information than either 

( , ) , jrR j t kg I  or ( , ) , jiR j t kg I   alone.  
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It is worth mentioning that Eqs. 14-15 search maximum consecutive instead of maximum bit pairs 

that match the corresponding bit pairs in the input IrisCode. This scheme updates simultaneously a group 

of S-values in the nodes that are spatially close to each other to capture their spatial dependence. Figure 7 

shows the spatial locations of 31 nodes (the locations of the nodes defined by 0 0( , )j jr  in the 

corresponding Gabor filters). The large dot is the location of a target node, and the small dots are the 

locations of the top 30 nodes with the greatest impact on the target node. Their grey levels indicate the 

orders of their impact on the target node. The higher grey levels represent higher impact. Clearly, these 

orders imply their spatial relationship with the target node. When Eq. 16 updates a group of S-values, it is 

equivalent to spatially copying a 5patch,   ( , ) ( , ) ( , ) ( , )
1

1
, ,

j

j j j

j

T

k rR j t k rR j t iR j t k iR j t
k t

U g I g I
X

 


     , from a 

training image 
jkI  to Î . Patch-based methods commonly operate in the spatial domain for texture and 

face synthesis [44, 47-48], while the proposed algorithm operates in a graph and guarantees that the 

IrisCode generated from Î  and the input IrisCode are the same. 

 
Fig. 7 Illustration of the design of Eqs. 14-16. The large dot is the location of a target node, and the small dots are 
the locations of the top 30 nodes with the greatest impact on the target node. Their grey levels indicate the orders of 
their impact on the target node. Some nodes have duplicated spatial locations. We slightly adjusted their locations 
for display purposes.  
 

The IrisCode masks can be directly applied to Eq. 15 [2]. More precisely, the search constraint 

based on the masks, i.e., ( , ) ( , ) ( , ) ( , )kR j t r qR j t r kR j t i qR j t imask mask and mask mask   can be combined with the 

original search constraint ( , ) ( , ) ( , ) ( , )kR j t r qR j t r kR j t i qR j t ib b and b b  . This additional constraint would reduce 

Tj, the number of nodes updated in each search, and therefore less dependence between the nodes can be 

captured. To use the masks in this way, a large database is required. As mentioned before, we assume that 

                                                            
5 The patch here is denoted as

jkU . It is not a rectangular image patch.  



13 
 

the masked bits are retained. If these are discarded, the masks and the remaining bits should be used to 

estimate the masked bits.  

 
3.3. Interference Artifact Removal  

In this and the next subsections, two post-processing techniques are presented. The first technique is to 

remove interference artifacts caused by Eq. 16, and the second is to remove the compression artifacts 

caused by the missing j  in Eq. 10. Both techniques are operated in the Fourier domain because these 

artifacts have a strong periodic behavior. Figure 8 gives the log power spectrums of an original image and 

the corresponding Î . We can observe that Î  contains more energy in the high frequency spectrum, and it 

has 16 frequency bands with very high energy. Thus, post-processing techniques that minimize the high 

frequency energy are proposed to remove the artifacts.  

 
(a)  

 
(b)  

 
(c) 

 
(d) 

Fig. 8 Illustration of the difference between the log power spectrums of an original image and a decompressed 

image. (a) is an original image and (b) is the Î of (a). (c) and (d) are the respective log power spectrums of (a) and 
(b). 
 

 Let 
1 1

ˆ ˆ ˆ, ,
n n

rj rj ij ij
j j

I g I g I 
 

      
 

be an estimated image from the previous subsection and 

2DF  be the two-dimensional Fourier transform. Because 2DF  is a linear operator, 

2 2 2
1 1

ˆ ˆ ˆ( ) , ( ) , ( )
n n

D rj D rj ij D ij
j j

F I g I F g I F 
 

       . Note that we consider 2
ˆ( )DF I  to be a vector although 

F2D is a two-dimensional transform. Using a matrix representation, we obtain  

2
ˆ ˆ( )DF I M Ζ ,           (19) 

where  2 1 2( ) ( )D r D inF ξ F ξZ   and 1
ˆ ˆ ˆ[ , , ]T

r inM g I g I     . Therefore, the energy of Î  is given 

by  
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2 2
ˆ ˆ ˆ ˆ( ) ( )H H H

D DF I F I M M Z Ζ ,          (20) 

where H represents a complex conjugate transpose. Eq. 20 successfully connects the energy of Î to M̂ . 

M̂  is regarded as an independent variable vector in the minimization of the energy of Î . However, 

directly minimizing Eq. 20 is ineffective because it mixes together energies from different frequencies. 

The frequency is divided into 16 bands, as illustrated in Fig. 9, where only the even bands are labeled. 

The frequency between the two 16th bands is not considered because this low frequency information (e.g., 

DC) should not be artifacts.     

 
Fig. 9 Illustration of the 16 frequency bands for artifact removal. The odd bands are not labeled.  

 
The frequency information in each band can be computed by  

2 2 1 2
ˆ ˆ( ( )) [ ( ( )) ( ( ))]e D e D r e D inF I F F M     ,         (21) 

where e  is an operator that selects the elements of an input vector in the eth band. 

Let 2 1 2( ) [ ( ( )) ( ( ))]e e D r e D inF ξ F ξ   Z  . The total energy in the eth band is  

2 2
ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ) ( )H H H

e D e D e eF I F I M M    Z Ζ .         (22) 

Usually, low frequency components have more energy, but high frequency artifacts are more visually 

annoying. Thus, a logarithm function and a weighting function are introduced to form our objective 

function, which is defined as 

16

1

ˆ ˆ ˆ( ) ( ) log( ( ) ( ) )H H
e e

e

M w e M M


   Z Z ,          (23) 

where w  is a positive weighting function that emphasizes the minimization of energy in the high 

frequency bands. It is clear that ˆ [0 0]TM   is a global optimum, but it is not our target solution. We 

seek a local optimum that is close to the M̂  obtained from the previous subsection to retain the estimated 

structural information while removing the interference artifacts.   is differentiable, and therefore, many 

existing methods are available for this optimization. In our experiments, we simply used the gradient 

descent method. To guarantee that the input IrisCode and the IrisCode generated from the resultant image 
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of this post-processing technique are the same, updates in each iteration are checked to ensure that 

1
ˆ ˆ( ) ( )t tsign M sign M  , where t is an iteration index. For the sake of convenience, the resultant images in 

this subsection are denoted as I , and the final M̂ is denoted as M . Figure 10 shows two resultant 

images. These images are smoother and more visually appealing. However, many compression artifacts 

still exist because of the missing j .  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 10 Results from the post-processing technique for removing interference artifacts. (a) and (b) are original 
images; (c) and (d) are the corresponding results from Section 3.2; and (e) and (f) are the corresponding results from 
the post-processing technique in Section 3.3. 
 
3.4. Compression Artifact Removal  

In this subsection, 1 2{ , , , }m    will be constructed, and the corresponding coefficients 1 2{ , , , }mc c c in 

Eq. 10 will be estimated. We should remember that 1 1, , m    and m  are orthogonal to  and all rkg  

and ikg , i.e., ( ) , 0r i k jg  
 

and , 0j   , where 1 k n   and 1 j m  . To fulfill these 

requirements, principal component analysis is used to derive 1 2{ , , , }m   . Given a training image kI , we 

first remove all information in 6  , i.e.,  

1 1

, ,
n n

k k rj k rj ij k ij
j j

I g I g I d  
 

          .         (24) 

The variances of 1{ , , }K   along the directions of 1 1, , , , ,r rn i ing g g g   and   are zero, and therefore, 

the principal components computed from 1{ , , }K   are automatically orthogonal to  

1 1, , , , ,r rn i ing g g g   and  . The space spanned by these principal components is, in fact, within the 

intersection between the space spanned by the iris images and the orthogonal complement of  . The 

                                                            
6 We remember that  is a space spanned by 1 1, , ,r rn i ing g g g  and  . 
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computational steps of principal component analysis are well known, so we do not repeat them here. 

However, we should remember that the computational trick that is always used in Eigenface calculation 

should be considered to properly handle the memory requirement [29]. 

Let 0  be the mean of 1{ , , }K   and 1 2, ,    and 'm
 be the 'm  most significant principal 

components. Then, 
'

'
0

1

m

v vj j
j

c  


  , where '
vjc  is the coefficient of j  and 'm m . Figure 11 shows the 

top three principal components and the mean estimated from 800 images and their log power spectrums. 

The figure clearly demonstrates that the principal components store important information for removing 

the compression artifacts.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 11 (a) is the mean of 1{ , , }K   and (c), (e) and (g) are the top three principal components; (b), (d), (f) and (h) 

are the log power spectrums of (a), (c), (e) and (g), respectively. 
 

Using 0 1 ', , , m   and M , an iris image can be approximated by  
'

1 1 0
1

[ ]
m

r rn i in j j
j

I M c d     


      .             (25) 

Let 1 1 0[ ]r rn i inI M        , 1 2 '[ ]m     and 1 2 '[ ]T
mC c c c  . Note that d is zero until the end 

of the decompression process. Eq. 25 can be rewritten as I I C   . Because the energy of the 

compression artifacts is concentrated on the 7odd frequency bands (see Figs. 9 and 11), we minimize the 

                                                            
7The energy of the compression artifacts is concentrated on the odd frequency bands because of the parameters 

0 0( , , , , )j j j j jr     of the Gabor filters. More precisely, the frequency information that cannot be captured by the 

Gabor filters would remain in the PCA components. If different filters are used, these compression artifacts are 
different. 
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energy in only these bands through modifying the coefficient vector C. As with the computational steps in 

the previous subsection, the energy of I C   is  

2 2 2 2( ) ( ) ( ( ) )( ( ))H H H H
D D D DF I C F I C C F I C F I           ,        (26) 

where  2 1 2 '( ) ( )D D mF F   , and the energy in eth band is  

2 2 2 2( ( )) ( ( )) ( ( ) ( ( )) )( ( ) ( ( )))H H H H
e D e D e e D e e DF I C F I C C F I C F I               ,      (27) 

where  2 1 2 '( ) ( ( )) ( ( ))e e D e D mF F      . Finally,  

8

1 2 1 2 1 2 2 1 2 1 2
1

( ) log( ( ) ( ( )) )( ( ) ( ( )))H H H
e e D e e D

e

C C F I C F I    


          ,       (28) 

is used as an objective function to minimize the compression artifacts. The weighting function w  in Eq. 

23 is not included in Eq. 28 because the compression artifacts in different odd bands are equally 

important. The weighting function was, in fact, examined for Eq. 28. However, its contribution is limited. 

As with the objective function in Eq. 23, this objective function is also differentiable, but the target 

solution of Eq. 28 is a near global optimal. Figure 12 shows two final resultant images. These images 

demonstrate that the proposed post-processing technique effectively weakens the compression artifacts. 

Further experimental results are given in Section 4. For the sake of convenience, the resultant images in 

this subsection are denoted as fI . 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 12 Final resultant images. (a) and (b) are original images; (c) and (d) are the respective results from the post-
processing technique in Section 3.3; and (e) and (f) are the final results. 
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4. Experimental Results 

Two public iris databases, the West Virginia University (WVU) iris database and the UBIRIS.v1 database 

[30-31], were used to examine the proposed algorithms. 8The WVU iris database contains 3,099 iris 

images from 472 irises, and the UBIRIS.v1 database contains 1,877 images from 241 irises. All the 

images in the WVU iris database were employed in the experiments. However, 48 images from the 

UBIRIS.v1 database were automatically removed because of their poor quality (some images did not even 

have irises). Figure 13 gives examples of the removed iris images. Even though some extremely low 

quality images were removed, many challenging iris images remained for evaluation (see Fig. 14). The 

WVU iris images were captured under an infrared lighting environment, while the UBIRIS.v1 iris images 

were captured under a visible lighting environment. The original images in the UBIRIS.v1 database are 

color images. We only employed their red component for evaluation because iris texture in this channel is 

the clearest (see Fig. 15).  

 In the experiments, we decompressed IrisCodes from these two databases. Given an IrisCode q, 

we used all images from other irises in the same database to estimate ,rj qg I   and ,ij qg I   and eight 

hundred images from other irises in the same database to compute the principal components. The top 30 

principal components were used as 1 2, ,    and 'm . It should be emphasized that we did not exploit any 

information from the same eye to perform the decompression. We employed a leave-one-out cross 

validation scheme. The decidability index was used as an objective function to optimize the parameters of 

the Gabor filters [24]. 

 To validate our results, we computed the IrisCodes from the original images and the 

corresponding resultant images, and we performed a bit-by-bit comparison. As the theoretical predication, 

we found that the IrisCodes were completely identical, without any bit error.   

 

                                                            
8 Some mislabeled images were corrected. 
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(a) (b) 

(c) (d) 
Fig. 13 Examples of the removed iris 

images in the UBIRIS.v1 database 
Fig. 14 Examples of low quality iris 

images for evaluation 
Fig. 15 Iris texture in different 

channels. (a) is a color image; (b)-
(d) are the R, G and B components 

of (a), respectively 
4.1.  Evaluation of the Post-Processing Techniques 

Some results have already been given in Section 3 for the subjective evaluation of the effectiveness of the 

post-processing techniques. In this subsection, an objective evaluation is reported. The error norm ratio 

was employed as an objective measure. To compare the results with the original images, the original 

contrast and DC were employed in this experiment. Figure 16 shows the distributions of ˆ / DCI I I , 

/ DCI I I , /f DCI I I  and /M DCI I I , where I  is an original image, DCI I d   , and 

1 1

, ,
n n

M rj rj ij ij
j j

I g I g I d 
 

         . We remember that Î , I  and fI  are the results of Sections 

3.2-3.4, respectively. DCI  was used as a normalizer because it measures non-DC energy. Floating point 

variables were utilized to calculate ,rjg I   and ,ijg I   in MI . Figure 16 clearly demonstrates the 

effectiveness of the post-processing techniques. These techniques successfully reduced the error norm 

ratios. Figure 16 also shows that for the UBIRIS.v1 database, many of our final results are even better 

than MI , while for the WVU iris database, a good portion of our final results are comparable with MI . 

Some fI  have greater error norm ratios because the low frequency information (e.g., that in the 16th 

frequency band (see Fig. 9)) in the original images is not well matched with the low frequency 

information in the principal components. The proposed post-processing algorithm in Section 3.4 

minimizes the compression artifacts but does not recover the low frequency information in the original 
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images. It should be emphasized that MI was computed from 2,048 floating point numbers, while our 

results were obtained from IrisCodes, which have an optimal size of only about 50 bytes [4].   

4.2.  Visual Quality Assessment 

Figure 17 gives more results for visual comparison. As with the previous figures, the DC and the contrast 

of the original images are used to display the results. Once again, they show the effectiveness of the 

proposed algorithms. Features such as iris texture and eyelids can be observed.   

In addition to subjective visual comparison, two state-of-the-art image quality metrics ― Visual 

Information Fidelity (VIF) [32] and Information Fidelity Criterion (IFC) [33] ― were employed to 

objectively quantify the visual quality of our results. VIF and IFC both use a statistical model and 

conditional mutual information to measure differences between a reference image and a distorted image. 

VIF is based on a human visual system model. IFC is parameter-free. These two metrics were designed 

for full-reference evaluation, meaning that a complete reference image is assumed to be known. In our 

evaluation, the original iris images were considered as reference images, and our results were considered 

as distorted images. Iris images compressed by the JPEG algorithm with quality factors (QF) of 20, 10 

and 5 were employed for comparison. The VIF and IFC values of each image in these two iris databases 

were calculated. Their means, summarized in Table 1, indicate that for the UBIRIS.v1 database, the 

quality of our results is between the JPEG QFs of 10 and 5, while for the WVU iris database, the quality 

of our results is between the JPEG QFs of 20 and 10. In this experiment, the file sizes of the JPEG images 

with QFs of 10 and 5 were about 1,140 and 890 bytes, respectively. Our results were decompressed from 

IrisCodes that have an optimal size of about 50 bytes, which is even smaller than an 8-by-8 patch in an 8-

bit image. The VIF and IFC values and the file sizes clearly indicate that the density of iris image 

information in IrisCodes is extremely high ― 81.92 (512×64/(50×8)) pixels per bit in our experiments. 
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(a) 
 

 (b) 
Fig. 17 Results for visual comparison. The first column presents the original images, and the second column 

presents the results from the proposed algorithms. (a) results from the UBIRIS.v1 database and (b) results from the 
WVU iris database 

Table 1 Image Quality Assessment based on VIF and IFC 
Database Quality metrics JPEG (QF=20) JPEG (QF=10) JPEG (QF=5) Result

UBIRIS.v1 VIF 0.0826 0.0707 0.0548 0.0650 
IFC 0.2861 0.2423 0.1871 0.2200 

WVU VIF 0.0564 0.0447 0.0399 0.0566 
IFC 0.2593 0.2021 0.1708 0.2322 
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(a) 

 
(b) 

Fig. 16 Error norm ratio distributions from (a) the UBIRIS.v1 database and (b) the WVU iris database 
 

4.3. Evaluation by Other Iris Recognition Methods 

In this subsection, eight iris recognition methods were re-implemented to evaluate our results in terms of 

Receiver Operating Characteristic (ROC) curves: SVM [36]; multiple signature [37]; Ordinal Code (Di-

lobe d=5 and d=9 and Tri-lobe d=9 and d=17) [20]; zero-crossing [35]; and DCT-based [34] methods. 

Masks that denoted noise pixels, such as eyelids and eyelashes, were used to exclude corrupted bits in the 

Ordinal Code [20] and zero crossing methods [35]. Their raw hamming distances were rescaled to those 

in IrisCode [24]. The masks were also used in the SVM method, and 90 images from each database were 

used to train the SVM with a Gaussian kernel [36]. Two hundred images were employed to estimate 

preliminary threshold sets for the multiple signature method, and the step size for the exhaustive search 

was 0.01 [37]. The optimal threshold sets were then selected from these preliminary threshold sets. The 

testing images were resized for the methods that required different sizes of normalized iris images. The 

original contrast and DC were not used to decompress IrisCodes in these experiments.  

In each set of experiments, cross-matching between all original images was first performed, and 

the corresponding genuine and imposter distributions were estimated. Then, our results were matched 

with their parent images. We also matched our results with all other iris images from the same iris, and 

we obtained the corresponding genuine distribution. As with the visual quality assessment, iris images 

compressed by the JPEG algorithm with QFs of 20, 10 and 5 were employed for comparison. We 
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matched the JPEG images with the original images from the same iris, but we did not allow them to 

match their parent images. In total, for each method and each database, three genuine distributions were 

obtained from matching the JPEG images. The imposter distributions from the cross-matching between 

the original images and all the genuine distributions were used to plot ROC curves. It should be 

emphasized that for the same database and the same method, all the ROC curves were generated from the 

same imposter distribution that determines the false acceptance rate of a system when a threshold is 

given. For the sake of convenience, the ROC curves from the cross-matching between the original images 

are called original ROC curves; the ROC curves from matching our results with their parent images are 

called parent ROC curves; the ROC curves from matching our results with the original images are called 

resultant ROC curves; and the ROC curves from matching the JPEG images with a quality factor of X 

with the original images are called JPEG (QF=X) ROC curves.  

Figures 18-22 show, respectively, the ROC curves of the SVM [36], multiple signature [37], 

Ordinal Code [20], zero-crossing [35], and DCT-based [34] methods. The parent ROC curves help us note 

the differences between our results and the original images in terms of recognition errors. All the parent 

ROC curves are higher than the corresponding original ROC curves. The GARs (genuine acceptance 

rates) of the 14 parent ROC curves are very close to 100% when their FARs (false acceptance rates) are 

0.001, indicating that the errors caused by the decompression process are insignificant compared with the 

errors from the original images. The resultant ROC curves indicate the cumulative errors from the original 

images and the decompression process. Three of the resultant ROC curves are above or very close to the 

JPEG (QF=20) ROC curves; seven are between the JPEG (QF=20) ROC curves and the JPEG (QF=10) 

ROC curves; and only one resultant ROC curve is below the JPEG (QF=5) ROC curve; the rest are 

between the JPEG (QF=10) ROC curves and the JPEG (QF=5) ROC curves. These results suggest that, in 

terms of ROC curves, the quality of the decompressed images is a JPEG quality factor of approximately 

10.  
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(b) 

Fig. 18 ROC curves of the SVM method. (a) presents the results from the UBIRIS.v1 database and (b) presents the 
results from the WVU iris database. (color figure) 
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(b) 

Fig. 19 ROC curves of the multiple signature method. (a) presents the results from the UBIRIS.v1 database and (b) 
presents the results from the WVU iris database. (color figure) 
 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=5): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(a) 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=5): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(b) 



25 
 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(c) 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Di-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(d) 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(e) 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=9): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(f) 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=17): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(g) 

10
-1

10
0

10
1

10
2

60

65

70

75

80

85

90

95

100

Tri-lobe(d=17): False acceptance rate %

G
en

ui
ne

 a
cc

ep
ta

nc
e 

ra
te

 %

 

 

original ROC
resultant ROC
parent ROC
JPEG (QF=20) ROC
JPEG (QF=10) ROC
JPEG (QF=5) ROC

 
(h) 

Fig. 20 ROC curves of the Ordinal Code method. The first column presents the results from the UBIRIS.v1 
database, and the second column presents the results from the WVU iris database. Rows 1-4 are the results of di-
lobe (d=5), di-lobe (d=9), tri-lobe (d=7) and tri-lobe (d=13), respectively. (color figure) 
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(b) 

Fig. 21 ROC curves of the zero-crossing method. (a) presents the results from the UBIRIS.v1 database and (b) 
presents the results from the WVU iris database. (color figure) 
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(b) 

Fig. 22 ROC curves of the DCT-based method. (a) presents the results from the UBIRIS.v1 database and (b) 
presents the results from the WVU iris database. (color figure) 
 

5. Discussion and Future Work 

The primary aim of this paper is to provide a deeper theoretical understanding of IrisCode, but it does 

impact various aspects of iris recognition. Current commercial iris recognition systems randomly flip or 

place the bits in IrisCode to form cancelable IrisCodes [39] for privacy protection ― templates of the 

same user registered in different systems cannot be matched ― and for system security ― compromised 

templates (stolen templates) cannot be matched with re-issued templates. These cancelable transforms are 

invertible, if their keys are known, which is not a significant problem, even if attackers obtain the keys, 

because the re-issued templates will match neither their compromised templates nor their original 
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templates. Thus, the systems are still protected. However, our results show that once attackers obtain the 

original IrisCodes and the 9Gabor parameters, they can obtain the corresponding iris images. These 

images can be recognized by IrisCode and even other methods, which implies that they can be used to 

attack systems running IrisCode and different iris recognition methods at various levels [38] (e.g., the 

sensor level) if they are not well protected. Furthermore, these images can be used to link up users 

enrolling in different iris recognition systems. As a result, privacy can be highly compromised. According 

to the theoretical and experimental results, we recommend that biometric templates, including IrisCodes 

and all templates generated by similar methods, should be protected at the same security level as 

enrollment images.   

This work not only shows that IrisCode is a compression algorithm, but it also helps us further 

understanding the relationship between IrisCode and the related methods. According to Eq. 10, Kong et 

al.’s precise phase representation [24] enhances the performance of IrisCode by allocating more bits to 

each ( ) ,r i jg I  , which is equivalent to extracting more information from the subspace spanned by 

1 1, , , , ,r rn i ing g g g  . Other methods that replace the Gabor filters in IrisCode with other linear filters 

either extract information from different subspaces or use different bases to represent the same subspace. 

Designing new linear filters to replace the Gabor filters in IrisCode is equivalent to searching an optimal 

basis.  

 Synthesizing iris images is an important topic in iris recognition [5, 40-42]. Synthesizing saves 

time and effort used to collect a large number of iris images for algorithm evaluation and development. 

Once an IrisCode is synthesized, we can use the algorithm to obtain an iris image with a predefined 

IrisCode. However, decompressing IrisCodes and synthesizing iris images are two different problems. 

The bits in an IrisCode and its mask are the only information available for decompressing it, while we can 

generate IrisCodes, masks and other information inside and outside   for synthesizing iris images. 

                                                            
9 The Gabor parameters are not a secret, because one can estimate them from public iris databases or use a hill 
climbing approach to obtain them if they have a system running IrisCode.      
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Developing algorithms to synthesize IrisCodes, masks and other iris information to generate high quality 

iris images is a potential research direction.  

 For administrative reasons, compressed enrollment images are always stored [45-46]. If the 

quality of our results can be further improved, for example, to a JPEG quality factor of 50, the necessity 

of storing these images should be discussed. Using the masks of IrisCodes and other statistical approaches 

to infer information inside and outside   should be considered for further improvement.  

The theoretical results reported in this paper are applicable to biometric methods that use the core 

of IrisCode. More clearly, all the coding methods using the feature extractor generalized from IrisCode 

are compression algorithms [24]. However, the post-processing techniques must be modified because they 

have different interference and compression artifacts. For example, the methods that encode the 

orientation fields of palmprints as features definitely have different artifacts [8-9]. The quality of 

decompressed images from these methods depends highly on the information stored in their templates. 

Further research is required on decompressing these templates. 
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Appendix   

A. 

This appendix shows that Eq. 5 is always true. Let 1 1[ ]r rn i ing g g g    , 1 1[ ]T
d r rn i inA a a a a d   , 

1[ ]m m    and 1 2[ ]T
m mC c c c  . Using a matrix representation, Eq. 5 can be rewritten as 

d m mI A C    and using the least square method, i.e., min
d

d
A

I A  to compute dA , we have 

1( )T T
dA I    if  1( )T   exists. Let the residual of I be 1( )T T

dI A I I       . Clearly, 

0T    implying that   is orthogonal to  and all rkg  and ikg . If T is not invertible, 0T   is 

still true because the solutions of min
d

d
A

I A  must satisfy the equation ( )T T
dA I   . Note that the 

0 represents a zero vector. 

 It is worth to mention that if G defined in Eq. 8 is invertible, T is also invertible. Note that

[ ]g   , where  1 1[ ]g r rn i ing g g g   . Using a block matrix  representation, 

1

1( )
T T

g g gT
T T

g




 

  
    

  



. This inverse exists if T

g g   and 1( )T T T T
g g g g

        are 

invertible [51]. 1( )T T T T
g g g g

        is a positive number and equal to T   because  rkg  and 

ikg  are zero DC filters, i.e., 0T
g   . Consequently, the inverse of 1( )T T T T

g g g g
        

always exists. We should remember that
 

T
g g G  . Our experimental results show that the G formed 

by the Gabor filters in IrisCode is invertible, implying that T  is also invertible.  

 Now, we consider a set of images, 1{ , , }KI I  and define their residuals as  k k kdI A   . 

Using the result 0T
k  ,  we can easily prove that 

1

1
( ) 0

K
T

k
kK




 . In other words, the mean of k  is 

orthogonal to  and all rkg  and ikg . The sample covariance matrix of k  can be computed through



1

1 K
T T

k k
kK     


 
 

 
 , where 

1

1 K

k
kK 


  . Its principal components j  have to satisfy 

1

1 K
T T

k k j j j
kK        


 
  

 
 , where j  is the corresponding non-zero eigenvalue. Using 

1

1 K
T T

k k j j j
kK        


 
  

 
 , 0T

k  and 0T
  , we have 

1 1

1 1
0

K K
T T T T T T T T

j k k j k k j
j jk kK K             

  

   
       

   
     .              (29) 

Thus, I can be decomposed as 
1 1 1

n n m

rj rj ij ij j j
j j j

I a g a g c d
  

       , where m    and j  is orthogonal 

to   and all rkg  and ikg , i.e., ( ) , 0r i k jg  
 
and , 0j   .  

  



B. 
 
This appendix shows that the coding methods generalized from IrisCode such as Competitive Code and 

precise phase representation [8, 24] are also compression algorithms. Their feature extractors can be 

defined as  ,
0

arg max ,j j k
k s

h I
 

   , where j  is a feature value to be encoded, ,j kh  is a filter, and s is 

the total number of the filters. The relationship between  ,
0

arg max ,j j k
k s

h I
 

    and Eqs. 1-4 can be 

found in [24]. Each feature value is computed from a group of filters, ,0 , 1, ,j j sh h  . For example, 

Competitive Code uses six filters. Each template from these methods is composed of J feature values, 

which can be represented in a binary format for high speed matching [24]. The inequalities, 

, ,, ,
jj k jh I h I     , where j k  , can be derived from the feature extractor. For the sake of 

convenience, let 0j  . Rewriting these inequalities, we obtain ,
ˆ0 ,j kh I   , where , ,0 ,

ˆ
j k j j kh h h  . 

Let  
1

, ,
1 1

ˆ
J s

j k j k j j
j k j

I a h c 


 

   , where , ,j k ja c   and j  is orthogonal to all ,
ˆ
e kh . As in the proof in 

Section 2, we can obtain   

1

, ,
1 1 1

ˆ ,
J s

j k j k j j
j k j

I h I c 


  

     ,          (30) 

where 

1

1,1 1,1 1,1 , 1

1,1 , 1 1,1 , 1

, 1 1,1 , 1 , 1

ˆ ˆ ˆ ˆ, ,
ˆ ˆ[ ] [ ]

ˆ ˆ ˆ ˆ, ,

J s

J s J s

J s J s J s

h h h h

h h

h h h h

 





 

  

    
 

  
 
     


    



. Here, we assume that the 

inverse exists. Eq. 30 indicates that these coding methods generalized from IrisCode are also compression 

algorithms. They use one bit to store each coefficient of ,j k , which is ,
ˆ ,j kh I  , but erase all other 

coefficients. Note that different templates, even from the same methods, have different 1,1 , 1{ }J s  

because they have different feature values.   

 


