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Abstract— With the proliferation of digital cameras, images of crimes, such as child sexual abuse images, 

are increasing dramatically. Both verification and identification of criminals and victims in these images are 

highly difficult and often impossible for the current biometric technology because their faces, tattoos, and 

distinctive skin mark patterns are not always observable. Superficial blood vessels under skin are a potential 

solution to compensate the weaknesses of the traditional biometric traits. However, blood vessels were 

neglected by law enforcement agencies because they are generally invisible in color images. To use blood 

vessel patterns in forensic analysis, this paper proposes three computational models to uncover hidden 

patterns, two optimization schemes to handle illumination variations and prevent over-relying on biophysical 

parameters measured in ideal medical conditions, a matching algorithm to automatically extract and compare 

noisy patterns, and two fusion rules to combine patterns from the three models for performance enhancement. 

The experimental results on 1900 color images and 1900 infrared images from 490 forearms and 460 thighs 

show that the matching performance of the blood vessel patterns from the color images is comparable with 

that from the infrared images. The proposed models are also applied to hands, arms, thighs, chests, breasts, 

and abdomens of men, women, and children in indoor and outdoor images collected from the Internet. 

Though these images were taken in uncontrolled environments and the subjects had different poses, the 

proposed models can uncover blood vessels. These results indicate that the potential of using blood vessel 

patterns in forensic analysis was underestimated.  

Keywords —Forensics, child pornography, biometrics, skin marks, tattoos. 

1. Introduction 

Both verification and identification of criminals and victims are always critical tasks for law enforcement 

agencies. These tasks are becoming more important, because images of crimes are increasing exponentially. 

Let us take child sexual offenses as an example. In Canada alone, Cybertip.ca received over 21,000 tips about 

online child exploitation between 2002 and 2008 [1] and found 12,696 websites offering child sexual abuse 

images (also known as child pornography) in 2009 [2]. Australia is also facing an explosion in online child 
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sexual abuse images [3]. Anyone who possesses, makes, prints, publishes, distributes, sells, or imports child 

sexual abuse images commits a criminal offense. Criminals always hide their faces and tattoos, which are 

regularly used by law enforcement agencies for criminal verification and identification. Thus, prosecuting 

them is highly challenging. U.S. attorneys declined to prosecute over 30% of child sexual abuse suspects 

because of weak or inadmissible evidence, which was the major reason for declination of prosecution [4]. In 

a child sexual exploitation case United States v. Michael Joseph Pepe, the author A.K., who was recruited by 

the U.S. Department of Justice as an expert witness, faced the same challenge [5]. He was requested to verify 

an arrested suspect and a criminal in a set of images, which showed the lower part of his body, but his face 

was not observable. In addition to this case, the author A.K. saw a large number of child sexual abuse 

materials in the Toronto Police Service and the U.S. Immigration and Customs Enforcement with the same 

characteristics. Though neither faces nor tattoos of the pedophiles were available for identification, the 

images were high resolution and close-up of their non-facial body sites.    

In addition to child sexual abuse images, many cities such as London and Athens experienced riots. Many 

rioters, who threaten the law and order in many societies and damage others’ property, always wear face 

masks to avoid verification and identification. Identifying masked terrorists and masked gunmen is also 

important in many counties.  

To address these tough verification and identification problems, new biometric traits have to be developed. 

Though skin marks and androgenic hair have been considered, not all body sites, e.g., hands, have distinctive 

skin mark patterns and androgenic hair patterns [6-7]. The patterns formed by the blood vessels that lie 

between the skin and muscle are a potential solution because of their universality, permanence, and 

distinctiveness. Currently, vein recognition systems depend on infrared and laser imaging techniques to 

capture high-quality blood vessel patterns from palms, wrists, and fingers (where the skin is thin) for 

commercial applications, e.g., access control [8-10, 32-33]. Very limited works attempted to uncover blood 

vessel patterns hidden in color images for forensic analysis. The optical-based vein uncovering (OBVU) 

method, which was the first attempt, is very sensitive to illumination changes and heavily depends on the 
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biophysical parameters measured in ideal medical conditions [11]. Skin is a complex structure. Different 

persons and different body sites have diverse skin properties. The OBVU method fails to handle skin 

diversity because it is a single-model approach. Only 32 color images were examined through manual 

comparison. To perform forensic identification, i.e., searching suspects in a given database and 

systematically evaluating blood vessel patterns from color images, automatic blood vessel extraction, 

representation, and matching algorithms are essential. Hand, wrist, and finger vein verification methods have 

been developed, but they were designed for high-quality near infrared (NIR) images captured in controlled 

environments from cooperative users. It is nearly impossible to guarantee the quality of blood vessel patterns 

extracted from color images because of subcutaneous fat and other uncontrollable physical parameters 

weakening the penetration of visible light. It is worth mentioning that the penetration capability of visible 

light in skin is much weaker than that of NIR in skin. Noisy blood vessel patterns are almost unavoidable. 

Without user cooperation, non-linear distortion is also inevitable. To address these problems and make 

verification and identification of criminal and victim based on blood vessel patterns hidden in color images 

possible, this paper proposes three optical skin models to uncover hidden patterns, two optimization schemes 

to handle illumination variation and avoid over-relying on biophysical parameters measured in ideal medical 

conditions, an identification algorithm to automatically extract and match noisy patterns, and two fusion rules 

to combine patterns from the three models to enhance the matching performance. 

The preliminary version of this work presented in [12] was a single model approach. In this paper, two new 

skin optical models are presented to uncover more blood vessels in different imaging conditions. A new 

dissimilarity measure which takes orientation, distance, and magnitude of corresponding blood vessels into 

consideration and two fusion schemes which combine information from different models are also proposed. 

The preliminary method was evaluated on a database with 300 images from 150 right forearms. The proposed 

models, schemes, and algorithms are examined on a database with 3800 images from 490 forearms and 460 

thighs. Furthermore, the proposed models are applied to hands, arms, thighs, chests, breasts, and abdomens of 

men, women, and children in indoor and outdoor images collected from the Internet.  
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The rest of this paper is organized as follows. Section 2 presents a physical model to compute skin 

reflectance. This model is used to develop the three optical models. Section 3 provides the three optical 

models with the two optimization schemes. Section 4 describes the proposed blood vessel extraction, 

representation, and matching algorithms. Section 5 reports the experimental results. Section 6 discusses the 

impacts of our findings. 

2. A Physical Approach for Skin Reflectance Computation 

Skin is a semi-transparent multilayer object. When light hits skin, some is absorbed and scattered by 

compounds in the skin, while some is reflected and captured by the sensor in a camera. By analyzing the 

reflected light, the internal structure of the skin can be revealed. A number of optical theories have been 

developed for studying radiation passing through a scattering medium. The Kubelka-Munk (K-M) theory is 

the simplest one. In this paper, the three optical models use the K-M theory and Reichman’s solution to 

calculate skin reflectance [13-14]. Skin can be considered as an ݊-layered material and its total reflectance, 

ܴଵଶ…௡, and transmittance, ଵܶଶ…௡, can be computed by the recursive equations: 

ܴଵଶ…௡ = ܴଵଶ…௡ିଵ + ଵܶଶ…௡ିଵ
ଶ ܴ௡

1 − ܴଵଶ…௡ିଵܴ௡
,   (1) 

ଵܶଶ…௡ = ଵܶଶ…௡ିଵ ௡ܶ

1 − ܴଵଶ…௡ିଵܴ௡
, (2) 

where ܴ௜  and ௜ܶ  are respectively the reflectance and transmittance of the ݅௧௛  layer [13]. Fig. 1 shows a 

three-layered skin model. The total reflectance and transmittance of an ݊-layered skin are controlled by the 

absorption and scattering coefficients and the thicknesses of different layers. To simplify the notations, ்ܴ is 

used to represent ܴଵଶ…௡.  

It is worth mentioning that the K-M theory has been employed by medical scientists for dermatological 

research [13]. Their empirical findings are extensively used in our optical models. The K-M theory is only a 

rough solution to the radiative transfer equation, which quantitatively describes light transport in different 
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materials. Its exact analytical solution has not been obtained for complex and multiple scattering mediums 

such as human skin [15]. 

 
Fig. 1 Illustration of the recursive equations (Eqs. 1-2) applied to a layered skin model. 

3. Three Optical Models for Uncovering Blood Vessel Patterns Hidden in Color Images 

To uncover blood vessels hidden in color images, three optical models that simulate skin color formation are 

developed. Each model consists of a camera model, an illuminant model, a skin structure, and a method to 

compute the total reflectance from the skin structure. Though our previous method has a number of problems 

(see the introduction) [11], we still employed it as a baseline model because with the two optimization 

schemes presented in this section, its performance can be significantly improved. The baseline model and the 

two optimization schemes together are regarded as the first model. In the second and third models, 

Reichman’s solution to the radiative transfer equation is used to replace the K-M theory in the first model 

[14]. In the first and second models, a three-layered skin structure constituted by the stratum corneum, the 

epidermis, and the dermis is used, while in the last model, the hypodermis is also included to form a 

four-layered skin structure. Subsection 3.1 presents the general idea based on the optical models for 

uncovering blood vessels. Subsection 3.2 summarizes the baseline model for completeness. Subsection 3.3 

describes the two optimization schemes to overcome the weaknesses of the baseline model. Subsection 3.4 

describes the other two optical models.  
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3.1 From Skin Color Formation to Skin Parameter Estimation 

The proposed optical models estimate biophysical parameters in the skin. In the first two models, the spatial 

distributions of the volume fraction (%) of the epidermis occupied by melanosomes (organelles containing 

melanin), the volume fraction (%) of the dermis occupied by blood, and the depth of the dermis are 

considered. They are denoted as ߴ௠, ߴ௣, and ݀ௗ௘௥, respectively. Intuitively, blood vessels can be found in  ߴ௣ 

because they contain a higher concentration of blood than other skin components. In the last model, the depth 

of the blood vessel ݀௩ and the depth of adipose tissue ݀௔ are included. For the sake of mathematical 

convenience,  ݀௩ and ݀௔ are combined and represented by one symbol, ݀௛௬௣, which is called the depth of the 

hypodermis and let  Λଵ = ,௠ߴ] ,௣ߴ ݀ௗ௘௥] ,  Λଶ = ,௠ߴ] ,௣ߴ ݀ௗ௘௥] , and  Λଷ = ,௠ߴ] ,௣ߴ ݀ௗ௘௥ ,  ݀௛௬௣] . The 

computational details of ݀௛௬௣,  ݀௩, and ݀௔ are given in Section 3.5.  

In this section, three mathematical functions based on the three optical models are sought to estimate the 

biophysical parameters, Λ௜, where blood vessels are expected to be seen. These mathematical functions can 

be represented as 

 Λ௜ = ݃௜(ܴ, ,ܩ ,ܤ  ௜), (3)ܧ

where ݅ ∈  ௜ representsܧ represent the three color components in a given image; and ܤ and ,ܩ ,ܴ ;{1,2,3}

other information. ܧ௜ includes the prior knowledge from a camera, an illuminant, and a skin structure and its 

biophysical parameters. The subscript i is used to emphasize that different ݃௜ uses different prior knowledge. 

The illuminant is characterized by its spectrum ܼ(ߣ), and the camera is characterized by its ܴ, ܩ, and ܤ 

spectral response functions, which are denoted as ܵோ(ߣ), ܵீ(ߣ), and ܵ஻(ߣ), respectively, where ߣ represents 

wavelengths. ܼ(ߣ), ܵோ(ߣ), ܵீ(ߣ), and ܵ஻(ߣ) are regarded as known variables. Section 3.2 will discuss how 

to obtain these functions in legal cases. To establish ݃௜, the skin color formation in an image should be 

modeled. Mathematically, it can be represented as 

[ܴ, ,ܩ [ܤ = ௜݂൫ܼ(ߣ), Λ௜ , ܵோ(ߣ), ,(ߣ)ீܵ ܵ஻(ߣ)൯. (4) 

In Eq. 4, other prior knowledge, e.g., the molecular weight of eumelanin, is considered internal constants 

in ௜݂ . If it was a bijective function, Λ௜ could be computed from 
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,(ߣ)ܼ] Λ௜, ܵோ(ߣ), ,(ߣ)ீܵ ܵ஻(ߣ)] = ௜݂
ିଵ(ܴ, ,ܩ  (5) .(ܤ

Because ܼ(ߣ), ܵோ(ߣ), are known, Eq. 5 can be simplified as Λ௜ (ߣ)and ܵ஻ ,(ߣ)ீܵ  = ௜݂
ିଵ(ܴ, ,ܩ  ,In general .(ܤ

௜݂  is not a bijective function. A function ݃௜ is thus sought to approximate ௜݂
ିଵ such that 

Λ௜ ൎ ݃௜(ܴ, ,ܩ  (6) .(ܤ

 ௜ in Eq. 3 is omitted because it is regarded as a constant. Eq. 4 is called a forward model, which simulates theܧ

skin color formation, and Eq. 6 is called a backward model, which is used to estimate the skin parameters, 

where blood vessels can be seen. 

Given a forward model ௜݂  and the domain of Λ௜  (i.e., the ranges of ߴ௠ ௣, and ݀ௗ௘௥ߴ ,  for the first two 

models and the ranges of ߴ௠, ߴ௣, ݀ௗ௘௥ , and  ݀௛௬௣ for the third model), the corresponding Λ௜ and [ܴ, ,ܩ  [ܤ

can be generated. Using a regression method and the  Λ௜ and [ܴ, ,ܩ  obtained from the forward model as [ܤ

training data, ݃௜, which estimates  Λ௜ based on ܴ, ܩ, and ܤ values in color images, can be derived. A neural 

network with 5 neurons in the hidden layer is used to produce ݃௜ for all the optical models. Fig. 2 illustrates 

the relationship between the forward and backward models. 

3.2 Camera and Illuminant Models 

To realize the forward model ௜݂ , three components—the illuminant ܼ(ߣ), the total reflectance of the skin 

 are necessary. Once—(ߣ)and ܵ஻ ,(ߣ)ீܵ ,(ߣ)and the spectral response functions of the camera ܵோ ,(ߣ)்ܴ

these three components are known, the corresponding ܴ, ܩ, and ܤ values can be computed by 

߬ = න ߣ݀(ߣ)ఛܵ(ߣ)்ܴ(ߣ)ܼ
ஶ

଴
, (7) 

where ߬ ∈ {ܴ, ,ܩ  Though the integration range in Eq. 7 is from 0 to ∞, spectral response functions of .{ܤ

consumer cameras only have non-zero responses at visible light wavelengths between 400 nm and 700 nm. 

Other wavelengths such as infrared are blocked by the RGB filter in front of the sensor. It is worth 

mentioning that to capture good-quality blood vessel images, NIR in the range between 800 nm and 930 nm 

is recommended [16]. In forensic investigation, the spectral response functions can be known through camera 

models, which can be found in the EXIF headers of evidence images. If the headers are removed or tampered 
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with, camera identification methods can be applied to identify the camera model [17]. The use of these 

methods is outside the scope of this paper. 

Three types of light sources are generally encountered in daily life: daylight, incandescent lamps, and 

fluorescent lamps. They correspond respectively to the standard illuminants D65, A, and F, defined by the 

International Commission on Illumination [18]. In addition to the standard illuminants, forensic scientists 

may be able to reconstruct crime scenes so that a more accurate ܼ(ߣ) can be measured directly. In our 

experiments, the standard illuminant D65 was used. 

Now, we know how to obtain ܼ(ߣ),  ܵோ(ߣ), ܵீ(ߣ), and ܵ஻(ߣ). Once the total reflectance of the skin ்ܴ(ߣ) 

is known, the forward model ௜݂  can be established. Subsections 3.3-3.5 present three optical models based on 

different optical theories and skin structures to approximate ்ܴ(ߣ). 

 
Fig. 2 A schematic diagram illustrating the blood vessel uncovering process based on the optical models. The left block represents 

the skin color formation model, and the right block represents the inversion of the skin color formation to obtain Λ௜  from [ܴ, ,ܩ  .[ܤ

They are, respectively, the graphical representation of ௜݂  and ݃௜  in Eqs. 4 and 6. 

3.3 The Baseline Model 

The baseline model uses a three-layered skin structure composed of the stratum corneum, the epidermis, and 

the dermis. A fraction of the incident light is reflected by the stratum corneum, and the rest penetrates into the 

epidermis and the dermis (Fig. 1). In the epidermal and dermal layers, the light is scattered multiple times and 

absorbed by bilirubin, melanin, ߚ-carotene, and hemoglobin [19]. In this model, the K-M theory and the 

recursive equations (Eqs. 1-2) are used to calculate (ߣ)்ܴ  . According to the K-M theory, ்ܴ(ߣ)  is 

determined by the absorption and scattering coefficients and the depths of the stratum corneum, the 

epidermis, and the dermis. The details of these coefficients can be found in [11]. 
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3.4 Two Optimization Schemes 

3.4.1 Skin Parameter Range Optimization 

The baseline model takes the skin parameter ranges directly from medical literature to be the domain 

of ߴ௠, ߴ௣, and ݀ௗ௘௥ in the training. These ranges may not be suitable for forensic analysis because they were 

obtained in ideal medical settings from a particular race (e.g., Caucasian) and a particular body site (e.g., 

hand). The three optical models use an optimization scheme to determine the domain of Λ௜. Our image 

database mainly consists of Asian skin, so we selected a typical skin image from the thigh of an Asian subject 

and used its average RGB values as a target to compute the corresponding optimal Λ௜, which is denoted as Λ௜
∗. 

We then linearly discretized the domain formed by [0.5Λ௜ 
∗  2Λ௜

∗] and used the forward model to calculate the 

corresponding RGB values. The trained neural network approximates the inversion of the skin color 

formation. To uncover blood vessel patterns in a testing image, its RGB values are input to the trained neural 

network and the outputs are collected to form the spatial distribution maps of the biophysical parameters. 

We did not compute the optimal Λ௜  for each pixel in an image because the optimization process is very 

time-consuming. Using MATLAB on a PC embedded with an Intel® Core™2 Quad processor (3.0 GHz), it 

takes approximately 50 hours to process an image with a size of 200×300 pixels. However, using neural 

network mapping, it takes only one second. 

3.4.2 An Automatic Adjustment Scheme for Illumination Intensity Variation 

Illuminants significantly influence skin color in images. Though several standard illuminants can be used as 

the spectrum of ܼ(ߣ), its power is determined by the power of the illuminant source and the distance between 

the source and the skin, which can vary greatly. To avoid manually estimating the power, an automatic 

adjustment scheme is proposed. 

Eq. 7 indicates that the influence from the power variation can be eliminated by adjusting the image 

intensity. Let ܼ(ߣ) and ܼܽ(ߣ) be two illuminants with the same spectrum but different power. According to 

Eq. 7, their pixel values are ߬ = ׬ (ߣ)்ܴ(ߣ)ܼ ఛܵ(ߣ)݀ߣ
ஶ

଴  and ܽ߬ = ׬ ߣ݀(ߣ)ఛܵ(ߣ)்ܴ(ߣ)ܼܽ
ஶ

଴ , respectively, 
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where ߬ ∈ {ܴ, ,ܩ  Their color values differ by a factor of ܽ, and therefore, we can eliminate the power .{ܤ

variation by adjusting the image intensity.  

Though all spatial distribution maps of the parameters show blood vessel patterns, the distribution maps 

of ݀ௗ௘௥  and ݀௛௬௣ are the clearest. They are used in the intensity adjustment and also later in automatic 

matching. An intensity adjustment ratio ܽ is introduced in the computation, i.e., 

݀௟௔௬௘௥ = ݃௟௔௬௘௥(ܥ/ܽ), (8) 

where ݀௟௔௬௘௥  represents either ݀ௗ௘௥  or ݀௛௬௣ ܥ ,  is a color skin image and ݃௟௔௬௘௥  represents the neural 

network function mapping RGB values to ݀ௗ௘௥  or ݀௛௬௣. The average local variance of the ݀௟௔௬௘௥ map is used 

as an objective function to determine the optimal adjustment ratio ܽ∗: 

ܽ∗ = argmax
௔∈஺

൝
1
ܰ

෍ var
(௫,௬)∈ெ್೔

ቂ݀௕೔

௟௔௬௘௥(ݔ, ቃ(ݕ

ே

௜ୀଵ

ൡ, (9) 

where ܣ is a set of different intensity adjustment ratios, ݀௕೔

௟௔௬௘௥  is the ݅௧௛ 5×5 block in ݀௟௔௬௘௥ , ܰ is the total 

number of blocks, (ݔ, ௕೔ܯ is the position of a pixel, and (ݕ
 is a set of skin pixels in ݀௕೔

௟௔௬௘௥ . Note that only skin 

pixels are considered in this calculation. 

3.5 The Other Two Models  

3.5.1 The Second Optical Model 

The first optical model utilizes the K-M theory to approximate the transport of light in human skin. A 

comparative study based on the Monte Carlo simulation of human skin showed that the K-M theory is very 

sensitive to the K-M coefficients, which are very difficult to measure accurately because of the complexity of 

the skin structure [14]. To overcome this problem, the solution to the radiative transfer equation based on the 

Schuster-Schartzchild approximation derived by Reichman is employed in the second and third optical 

models [14]. When the incidence is normal, the reflectance and transmittance of this solution can be 

computed by: 
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ܴ =
߱଴

2
3Γ + (1 − Γଶ) exp[−(1 + [݀ߛ(ߙ − 1 − Γ(3 − Γ) exp(−2݀ߛߙ)

(1 − ଶ)[1ߙ − Γଶ exp(−2݀ߛߙ)]
, (10)

ܶ =
߱଴

2
Θ

(1 − ଶ)[1ߙ − Γଶ exp(−2݀ߛߙ)]
+ exp(−݀ߛ), (11)

where Θ = 3(1 − Γଶ) exp(−݀ߛߙ) − (3 − Γ) exp(−݀ߛ) + Γ(3Γ − 1) exp[−(1 + ,[݀ߛ(ߙ2 ߛ  = ௔ߤ +

௦ߤ , ߱଴ = ௔ߤ)/௔ߤ + ,(௦ߤ ߙ  = 2ඥ1 − ߱଴,  Γ = (2 − 2)/(ߙ + (ߙ (ߣ)௔ߤ ,  and ߤ௦(ߣ)  are the absorption and 

scattering coefficients of a layer at a particular wavelength, and ݀ is the thickness of the layer. The advantage 

of this solution over the K-M theory is that it does not rely on the K-M coefficients [20]. 

The second optical model is still based on the three-layered skin structure composed of the stratum 

corneum, the epidermis, and the dermis. For each of these three layers, the reflectance and transmittance are 

calculated based on Reichman’s equations (Eqs. 10-11). The computational processes of the first model and 

the second model are the same, except that the K-M theory in the first model is replaced with Reichman’s 

equations. The two optimization schemes proposed in Subsection 3.4 are also adopted in this model. 

3.5.2 The Third Optical Model 

In the first and second optical models, we assume that the optical properties of human skin are determined by 

three layers – the stratum corneum, the epidermis, and the dermis, and blood vessels are located in the dermis. 

However, skin anatomy shows that on many occasions, blood vessels are located under the dermis and inside 

the hypodermis [21]. In our third optical model, one more skin layer, the hypodermis consisting of adipose 

tissue and blood vessels, is added. Thus, the new skin structure has four layers in total – the stratum corneum, 

the epidermis, the dermis, and the hypodermis. Using the recursive equations (Eqs. 1-2) and the four-layered 

skin structure, the total reflectance ܴଵଶଷସ(ߣ) and transmittance ଵܶଶଷସ(ߣ) of the new skin structure can be 

computed. 

The variables ܴ௜(ߣ) and ௜ܶ(ߣ) (݅ = 1,2,3,4) required in the recursive equations are the reflectance and 

transmittance, respectively, of the ݅௧௛  layer of the skin. The 1st-4th layers are the stratum corneum, the 

epidermis, the dermis, and the hypodermis, respectively. Reichman’s solution is still utilized to calculate the 
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reflectance and transmittance of each layer. The calculations of the absorption and scattering coefficients of 

the stratum corneum, the epidermis, and the dermis are the same as the second optical model. This model 

assumes that the hypodermis is composed of adipose tissue and blood vessels, and blood vessels are located 

just under the dermis. The absorption and scattering coefficients of the adipose tissue are obtained from the 

experimental data [22]. 

With the same illuminant and sensor models, the skin color formation based on the four-layered model can 

be simulated. In addition to ߴ௠, ߴ௣, and ݀ௗ௘௥ , two more parameters, ݀௩ and ݀௔, are added to represent the 

depth of blood vessels and adipose tissue, respectively. They are combined and represented by one 

symbol, ݀௛௬௣, which is called the depth of the hypodermis. Let the range of ݀௩ be [0,  and the range of ݀௔ [ߙ

be  [0, [ߚ . The range of  ݀௛௣௬  is set to be ,ߙ−]  [ߚ . When  ݀௛௣௬  is less than zero, its absolute value 

representing  ݀௩ is used to calculate the reflectance and transmittance of blood vessels; otherwise, it 

represents ݀௔ and can be used directly to calculate the reflectance and transmittance of adipose tissue. This 

model assumes that blood vessels and adipose tissue cannot coexist in the same column in the fourth 

layer. ߴ௠, ߴ௣, ݀ௗ௘௥, and ݀௛௬௣ are sampled exhaustively in the domain, and the corresponding RGB values 

can be obtained. The two optimization schemes are also adopted in this model. 

4. Automatic Blood Vessel Matching 

Low-quality blood vessel images1 from the optical models are unavoidable because of the weak penetration 

capability of visible light and the high concentration of fat in some body sites. Blood vessel patterns extracted 

from these low-quality images can be noisy and partially overlapping. The proposed automatic extraction and 

matching algorithms are specially designed to address these challenges. Subsection 4.1 presents the 

automatic blood vessel extraction algorithm, which utilizes directional groups to enhance patterns in 

low-quality images. Subsection 4.2 describes the matching algorithm with explicit noise and outlier removal 

                                                           
1 In this section, blood vessel images refer to the spatial distribution maps of the biophysical parameters. 
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steps. Subsection 4.3 gives two fusion schemes to utilize information from different optical models for 

enhancing the matching performance. 

4.1 Blood Vessel Extraction based on Directional Groups 

The proposed extraction algorithm includes four components: preprocessing, local information estimation, 

enhancement and representation. In preprocessing, contrast-limited adaptive histogram equalization 

(CLAHE) is first used to normalize the contrast of input images [23]. This method can avoid amplifying 

noise in homogeneous regions and greatly improve the overall contrasts of the input images, especially for 

NIR images. Examples are given in Fig. 3b. Then a filter bank composed of the real parts of 16 Gabor filters 

with different scales and orientations are applied to NIR images and distribution maps of ݀௟௔௬௘௥  to capture 

their local information. A blood vessel segment can be regarded as a dark ridge, and therefore, only the real 

parts are used. The direct current (DC) components of the Gabor filters are removed to enhance their 

robustness against brightness variation, and their powers are normalized for accurately estimating local 

orientation. Let ܩ஽஼ be a normalized zero DC Gabor filter and ݔ)݃݉ܫ,  be an NIR image or a distribution (ݕ

map of ݀௟௔௬௘௥  from one of the three optical models. ܨఒ೘ೖ,ఏೖ,ఙ೘,ఊ denotes a filtered ݔ)݃݉ܫ,  which can be ,(ݕ

obtained from 

,ݔ)ఒ೘,ೖ,ఏೖ,ఙ೘,ఊܨ (ݕ = ,ݔ)஽஼ܩ− ,ݕ ௠௞ߣ , ,௞ߠ ,௠ߪ (ߛ ∗ ,ݔ)݃݉ܫ  (12) ,(ݕ

where * represents an operation of a two-dimensional convolution. 

To capture local orientation and estimate the information quality of a blood vessel segment, ܨఒ೘ೖ,ఏೖ,ఙ೘,ఊ is 

further processed. The orientation of a blood vessel segment can be estimated from  

,ݔ)ܱ (ݕ = arg
ఏೖ

max
௠,௞

ఒ೘ೖܨ ,ఏೖ,ఙ೘,ఊ(ݔ, /(ݕ ௠ܲ(ݔ,  (13) ,(ݕ

which is called the orientation map, and the quality of the local information can be estimated from 

,ݔ)ܴ (ݕ = max
௠,௞

,ݔ)ఒ೘ೖ,ఏೖ,ఙ೘,ఊܨ /(ݕ ௠ܲ(ݔ,  (14) ,(ݕ
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which is called the response map. ௠ܲ is the local image power around the point (ݔ,  for further minimizing (ݕ

the influence of image contrast. Note that ௠ܲ depends on the scale of the filter. Figs. 3(c) and (d) give 

orientation and response maps of four images. 

To enhance blood vessel patterns and suppress noise, the information in orientation maps is operated in 

groups. First, a labeled map ݔ)ܮ, (ݕ ∈ {1, , ݊} with the same size as ܴ(ݔ,  is produced by a connected (ݕ

component labeling method [24]. Pixels in ݔ)ܮ, = ݅) ݅ with the same label (ݕ  1, , ݊) are connected and 

share the same orientation ݋(݅). They are called a component. If ܴ(ݔ,  is greater than a threshold, the (ݕ

corresponding pixel is classified as a potential blood vessel pixel, and the corresponding component is then 

denoted as a potential blood vessel component. Blood vessel components are further connected based on their 

orientation difference and spatial distance. For every component pair, if their angular distance is shorter than 

or equal to /8 and their spatial distance is shorter than a threshold, they are connected. The threshold is 

determined by experiments. A large threshold connects more components together and is more effective for 

restoring broken blood vessels, while a small threshold links fewer components and is more robust to noise 

(e.g., hair). There is a trade-off in setting this threshold. All elements in the connected component pairs are 

searched iteratively and assigned the same label if they share the same component. This iterative process 

generates a map of grouped labels. A weighting function is defined based on the map [12] and the pointwise 

multiplication is applied to the weighting function and ܴ(ݔ,  .to enhance blood vessel patterns (Fig. 3f) (ݕ

To retain the geometric relationship among blood vessel segments and keep a simple structure, point 

representation is employed. We do not use minutiae features, which have been considered for recognizing 

infrared hand vein images [8], because blood vessels of other body sites from color images are noisy and the 

bifurcation and ending points are unreliable. Otsu’s method [25] is used to binarize the enhanced blood vessel 

images and a skeletonization method is applied to obtain their structures, which are then uniformly sampled 

and represented by point sets. In our experiment, each blood vessel pattern is finally represented by a set of 

points with equal distance. The average number of points is 227. Forearm boundaries are also extracted and 
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sampled in the same manner to improve matching performance, while thigh boundaries are not used because 

their exposed skin regions vary considerably (Fig. 6). Four sampled blood vessel patterns are given in Fig. 3g. 

 

 

 

 
(a) (b) (c) (d) (e) (f) (g) 

Fig. 3 The blood vessel pattern extraction processes. The first and third rows are NIR images and the second and fourth rows are 

uncovered results from color images. Column (a) is the input images; column (b) is the results after the local brightness adjustment; 

column (c) is the orientation maps generated by the Gabor filters; column (d) is the response maps; column (e) is the maps of 

grouped blood vessel components (different colors indicating different groups); column (f) is the enhanced response maps; and 

column (g) is the point sets for matching. (a color figure) 

4.2 Blood Vessel Pattern Matching with a Noise Removal Scheme 

Blood vessel pattern matching based on the point set representation can be regarded as a point registration 

problem, which has been extensively studied. Among all point registration methods, the Iterative Closest 

Point (ICP) [26] is the best known one, and it has many variants, such as LM-ICP [27]. ICP and most of its 

variants are designed for rigid point set registration. However, they are not suitable for our problem because 

of the non-linear distortion in the blood vessel patterns. Non-rigid point registration methods such as Robust 

Point Matching (RPM) [28] and Coherent Point Drift (CPD) [29] are more desirable. Directly applying 

existing methods to match blood vessel patterns is not an optimal approach because it neglects characteristics 

of the problem, including partial overlap, noisy patterns, missing blood vessel segments, viewpoint 

differences, and non-linear distortion. In preliminary experiments, we tested some existing hand vein 

matching methods, but no encouraging results were obtained. Thus, a new blood vessel matching algorithm is 

developed. 

A set of notations is given first for clear presentation. Let ܯ and ܦ be two point sets from one of the optical 

models. ܯ and ܦ are called model and data patterns, respectively. Each point in ܯ, e.g., (ݔ, (ݕ ∈  is ,ܯ
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associated with a response value ܴெ(ݔ, ,ݔ)and an orientation value ܱெ (ݕ where ܴெ ,(ݕ  and ܱெ are the 

response and orientation maps of ܯ. For forearms, the point sets representing their boundaries are denoted 

as ஻஽ܦ ஻஽ andܯ  . Transformations of the point sets are denoted as ܶ(•, ߬), controlled by a parametric 

vector ߬. 

In general, a point registration algorithm determines the parametric vector ߬ in a transformation ܶ, which is 

applied to the model set, i.e., ܶ(ܯ, ߬), so that the two point sets are aligned optimally and their dissimilarity 

can be measured. The proposed matching algorithm utilizes explicit schemes to remove outliers and noise, a 

non-rigid point registration method to align remaining points, and their response and orientation information 

to determine the dissimilarity between two patterns. 

When matching forearms, the boundaries ܯ஻஽ and ܦ஻஽  are first used to remove points outside the 

overlapping area of ܯ and ܦ. A rigid transformation ோܶ  is used to describe the deformation between ܯ஻஽ 

and ܦ஻஽. The rigid Coherent Point Drift (CPD) method is used to determine a parametric vector ߬ଵ. Fig. 4(c) 

shows two boundaries and their alignment result. The point set ܯ is transformed into ܯ௧ଵ = ோܶ(ܯ, ߬ଵ). Then, 

the overlapping area ܤ of  ܯ௧ଵ and ܦ is determined. Points that are located outside ܤ are regarded as outliers 

and removed to increase robustness. The pruned point sets are denoted as ܯଵ and ܦଵ. If the numbers of points 

in these two sets are less than a threshold, they are assumed to be from two different blood vessel patterns. Fig. 

4(d) shows two point sets after outliner removal. Because thigh boundaries in our database are unreliable, we 

set  ܯଵ = ଵܦ  and ܯ =  .when matching them ܦ

Then, the matching algorithm removes outliers and noise inside ܯଵ and ܦଵ. The rigid transformation ோܶ is 

used again to roughly align ܯଵ and ܦଵ. Note that ܯଵ is regarded as a model set in this alignment. Using the 

rigid CPD method and the resultant parametric vector ߬ଶ, the correspondence ܿଶ between  ܯଵ and ܦଵ can be 

obtained. The point set ௧ଶܯ  = ோܶ(Mଵ, ߬ଶ)  is roughly aligned with ଵܦ  , and the distances between the 

corresponding points in ܯ௧ଶ and ܦଵ are calculated. If the distances are very long, the corresponding points 

in ܯ௧ଶ are considered as outliers. All points in ܯ௧ଶ are sorted in ascending order according to their distances, 

and the top 80% of the points in ܯ௧ଶ are retained. The remaining points are denoted as ܯଶ. The same process 
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is repeated to remove outliers in ܦଵ. The rigid CPD method is applied to align ܦଵ and ܯଶ. In this alignment, 

௧ଶܦ ଵ is considered as a model set, and a transformed point setܦ = ோܶ(ܦଵ, ߬ଶ
ᇱ ) is computed. As with the 

previous case, only 80% of the points in ܦ௧ଶ are retained, and distances between corresponding points 

in ܦ௧ଶ and ܯଶ are used as a selection criterion. The remaining points in ܦ௧ଶ are denoted as ܦଶ. 

The final step is to match ܯଶ and ܦଶ with a non-rigid transformation. The non-rigid CPD method with a 

Gaussian kernel as a regularizer is used to match ଶܦ ଶ andܯ  . With a non-rigid transformation ேܶ  and 

corresponding parametric vector ߬ଷ generated by the CPD method, ܯ௧ଷ = ேܶ(ܯଶ, ߬ଷ), and ܦଶ are aligned 

optimally. As with the previous steps, a correspondence vector ܿଷ is obtained. Note that multiple points in 

 ଶ and that data points with no correspondence are recognized asܦ ଶ can correspond to the same point inܯ

outliers. 

The proposed dissimilarity function is based on the distance between the two aligned point sets and the 

corresponding response and orientation differences. Let ݉௜ = (݉௫
௜ , ݉௬

௜ )  be the ݅௧௛  point in ܯ௧ଷ ; its 

corresponding response and orientation values be ܯ௧ଷ
ோ (݉௜) and ܯ௧ଷ

ை ൫݉௜൯, respectively; the corresponding 

point in ܦଶ be ݀௖య(೔) = (݀௫
,య(௜)ࢉ ݀௬

ଶܯ య(௜)); and its corresponding response and orientation values beࢉ
ோ(݀௖య(೔)) 

and ܦଶ
ை(݀௖య(೔)). The dissimilarity function is defined as 

,ܯ)ݏ (ܦ = ଵି|ܫ| × ∑ ฮ݉௜ − ݀௖య(௜)ฮ × หܯ௧ଷ
ோ ൫݉௜൯ − ଶܯ

ோ(݀௖య(೔)) ห × Ω(ܯ௧ଷ
ை (݉௜), ଶܦ

ை(݀௖య(೔)) )௜∈ூ ,  (15) 

where ܫ  is an index set containing points with dissimilarity values defined as ฮ݉௜ − ݀௖య(௜)ฮ ×

หܯ௧ଷ
ோ ൫݉௜൯ − ଶܯ

ோ(݀௖య(೔)) ห × Ω(ܯ௧ଷ
ை (݉௜), ଶܦ

ை(݀௖య(೔)) ) in the 80th percentile. 

 

(a) (b) (c) (d)  
 

 
 

(e) (f) (g)   
Fig. 4 Illustration of blood vessel matching. (a) and (b) are resultant images from an optical model. (c) shows the points extracted

from (a) and (b). Red and blue dots represent model and data points. (d) illustrates  ܯ௧ଵ and ܦଵ. Outliers outside the overlapping 
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area are marked in green. (e) illustrates  ܯ௧ଶ  and ଵܦ   . Green points are regarded as noise. (f) shows the alignment result 

of ܯଶ and ܦ௧ଶ, and (g) is the final non-rigid alignment result. (a color figure) 

4.3 Fusion of Blood Vessel Patterns from the Three Models 

Section 3 presents three optical models based on two skin structures and two approximate solutions to the 

radiative transfer equation for simulating light passing through skin. To utilize information provided by 

different optical models simultaneously for improving matching performance, a feature-level fusion scheme 

and a score-level fusion scheme are proposed. 

4.3.1 A Feature-Level Fusion Scheme based on the Noise Removal Scheme 

The optical models provide similar major blood vessels, but different minor blood vessels and noise (Fig. 8). 

If their point sets are fused directly through a union operator, the fused patterns will be very noisy. Before 

applying the union operator, the noise removal scheme in the matching algorithm is used to suppress noise 

and retain blood vessel patterns. 

Let ܥ௜  be an input color image and its corresponding point sets from the three optical models be 

,௜ଵܯ ,௜ଶܯ and ܯ௜ଷ, and let ܥ௝ be another color image and its corresponding point sets from the three optical 

models be ܦ௝ଵ, ,௝ଶܦ and ܦ௝ଷ. The proposed algorithm is used to match ܯ௜௞ and ܦ௜௞, where ݇ ∈ {1,2,3}, to 

obtain the noise-suppressed point sets ܯଶ
௜௞ and ܦଶ

௝௞ , which are denoted as ܯଶ and ܦଶ, respectively, in the 

previous section. The proposed fusion scheme applies the union operator to these point sets. Mathematically, 

this fusion scheme is defined as 

௜ܨ = ራ ଶܯ
௜௞

௞ୀଵ,ଶ,ଷ

. (16) 

The fused point set ܨ௝ is obtained in the same way. Then, the scheme performs the non-rigid CPD matching 

on the fused point sets ܨ௜ and ܨ௝ and computes their dissimilarity. 

4.3.2 A Score-Level Fusion Scheme based on the Weighted Sum 

The other fusion scheme uses the weighted sum to combine the dissimilarity values from the optical models. 

A new dissimilarity based on this fusion scheme is defined as 
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,݅)௙௨௦௘ݏ ݆) =
∑ ௞ݓ ∗ ܵ൫ܯ௜௞ , ௝௞൯ଷܦ 

௞ୀଵ

∑ ௞ଷݓ
௞ୀଵ

, (17) 

where ݓ௞ is 0.8 × หܯଶ
௜௞ห. Note that หܯଶ

௜௞ห is the cardinality of ܯଶ
௜௞ and that ݓ௞ is the size of the index set in 

Eq. 15. The fusion schemes presented in these two subsections are also applicable to match a color image 

with an infrared image. We simply replace ܦ௝ଵ, ,௝ଶܦ and ܦ௝ଷ with the point set from an infrared image. Thus, 

the two fusion schemes can be applied without any modification. 

5. Experimental Results 

To evaluate the proposed optical models, the fusion schemes, and the matching algorithm, NIR and color 

images were collected from the inner forearms and thighs of 328 subjects2, mainly Chinese, Indians, and 

Malays in Singapore. 301 of them are males. The NIR images are used for comparisons and validation. The 

proposed models and algorithms do not depend on them. Two data collection sessions were carried out 11 

days apart on average. The maximum time gap between the two sessions was 81 days. During each session, 

two color images and two NIR images were taken from each body site. In total, 16 color images and 16 NIR 

images were collected from each subject. Two consumer cameras (Canon 500D and Nikon D70s) and one 

NIR camera (JAI-AD080CL) were used. The maximum resolutions of the two consumer cameras are 4752 

by 3168 and 3008 by 2000 pixels, respectively, and the maximum resolution of the NIR camera is 1024 by 

768 pixels. Though the subjects were expected to be present in both sessions, 29 subjects were present only in 

one session. At each body site, approximately 60 subjects have large tattoos and/or very dense androgenic 

hair covering their blood vessels. Even in NIR images, their blood vessels are not observable. It is 

well-known that tattoos are regularly used by law enforcement agencies for criminal verification and 

identification and tattoo retrieval methods have been developed [30]. Recently, a study shows that 

androgenic hair patterns can be used for personal identification [7]. Thus, for these images, blood vessel 

recognition is not necessary. In addition to tattoo-obscured and hairy images, some unusable images, such as 

                                                           
2 A database will be shared with the biometric community for this research direction. Download URL will be provided before Mar 31, 2015. 
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incorrect body sites and images with motion blur or incorrect infrared illumination were also removed. 

Images collected from wrong poses were removed because images from the same person in the gallery set 

and the probe set do not form a pair for matching. Color images whose corresponding NIR images were 

captured under wrong illumination were removed because we cannot validate our uncovering results through 

the NIR images. In this study, motion blur is not considered because we target on still images, e.g., child 

sexual abuse images. Fig. 5 shows some of the removed images. In real cases, law enforcement agencies may 

not have more than one image of a suspects or a criminal for matching. Thus, if a subject had more than one 

color (NIR) image from a particular body site in any of the sessions, one of them was randomly selected to 

form the testing database. The testing database contained 1900 NIR images and 1900 color images from 250 

right forearms, 240 left forearms, 230 right thighs, and 230 left thighs. Although some images were removed, 

many challenging images collected under different illumination conditions, viewpoints, and poses still 

remained in the database. Fig. 6 shows some typical images in the testing database. 

The color images in the testing database were processed semi-automatically. A rectangular region 

containing the body site was manually selected, and then the skin region was segmented automatically based 

on skin color. The NIR images were manually segmented. The segmented regions were finally rotated and 

resized. Eigenvalues computed from segmented skin regions were used to perform rotation. The average 

sizes of the processed color (NIR) forearm and thigh images were 990 by 383 pixels (643 by 259 pixels) and 

1118 by 636 pixels (687 by 449 pixels). Fig. 8 shows some of the processed images. After applying the 

models presented in Section 3, the color forearm and thigh images were downsampled. Consequently, the 

average sizes of the distribution maps from the forearms and the thighs for matching were 495 and 191 pixels 

and 559 and 318 pixels, respectively. In the experiments, blood vessel patterns were extracted from the 

distribution maps of ݀௟௔௬௘௥  generated from the optical models. 

In the rest of this section, four sets of experimental results are reported. The blood vessel patterns from the 

NIR images were matched to evaluate the proposed matching algorithm (Subsection 5.1). The blood vessel 

patterns from the color images were matched to examine the proposed optical models and the fusion schemes 
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(Subsection 5.2). The blood vessel patterns from the color images were also matched with those from the NIR 

images to evaluate their similarity (Subsection 5.3). One of the proposed optical models was applied to 

hands, arms, thighs, chests, breasts, and abdomens of men, women, and children in indoor and outdoor 

images collected from the Internet to evaluate their effectiveness on images taken from completely 

uncontrolled environments (Subsection 5.4). In the first three experiments, the images collected during the 

first session were regarded as a gallery set, and the images collected during the second session were regarded 

as a probe set. Cumulative match curves (CMCs) were used as a performance index in these experiments. 

   
(a) (b) (c) (d) (e) (f) 

Fig. 5 Examples of the removed images. (a)-(b) large tattoos, (c) blur and wrong pose, (d) blur and incorrect illumination, (e) 

incorrect NIR illumination, and (f) dense androgenic hair. 

 

Fig. 6 Typical images in our testing database. The first and second rows show color images collected during the first and second 

sessions, respectively. The third row shows corresponding NIR images from the first session. The images in each column were 

collected from the same subject. 

5.1 Matching Blood Vessel Patterns from NIR Images 

To evaluate the proposed blood vessel matching algorithm, we compared it with the LM-ICP method [27], 

the original CPD method [29], and our preliminary matching method [12]. NIR images were selected for this 

comparison because NIR has a higher penetration capability and is expected to offer the best-quality blood 

vessel patterns. The original CPD method with a non-rigid transformation was selected for this comparison 
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because it is the state-of-the-art point matching method with the ability to handle non-rigid deformation and 

also because the proposed matching algorithm depends on it. In the experiments, the original CPD method 

and the proposed matching algorithm used the same parameters. When matching thigh images, the 

preliminary matching algorithm did not use their boundaries. The LM-ICP method was also included in this 

comparison because of its popularity. 

The first column of Fig. 7 shows the CMCs from different matching methods and different body sites. 

Their rank-1 and rank-10 accuracy is given in Table 1. The term “rank-10 identification accuracy” refers to 

the percentage of input blood vessel patterns whose corresponding patterns can be found in the database 

within the top 10% of the patterns given by a matching algorithm. The proposed matching algorithm 

achieved rank-1 accuracy of 66.8%, 80.4%, 57.9%, and 56.9% for the left forearms, the right forearms, the 

left thighs, and the right thighs, respectively. It clearly outperforms the original CPD, the LM-ICP, and the 

preliminary matching method for all body sites. These results demonstrate that the proposed outlier and noise 

removal schemes are effective, that blood vessel patterns have serious non-rigid distortion, and that the 

proposed new dissimilarity function and other techniques for improving the preliminary matching method 

are useful. The proposed matching algorithm was thus used in the rest of the experiments. 

5.2 Matching Blood Vessel Patterns from Color Images 

In this experiment, blood vessel patterns extracted from color images were matched. Before offering CMCs 

as an objective evaluation, blood vessel patterns generated from different optical models are given in Fig. 8 

for visual comparison. The first and second columns are color and NIR images, respectively. The third 

column contains the results from the OBVU method. The fourth, fifth, and sixth columns are the results from 

the first, second, and third optical models, respectively. This figure shows that the proposed optical models 

can effectively uncover blood vessel patterns hidden in color images and perform significantly better than the 

OBVU method. The visual quality of the blood vessel patterns from the proposed optical models is 

comparable with that from the NIR images. Fig. 8 shows that the major blood vessels from different optical 
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models are the same, but the minor blood vessels can differ. It is difficult to visually conclude which is the 

best optical model. 

 

Table 1 Rank-1 and Rank-10 accuracies from matching blood vessel patterns from NIR images (measured in percentages). 

  Left Arm Right Arm Left Thigh Right Thigh 

Rank-1 
accuracy 

LM-ICP 10.0 10.8 5.7 2.2 
Original-CPD 51.9 62.4 46.1 50.2 
Preliminary matching method 62.2 76.0 53.1 53.3 
Proposed matching algorithm 66.8 80.4 57.9 56.9 

Rank-10 
accuracy 

LM-ICP 28.6 32.8 21.9 18.7 
Original-CPD 61.8 67.6 62.3 59.1 
Preliminary matching method 72.2 82.8 64.5 66.2 
Proposed matching algorithm 76.8 86.0 70.6 70.7 

The underlining indicates the best matching results. 

To objectively compare the optical models, the fusion schemes, and the OBVU method, their blood vessel 

patterns from the color images were matched. In this experiment, we only matched blood vessel patterns from 

the same optical model or the same fusion scheme. No cross model matching was performed. The 

corresponding CMCs are given in the second column of Fig. 7, and the corresponding rank-1 and rank-10 

accuracy is given in Table 2. The NIR and red-channel images were also included for comparison. NIR 

images are expected to provide blood vessel patterns with the highest quality and to be an upper performance 

limit. Red-channel images are always available in color images and red light is close to NIR in terms of 

wavelength. The CMCs in the second column of Fig. 7 show that the three proposed optical models 

outperform the red channel and the OBVU method with significant margins. Because both the first optical 

model and the OBVU method use the same skin structure and the K-M theory, these experimental results 

indicate that the proposed optimization schemes can effectively handle illumination variation and avoid 

over-relying on the biophysical parameters measured in ideal medical conditions. Among the three optical 

models, the first and second optical models perform similarly for all the body sites. The third optical model 

performs slightly better than the other two models for the forearms, but slightly worse for the thighs. The 

CMCs also demonstrate the effectiveness of the fusion schemes. The feature-level and score-level fusion 

schemes both outperform any individual optical model. In terms of rank-1 accuracy, the feature-level fusion 

scheme outperforms the score-level fusion scheme for all body sites. In terms of rank-10 accuracy, the 
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feature-level fusion scheme outperforms the score-level fusion scheme for all body sites, except for the right 

forearms. The CMCs of the fusion schemes are comparable with those of NIR images, which are regarded as 

an upper performance limit. In terms of rank-1 and rank-10 accuracy, the feature-level fusion scheme 

performs better than the NIR images for the right forearms. For the other body sites, the average differences 

of rank-1 and rank-10 accuracy between the feature-level fusion scheme and the NIR images are 2.8% and 

1.8%, respectively. The results obtained from the forearms are better than those from the thighs because the 

skin of forearms is thinner and light has a higher chance to penetrate it. Some ROIs of the left forearms are 

smaller than those of the right forearms, because of watches and accessories on the left forearms. Thus, the 

right forearms perform better.  

 

Table 2 A summary of the matching accuracy (measured in %) 

 
 

 
Matching the same type of images (e.g., NIR vs. 
NIR and color images vs. color images) 

Matching different types of images (color 
images vs. NIR images) 

  Left Arm Right Arm Left Thigh Right Thigh Left Arm Right Arm 
Left 

Thigh 
Right Thigh 

Rank-1 
accuracy 

NIR 66.8 80.4 57.9 56.9     
Model OBVU 29.7 37.6 13.6 14.5 23.1 26.4 4.3 2.3 
Model 1 52.3 68.0 46.5 46.5 35.5 49.6 13.9 14.0 
Model 2 52.7 68.0 47.8 46.9 37.2 47.6 16.5 10.7 
Model 3 52.7 70.4 39.9 43.4 35.0 42.0 16.1 10.7 
Red channel 44.8 38.4 26.3 31.6 33.8 28.4 7.8 7.0 
Feature fusion  63.6 *81.2 54.8 54.8 44.4 54.4 16.5 13.0 
Score fusion 57.7 76.0 51.8 48.2 35.9 48.4 13.9 10.2 

Rank-10 
accuracy 

NIR 76.8 86.0 70.6 70.7     
Model OBVU 46.0 54.8 30.7 30.3 37.6 33.2 14.8 10.7 
Model 1 66.9 81.6 59.6 61.0 50.4 60.8 28.3 27.9 
Model 2 67.8 80.4 59.6 59.6 51.7 58.0 30.0 26.5 
Model 3 68.6 83.2 51.3 55.3 52.1 59.2 28.7 24.2 
Red channel 61.9 59.6 47.4 49.6 46.6 43.6 20.4 22.3 
Feature fusion 76.2 *86.8 69.3 67.1 54.7 63.6 30.0 28.4 
Score fusion 74.5 *89.6 66.7 62.7 55.6 60.8 32.2 25.1 

* denotes that the results are better than the corresponding results from NIR images. The underlining indicates the best results from matching 

color images with color images and matching color images with NIR images. 

5.3 Matching Blood Vessel Patterns from Color Images with those from NIR Images 

The previous experimental results have demonstrated that the proposed optical models can uncover blood 

vessel patterns hidden in color images and that these patterns can be matched for personal identification. Fig. 

8 shows that blood vessel patterns from color and NIR images are not exactly the same. In this experiment, 

blood vessel patterns from color images were matched with those from NIR images. The last column of Fig. 
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7 gives the corresponding CMCs, and Table 2 lists the corresponding rank-1 and rank-10 accuracy. As with 

the previous results, the three optical models outperform the OBVU method and the red channel. The 

feature-level fusion scheme provides the highest rank-1 accuracy for all body sites, except for the right thighs. 

In terms of rank-10 accuracy, the two fusion schemes perform similarly. The CMCs indicate that the blood 

vessel pattern similarity between the color images and the NIR images is higher than that between the red 

channels and the NIR images. Comparing with the corresponding CMCs in the second column of Fig. 7, 

significant performance drops are noted. They indicate that the blood vessel patterns from NIR images and 

those from optical models have some differences. In fact, these differences are also observable in Fig. 8. The 

optical models tend to provide more blood vessels than NIR images, especially for the thighs. Some may 

expect that this cross spectral matching requires some mechanisms, e.g., domain adaption. Because blood 

vessels appear in both the NIR images and the uncovered results, direct matching can be performed.  

5.4 Uncovering Blood Vessels from Internet Images  

In addition to uncovering blood vessels from images in the database, the optical models were applied to 

images collected from the Internet. They were taken under uncontrolled environments with large lighting, 

pose and viewpoint variations. The subjects include male and female, adult and children. Figs. 9 and 10 show 

the uncovering results from the first optical model. The faces were pixelated to protect the people’s privacy. 

Because some of these images have blocking artifacts, the parameter a in Eq. 8 was selected manually. To 

give more results from different images, results from the second and third models are not given. Though these 

images were taken in uncontrolled environments, blood vessels are still uncovered by the proposed model. In 

addition to forearms and thighs, blood vessels in other body sites, such as neck, chest, upper arms, and legs 

become visible in the resultant images. These results demonstrate clearly the feasibility of using blood 

vessels uncovered by the proposed optical models for criminal and victim authentication.  
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5.5  Uncovering Blood Vessels from Facial Images  

To our knowledge, no research has been done on facial vein pattern identification, since there are fewer veins 

on face than in other body parts. Most of current research utilizes facial marks and other prominent features 

for identification. Fig.11 shows an NIR facial image obtained from the Internet. We can find that compared 

with shoulder and chest, face has much fewer veins. The first optical model was applied to two facial images. 

Fig. 12 shows the uncovering results. For privacy protection, partial faces were blurred.  It can be seen that 

the optical model visualizes some veins. 

6. Discussion 

Identifying criminals and victims in evidence images is challenging and sometimes is not possible with 

current technology because faces, tattoos, and distinctive skin mark patterns are not observable. 

Traditionally, blood vessel patterns could not be used for criminal and victim verification because they are 

nearly invisible in color images. This paper presents three optical models, two optimization schemes, blood 

vessel extraction and matching algorithms, and two fusion schemes to eliminate this traditional barrier. The 

proposed models, algorithms, and schemes were examined on a database containing 1900 color images and 

1900 NIR images from 328 subjects’ forearms and thighs. The experimental results demonstrate the 

effectiveness of the approach, and most importantly, they show that blood vessel patterns hidden in color 

images can be uncovered for personal identification. In addition to images in this database, the proposed 

models were also applied to hands, arms, thighs, chests, breasts, and abdomens of men, women, and children 

in indoor and outdoor images collected from the Internet. They were also applied to facial images. The results 

are very encouraging.  

However, we admit that the proposed optical models are not yet perfect. They cannot uncover blood vessel 

patterns from some color images, especially when blood vessels in the corresponding NIR images are unclear 

or even unobservable. The proposed models are based on blood vessel information hidden in color images. If 

color images do not carry any of this information, no model will work. However, we cannot conclude now 
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whether the color images have no blood vessel information or the proposed models cannot make use of it to 

visualize the blood vessels. Compared with the accuracy of other well-developed biometric techniques, e.g., 

fingerprint, iris and face identification, which have been studied for more than two decades, the recognition 

accuracy of blood vessel patterns is low. We target at forensic identification where no fingerprint, iris or face 

is available. In forensic applications, quality of fingerprints and face images can also be very low and the 

state-of-the-art algorithms cannot always handle them well. Because uncovering blood vessels from color 

images is an extremely new research direction, we believe that significant progress will be made in the 

coming years. 

In the experiments, tattoo-obscured and hairy images were removed. In legal cases, once tattoos are 

available, the identification process becomes straightforward. Though dense androgenic hair can cover other 

biometric traits, such as skin marks and blood vessels [6], androgenic hair patterns can in fact be used for 

personal identification directly [7]. Identification and verification using skin marks, blood vessels, hair, and 

tattoos all have some weaknesses. These biometric traits should be used simultaneously. Fusion of different 

biometrics is an effective solution. In addition to the challenges from the availability of biometric traits, 

image quality is always an issue in forensic verification and identification. More research should be 

performed on uncovering blood vessels from images collected in low-light environments and larger pose and 

viewpoint variations. Skin marks and blood vessels requiring middle- to high-resolution images are more 

suitable for child sexual abuse images and images of other sexual offenses because close-up images are 

expected in these types of legal cases. However, identifying masked criminals based on exposed skin in 

low-resolution images still remains a challenge [7]. In addition to resolution, evidence images and videos are 

always compressed by the JPEG and MPEG methods [31]. How to restore the skin features from these 

low-quality images and videos is also an important problem. Algorithms, especially for restoring veins from 

JPEG images are also demanded. Furthermore, a huge database with long time-lapse body image pairs is also 

needed for the further research. 



 

28 

In this paper, we have demonstrated that blood vessel patterns can be uncovered from color images for 

personal identification and verification. However, significant research is still demanded to address all these 

problems for forensic verification and identification. 
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NIR images matched with NIR images Color images matched with color images Color images matched with NIR images 

Fig. 7 CMCs generated from matching results. The first column compares the proposed matching algorithm with other matching 

methods based on NIR images. The second column compares different optical models and fusion schemes based on color images. 

The third column shows the CMCs from matching color images with NIR images. (a color figure) 
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(a) (b) (c) (d) (e) (f) 
Fig. 8 Resultant images from the optical models and the corresponding enhanced response maps. Column (a) contains color 

images; column (b) contains NIR images; columns (c)-(f) contain results from the OBVU and the first, second, and third optical 

models, respectively. The enhanced response maps are shown under the processed images. 
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Fig. 9 Results from Internet images. Each pair of red rectangles indicates a skin region and the corresponding result from the first 

optical model. (To see clearly the images, please read the electronic version.)     
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Fig. 10 Results from Internet images. Each pair of red rectangles indicates a skin region and the corresponding result from the first 

optical model. (To see clearly the images, please read the electronic version.)    
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Fig. 11 An NIR facial image collected from the Internet. 

 

      
(a) (b) (c) (d) (f) (g) 

   

   

(h) (i) (j) (k) (l) (m) 

Fig. 12 Uncovering results obtained from some facial images. (a), (d), (h) and (k) are color facial images; (b), (f), 

(i) and (l) are their corresponding uncovered results obtained from optical model 1; (c), (g), (j) and (m) are the 

NIR images. For privacy protection, partial faces are blurred.  
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Fig. 1 Illustration of the recursive equations (Eqs. 1-2) applied to a layered skin model. 
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Fig. 2 A schematic diagram illustrating the blood vessel uncovering process based on the optical models. The left block 

represents the skin color formation model, and the right block represents the inversion of the skin color formation to 

obtain Λ௜ from [ܴ, ,ܩ  .They are, respectively, the graphical representation of ௜݂ and ݃௜ in Eqs. 4 and 6 .[ܤ
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(a) (b) (c) (d) (e) (f) (g) 

Fig. 3 The blood vessel pattern extraction processes. The first and third rows are NIR images and the second and fourth 

rows are uncovered results from color images. Column (a) is the input images; column (b) is the results after the local 

brightness adjustment; column (c) is the orientation maps generated by the Gabor filters; column (d) is the response 

maps; column (e) is the maps of grouped blood vessel components (different colors indicating different groups); 

column (f) is the enhanced response maps; and column (g) is the point sets for matching. (a color figure) 
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(a) (b) (c) (d)  
 

 
 

(e) (f) (g)   

Fig. 4 Illustration of blood vessel matching. (a) and (b) are resultant images from an optical model. (c) shows the points 

extracted from (a) and (b). Red and blue dots represent model and data points. (d) illustrates  ܯ௧ଵ and ܦଵ. Outliers 

outside the overlapping area are marked in green. (e) illustrates  ܯ௧ଶ and  ܦଵ. Green points are regarded as noise. (f) 

shows the alignment result of ܯଶ and ܦ௧ଶ, and (g) is the final non-rigid alignment result. (a color figure) 
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(a) (b) (c) (d) (e) (f) 

Fig. 5 Examples of the removed images. (a)-(b) large tattoos, (c) blur and wrong pose, (d) blur and incorrect 

illumination, (e) incorrect NIR illumination, and (f) dense androgenic hair. 
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Fig. 6 Typical images in our testing database. The first and second rows show color images collected during the first 

and second sessions, respectively. The third row shows corresponding NIR images from the first session. The images in 

each column were collected from the same subject. 
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NIR images matched with NIR images Color images matched with color images Color images matched with NIR images 

Fig. 7 CMCs generated from matching results. The first column compares the proposed matching algorithm with other 

matching methods based on NIR images. The second column compares different optical models and fusion schemes 

based on color images. The third column shows the CMCs from matching color images with NIR images. (a color 

figure) 
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(a) (b) (c) (d) (e) (f) 
Fig. 8 Resultant images from the optical models and the corresponding enhanced response maps. Column (a) contains 

color images; column (b) contains NIR images; columns (c)-(f) contain results from the OBVU and the first, second, 

and third optical models, respectively. The enhanced response maps are shown under the processed images. 
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Fig. 9 Results from Internet images. Each pair of red rectangles indicates a skin region and the corresponding result 

from the first optical model. (To see clearly the images, please read the electronic version.)     
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Fig. 10 Results from Internet images. Each pair of red rectangles indicates a skin region and the corresponding result 

from the first optical model. (To see clearly the images, please read the electronic version.)    
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Fig. 11 An NIR facial image collected from the Internet. 

 

      
(a) (b) (c) (d) (f) (g) 

   

   

(h) (i) (j) (k) (l) (m) 

Fig. 12 Uncovering results obtained from some facial images. (a), (d), (h) and (k) are color facial 

images; (b), (f), (i) and (l) are their corresponding uncovered results obtained from optical model 1; 

(c), (g), (j) and (m) are the NIR images. For privacy protection, partial faces are blurred. 
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Table 1 Rank-1 and Rank-10 accuracies from matching blood vessel patterns from NIR images (measured in 

percentages). 

  Left Arm Right Arm Left Thigh Right Thigh 

Rank-1 
accuracy 

LM-ICP 10.0 10.8 5.7 2.2 
Original-CPD 51.9 62.4 46.1 50.2 
Preliminary matching method 62.2 76.0 53.1 53.3 
Proposed matching algorithm 66.8 80.4 57.9 56.9 

Rank-10 
accuracy 

LM-ICP 28.6 32.8 21.9 18.7 
Original-CPD 61.8 67.6 62.3 59.1 
Preliminary matching method 72.2 82.8 64.5 66.2 
Proposed matching algorithm 76.8 86.0 70.6 70.7 

The underlining indicates the best matching results. 
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Table 2 A summary of the matching accuracy (measured in %) 

 
 

 
Matching the same type of images (e.g., NIR vs. 
NIR and color images vs. color images) 

Matching different types of images (color 
images vs. NIR images) 

  Left Arm Right Arm Left Thigh Right Thigh Left Arm Right Arm 
Left 

Thigh 
Right Thigh 

Rank-1 
accuracy 

NIR 66.8 80.4 57.9 56.9     
Model OBVU 29.7 37.6 13.6 14.5 23.1 26.4 4.3 2.3 
Model 1 52.3 68.0 46.5 46.5 35.5 49.6 13.9 14.0 
Model 2 52.7 68.0 47.8 46.9 37.2 47.6 16.5 10.7 
Model 3 52.7 70.4 39.9 43.4 35.0 42.0 16.1 10.7 
Red channel 44.8 38.4 26.3 31.6 33.8 28.4 7.8 7.0 
Feature fusion  63.6 *81.2 54.8 54.8 44.4 54.4 16.5 13.0 
Score fusion 57.7 76.0 51.8 48.2 35.9 48.4 13.9 10.2 

Rank-10 
accuracy 

NIR 76.8 86.0 70.6 70.7     
Model OBVU 46.0 54.8 30.7 30.3 37.6 33.2 14.8 10.7 
Model 1 66.9 81.6 59.6 61.0 50.4 60.8 28.3 27.9 
Model 2 67.8 80.4 59.6 59.6 51.7 58.0 30.0 26.5 
Model 3 68.6 83.2 51.3 55.3 52.1 59.2 28.7 24.2 
Red channel 61.9 59.6 47.4 49.6 46.6 43.6 20.4 22.3 
Feature fusion 76.2 *86.8 69.3 67.1 54.7 63.6 30.0 28.4 
Score fusion 74.5 *89.6 66.7 62.7 55.6 60.8 32.2 25.1 

* denotes that the results are better than the corresponding results from NIR images. The underlining indicates the best results from 

matching color images with color images and matching color images with NIR images. 

 


