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Abstract. An elementary function that is now commonly referred to Gabor 
function, Gabor filter and Gabor wavelet was derived from uncertainty relation 
for information by Gabor to overcome the representation limit of Fourier 
analysis. Analyzing a signal by a Gabor filter in terms of convolution or spatial 
filtering, two pieces of information—phase and magnitude—can be obtained. In 
the paper, Gabor filter is considered as a Gabor atom detector. This analysis 
demonstrates that when the k-value defined as 22 / nrni ggk = , where gnr and gni 
are respectively the real and imaginary parts of a Gabor filter gn, is close to one, 
the target phase can be estimated by Gabor phase and the target magnitude can 
be estimated by Gabor magnitude. However, when the k-value decreases, the 
quality of this approximation also decreases. The corresponding error bounds 
are derived.  
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1   Introduction 

To break the representation limit of Hitherto communication theory that describes 
signals either in time domain or Fourier domain, Gabor proposed a method of 
analyzing signals in which time and frequency information can be captured 
simultaneously. This method was especially designed for the signals having finite 
duration and whose frequencies very with time (e.g., sound) [1]. It is constituted by 
three fundamental components, uncertainty relation for information, elementary 
functions that are now generally referred to Gabor functions, Gabor filters and Gabor 
wavelets, and an algorithm for computing decomposition coefficients. The uncertainty 
relation for information said that for any function, the product of its effective width in 
time domain and its effective width in frequency domain is limited by an infimum 

2/1 [1]. Based on the uncertainty relation for information, Gabor discovered that an 
elementary function, 
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where σ controls the resolution of the analysis and µ and w are the positions of the 
function in time and frequency domains, respectively, reaches the theoretical limit. 
Given a signal f, Gabor attempted to decompose f in terms of the elementary functions 



(i.e., ∑≈
j

jj gcf ), where gjs are the elementary functions with different parameters 

and cjs are the corresponding coefficients [1]. This decomposition approach is called 
Gabor expansion. Since the elementary functions are not orthogonal, several 
algorithms were proposed to compute the Gabor expansion coefficients [2]. 
 

1.1 Two-Dimensional Gabor Filters 

Gabor was interested in Gabor expansion for one-dimensional signals, whereas since 
1980, the two-dimensional (2D) versions of the elementary functions (called 2D 
Gabor filters) have been extensively used as convolution filters, which was motivated 
by the research results in biological vision systems. In 1980, Daugman proposed 2D 
Gabor filters for modeling simple receptive fields in striate cortex. He completed 2D 
uncertainty relation for information in 1985 [3] and demonstrated that 2D Gabor 
filters occupy an irreducible volume in a four-dimensional information hyperspace, 
whose axes can be interpretable as 2D visual space, orientation and spatial frequency 
[4]. Even though the properties of 2D Gabor filters (e.g., orientation selectivity and 
trade-off between spatial and frequency resolutions) match the early psychophysical 
and physiological findings, they were finally confirmed for modeling simple receptive 
fields through a series of 2D experiments on simple cells of human beings [4] and cats 
[5-7]. However, not all the current psychophysical and physiological researchers 
agree this model [8].  

Gabor filters have been regarded as an important tool for a variety of image 
processing and pattern recognition problems (e.g., image enhancement [9], 
compression [10], texture analysis [11], edge and line detection [12], biometric 
recognition [13], object detection [14] and segmentation [15]). To maximize systems 
performance in terms of accuracy, researchers used optimization algorithms to tune 
the Gabor parameters [16] and to increase filtering speed, they proposed steerable 
Gabor-type filters [17], simplified Gabor wavelet [18] and recursive Gabor filtering 
scheme [19].  

In addition to applications, researchers have derived a wide range of theoretical 
results from Gabor filters ⎯ Lee extended Gabor filters to Gabor wavelets [20]; 
Okajima indicated that Gabor filters can be derived from mutual information 
maximization [21]; Daugman noticed that Gabor filters are not polar separable in 
spatial domain or in frequency domain but are Cartesian separable in some special 
cases [3] and Yu et al. discovered a skewness property of Gabor wavelets [22]. 

To fit the current research focus, 2D Gabor filters are analyzed. The results given 
in this paper are not difficult to be converted to the one-dimensional case. A 2D 
Gabor filter in spatial domain is defined as 
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where αα sin)(cos)(' 00 yyxxx −+−=  and αα cos)(sin)(' 00 yyxxy −+−−=  [3]. 
There are seven degrees of freedom in 2D Gabor filters: ),( 00 yx  is the center of the 



filter in spatial domain, 2
0

2
00 vu +=ω  is the spatial frequency, )/(tan 00

1 uv−  is the 
relative orientation between the complex wave and the Gaussian function, a and b 
control the shape of the Gaussian function and α  is the orientation of the Gaussian 
function. Fig. 1 shows a Gabor filter. Without loss of generality, in the rest of this 
paper, ),( 00 yx  is set to (0, 0) and α  is also set to 0. To eliminate the influence of the 
power of Gabor filter, a normalized Gabor filter, gggn /=  is commonly used. Its 
spatial filtering outputs, phase and magnitude are    
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where I is a 2D signal; gnr and gni represent the real and imaginary parts of the Gabor 
filter gn. For convenience, gn is used to denote gn(x, y). The same notations are 
employed for other symbols. 
 

 
(a)  

(b) 

Fig. 1 (a) The real part and (b) the imaginary part of a Gabor filter 

1.2 Motivation 

Given a sinusoid, )cos()( cccc xuAxf φ−= , its magnitude, Ac and phase, φc can be 

detected by Fourier analysis, i.e., 22
ccc baA += and )/(tan 1

ccc ba−=φ , where 
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coefficients. In other words, Fourier functions can be served as a detector for sinusoid 
signals. In this paper, Gabor filter is considered as a Gabor atom detector defined as 
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Table 1 lists five sets of parameters, target phases and the corresponding Gabor 
phases. In some cases (e.g., case 2), the phase differences are very significant, 



whereas in other cases, their differences are negligible. Gabor magnitude also suffers 
from the same problem that will be demonstrated in Section 2. The aim of this paper 
is to analyze these differences. These differences are referred to as detection errors. 

The rest of this paper is organized as follows. Section 2 analyzes the detection 
errors. Section 3 reveals a sufficient condition for errorless detection. Section 4 gives 
error bounds for Gabor phase and magnitude. Section 5 offers some concluding 
remarks.  
 
 

Table 1. The differences between target phase and Gabor phase under different parameters 

Case  Parameters of Gabor filter and 
Gabor atom 

Target phase, 
(φ)  (degree) 

Gabor phase, 
),(1 ngZP  

(degree) 

φ−),(1 ngZP  

(degree) A B u0 v0 

1 0.05 0.05 0.1 0 50 50.00 6.83×10-10 
2 0.1 0.05 0.01 0 80  10.10 69.90 
3 0.1 0.05 0.05 0.05 80 79.99 0.01 
4 0.05 0.05 0.02 0.02 45  37.37 7.63 
5 0.03 0.1 0 0.015 45  4.04 40.96 

 

2 Analysis of the Detection Errors 

2.1 Assumptions and Notations 

For clear presentation, a set of notations and assumptions is essential. Gabor filters are 
functions in L2 space, i.e., ∫ ∫ ∞<× dxdygg nn

* , where * represents a complex 

conjugate and the signals considered in this paper are assumed to be real-valued 
functions in L2 space. Their norms and inner product are respectively defined as 

∫ ∫ ×= dxdyggg nnn
* , ∫ ∫ ×= dxdyIII *  and ∫ ∫ ×>=< dxdyIgIg nn

*, , 

where I is a signal. This inner product is in fact a continuous version of spatial 
filtering. Since I is a real-valued function in L2 space, ∫ ∫ ×>=< IdxdygIg nn , . 

Using these notations, ><= IgM n ,1  and ),arg(1 ><= IgP n . Convolution of I and 
gn at the point (0, 0) is equivalent to >< ngI ,  and >< −− Ig vun ,),( 00

, where  ),( 00 vung −−  

is a Gabor filter with central frequencies at ou−  and 0v− . Since both convolution and 
spatial filtering can be represented by the inner product, it is used as a basic operator 
in this paper.  
 



2.2 Information Mix-up 

Using Gabor atom as a target function, this subsection shows that different 
information is mixed up in Gabor phase and magnitude. Using compound angle 
formulas, the target signal in Eq. 5 can be rewritten as  
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Eq. 6 can be simplified as ))sin()(cos( ninrZ ggAZ φφ += . Let rnrnr vgg =  and 

inini vgg = , where vr and vi are two unit vectors in L2 space. Therefore,  
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The inner product of gn and Z is  
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The property that gr and gi are orthogonal is applied to Eq. 10. Using Eqs. 3 and 4, we 
can obtain the Gabor phase and magnitude of Z,  
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Eqs. 12 and 13 clearly uncover that the phase and magnitude of the target signal and 
the norms of gnr and gni are mixed up in the Gabor output.   

3 A Sufficient Condition for Errorless Detection 

Eqs. 12 and 13 not only explain the detection errors but also imply that when 
ninr gg = , 1P  is equal to φ and 2/1 ZAM = . In other words, when ninr gg = , 

current Gabor filtering scheme can perform errorless phase and magnitude detection. 



Although Table 1 demonstrates that ninr gg ≠  in general, it is interesting to know 

under what condition nrg  is equal to nig . Let us consider 22
ir gg − . 
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Eqs. 16 and 17 apply compound angle formulas; Eq. 19 uses the property that 

∫ = 0)( dxxf  if f(x) is an odd function and Eq. 20 utilizes the 

formula, ∫ ⎟⎟
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compute 22
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Combining Eqs. 21 and 24, the equality, 
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is obtained. Eq. 25 pinpoints that 022
>− ninr gg  for any 0>a , 0>b , 

ℜ∈0u and ℜ∈0v  but 0lim 22

/0

=−
∞→ ninrau

gg  and 0lim 22

/0
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∞→ ninrbv

gg . For any 

fixed 0u  and 0v , 0lim 22

0,0
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→→ ninrba
gg . In this case, Gabor filter becomes a pair 

of Fourier functions.  
 

4. Error Bounds for Gabor Phase and Magnitude 

In addition to the sufficient condition for errorless detection, Eq. 12 also implies that 

if k-value defined as 2

2
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k =  is close to 1, 1P  and M1 can be considered as 

approximations of φ and AZ/2, respectively. To estimate the quality of these 
approximations, their error bounds are needed.  

Let us consider the error bound for phase first. Given a Gabor filter, k is fixed. 1P  
depends on both φ and k. If φ is regarded as an independent variable,  φ−1P  is 

bounded by φ
φ

−1max P . Since φ−1P  is non-differentiable at the point, φ=1P , two 

cases, φ>1P  and φ<1P  are considered separately. For φ>1P , 
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Eq. 26 uses ))tan((tan 1

1 φkP −=  from Eq. 12. Simplifying 
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Since 2222 ))(cos)1(( φkk −+  and )1( 2kk −  are always positive, the sign of 
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For the case φ<1P , repeating the previous derivation, 
k
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Combining Eqs. 32 and 33, the error bound, 
 

)(tan)1(tan 11
1 k

k
P −− −≤−φ  ,       (34) 

 
is finally derived. Although in the derivation, k is assumed not equal to 1, this bound 
is also true for k=1. When k=1, φ=1P  according to Section 2. Thus, 01 =−φP and 
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of the signal magnitude, Az. Using 22
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is obtained. The error bounds given in this section show that when k is close to 1, the 
current Gabor phase and magnitude can be considered as approximations of the target 
information. In other words, these bounds uncover the meanings of Gabor features, 
phase and magnitude. They are approximated phase and magnitude of the 
corresponding Gabor atom in signals.  

5  Conclusion 

Using Gabor atom as a target signal, this paper uncovers the problem of 
information mix-up in the current Gabor phase and magnitude that causes 
detection errors. If a sufficient condition that k-value is equal to 1 is fulfilled, 
the corresponding Gabor filter can achieve errorless detection. When it is less 
than 1, the current Gabor phase and magnitude can be regarded as 
approximations of the target information and the quality of these 
approximations is controlled by k-value. This paper also points out that the Gabor 
features commonly employed in pattern recognition systems are approximated phase 
and magnitude of the corresponding Gabor atom in signals.  
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