
Category Hierarchy Maintenance: A Data-Driven Approach

Quan Yuan†, Gao Cong†, Aixin Sun†, Chin-Yew Lin‡, Nadia Magnenat-Thalmann†
†School of Computer Engineering, Nanyang Technological University, Singapore

{qyuan1@e., gaocong@, axsun@, nadiathalmann@}ntu.edu.sg
‡Microsoft Research Asia, Beijing, China

cyl@microsoft.com

ABSTRACT
Category hierarchies often evolve at a much slower pace than the
documents reside in. With newly available documents kept adding
into a hierarchy, new topics emerge and documents within the same
category become less topically cohesive. In this paper, we pro-
pose a novel automatic approach to modifying a given category
hierarchy by redistributing its documents into more topically cohe-
sive categories. The modification is achieved with three operations
(namely, sprout, merge, and assign) with reference to an auxiliary
hierarchy for additional semantic information; the auxiliary hierar-
chy covers a similar set of topics as the hierarchy to be modified.
Our user study shows that the modified category hierarchy is se-
mantically meaningful. As an extrinsic evaluation, we conduct ex-
periments on document classification using real data from Yahoo!
Answers and AnswerBag hierarchies, and compare the classifica-
tion accuracies obtained on the original and the modified hierar-
chies. Our experiments show that the proposed method achieves
much larger classification accuracy improvement compared with
several baseline methods for hierarchy modification.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Filtering

Keywords
Category Hierarchy, Hierarchy Maintenance, Classification

1. INTRODUCTION
With the exponential growth of textual information accessible,

category hierarchy becomes one of the most widely-adopted and
effective solutions in organizing large volume of documents. Hi-
erarchy provides an organization of data by different levels of ab-
straction, in which each node (or category) represents a topic that is
shared by the data in it. The connection between two nodes denotes
supertype-subtype relation. Examples include Web directories pro-
vided by Yahoo! and Open Directory Project (ODP), hierarchies
for community-based question-answering services by Yahoo! An-
swers (YA) and AnswerBag (AB), product hierarchies by online
retailers like Amazon and eBay, as well as the hierarchies for news

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$15.00.

browsing at many news portal websites. Figure 1 shows a small
portion of Yahoo! Answers hierarchy. Questions in the same cate-
gory are usually relevant to the same topic.

Hierarchy enables not only easy document browsing, but also
searching of the documents within user defined categories or sub-
trees of categories. Additionally, hierarchy information can be uti-
lized to enhance retrieval models to improve the search accuracy [4].
On the other hand, users’ information needs can only be satisfied
with the documents accessible through the hierarchy (but not the
category hierarchy itself). That is, the usefulness of a hierarchy
heavily relies on the effectiveness of the hierarchy in properly or-
ganizing the existing data, and more importantly accommodating
the newly available data into the hierarchy. Given the fast growth
of text data, continuously accommodating large volume of newly
available text data into a hierarchy is nontrivial. Automatic text
classification techniques are often employed for efficient catego-
rization of newly available documents into category hierarchies.
However, hierarchy often evolves at a much slower pace than its
documents. Two major problems often arise after adding many
documents into a hierarchy after some time.

• Structure Irrelevance. A category hierarchy may well reflect
the topical distribution of its data at the time of construction.
However, as new topics always emerge from the newly com-
ing documents, there is no proper category in the hierarchy to
accommodate these new documents, leading to putting these
documents in less relevant categories. As the result, some
categories contain less topically cohesive documents. More-
over, some categories become less discriminative with re-
spect to the current data distribution. One example is the two
categories Printers and Scanners in YA, for there emerged
many questions about multi-functional devices which are re-
lated to both printers and scanners, leading to ambiguity be-
tween these two categories.

• Semantics Irrelevance. Semantics may change over time which
calls for a better organization of the documents [15]. For in-
stance, when creating the hierarchy, experts are more likely
to put category Petroleum under Geography. However, after
the disaster of BP Gulf Oil Spill, a lot of news articles in cat-
egory Petroleum are about the responsibility of the Obama
Administration. These documents have stronger connection
to category Politics than Geography. It is therefore more rea-
sonable to put these documents under Politics for better doc-
ument organization.

These two problems not only hurt user experiences in accessing
information through the hierarchy, but also result in poorer clas-
sification accuracy for the classifiers categorizing newly available
documents because of the less topically cohesive categories [13].

Yahoo!

Answers Root

Health SportsTravel

Dental Golf TennisAustralia

Sydney...

...

Figure 1: Portion of Yahoo! Answers Hierarchy

Consequently, the poorer classification accuracy further hurts user
experience in browsing and searching documents through the hi-
erarchy. This calls for category hierarchy maintenance, a task to
modify the hierarchy to make it better reflect the topics of its doc-
uments, which in turn would improve the classification accuracy.
Although a category hierarchy is relatively stable, many websites
have modified or adjusted their hierarchies in the past. In May
2007, Yahoo! Answers added a new category Environment into her
hierarchy, and added several categories like Facebook and Google
under Internet later. By comparison, eBay adjusted her hierarchy
more frequently, because there always emerge new types of items,
like tablets and eReaders.

Hierarchy modification is nontrivial. Manual modification of
category hierarchy is a tedious and difficult task, because it is hard
to detect the semantic changes as well as the newly emerged topics.
This motivates the data-driven automatic modification of a given
hierarchy to cope with semantic changes and newly emerged topics.
This is a challenging task because of at least two reasons, among
others. First, the resultant modified category hierarchy (hereafter
called modified hierarchy for short) should largely retain the se-
mantics of the existing hierarchy and keep its category labels se-
mantically meaningful. Second, the categories in the modified hi-
erarchy shall demonstrate much higher topical cohesiveness, which
in turn enables better classification accuracy in putting new docu-
ments into the modified hierarchy.

To the best of our knowledge, very few work has addressed the
hierarchy modification problem (see Section 2). Tang et al. propose
a novel approach to modifying the relations between categories
aiming to improve the classification accuracy [15]. However, their
proposed method does not change the leaf categories of the given
hierarchy, and thus cannot solve the aforementioned problems. For
example, the method may move the leaf category Petroleum to be
child category of Politics. However, it is more reasonable to par-
tition the documents in Petroleum into two categories: one being
the child category of Geography, and the other child category of
Politics. The method [15] fails to do so since it is unable to detect
the newly emerged hidden topic "Petroleum politics".

In this paper, we propose a data-driven approach to modify a
given hierarchy (also called as the original hierarchy) with ref-
erence to an auxiliary hierarchy using three operations (namely,
sprout, merge, and assign). An auxiliary hierarchy is a category
hierarchy that covers a similar set of topics as does the given hier-
archy (e.g., the Yahoo! hierarchy and ODP can be used as auxiliary
hierarchy to each other). Similar to the concept of bisociation [8],
our approach discovers finer and more elaborate categories (also
known as hidden topics) by projecting the documents in the given
hierarchy to the auxiliary hierarchy. This operation, similar to a
cross-product operation between the categories from the given hi-
erarchy and the categories from the auxiliary hierarchy, is named
sprout 1. The similar hidden topics are then merged to form new

1We would like to thank an anonymous reviewer for suggesting the connection with
bisociation [8] and the name sprout

categories in the modified hierarchy. The assign operation rebuilds
the parent-child relations in the modified hierarchy. The category
labels in the modified hierarchy are either borrowed from or gen-
erated based on both the original and the auxiliary hierarchies. We
emphasize that the reuse of category labels from original and aux-
iliary hierarchies largely ensures semantically meaningful category
labels in the modified hierarchy. When such an auxiliary hierar-
chy is unavailable, the given hierarchy can be used as an auxiliary
hierarchy. Because of the three operations (i.e., sprout, merged,
and assign), we name our approach the SMA approach. The main
contributions are summarized as follows.

1) We propose a novel data-driven approach SMA to automati-
cally modify a category hierarchy making it better reflect the topics
of its documents. The proposed approach exploits the semantics of
the given hierarchy and an auxiliary hierarchy, to guide the modifi-
cation of the given hierarchy.

2) We evaluate the proposed approach using data from three real-
world hierarchies, Yahoo! Answers, Answerbag, and ODP. The
user study shows that the modified hierarchy fits with the data bet-
ter than the original one does. As we argue that the categories in
the modified hierarchy are more topically cohesive compared to
the original hierarchy, we employ text classification as an extrin-
sic evaluation. Our experimental results show that the classifiers
trained on the modified hierarchy achieve much higher classifica-
tion accuracy (measured by both macro-F1 and micro-F1), than the
classifier built on the original hierarchy, or the classifiers modeled
on the hierarchies generated by three baseline methods, including
the state-of-the-art method in [15] and the hierarchy generation
method in [2].

The rest of this paper is organized as follows. Section 2 surveys
the related work. We describe the research problem and overview
the proposed approach in Section 3. The three operations are de-
tailed in Section 4. The experimental evaluation and discussion of
the results are presented in Section 5. Finally, we conclude this
paper in Section 6.

2. RELATED WORK
Hierarchy Generation. Hierarchy generation focuses on extract-
ing a hierarchical structure from a set of categories, each containing
a set of documents. The generation process can be either fully au-
tomatic [2, 5, 10] or semi-automatic [1, 7, 20]. The semi-automatic
approaches involve interaction with domain experts in the hierarchy
generation process. In the following, we review the fully automatic
approaches in more detail.

Aggarwal et al. use the category labels of documents to super-
vise hierarchy generation [2]. They first calculate the centroids of
all categories and use them as the initial seeds. Similar categories
are merged and clusters with few documents are discarded. The
process is iterated to build the hierarchy. User study is employed to
evaluate the quality of the generated hierarchy.

Punera et al. utilizes a divisive hierarchical clustering approach,
which first splits the given set of categories into two sets of cate-
gories, and each such set is partitioned recursively until it contains
only one category [10].

An algorithm for generating hierarchy for short text is proposed
by Chuang et al. [5]. They first create a binary-tree hierarchy by
hierarchical agglomerative clustering, and then construct a multi-
way-tree hierarchy from the binary-tree hierarchy. They use both
classification measurement and user evaluation to evaluate the gen-
erated hierarchy.

Different from hierarchy generation which assumes a set of cat-
egories as input, our hierarchy modification method takes a hierar-

Split, Merge, AssignH’
n

Hc Ha

HnRelabel

Initi
aliz
e

Figure 2: Overview of SMA

chy as the input. Hierarchy generation does not change the given
categories hence it cannot solve the structure irrelevance problem.

Hierarchy Modification. To the best of our knowledge, [15] is the
only work on adjusting a hierarchy to improve the classification ac-
curacy. The method introduces three operations. The promote op-
eration lifts a category to upper level; the merge operation generates
a new parent for a category and its most similar sibling; the demote
operation either demotes a category as a child of its most similar
sibling, or makes the sibling a child of the category. For each cat-
egory in the given hierarchy, promote operation is tested, followed
by merge and demote operations, in a top-down manner. The op-
eration comes into effect if it can improve the classification accu-
racy. The approach iterates the process until no improvement can
be observed or some criterion is met. In experiments, this method
outperforms clustering-based hierarchy generation method in terms
of classification accuracy. However, this method does not change
the leaf categories, leaving the topically incohesive leaf categories
untouched.

Discussion. With the existing work on either hierarchy generation
or hierarchy modification, the leaf categories in the modified hierar-
chy (i.e., either generated or modified) remain unchanged. Clearly,
without changing leaf categories, the topical incohesiveness among
documents in the same leaf category remains unaddressed. Conse-
quently, the likely poorer classification accuracy for these topically
incohesive categories results in poorer document organization in
the hierarchy. In this paper, we therefore propose an automatic ap-
proach to modify a given hierarchy where the leaf categories could
be split or merged so as to better reflect the topics of the documents
in the hierarchy.

3. SMA APPROACH OVERVIEW
We observe that each category in a hierarchy may contain sev-

eral "hidden topics", each of which is topically cohesive, e.g., cat-
egory Computer contains hidden topics like Internet Programming,
Operating Systems, etc. With more documents adding to a cate-
gory hierarchy, new "hidden topics" emerge within a single cate-
gory leading to topical incohesiveness among its documents (see
Section 1). Our proposed approach, therefore, aims to find the hid-
den topics within each category and then sprout categories based
on its hidden topics, merge similar hidden topics to form new cate-
gories, and then assign the parent-child relation among categories.
We name our approach SMA after its three major operations.

The key challenges in the approach include: (i) How to detect
the "hidden topics" at the appropriate granularity? (ii) How to eval-
uate the similarity between "hidden topics"? and (iii) How to as-
sign the parent-child relation between the unmodified and modified
categories? Further, recall from Section 1, the modified hierarchy
has to largely retain the semantics of the existing hierarchy, with
meaningful category labels and topically cohesive categories. In
the following, we give a high-level overview of the SMA approach
and then detail the three major operations in the next Section.

The framework of our SMA algorithm is illustrated in both Fig-
ure 2 and Algorithm 1, where Hc is the category hierarchy to be
modified, Hn is the modified hierarchy, H ′n is the intermediate hi-

Algorithm 1: SMA algorithm for hierarchy modification
Input: Hc: category hierarchy to be modified

Ha: auxiliary hierarchy
λ : minimum coverage ratio
θ : maximum loss ratio

Output: Hn: modified category hierarchy

H ′n ←Hc;1
h← number of levels ofHc;2
foreach Level ℓ from 2 to h ofH ′n do3

foreach Category Ci ofH ′n on level ℓ do4
ΦCi ← ProjectedCategories(Ci,Ha, λ , θ);5
Sprout(Ci, ΦCi ,H ′n,Ha);6

nℓ ← number of categories on level ℓ ofHc;7
Merge(ℓ, nℓ,H ′n);8
Assign(ℓ,H ′n);9

Hn←Relabel(Hc,Ha,H ′n);10
returnHn11

erarchy during the modification process, and Ha is the auxiliary
hierarchy.

Auxiliary Hierarchy. Briefly introduced in Section 1, an auxiliary
hierarchyHa is a hierarchy covering similar topics as the given hi-
erarchy Hc. For example, Yahoo! hierarchy and ODP hierarchy
can be auxiliary hierarchy to each other. Similarly, Yahoo! An-
swers and AnswerBag can be auxiliary hierarchy to each other.

The auxiliary hierarchyHa plays an essential role in finding hid-
den topics. Note that the hidden topics are not readily present in
the auxiliary hierarchy, and our approach does not simply use the
structure of auxiliary hierarchy as part of the modified hierarchy.
Instead, they contain semantics from both the original hierarchy
and the auxiliary hierarchy. We use the following example to il-
lustrate. Suppose that the original hierarchy has two categories,
Action movie and Comedy movie, and the auxiliary hierarchy con-
tains two categories America and Asia. Our approach will find that
Action movie has two hidden topics, namely American action movie
and Asian active movie; Comedy movie also has two hidden topics,
namely American comedy movie and Asian comedy movie.

The auxiliary hierarchy also plays an important role in guiding
the merge operation, which is to merge similar hidden topics to
generate the categories of the modified hierarchy. Continue with
the earlier example, after merging the generated hidden topics, we
may get new categories–American movie and Asian movie (if "ac-
tion vs. comedy" is evaluated to be less discriminative compared
with "American vs. Asian"). The semantics of the hierarchy to
be modified, together with the semantics of the auxiliary hierarchy,
will be exploited to define the similarity between hidden topics.

Validated in our experiments (Section 5), our approach is equally
applicable when the original hierarchy Hc is used as the auxiliary
hierarchy to itself.

Algorithm Overview. Shown in Figure 2 and Algorithm 1, H ′n
is first initialized to Hc (line 1). In a top-down manner, the SMA
algorithm modifies the hierarchy level by level. Note that the root
category is the only category at level 1. Starting from level 2, for
each category Ci in this level, the documents contained in Ci is pro-
jected to the auxiliary hierarchy Ha. A set of categories from Ha

each of which contains a reasonable number of documents origi-
nally from Ci is identified to represent Ci’s hidden topics (line 5).
The two parameters, minimum coverage ratio λ and maximum loss
ratio θ , adjust the number of hidden topics. New finer categories

are then sprouted from Ci according to the hidden topics and the
documents in category Ci are assigned to these finer categories (or
hidden topics) (line 6). Given the expected number of categories
nℓ on level ℓ (line 7), the merge operation forms nℓ number of new
categories on level ℓ of the intermediate hierarchy H ′n (line 8). If
the current level is not the lowest level in the hierarchy, the parent-
child relations between the modified categories and the unmodified
categories on the next level are assigned (line 9). The last step in
the SMA algorithm is to generate category labels with reference to
both the original and auxiliary hierarchies (line 10).

4. SPROUT, MERGE, AND ASSIGN
We detail the three operations to address the challenges in the

SMA framework (i.e., to identify hidden topics, evaluate the simi-
larity between hidden topics, and assign the parent-child relation).

4.1 Sprout Operation
The sprout operation first discovers the hidden topics for the doc-

uments in a category Ci and then sprouts the category. Without loss
of generalization, a leaf category is represented by all documents
belonging to the category; a non-leaf category is represented by all
documents belonging to any of its descendent categories.

4.1.1 Discovery of Hidden Topics
Ideally, for a category we find a set of its hidden topics, which are

comprehensive and cohesive, and have no overlap. This is however
a challenging task. We proceed to give an overview of the proposed
method. Given a category Ci in the intermediate hierarchyH ′n dur-
ing the modification process (see Algorithm 1), we assign all its
documents into the categories of the auxiliary hierarchy Ha, and
get a set of candidate categories from Ha in a tree-structure. Each
candidate category contains a number of documents from Ci. Then,
with the consideration of both cohesion and separation, we select a
set of categories from the tree as hidden topics. The selection pro-
cess is modeled as an optimization problem. We now elaborate the
details.

Document Projection. To assign documents from Ci to Ha, we
represent a document by its word feature vector, and a category
in Ha by its centroid vector. Based on cosine similarity between
the document and the centroids, we recursively assign each docu-
ment d ∈ Ci to Ha from its root to a leaf category along a single
path of categories. If a good number of documents from Ci are as-
signed to a category Ca in Ha, then the topic of Ca is relevant to
Ci, and the semantics of Ca can be used to describe a hidden topic
of Ci. Thus, multiple categories in Ca can be identified to describe
all hidden topics of Ci. For example, large number of documents
from category Programming assigned into two categories Security
and Network in an auxiliary hierarchy, implies that Programming
has two hidden topics: Network Programming and Security Pro-
gramming. We have also tried to build a classifier on Ha to assign
documents from Ci to Ha using Naive Bayes and support vector
machine, respectively, and the set of generated hidden topics is al-
most the same.

The process of assigning documents from a category Ci inH ′n to
categories in Ha is called projection. We denote the set of docu-
ments projected from category Ci to category Ca by π(Ci → Ca). If
Ca is a leaf category, then π(Ci → Ca) denotes the set of documents
from Ci that are projected into Ca; if Ca is a non-leaf category, then
π(Ci → Ca) denotes the set of documents projected into any of the
descendent leaf categories of Ca inHa.

Candidate Topic Tree. Based on the projection, we select cate-
gories from Ha to represent the hidden topics of Ci. A selected

category can be either a leaf category or a non-leaf category. Be-
fore describing the selection process, we introduce the notions of
major category and minor category. Let λ denote the minimum
coverage ratio parameter.

Definition 1 (Major Category). A category Ca from Ha is a
major category for category Ci if |π(Ci → Ca)|/|Ci| ≥ λ .

Definition 2 (Minor Category). A category Ca from Ha is a
minor category for category Ci if |π(Ci → Ca)|/|Ci| < λ .

C0

C2C1

C3 C4

C5 C6 C730% 10% 10%

40% 60%

50% 10%

C0

C2C1

C3

1. Project documents

from Ci to Ha
2. Find candidate topic tree A possible tree-cut

{C1, C2}

Another possible

tree-cut {C
1 , C

3 }
{C1, C3}

3. get tree-cut containing

only leaf-categories

Figure 3: Generate candidate topic tree for Ci usingHa

For example, suppose λ = 15%. As shown in Figure 3, category
Ci is projected to the categories inHa. In the left tree, in which each
number besides a node represents the percentage of documents of
Ci projected to the node, the nodes in dark color are major cate-
gories while the others are minor categories.

Naturally, only the major categories are considered candidate
categories to represent hidden topics of Ci because a good num-
ber of documents in Ci are projected into them. However, not all
major categories need to be selected because of two reasons. First,
let Cp be the parent of a major category Ca. By definition, the parent
of a major category is also a major category. Selecting both Ca and
Cp would lead to semantic overlap. Second, assume all Cp’s other
child categories are minor categories, but altogether those minor
categories contain a large number of documents. Then selecting Ca

but not Cp would lead to a significant loss of documents from Ci

(hence semantic loss). We therefore define the notion of loss ratio.

Definition 3 (Loss Ratio). The loss ratio of a leaf category is
defined as 0. For a non-leaf category Ca, let Cµ

a be the set of minor
categories among Ca’s child categories. The loss ratio of Ca with
respect to Ci, the category being projected, is the ratio between
the projected documents in all its child minor categories and Ca’s

projected documents, i.e.,
∑

C′∈Cµ
a
|π(Ci→C′)|

|π(Ci→Ca)| .

We set a threshold maximum loss ratio θ . After projecting doc-
uments from Ci to categories in Ha, we only keep the major cate-
gories whose parent’s loss ratio is smaller than θ . Note that, if a
non-leaf category is not selected in the above process, the subtree
rooted at this category is not selected. After the selection, we obtain
a sub-hierarchy fromHa containing only eligible major categories,
which is called candidate topic tree for Ci, denoted by TCi .

For example, suppose θ = 30%. The candidate topic tree for Ci

is shown on the right hand side of Figure 3. Although node C5 is
a major category, it is not part of the candidate topic tree since the
loss ratio ((10%+10%)/50% = 40%) of its parent node C3 is larger
than θ .

Hidden Topic Selection. We next present how to choose a set of
nodes from TCi to represent hidden topics of Ci. Ideally, we expect
the hidden topics to be comprehensive but not overlap with each
other. Hence, we use tree-cut to define the selection [16].

Definition 4 (Tree-Cut). A tree-cut is a partition of a tree. It
is a list of nodes in the tree, and each node represents a set of all

leaf nodes in a subtree rooted by the node. The sets in a tree-cut
exhaustively cover all leaf nodes of the tree, and they are mutually
disjoint.

There exist many possible tree-cuts for TCi to generate hidden
topics. Two example tree cuts for the candidate topic tree in Fig-
ure 3 are {C1,C2} and {C1,C3}. Among all possible tree-cuts, we aim
to choose the tree-cut such that each resultant hidden topic (cate-
gory) is cohesive and well separated from other categories in the
tree-cut. In the following, we prove that the tree-cut containing
only leaf nodes of the candidate topic tree satisfies this require-
ment. Note that a leaf node in TCi is not necessary a leaf category
in Ha. For example, in Figure 3, C3 is leaf node of the candidate
topic tree, but not a leaf category in the auxiliary hierarchy.

We proceed to show the proof. We first define the Sum of Square
Error (SSE) of cohesion for a category Ca.

SSE(Ca) =
∑
d∈Ca

(d − ca)2,

where d is a document and ca is the centroid of category Ca.
Given a set of categories {Ca} (1 ≤ a ≤ k), the Total-SSE and

Total Sum of Square Between (Total-SSB), denoted by εE and εB

respectively, are εE =
∑k

a=1 SSE(Ca) and εB =
∑k

a=1 |Ca|(c − ca)2,
where c is the centroid of documents in all categories {Ca}. It is
verified that, given a set of documents, the sum of εE and εB is a
constant value [14]: εE+εB =

∑k
a=1
∑

d∈Ca (d−c)2. Thus, maximizing
separation is equivalent to minimizing cohesion error. We therefore
formulate the problem of selecting categories from TCi to represent
hidden topics for category Ci as following:

ΦCi = arg
S

min
∑
Ca∈S

SSE(Ca), where S is a tree-cut on TCi (1)

This problem can be reduced to the maximum flow problem by
viewing TCi as a flow network. Thus, it can be solved directly by
Ford-Fulkerson method [6]. However, its complexity is relatively
high. Note that we need to solve the optimization problem for every
category in the original hierarchy, and thus an efficient algorithm is
essential.

Lemma 1: The SSE of a category is not smaller than the Total-SSE
of its child categories.
Proof: see Appendix A.

Lemma 1 enables us to use an efficient method to solve Eq.1
as follows. According to Lemma 1, specializing a category by its
child categories can reduce Total-SSE. That is, among all possible
tree-cuts in TCi , the cut that contains only leaf categories has the
minimum value of Total-SSE.

In summary, for a category Ci in H ′n, we build a candidate topic
tree TCi and the leaf nodes of TCi are used to represent the hidden
topics of Ci. The pseudocode is given in Procedure 2 Projected-
Categories. As discussed, according to Lemma 1, we only need
the leaf nodes of the candidate topic tree TCi as the result. Instead
of explicitly building TCi and then finding TCi ’s tree cut containing
only leaf nodes, we find TCi ’s leaf nodes directly in our procedure.
More specifically, we start from the root category of Ha in a top-
down manner (the root node is a major category by definition as its
coverage ratio is 1). Each time we get a unprocessed categories Ca

from the list of projected categories ΦCi [], and check its child cate-
gories (lines 3-4). The major categories among the child categories
are put into a major category list (lines 6-8) for further testing on
loss ratio. If the loss ratio of Ca is smaller than maximum loss ratio
θ , then Ca is replaced by its child major categories (lines 9-11); oth-
erwise, Ca is selected as a candidate category (line 13). We iterate
the process until all major categories are processed (line 14).

Procedure ProjectedCategories
Input: Ci: the category to be sprouted

Ha: the auxiliary hierarchy
λ : minimum coverage ratio
θ : maximum loss ratio

Result: ΦCi []: the list of projected categories for Ci

ΦCi []← {root category ofHa};1
repeat2

Ca ← ΦCi [].getNextUnprocessedCategory();3
C_List[]← child categories of Ca;4
M_List[]← {};5
foreach Category C of C_List[] do6

if |π(Ci→C)|
|Ci | ≥ λ then7

M_List[].add(C);8

if 1 − ΣC∈M_List[] |π(Ci→C)|
|π(Ci→Ca)| < θ then9

ΦCi [].add(M_List[]);10
ΦCi [].remove(Ca);11

else12
mark Ca as processed13

until No more unprocessed category in ΦCi []14
return ΦCi []15

4.1.2 Sprout Category
For a category Ci ofH ′n, we sprout it based on the projected cate-

gories ΦCi returned by Procedure ProjectedCategories. Recall that
each of the projected category Ca ∈ ΦCi represents a hidden topic of
Ci and contains a good number of documents projected from Ci, i.e.,
π(Ci → Ca). We sprout Ci with |ΦCi | number of categories. How-
ever, not all documents from Ci are contained in all these newly
sprouted categories, i.e.,

∑
Ca∈ΦCi

|π(Ci → Ca)| ≤ |Ci|. For those
documents in Ci but not contained in any of the newly sprouted cat-
egories, we assign them to their nearest sprouted categories. As the
result, each document in Ci is now contained in one and only one
sprouted category of Ci.

Example 4.1: Shown in Figure 42, suppose after applying pro-
cedure ProjectedCategories, we find Network is projected to Se-
curity, Protocol, and Cable. According to the three hidden topics,
we sprout Network into three categories Network Security, Network
Protocol, and Network Cable. �

The sprout operation may be reminiscent of the work on hierar-
chy integration, aiming to integrate a category from a source hierar-
chy into similar categories in the target hierarchy, which has a dif-
ferent purpose from our mapping. Most of proposals (e.g., [3, 19])
on hierarchy integration employ a hierarchical classifier built on the
target hierarchy to classify each document in the source hierarchy
into a leaf node of the target hierarchy, which is too fine a granular-
ity to represent hidden topics as in our approach. Frameworks that
can map a category to categories on proper levels in target hierarchy
are proposed (e.g., [17]). However, they do not take the cohesion
and separation between mapping categories into account, which are
essential to find good hidden topics in our approach. Thus, they
cannot be applied to our work.

4.2 Merge Operation
The sprout operation in Section 4.1 generates a set of sprouted

categories, each representing a hidden topic. The merge operation

2For clarity, we recommend viewing all diagrams in this paper from a color copy.

Computer

Network

Security

Protocol

Programming

Security

Programming

Network

Protocol

Modifying

hierarchy

Auxiliary

hierarchy

Network Security

Security Programming

Network Protocol

Protocol Programming

WAN Security WAN Protocol

Computer

... Network Programming

WAN ...

Computer

CableProtocol

...Security Network
Network

Cable

Network

Cable

Computer2
.
S
p
li
t
c
a
te
g
o
ry

3
.
M
e
rg
e
c
a
te
g
o
ry

4. Assign category relation

1. Hidden
topics

Modified hierarchy before relabel

Figure 4: SMA operations by example. The hidden topics and
sprouted categories for a category of the original hierarchy are
in the same color. The Network and Programming categories
have 3 and 2 hidden topics, respectively, leading to 5 sibling
sprouted categories. These 5 categories are merged into 3 cat-
egories and the category WAN is reassigned to 2 of the merged
categories.

aims to combine the newly sprouted categories with similar hidden
topics.

Suppose we are now working on level ℓ of the intermediate mod-
ified hierarchy H ′n and we have a set of sprouted categories orig-
inated from the categories on level ℓ. Our task is to merge some
of these sprouted categories such that the number of resultant cat-
egories on level ℓ is the same as before (i.e., nℓ). Note that the
number of resultant categories can also be specified by users. To
ease the presentation, the modified hierarchy has the same size as
the given hierarchy in our discussion.

During merge, we need to consider an important constraint — we
can only merge categories under the same parent category. Thus,
existing clustering algorithms need to be modified to accommo-
date such a constraint. Another key issue here is how to define the
similarity between two sprouted categories by considering their se-
mantics enclosed in Hc and Ha. In the following, we first define a
similarity measure and then describe our merge method.

We consider two aspects when defining the similarity for a pair of
sprouted categories C1 and C2 on level ℓ: (i) the distribution of their
documents over categories of Hc and Ha, and (ii) the similarity
between the categories withinHc andHa, respectively.

Let Lc be the set of categories on level ℓ in the original hierarch
Hc, Ls be the set of categories sprouted from Lc, and La be the
set of projected categories in auxiliary hierarchy representing the
hidden topics of the categories in Lc. That is, La =

∪
Ci∈Lc ΦCi .

For a sprouted category Cs ∈ Ls, its document distribution over
Lc is defined to be the ratios of its documents in each of the cate-
gories in Lc. That is, the document distribution of Cs can be mod-
eled as a |Lc|-dimensional vector vcs. The j-th element of vcs is
|Cs∩C j |
|Cs | (i.e., the portion of Cs’s documents also contained in C j),

where C j is the j-th category of Lc. Similarly, we get the data dis-
tribution vector vas for Cs over La based on the ratio of documents
in Cs projected to each of the categories in La. Because vcs and
vas usually have different dimensionality for different sprouted cat-
egory Cs’s, we extend vcs to be |Hc|-dimensional (each category is
one dimension) by filling up zeros for corresponding categories in
Hc but not inLc. Similarly vas is extended to be |Ha|-dimensional.

We use two matrices Mc, Ma to represent the similarity between
categories ofHc andHa, respectively. Mc is a |Hc|- by-|Hc| matrix
and Ma is a |Ha|-by-|Ha| matrix. Each element mi j in a matrix
represents the similarity in the corresponding hierarchy between
a pair of categories Ci and C j, which is defined by Inverted Path

Length [12]: mi j =
1

1+path(Ci,C j)
, where path(Ci,C j) is the length of

path between Ci and C j in the hierarchy.
Considering both document distribution and structural similar-

ity from the two hierarchies, the similarity between two sprouted
categories C1 and C2 on level ℓ ofH ′n is defined as:

Sim(C1,C2) = (vT
c1 ·Mc · vc2) + (vT

a1 ·Ma · va2).

This similarity definition considers both the similarity estimated
based on Hc and the similarity estimated based on Ha. With simi-
larity between two sprouted categories defined, we proceed to detail
the merge operation.

We first explain the notion of sibling sprouted category through
an example. Let Ci1 and Ci2 be the two categories sprouted from
category Ci, and C j1 and C j2 be the two categories sprouted from C j.
If Ci and C j inH ′m are both children of category Cp, then naturally,
all the newly sprouted categories Ci1, Ci2, C j1, C j2 are children of
Cp. These four example categories are known as sibling sprouted
categories. All the five sprouted categories shown in Figure 4 are
sibling sprouted categories.

The merge operation is as follows. We first calculate the sim-
ilarity between sibling sprouted categories on level ℓ. Then, we
pick up the pair of categories with the largest similarity, and merge
them into a category, and recompute its similarities with its sib-
ling sprouted categories. The process iterates until the number of
remaining categories on ℓ equals nℓ, the number of categories on
level ℓ of the original hierarchy Hc. When all the sibling sprouted
categories under the same parent node are merged into a single cat-
egory, we shrink the single category into its parent node. Note that
we cannot merge two sprouted categories on level ℓ if they have
different parent node.

Example 4.2: Recall Example 4.1. We sprout Network into three
categories Network Security, Network Protocol, and Network Ca-
ble. Suppose there is another category Programming on the same
level of Network and sprouted into Security Programming, and Pro-
tocol Programming (see Figure 4). Based on the similarity, Network
Security and Security Programming are merged together (both are
about the Security topic), and Network Protocol and Protocol Pro-
gramming are merged to generate a new category about protocol.

�

4.3 Assign Operation
After modifying categories (by sprout and merge) on level ℓ of

H ′n, the original parent-child relations between the categories on
level ℓ and the categories on next level ℓ+1 do not hold any longer.
Hence we need to reassign the parent-child relation.

Based on the fact that a non-leaf category of a hierarchy sub-
sumes the data of all its descendants, we rebuild the children for
each of the modified categories on ℓ by checking document contain-
ment. If the documents of a category on level ℓ are also contained
in a category on level ℓ+1, then the latter category is assigned to be
the children of the former category. In other words, for each cate-
gory C on ℓ, we calculate the intersection of documents between C
and the categories on ℓ+1. The intersections form new children for
category C. Because one category has only one parent category, if
a category has intersections with more than one category on level ℓ,
the category will be split into multiple categories, each containing
the intersection with one category on level ℓ.

Example 4.3: Recall Example 4.2. Suppose WAN was a child cat-
egory of Network before sprout (see Figure 4). After sprout and
merge, Network no longer exists and WAN lost its parent. We com-
pare the documents of WAN and the two newly formed categories
after merge (i.e., Network Security & Security Programming and

Table 1: Statistics of the three hierarchies
Hierarchy HYA HAB HODP

Number of documents 421,163 148,822 203,448
Number of leaf nodes 75 195 460
Number of non-leaf nodes 40 70 98
Height 4 5 4

Network Protocol & Protocol Programming). If WAN has overlap
with both categories, then WAN have two hidden topics (about se-
curity and protocol). Thus, we divide WAN into two categories and
assign them to different parent nodes, shown in Figure 4. �

4.4 Relabel
Unlike most of previous work, our approach is able to automati-

cally generate readable labels for every modified category. By pro-
jecting documents from H ′n to Ha, we can consider the three hier-
archies H ′n, Hc and Ha, which contain the same set of data. For
every document in H ′n, we trace its labels in Hc and Ha, and use
them together as the label of the document; the semantic of the new
label is the intersection of semantics of its two component labels.
We then aggregate such labels for all documents in a category of
H ′n, and use them as candidate labels for the category. The candi-
date labels for a category are ranked according to the proportion of
documents in their corresponding original categories from Hc and
Ha. In this paper, the top-1 ranked label is chosen.

The labels generated in this way are mostly readable and seman-
tically meaningful, as reflected in our user study (see Section 5.3)
and case study (see Section 5.4). Nevertheless, a manual verifi-
cation of the labels for the newly generated categories can be em-
ployed when the proposed technique is used in real applications.

5. EXPERIMENTS
We designed two sets of experiments. The first set of experi-

ment, similar to that in [15], is to evaluate whether the modified
hierarchy improves the classification accuracy. Discussed in Sec-
tion 1, if a category hierarchy better reflects the topics of its con-
tained documents and each category in the hierarchy is topically
cohesive, then better classification accuracy is expected than that
on a hierarchy with less topically cohesive categories. The second
set of experiments employs a user study to manually evaluate the
semantic quality of the modified hierarchy following the settings
in [2,5]. Finally, we report a case study comparing a part of Yahoo!
Answers hierarchy with its modified hierarchy.

5.1 Data Set
We use data from three real-world hierarchies: Yahoo! Answers,

AnswerBag, Open Directory Project, denoted by HYA, HAB and
HODP, respectively. Since the modified category hierarchy contains
a different set of leaf nodes, the labels for documents given in the
original dataset do not stand in modified hierarchy. Manual anno-
tation of documents in the modified hierarchy is therefore unavoid-
able. To make the annotation manageable, we selected the doc-
uments from two major topics Sports and Computers from these
three hierarchies (because the annotators are familiar with both top-
ics). Nevertheless, the number of documents in the two major top-
ics in the three hierarchies ranges from 148,822 to 421,163, and the
number of categories ranges from 115 to 558. These numbers are
large enough for a valid evaluation. Table 1 reports the statistics on
the three hierarchies.

HYA: Obtained from the Yahoo! Webscope datatset3, HYA con-
tains 421,163 documents (or questions) from Sports and Comput-
ers & Internet categories.
HAB: We collected 148,822 questions from Recreation & Sports

and Computers categories from AnswerBag to form HAB. Cate-
gories with fewer than 100 questions are pruned and all affected
questions are moved to their parent categories.
HODP: The set of 203,448 documents from Sports and Comput-

ers categories are collected4 inHODP. Categories containing fewer
than 15 documents or located on level 5 or deeper are removed in
our experiments.

The preprocessing of the documents in all three hierarchies in-
cludes stopword removal and stemming. Terms occurred no more
than 3 times across the datasets are also removed.

5.2 Evaluation by Classification
The proposed SMA algorithm modifies a category hierarchy to

better reflect the topics of its documents, which in turn should im-
prove the classification performance. Following the experimental
setting in [15], we evaluate the effectiveness of hierarchy modifi-
cation by comparing the classification accuracies obtained by the
same hierarchical classification model applied on the original cate-
gory hierarchy and the modified hierarchy, respectively.

Another three methods for hierarchy modification are employed
as the baselines, namely, Bottom Up Clustering (BUC), Hierarchi-
cal Acclimatization (HA) [15], and Supervised Clustering (SC) [2].
Table 2 gives a summarized comparison of the three baselines with
the proposed SMA, and Section 5.2.1 briefs the baseline methods.

The modified hierarchies by all the methods evaluated in this pa-
per have the same size as the original hierarchy (i.e., same number
of levels, and same number of categories in each level). For each
hierarchy modification method, we evaluate the percentage of clas-
sification accuracy increment obtained by the same classification
model (e.g., Support Vector Machine) on the modified hierarchy
over the original hierarchy. The classification accuracy is mea-
sured by both micro-average F1 (Micro-F1) and macro-averaged F1

(Macro-F1) [18]. The former gives equal weight to every document
while the latter weighs categories equally regardless the number of
documents in each category.

We remark that this is a fair evaluation for all the methods, each
generating a hierarchy with the same size as that of the original
hierarchy, where the same classification method is applied to the
modified hierarchies to evaluate the improvement of each modified
hierarchy over the original one in terms of classification accuracy.

5.2.1 Baseline Methods

Baseline 1: Bottom Up Clustering (BUC). In this method, each
leaf category is represented by the mean vector of its contained doc-
uments. The categories are then clustered in a bottom-up manner
using K-means to form a hierarchy.

Baseline 2: Hierarchical Acclimatization (HA). The HA algo-
rithm is reviewed in Section 2, In simple words, it employs pro-
mote, demote and merge operations to adjust the internal structure,
but leaves the leaf nodes unchanged [15].

Baseline 3: Supervised Clustering (SC). Given a set of docu-
ments with labels, SC first calculates the mean vector of each cat-
egory as the initial centroid and then reassigns the documents to
the categories based on the cosine similarity with their centroids.
Then, similar categories are merged and minor categories are re-
moved. These procedures are repeated, and during each iteration, a
3Available at http://research.yahoo.com/Academic_Relations.
4Available at http://www.dmoz.org/rdf.html.

Table 2: Comparison of baseline methods with SMA
Aspect/Methods BUC HA [15] SC [2] SMA
Utilize original hierarchy × √ × √

Change leaf category × × √ √

Utilize auxiliary hierarchy × × × Optional

constant portion of features with smallest term-frequencies are set
to zero (projected out) [2]. The process stops when the number of
features left is smaller than a pre-defined threshold. This method
cannot generate category labels. We take the most frequent words
in a category to name it.

5.2.2 Experiments on Yahoo! Answers
From the data of HYA, we randomly selected 500 questions as

test data (used for classification evaluation with manual annota-
tions). To evaluate the possible improvement in classification accu-
racy, the same set of test documents are classified on the original (or
unmodified) HYA, and the modified HnYA’s. Two classifiers, multi-
nominal Naive Bayes (NB) and Support Vector Machine (SVM)
classifiers are used as base classifiers for hierarchical classifica-
tion. We build Single Path Hierarchical Classifier (SPH) [9] as it
performs better than other hierarchical classification methods for
question classification according to the evaluation [11]. In the train-
ing phase of SPH, for each internal node of the category tree, SPH
trains a classifier using the documents belonging to its descendent
nodes. In the testing phase, a test document is classified from the
root to a leaf node in the hierarchy along a single path.

SMA Settings. Recall that SMA uses auxiliary hierarchy in the
modification process. We evaluated SMA with three settings, to
modify HYA using HYA, HAB, and HODP as auxiliary hierarchy, re-
spectively. The three settings are denoted by SMAYA|YA, SMAYA|AB,
and SMAYA|ODP, respectively. The first setting is to evaluate the ef-
fectiveness of using the original hierarchy as auxiliary hierarchy,
and the last two are to evaluate the effectiveness of using external
hierarchies.

Parameter Setting. Before evaluating the test documents on the
modified hierarchies, we set the parameters required by SMA for
hierarchy modification. Recall that SMA requires two parame-
ters: minimum coverage ratio λ and maximum loss ratio θ . Usu-
ally parameters are set using a development set or through cross-
validation. In our case, however, there is no ground truth on how
good a modified hierarchy is and manual assessment of every mod-
ified hierarchy for parameter tuning is impractical. We therefore
adopt a bootstrapping like approach described below.

After the test data selected, the remaining data is used for hierar-
chy modification. We split the remaining data of HYA into 3 parts:
P1, P2, P3, and the proportion of their sizes is 12:3:1. Using P1 for
HYA and a given auxiliary hierarchy, we obtain a modified hierar-
chyHnYA. Naturally, all documents in P1 have category labels from
hierarchy HnYA. We then build a classifier using all documents in
P1 and their labels from HnYA. The classifier classifies documents
in P2 and P3. Assume that the classifier gives reasonably good clas-
sification accuracy, then all documents in P2 and P3 have their cate-
gory labels assigned according to HnYA. With these labels, we can
evaluate the classification accuracy of documents in P3 by the clas-
sifier built using P2 on HnYA. Intuitively, if a hierarchy H1 better
organizes documents than another hierarchyH2, then the classifier
trained onH1 is expected to have higher classification accuracy for
P3 than a classifier built onH2. We then select the parameters lead-
ing to the best classification accuracy for P3. In our experiments,
the parameters (i.e., λ and θ) set for SMAYA|YA, SMAYA|AB, and

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

HYA BUC HA SC SMAYA|YA SMAYA|AB SMAYA|ODP

M
ic

ro
F

1

NB
SVM

(a) Micro-F1

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

HYA BUC HA SC SMAYA|YA SMAYA|AB SMAYA|ODP

M
ac

ro
F

1

NB
SVM

(b) Macro-F1

Figure 5: Micro-F1 and Macro-F1 on the modified hierarchies
by three baselines and three SMA settings, and on the original
Yahoo! Answers hierarchy.

SMAYA|ODP are (0.29 and 0.11), (0.17 and 0.17), (0.38 and 0.08),
respectively.

Test Data Annotation. With the chosen parameters, each SMA
setting generated a modified hierarchy using P1 asHYA and its cor-
responding auxiliary hierarchy. The preselected 500 test questions
are used as test data to fairly evaluate the modified hierarchies by
the three SMA settings and the baseline methods. Recall that the
500 questions are not included in the three parts (P1, P2, and P3) for
parameter setting. Because BUC and HA do not change the leaf
categories, the original labels of the 500 questions remain applica-
ble. For SC and SMA, both changing leaf categories, we invited
two annotators to label the 500 questions to their most relevant leaf
categories in the modified hierarchies. We synthesized the results
of the annotators, and assigned the labels for questions. If two an-
notators conflicted about a label, a third person made the final judg-
ment. The dataset and their annotations are available online 5.

Classification Results. Classification accuracy measured by Micro-
F1 using NB and SVM as base classifiers for the six methods (i.e.,
three baselines BUC, HA, SC, and the three SMA settings) on mod-
ified hierarchies is reported in Figure 5(a). For comparison, the
classification accuracy on the original (or unmodified) Yahoo! An-
swers hierarchy is also reported under column named HYA. Fig-
ure 5(b) reports Macro-F1.

As shown in Figures 5(a) and 5(b), all the three settings of SMA
achieve significant improvement over the results obtained on the
original hierarchy. For example, using NB as the base classifier,
SMAYA|YA improves Micro-F1 over the results on the original hier-
archy by 41.0% and improves Macro-F1 by 40.3%. NB achieves
better accuracy than SVM probably because NB was used as the
base classifier for parameter setting. The three baseline modifica-
tion methods only slightly improve the classification accuracy over
the original hierarchy and even deteriorate the accuracy in some
cases. Recall that SC and SMA modify leaf categories while BUC

5http://www.ntu.edu.sg/home/gaocong/hierarchydata.zip

Table 3: Classification accuracy on modifying AnswerBag
Measure/Hierarchy HAB SMAAB|YA Improvement(%)
Macro-F1 (NB) 0.3444 0.5638 63.7%
Macro-F1 (SVM) 0.3691 0.4933 33.6%
Micro-F1 (NB) 0.4671 0.6669 42.8%
Micro-F1 (SVM) 0.4371 0.5697 30.3%

Table 4: Comparison on appropriateness of category labels
Judgement Number of documents
HnYA is better thanHYA 12
HnYA is not as good asHYA 1
Both are equally good 81
Neither is good 6

and HA only modify internal structures of hierarchy without chang-
ing leaf categories. All the methods that change leaf categories out-
perform the methods that keep leaf categories unchanged. Note that
SMAYA|YA significantly outperforms SC. One possible reason could
be that SMAYA|YA utilizes the semantics of the original hierarchy in
hierarchy modification while SC does not.

We observe that the auxiliary hierarchies employed by SMA
have effect on the classification accuracy of the modified hierarchy.
Measured by Macro-F1, SMAYA|YA without using an external hier-
archy slightly outperforms its counterpart SMAYA|AB or SMAYA|ODP,
which uses an external hierarchy; while in terms of Micro-F1, SMAYA|YA

performs worse than do its counterparts.

5.2.3 Experiments on AnswerBag
In this set of experiments, SMA is used to modify the AnswerBag

hierarchy. The main purpose is to evaluate whether SMA remains
effective when the size of the auxiliary hierarchy is smaller than the
one to be modified. Specifically, we useHYA as auxiliary hierarchy
to modifyHAB and evaluate the classification accuracy as we did in
the earlier set of experiments. Note that theHAB has 265 categories
which is more than twice of the 115 categories contained in HYA.
The parameters λ and θ were set as 0.17 and 0.08, respectively,
using the parameter setting approach described earlier. The classi-
fication accuracy is reported in Table 3. Observe that SMAAB|YA im-
proves the classification accuracy (Macro- and Micro-F1) by 30%
to 63%, compared with the result obtained before hierarchy mod-
ification. This demonstrates that the proposed SMA approach is
effective for different hierarchies, even if the size of the auxiliary
hierarchy is smaller than the hierarchy to be modified.

5.3 User Study
A good category hierarchy must be semantically meaningful: (i)

Its category labels should be easy to understand, facilitating data
browsing; and (ii) Its category structure should reflect the topics
of its data. We would like to note that it is challenging to evaluate
these. We evaluate the modified hierarchy by SMAYA|AB through two
types of user study by following the methods [2, 5], respectively.
Through the study, we aim to quantify both the appropriateness of
the category labels and the structure of the modified hierarchy.

Category Labels. Following a similar setting as in [2], we ran-
domly selected 100 questions from the labeled test set originated
from Yahoo! Answers. For each question, we gave the path of the
categories in HYA from the second level category to the leaf cat-
egory, and similarly the category path from HnYA (by SMAYA|AB).
We asked three students to annotate which category path better re-
flects the topic of the question. Which hierarchy a category path
was originated from was not provided to the annotators. Given a
question, each volunteer is asked to rate each path from 1(lowest)

Table 5: Averaged scores ofHYA andHnYA (by SMAYA|AB)
Measure/Hierarchy HYA HnYA

Cohesiveness 5.00 6.00
Isolation 4.00 4.67
Hierarchy 5.00 5.33
Navigation Balance 4.50 4.50
Readability 6.00 5.67

to 5(highest) based on its quality. hen, we select one of the follow-
ing choices based on the averaged ratings (rYA and rnYA for the two
paths, respectively). (1)HnYA is better thanHYA, if rnYA, rYA ∈ [3, 5]
and rnYA > rYA; (2)HnYA is not as good asHYA, if rnYA, rYA ∈ [3, 5];
(3)Both are equally good, if rnYA, rYA ∈ [3, 5] and rnYA = rYA;
(4)Neither is good, if rnYA, rYA ∈ [1, 3). The statistics of the la-
bels are reported in Table 4. The table shows that the number of
questions having better labels inHnYA is larger than that inHYA al-
though for majority of questions, the category paths from the two
hierarchy are equally good. This result also suggests that the gen-
erated labels well reflects the content of categories.

Category Structure. Following the evaluation approaches in [5],
we evaluate the quality of Yahoo! Answers hierarchy and the mod-
ified hierarchy by five measures. Cohesiveness: Judge whether the
instances in each category are semantically similar. Since it is im-
practical to read all questions in a large category, we randomly se-
lect 50 questions from each category for cohesiveness evaluation.
Isolation: Judge whether categories on the same level are discrimi-
native from each other.We also use the 50 randomly selected ques-
tions to represent each category. Hierarchy: Judge whether the
concepts represented by the categories become finer from top to
bottom. Navigation Balance: Judge whether the number of child
categories for each internal category is appropriate. Readability:
Judge whether the concept represented by each category is easy to
understand.

We invited three students to evaluate the two hierarchies, HYA

and HnYA (by SMAYA|AB) and assigned scores ranging from 0 to 7
on each measure. The mean of the scores is reported in Table 5.

The cohesiveness of the modified hierarchy is better than the
original one. A possible reason is that our approach detected the
hidden topics and merged the most similar ones together. The iso-
lation of the modified hierarchy is slightly better. This is probably
because the proposed method takes isolation into consideration. To
find out the reasons that caused the relatively low isolation of the
original hierarchy, we get the list of categories with low scores from
the annotators. As an example, a number of questions that are re-
lated to motor-cycling were put under Other - Auto Racing by their
askers, resulting in low isolation between the two categories. The
modified hierarchy does not deteriorate hierarchy quality, naviga-
tion balance, and readability of the original hierarchy on average.
In summary, the modified hierarchy is of high quality comparable
to the original hierarchy generated by domain experts.

5.4 Case Study
As a case study, we select three categories Software, Internet and

Hardware from Yahoo! Answers as an example to illustrate the dif-
ferences before and after modifying HYA. The modified hierarchy
HnYA is by SMAYA|AB utilizing AnswerBag as auxiliary hierarchy.

The two hierarchies are shown in Figure 6. We make the follow-
ing observations: 1) Different from the original hierarchy, Software
and Internet become three categories – Operating System & Appli-
cation Software, Internet & E-mail and Internet Software. The third
category is formed based on the overlapping part of the original
two categories, which contains questions about instant messaging

Computer & Internet

HardwareSoftware Internet

Laptops &

Notebooks
DesktopsAdd-ons Monitors Printers Scanners

Other -

Hardwares

Computer & Internet

Hardware
Operating System &

Application Software

Internet &

E-mail

Monitors
Computer

troubleshooting
Storages

CPU &

Memory &

Motherboard

Scanners &

Printers

Laptops &

Desktops

Add-ons & Other

Computer

Hardware

Internet

Software

Part of the Yahoo! Answers hierarchy

Part of the modified hierarchy

...

...

Figure 6: Part of Yahoo! Answers hierarchy and its modified
hierarchy.

(IM) and blog software. This demonstrates that the proposed ap-
proach can discover and detach the overlapping hidden topics. 2)
Two pairs of categories of the original hierarchy, (Laptops & Note-
books and Desktops), and (Printers and Scanners), are merged into
two categories in the modified hierarchy, because of the high sim-
ilarity between the categories within each pair. This shows that
categories with high overlap in semantics are merged. 3) For Hard-
ware, some hidden topics are discovered and new categories are
formed, like Storage and CPU & Memory & Motherboard, whose
questions come from Desktops, Add-ons and Other - Hardwares in
the original hierarchy. These newly formed categories are more
isolated from each other.

6. CONCLUSION
Category hierarchy plays a very important role in organizing data

automatically (through classifiers built on the hierarchy) or manu-
ally. However, with newly available documents added into a hi-
erarchy, new topics emerge and documents within the same cate-
gory become less topically cohesive. Thus the hierarchies suffer
from problems of structure irrelevance and semantic irrelevance,
leading to poor classification accuracy of the classifiers developed
for automatically categorizing the newly available documents into
the hierarchy, which in turn leads to poorer document organization.
To address these problems, we propose a novel approach SMA to
modify a hierarchy. SMA comprises three non-trivial operations
(namely, sprout, merge, and assign) to modify a hierarchy. Experi-
mental results demonstrate that SMA is able to generate a modified
hierarchy with better classification accuracy improvement over the
original hierarchy than baseline methods. Additionally, user study
shows that the modified category hierarchy is topically cohesive
and semantically meaningful.

7. ACKNOWLEDGEMENTS
Quan Yuan would like to acknowledge the Ph.D. grant from the

Institute for Media Innovation, Nanyang Technological University,
Singapore. Gao Cong is supported in part by a grant awarded by
Microsoft Research Asia and by a Singapore MOE AcRF Tier 1
Grant (RG16/10).

8. REFERENCES
[1] G. Adami, P. Avesani, and D. Sona. Bootstrapping for hierarchical

document classification. In CIKM, pages 295–302, 2003.
[2] C. C. Aggarwal, S. C. Gates, and P. S. Yu. On the merits of building

categorization systems by supervised clustering. In KDD, pages
352–356, 1999.

[3] R. Agrawal and R. Srikant. On integrating catalogs. In WWW, pages
603–612, 2001.

[4] X. Cao, G. Cong, B. Cui, C. S. Jensen, and Q. Yuan. Approaches to
exploring category information for question retrieval in community
question-answer archives. ACM Trans. Inf. Syst., 30(2):1–38, 2012.

[5] S.-L. Chuang and L.-F. Chien. A practical web-based approach to
generating topic hierarchy for text segments. In CIKM, pages
127–136, 2004.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press and
McGraw-Hill Book Company, 2001.

[7] S. C. Gates, W. Teiken, and K.-S. F. Cheng. Taxonomies by the
numbers: building high-performance taxonomies. In CIKM, pages
568–577, 2005.

[8] A. Koestler. The Act of Creation. Penguin Books, New York, 1964.
[9] D. Koller and M. Sahami. Hierarchically classifying documents

using very few words. In ICML, pages 170–178, 1997.
[10] K. Punera, S. Rajan, and J. Ghosh. Automatically learning document

taxonomies for hierarchical classification. In WWW (Special interest
tracks and posters), pages 1010–1011, 2005.

[11] B. Qu, G. Cong, C. Li, A. Sun, and H. Chen. An evaluation of
classification models for question topic categorization. JASIST,
63(5):889–903, 2012.

[12] G. Siolas and F. d’Alché Buc. Support vector machines based on a
semantic kernel for text categorization. In IJCNN (5), pages
205–209, 2000.

[13] A. Sun, E.-P. Lim, and Y. Liu. What makes categories difficult to
classify?: a study on predicting classification performance for
categories. In CIKM, pages 1891–1894, 2009.

[14] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

[15] L. Tang, J. Zhang, and H. Liu. Acclimatizing taxonomic semantics
for hierarchical content classification from semantics to data-driven
taxonomy. In KDD, pages 384–393, 2006.

[16] N. Tomuro. Tree-cut and a lexicon based on systematic polysemy. In
NAACL, 2001.

[17] W. Wei, G. Cong, X. Li, S.-K. Ng, and G. Li. Integrating community
question and answer archives. In AAAI, 2011.

[18] Y. Yang and X. Liu. A re-examination of text categorization methods.
In SIGIR, pages 42–49, 1999.

[19] D. Zhang and W. S. Lee. Web taxonomy integration through
co-bootstrapping. In SIGIR, pages 410–417, 2004.

[20] L. Zhang, S. Liu, Y. Pan, and L. Yang. Infoanalyzer: a
computer-aided tool for building enterprise taxonomies. In CIKM,
pages 477–483, 2004.

APPENDIX
A. PROOF OF LEMMA 1
Lemma 1: The SSE of a category is not smaller than the Total-SSE
of its child categories.

Proof: Suppose there is a category Cp with k child categories {Ci}ki=1.
For a child category Ci, the Sum of Square Distance (SSD) of its
data to a data point x is: SSD(Ci) =

∑
d∈Ci

(d − x)2. We get the mini-
mum value when x = 1

|Ci |
∑

d∈Ci
d = ci which let d

dx

∑
d∈Ci

(d−x)2 = 0.
Thus, when x is the mean of data in Ci (or ci), the SSD of Ci be-
comes SSE of Ci, and gets its minimum value. One step further, we
have ∑

d∈Ci

(d − ci)2 ≤
∑
d∈Ci

(d − cp)2,

where cp is the mean of data of Cp. This demonstrates that the SSE
of Ci is smaller than the SSD of data of Ci to the overall mean, and
this result leads to

k∑
i=1

∑
d∈Ci

(d − ci)2 ≤
k∑

i=1

∑
d∈Ci

(d − cp)2

This demonstrates that the SSE of a category is not smaller than the
Total-SSE of its child categories.

