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ABSTRACT
In web classification, most researchers assume that the ob-
jects to classify are individual web pages from one or more
web sites. In practice, the assumption is too restrictive since
a web page itself may not always correspond to a concept
instance of some semantic concept (or category) given to the
classification task. In this paper, we want to relax this as-
sumption and allow a concept instance to be represented by
a subgraph of web pages or a set of web pages. We identify
several new issues to be addressed when the assumption is
removed, and formulate the web unit mining problem. We
also propose an iterative web unit mining (iWUM) method
that first finds subgraphs of web pages using some knowledge
about web site structure. From these web subgraphs, web
units are constructed and classified into semantic concepts
(or categories) in an iterative manner. Our experiments us-
ing the WebKB dataset showed that iWUM improves the
overall classification performance and works very well on
the more structured parts of a web site.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.3.7 [Information Storage and Retrieval]:
Digital library—Collection

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
The objective of web classification is to categorize a set

of objects from the Web into some pre-defined categories so
as to support more effective searching and browsing. Cate-
gories are usually defined to accommodate web objects rep-
resenting instances of some semantic concepts. We there-
fore use the terms, “category” and “concept”, interchange-
ably. In previous web classification research, most efforts
are about classifying individual web pages from one or more
web sites into a set of flat categories [3, 5, 19] or categories
organized in some concept hierarchies [13, 6]. They assume
that each concept instance is represented by a single web
page. However, web pages are often created with links be-
tween them and the links provide some means to connect
semantically-related web pages together. For example, a
professor’s home page, say, index.html, may contain links to
web pages describing his research interests, curriculum vi-
tae, education and professional experience etc.. These pages
together represent a professor instance. Unfortunately, such
an observation has rarely been considered by the existing
web classification research.

To address the above issue, we propose the web unit min-
ing problem. Informally, a web unit is defined as a set of web
pages that represent a concept instance. Web unit mining is
to determine the web pages that constitute a web unit and
classify these web units into a set of given concepts. Since
most web sites actually contain web units as concept in-
stances, we believe that web unit mining will greatly benefit
users in both browsing and searching the web.

Web unit mining is different from web page classification
as it consists of both web unit construction and classification
tasks. A straightforward solution, also known as the baseline
method, is to perform web page classification on web pages,
and group pages together to construct web units based on
the classification results. In this method, large number of
web pages will be classified and any mistake made in web
page classification will inevitably cause erroneous web units
to be constructed.

In this paper, we propose the Iterative Web Unit Min-
ing (iWUM) method which allows web unit construction
and web unit classification to be carried out iteratively. Each
iteration selects web units to be combined into larger web
units and re-assigns concept labels to all web units. This
process terminates when there are no further changes to
the constructed web units and their labels. To evaluate the
iWUM method and compare it with the baseline method, we
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Figure 1: An example web unit for course CS100

have developed new precision and recall measures for web
unit mining results. We have also conducted experiments
using the WebKB dataset.

The rest of the paper is organized as follows. The formal
definitions of web unit and web unit mining are given in Sec-
tion 2. Related work is covered in Section 3. In Section 4, we
describe in detail the proposed iWUM and baseline meth-
ods. The proposed web unit mining performance measures
and our experimental results are given in Sections 5 and 6
respectively. Finally, we conclude our paper in Section 7.

2. PROBLEM DEFINITION
Before we define the web unit mining problem, consider

the course web unit example shown in Figure 1.
This web unit consists of 8 pages. The first page is the

course’s (CS100) homepage and the others provide supple-
mentary course information. The homepage represents an
entry point to all information about CS100. We call such a
representative page the key page of the web unit and the
other pages the support pages. Every page in a web unit
contributes a piece of information about a concept instance
(CS100 in the example). Since a web unit has richer and
more complete content than the individual web pages, we
argue that the web unit is a more appropriate granularity
for indexing and organizing web information.

Definition 1. (Web Unit). Given a domain specific
concept, a web unit of the concept is a web page or a set of
web pages from a web site that jointly provides information
about a concept instance. A web unit consists of exactly one
key page and zero or more support pages.

If a web unit consists of a key page only, we call it a one-
page web unit, and multi-page web unit otherwise. A link
connecting any two pages from a multi-page web unit is
known as an intra-unit link. Note that all pages in a web
unit are from the same web site or more generally, a web
domain (see [1] for definition of web site).

Based on the web unit definition, we define the web unit
mining problem.

Definition 2. (Web Unit Mining). Given a collec-
tion of web pages and a set of concepts, the web unit mining
problem is to construct web units from these web pages and
assign them the appropriate concepts.

Web unit mining therefore involves two main tasks: finding
the set of web pages that form each web unit, and classifying
the constructed web units.

3. RELATED WORK
Finding the key page of a web unit is a part of the web unit

mining task. This is highly related to the homepage finding
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Figure 2: Iterative web unit mining (iWUM)

task in TREC-2001 where one aims to find the homepage of
an entity (person, organization, etc.) whose name is used
as a query against a collection of web pages [9]. Query-
dependent features commonly used in the above task include
words from the web pages and words associated with the link
anchors [4, 9]. Nevertheless, it has been shown that the best
result was achieved using query-independent features, based
on URL-type [18, 12]. There are four URL-types defined:
root, subroot, path and file. It is also mentioned that web
pages with file names containing ‘welcome’ and ‘home’ are
likely to be home pages. Key pages in web units are similar
to homepages. However, unlike the homepage finding task,
no queries are used in web unit mining to find key pages
since entity names are not given. We nevertheless utilize
the query-independent features in our proposed web unit
mining methods.

A major task in web unit mining is web unit classification.
In our literature survey, we have noted that the existing web
classification research focuses on either web pages [3, 5, 16]
or web sites [14, 7]. Our web unit classification approach
utilizes techniques from web page classification. Most web
page classification research efforts assume that the text com-
ponents of web pages provide the primary information while
the other non-text components can be used to further im-
prove the classification accuracy [3, 5, 19]. Web page clas-
sification using links between web pages, a kind of non-text
components, has been proposed in [2, 3, 8, 11, 20]. In our
earlier work, we have also shown that using the text body,
title and words associated with the in-link anchors as web
page features could yield promising web page classification
results [16]. In both web page and web site classifications,
the objects (web pages or web sites) to be classified are given.
This assumption does not hold for web unit mining as web
units have to be constructed and classified within the same
method.

4. ITERATIVE WEB UNIT MINING

4.1 Overview
Our proposed iterative web unit mining method (iWUM)

is illustrated in Figure 2 and the algorithm is presented in
Algorithm 1. There are three phases in iWUM, namely,
training, web fragment generation and classification.
The iterative steps in classification are enclosed within a
dotted box.

In the training phase, we construct classifiers for classi-
fying web fragments. Each web fragment is a set of web
pages that can be either a web unit or part of a web unit.



Algorithm 1 Iterative web unit mining method

1: train web fragment classifier FC

2: build web site directory
3: generate web fragments
4: for each web fragment m do
5: FC.classify(m)
6: end for
7: repeat
8: construct web units
9: collect web unit features

10: train web unit classifier UC

11: for each web unit u do
12: UC.classify(u)
13: end for
14: until no change in the web units’ concept labels

Table 1: Symbol and its semantic in web directory
Symbol Description
p a web page.
F a web folder in web directory.
F.s set of folders that immediately under F , i.e.,

subfolders of F .
F.p set of pages that immediately under F .
F.t set of folders under the subtree rooted at F ,

including F itself, its subfolders and descendent
folders.

The idea of web fragment is to associate closely-related web
pages together so as to reduce the number of objects to be
considered for constructing web units. Similar to web units,
each web fragment has one key page and zero or more sup-
port pages. We assume that there exists a set of labelled web
units for training web fragment classifiers that are responsi-
ble for assigning a classification score to each web fragment
for each concept.

In the web fragment generation phase, we take a collection
of web pages from one web site and derive from them a
web directory representing the folder structure of the web
site. The definition of web directory is given in Section 4.2.
Once the web directory is built, we compute the connectivity
indices of the web folders and generate web fragments. The
web fragment generation phase will be described in more
detail in Section 4.4. The web fragment classifiers from the
training phase are then used to classify web fragments as
described in Section 4.5.

In the classification phase, web units are constructed based
on some heuristic rules. In the first iteration, the classified
web fragments are treated as small web units and used to
construct web units. Once constructed, the features of web
units are derived from web site organization. Some of these
web units are used to train web unit classifier which re-
classifies the entire set of web units. This process repeats
itself until there are no changes to the concept labels as-
signed to the web units. The web unit construction and
classification steps are described in detail in Sections 4.6
and 4.7 respectively.

4.2 Web Directory Structure
The web unit mining problem requires web units to be

automatically identified from a given web site. To achieve
this, our iWUM method first derives the structure of the

web site from the URLs of web pages. This is done because
we believe the way web pages are arranged within the web
site together with the connectivities among web pages can
suggest the existence of web units and their locations.

The structure of a web site can be represented by a web
directory. From a web page’s URL of the format protocol
type:://hostname [:port number] [/path] [filename], we can
determine a set of web folders from the path component
using “/” as the delimiter. Given a set of web pages, a web
directory is a tree consisting of web folders and web pages
as nodes, and the parent-child relationships among them in
the URL paths as edges.

Table 1 summarizes the symbols and their meanings for
the items related to web directories. We also denote a page
pi directly under folder Fj by pi ∈ Fj .p, or simply pi ∈ Fj .
Similarly, pi ∈ Fj .s and pi ∈ Fj .t when pi is directly under
some folder in Fj .s and Fj .t respectively. Note that F.p, F.s,
and F.t are all sets and we use |S| to denote the number of
elements in a set S.

4.3 Observations on Web Units
With the notion of web directory, we can state some com-

mon observations about the way web units are usually orga-
nized within a web directory. These observations provide us
guidelines in web unit mining, such as how to group pages
together to construct web units and how to make use of the
web directory information to improve the web unit classifi-
cation accuracy.

Observation 1. Support pages of a web unit are nor-
mally reachable from the key page through the intra-unit
links.

For example, it is a common practice to include links from
a graduate student’s home page to his/her research project
and publication pages. It suggests that intra-web-unit con-
nectivity should be strong.

Observation 2. The key page of a web unit is usually
found at the highest-level web folder compared to other pages
in the web unit.

This observation concurs with the analysis by Kraaij who
concludes that the home page of a web site is normally at
the root level [12]. For example, a person’s home page, in-

dex.html, is usually created directly under the web folder
assigned to him/her. The other web pages belonging to the
person’s web unit may be in subfolders.

Observation 3. Two web units of the same concept with-
out a recursive relationship with itself seldom have links be-
tween them.

For example, it is not usual for one faculty member’s web
page to have a link to another faculty member’s web page
when they are not related in research or teaching.

Observation 4. One-page web units of the same concept
often appear in the same folder; multi-page web units of the
same concept often reside in a set of folders, one for each
web unit, and the folders are directly under a common parent
folder.

We believe that each folder is usually created to store se-
mantically related web pages. For large web sites, there are



often folders created for users to publish their web pages.
This is particularly common at university and school web
sites where each person, department or course is assigned a
folder under a common parent folder having names such as
“users”, “home” or “∼”.

Observation 5. The key pages of web units of the same
concept are often the link targets of a hub page which may be
found at: (a) the folder where the web units are located if the
latter are one-page web units; (b) the parent (or ancestor)
folder of the folder(s) where the web units are located if the
latter are multi-paged.

For example, in a university web site, we often have a page
listing all faculty members or postgraduate students of a
department. Product catalog can be another example.

Note that the above observations are not necessarily ex-
haustive and a careful study is required to investigate their
validity. Nevertheless, we believe that they are useful heuris-
tics for identifying web units. As shown in our experiments,
these observations contribute significantly to the web unit
mining performance.

4.4 Web Fragment Generation
In web fragment generation, we determine the groups of

pages that form the web fragments. Based on the earlier ob-
servations, we develop two important factors for generating
web fragments. They are the connectivities of web folders
and the names of web pages and web folders in the web di-
rectory. The former allows us to determine clusters of rela-
tively better-connected web pages, while the latter explores
the naming conventions of web pages and web folders.

Given a set of web pages from a web site W , if h(pa, pb)
denotes the number of links from page pa to pb, the con-
nectivity from pa to pb, denoted by c(pa, pb) is defined in
Equation 1.

c(pa, pb) =
h(pa, pb)

∑

pc∈W
h(pa, pc)

×
h(pa, pb)

∑

pd∈W
h(pd, pb)

≤ 1 (1)

The connectivity from a page pa to web folder Fi is the
normalized connectivity from pa to all pages directly under
Fi.

c(pa, Fi) =

∑

pb∈Fi
c(pa, pb)

|Fi.p|
≤ 1 (2)

The connectivity between two folders is defined as follows.

c(Fi, Fj) =

∑

pa∈Fi,pb∈Fj
c(pa, pb)

|Fi.p| × |Fj .p|
≤ 1 (3)

From the above connectivity definitions, we define the con-
nectivity index of a given folder Fi, denoted by ϕFi

as
shown in Equation 4, where item e can be either a page or
a subfolder directly under Fi.

ϕFi
=

1 +
∑

ea,eb∈Fi

(

c(ea, eb) + c(eb, ea)
)

1 + |Fi.p| + |Fi.s|
(4)

Note that connectivity index of a web folder reflects the
connectivity among the items (pages and subfolders) that
are directly under the folder. The smaller the ϕFi

value,
the lesser the connectivity among the pages or subfolders
under Fi and the more likely that Fi is the folder containing
multiple web units (if web unit ever exists) according to

Observations 3 and 4. To determine high connectivity index
values, we introduce a threshold denoted by ϕθ. If ϕFi

is
higher than ϕθ , our iWUM method will try to find a key page
directly under Fi and create a web fragment by merging the
key page with other pages directly or indirectly under Fi.

Other than the connectivity index, the iWUM method
also finds (web page, web folder) pairs such that the web
page and web folder are directly under a common parent
folder and they share a common name. These are also known
as the page-folder-pairs.

Armed with the connectivity index values and page-folder-
pairs, the iWUM method first sorts the web folders by their
ϕ values in increasing order, and invokes a web fragment
generation function shown in Algorithm 3. These invoca-
tions are controlled by a web folder traversal function shown
in Algorithm 2.

Algorithm 2 WebFolderTraversal

1: get web folder list FL from the input web directory
2: sort FL according ϕ value with increasing order
3: while |FL| > 0 do
4: Fi = FL.pop front()
5: if no web folder in Fi.t is visited then
6: WebFragGen(Fi)
7: else if all folders in Fi.s have been visited then
8: WebFragGen(Fi.p)
9: mark Fi as visited

10: else
11: FL.push back(Fi)
12: end if
13: end while

Algorithm 3 takes a web folder as input and output a set
of web fragments. In line 10, page-folder-pairs are directly
used to create web fragments. For example, a page named
sc101.html and a subfolder named sc101 form a page-folder-
pair under the course web folder. The algorithm generates
a web fragment using sc101.html as a key page and pages in
sc101 as support pages.

Lines 17 to 20 implement a heuristic rule to find a candi-
date key page among the unvisited pages in Fi. The heuristic
rule examines the URL-type and name of each web page [12].
A web page p may be a key page of a web fragment if:

• The URL of p ends with a “/” (i.e, URL-type is root,
subfolder or path);

• p and the folder containing it share the same name;

• The name of p matches any of the following: home,
index, welcome, default, and homepage.

In Line 18, the reachable pages refer to the pages that have
not been visited and can be reached from the key page pk

through links among the unvisited pages under folder Fi.
Algorithm 2 starts with the web folder with the smallest

ϕ value and invokes the web fragment generation function
in a bottom-up manner. In Line 8, WebFragGen(Fi.p) is to
generate web fragments from the pages that directly under
Fi using the code from Lines 17 to 23 of Algorithm 3.

4.5 Web Fragment Classification
The purpose of web fragment classification is to assign a

concept label to each web fragment. Since there are no ex-
isting methods to classify web fragments (as a set of web



Algorithm 3 WebFragGen

Input: web folder Fi

output: web fragments

1: mark Fi as visited
2: if ϕFi

≤ ϕθ then
3: for each subfolder Fj ∈ Fi.s do
4: WebFragGen(Fj)
5: end for
6: for each page pk ∈ Fi.p do
7: create one-page web fragment with pk as key page
8: end for
9: else

10: for each page-folder-pair, (pr, Fs), such that pr ∈ Fi.p

and Fs ∈ Fi.s do
11: create web fragment with pr as key page and pages

in Fs.t (subtree) as support pages
12: mark pr and Fs as visited
13: end for
14: for each unvisited subfolder Fj ∈ Fi.s do
15: WebFragGen(Fj)
16: end for
17: if there exist a unvisited candidate key page pk ∈ Fi.p

then
18: create web fragment with pk as key page and reach-

able unvisited pages ∈ Fi.p as support pages
19: mark pk and reachable pages as visited
20: end if
21: for each unvisited page pn ∈ Fi.p do
22: create one-page web fragment with pn as key page
23: end for
24: end if

pages), we choose to classify web fragments purely based on
their key pages using a conventional web page classification
method. After all, we believe that the essential information
about web fragments can be found within the key page al-
though the information may not be complete. In this work,
we adopt our early web page classification method to classify
web fragment key pages [16]. Each web page (key page of a
fragment) is represented by a binary feature vector obtained
from the words in the text body, title and in-link anchors.

In our experiments, SV M light is used to construct the
web fragment classifiers [10]. As a binary classifier, one web
fragment classifier need to be constructed for each concept
and trained with both positive and negative examples. The
positive training examples for a concept Cj , consist of key
pages of the web units labelled with concept Cj ; the negative
training examples include the support pages of web units in
Cj and both key pages and support pages of the web units
that do not belong to Cj .

4.6 Web Unit Construction
The iWUM method constructs web units from web frag-

ments, or web units returned from the previous iteration.
Compared to web units, each web fragment has a smaller
set of web pages with a key page. In web unit construction,
web fragments are processed in the same way as web units.

The main task in web unit construction is to merge a set
of unlabelled web units with some seed web unit to form a
“larger” web unit such that the resultant web unit contains
richer and more complete information. In the merging pro-
cess, the merged web unit retains the concept label of the

seed web unit, or remains unlabelled if the seed web unit is
unlabelled. The merged web unit also retains the classifica-
tion score of the seed web unit.

The selection of seed web units and the other web units to
be merged with seed web units follows two heuristic rules.
These rules are applied to web folders in a web directory in
a top-down manner starting from the root.

• If there is one and only one web unit ui (may or
may not be assigned a label) immediately under a web
folder Fi, and all the other web units under any folder
of the subtree Fi.t are not labelled, ui is selected as
the seed web unit. The pages from these unlabelled
web units are merged with ui as support pages. This
rule is guided by Observation 2.

• If there are more than one web unit immediately un-
der a web folder Fi and only one of them, say ui, is
labelled, ui is selected as the seed web unit. Pages
from the unlabelled web units immediately under Fi

are merged with ui as support pages. If all the web
units in the subfolders and descendent folders of Fi are
also unlabelled, pages from these web units are merged
with ui as support pages.

4.7 Web Unit Classification
The objective of web unit classification is to improve web

unit mining accuracy by considering the organization of web
units within the web site and the word features in the web
page names and URLs (see Observations 4 and 5).

We derive a set of features to describe each web unit and
re-classify all web units with these features. In our experi-
ments, the following features are derived for a web unit ui.

• Normalized classification score
The score values of ui returned by classifiers in the
previous iteration (or in the web fragment classifica-
tion step) indicate how close ui belongs to different
concepts. In our work, the SVM classifier scores are
in the range of (−∞, +∞). We normalize each score
to the range of [0, 1] using a logistic link function [17].
Let f(ui|Cj) be the actual score returned by the SVM
classifier for a concept Cj . The normalized classifica-
tion score of ui for Cj is s(ui|Cj) = 1

1+e
−f(ui|Cj ) .

• Closeness to the average depth
The depth of ui, denoted by di, is defined as the depth
of the web folder containing ui’s key page. Let the
maximum depth of a web directory be dm and the
average depth of web units assigned with concept Cj

be d̄j . The closeness to the average depth of ui for

concept Cj is dis(ui|Cj) = 1.0 −
|di−d̄j |

dm
.

• Highest in-link hub value
Among the Y web units assigned with concept Cj , if
Q web units’ key pages are link targets of page pk, the
hub value of pk for Cj is hub(pk|Cj) = Q

Y
. If Pi is

the set of pages having links to the key page of a web
unit ui, the highest in-link hub value of ui for Cj is
hmax(ui|Cj)=arg max

pk∈Pi

h(pk|Cj).

• Precision support of parent web folder
Let Fi be the parent folder of ui. Among all Z web
units under Fi.t (i.e., the subtree), if R web units



are assigned with Cj , the precision support of Fi is
Pr(Fi|Cj) = R

Z
. The precision support of the parent

folder of ui for concept Cj is the precision support of
Fi for Cj .

• Recall support of parent web folder
Let Fi be the parent folder of ui. Among all V web
units assigned with Cj , if S of them are under Fi.t, the
recall support is Re(Fi|Cj) = S

V
. The recall support

of the parent folder of ui for concept Cj is the recall
support of Fi for Cj .

• Each word in page names and URLs
The words in the name of ui’s key page are assigned
the weights of 1.0. Words in the URL of ui’s key page
(different from the file name) are equally weighted and
their sum is 1.0. Words in the names of ui’s support
pages’ are equally weighted and have a sum of 1.0.

Note that the precision and recall supports of the parent
web folder are defined based on Observation 4. The highest
in-link hub value feature is defined based on Observation 5.
The precision/recall support for the containing folder is not
included as features because one-page web units are infre-
quent.

As our experiment uses SVM-based binary classifiers, one
web unit classifier is trained for each concept. Among all
the web unit features, only the word features are concept-
independent. The other features are associated with differ-
ent concepts. To avoid giving irrelevant features to our web
unit classifiers, the web unit features for training a web unit
classifier of a concept Cj include the normalized classifica-
tion scores of all the concepts, concept independent word
features and other features associated with Cj only. Sup-
pose there are |C| concepts. The size of the feature vector
for a web unit is |C|× (normalized classification score) +1×
(closeness) +1× (hub value) +1× (precision support) +1×
(recall support) + multiple (word feature values in name
and URLs).

Unlike the web fragment classifiers, the web unit classifiers
do not rely on any user-specified training examples. Instead,
each web unit classifier is trained using the web units that
are likely to be correctly classified in the previous iteration
or in the web fragment classification step. In our experi-
ment, we rank web units based on their normalized classifi-
cation scores for a concept Cj and select the top 80% web
units with scores above the 0.5 threshold as the web units
to compute d̄j ’s, hub(pk|Cj)’s and Re(Fi|Cj)’s. To compute
Pr(Fi|Cj)’s, we need both the top 80% and bottom 80%
of web unit with scores above and below the 0.5 thresholds
respectively. These top 80% and bottom 80% web units
for concept Cj are used as positive and negative training
web units respectively, for training the web unit classifier
for Cj . The threshold of 80% has been chosen because our
fragment classifier can achieve more than 80% precision for
the training web units using cross-validation on the training
web units.

5. WEB UNIT EVALUATION
There are two difficulties in evaluating web unit mining

methods. Firstly, web units are subgraphs and they are
discovered in the process of web unit mining. Thus it is
difficult and unfair to expect perfect matching between the
labelled web units and the mined web units. Secondly, the

Table 2: Contingency table for web unit ui

Web unit evaluation Perfect web unit u′
i

u′
i.k u′

i.s NU
Constructed ui.k TKi SKi –
web unit ui ui.s KSi TSi FSi

NU NKi NSi –

notions of key and support pages also complicate the per-
formance measurement. Hence, the standard precision and
recall measures in text classification cannot be applied di-
rectly [15]. In this paper, we therefore propose new precision
and recall definitions for web unit mining.

To account for the importance of key pages, we intro-
duce a satisfaction variable α to represent the degree of
importance when the key page of a web unit is correctly
identified. Given a web unit u, the value of α is in the range
[ 1

|u|
, 1] where |u| is the number of web pages in web unit

u. If α = 1, the key page completely dominates the web
unit and the support pages are not important at all. This
also suggests that the web unit mining performance is only
determined by its ability to identify and classify key pages
correctly. If α = 1

|u|
, the key page and support pages of a

web unit enjoy equal importance. Hence, the web unit min-
ing performance must consider both key and support pages.

Let the key page of a web unit u be denoted by u.k and
the support pages be denoted by the set u.s. Given a web
unit ui constructed by a web unit mining method, we must
first match it with an appropriate labelled web unit u′

i, also
known as the perfect web unit. We define u′

i to be the
labelled web unit containing ui.k and u′

i has the same label
as ui; ui.k can be either the key page or a support page of
u′

i.
The contingency table for matching a web unit ui with

its perfect web unit u′
i is shown in Table 2. Each table

entry represents a set of overlapping web pages between the
key/support pages of ui and u′

i. For example TKi = {ui.k}∩
{u′

i.k} and TSi = ui.s∩u′
i.s. The entries in the last column

and row carry special meanings as follows. FSi = ui.s −
(u′

i.s ∪ {u′
i.k}). NKi = {u′

i.k} − {ui.k} − ui.s. NSi =
u′

i.s − {ui.k} − ui.s. Note that |TKi| + |KSi| + |NKi| = 1
and |TKi| + |SKi| = 1. If the perfect web unit for ui does
not exist, ui is considered invalid and will be assigned zero
precision and recall values. Otherwise, the precision and
recall of a web unit, ui, are defined as follows.

Prui
=

α · |TKi| + (1 − α) · |TSi|

α + (1 − α) · (|KSi| + |TSi| + |FSi|)
(5)

Reui
=

α · |TKi| + (1 − α) · |TSi|

α + (1 − α) · (|SKi| + |TSi| + |NSi|)
(6)

Suppose M web units are constructed and assigned with
concept Cj , and N web units are manually labelled with
Cj , the precision and recall of the concept, Cj , denoted
by PrCj

and ReCj
, are defined as follows.

PrCj
=

∑

ui∈Cj
Prui

M
(7)

ReCj
=

∑

ui∈Cj
Reui

N
(8)

From the above definition, the macro/micro average preci-
sion and recall for a set of concepts can be easily derived.



Table 3: UnitSet web unit distribution
Concept student course faculty project

University u p u p u p u p

Cornell 128 301 42 219 34 60 20 78
Texas 148 370 38 95 46 104 20 115
Washington 126 495 74 360 31 71 21 129
Wisconsin 156 416 82 413 42 83 25 90

Note that, if α = 1, a web unit is evaluated purely based
on the key page, i.e., Prui

∈ {0, 1} and Reui
∈ {0, 1}, the

PrCj
and ReCj

are equivalent to the precision and recall
definition commonly used in IR.

6. EXPERIMENTS AND RESULTS
In our experiments, we compare the performance of our

proposed iWUM method with two baseline methods, namely
baseline and baseline with fragments methods. Recall that
the baseline method (see Section 1) classifies web pages and
merges them to construct web units. The baseline method
involves only three steps: train web page classifiers, classify
web pages, and construct web units. The web unit con-
struction algorithm is the same as that of iWUM except
that each web page (instead of web fragment) is treated as
a web unit. The baseline with fragments method (denoted
by baseline(fragment)) deals with web fragments instead of
web pages. It consists of five steps: train web fragment clas-
sifiers, build web directory, generate web fragments, classify
web fragments and construct web units. It does not include
the web unit classification step and the iterative nature of
iWUM. The purpose of including baseline(fragment) is to
investigate if the iterative web unit construction and classi-
fication actually improve web unit mining results. For the
baseline(fragment) and iWUM methods, we set ϕθ to be
0.1667. This is equivalent to at least 5 items under a folder
carrying no links among them.

As there are no existing labelled web unit datasets for
our experiments, we have chosen to label web units in the
commonly-used WebKB dataset1. The 4159 web pages col-
lected from four universities were manually classified into 7
categories: student, faculty, staff, department, course, project

and other. The other is a special category for pages that were
not assigned as the “main pages” in the first six categories.
We manually grouped the pages in WebKB into web units
and labelled them. The pages in the first six categories were
used as key pages of web units while the majority of pages
from the other category were used as support pages of the
corresponding web units. We call the this dataset UnitSet.
Some pages from other category that cannot be labelled as
support pages of any web unit were excluded from UnitSet.

Only four concepts student, faculty, course and project were
experimented as the numbers of web units of other concepts
are small (≤ 20). The web unit statistics are shown in Ta-
ble 3 where u and p refer to number of web units and pages
respectively.

We used leave-one-university-out cross-validation in our
experiments. Note that the UnitSet was used to train our
web fragment classifiers and to provide the perfect web units
for evaluating web unit mining methods. The test pages
(from the test university) were however taken from the origi-

1http://www-2.cs.cmu.edu/∼webkb/

nal WebKB dataset. For all the three methods, we evaluated
using both α = 1 and α = 0.5.

The results of baseline, baseline(fragment) and iWUM
methods are reported in Table 4 when α = 1 and Table 5
when α = 0.5 respectively2.

When α=1, web units are evaluated purely based on key
pages which make the evaluation similar to web page classi-
fication. Compared to our early web page classification re-
search [16], the overall F1 measures of baseline method are
slightly poorer. We can attribute this to two reasons. One
is that the training data are slightly different. In this work,
only the pages from labelled web units are used as train-
ing pages which are a subset of training examples in [16].
The other is that the SCut thresholding strategy [19] used
in our earlier work resulted in balanced precision and recall
values. Without SCut in these experiments, precision values
are higher than recall.

The baseline(fragment) yielded noticeable improvement in
precisions for all the concepts but slight degradations in re-
call for faculty and course. Recall worsens because some key
pages are missed in web fragment generation. On the whole,
we conclude that web fragment generation has positive con-
tributions to both macro and micro averaged F1 measures.
The higher precision achieved by web fragment generation
is important to iWUM method as higher precision ensures
that better quality training web units can be used in the
iterative web unit classification process.

The iWUM method delivers significant improvement in
recall values for all concepts. Almost perfect precision and
recall are achieved for student. The improvement in F1 mea-
sure of faculty is also significant. Poorer precision values
are reported for project and course. The results suggest
that university web sites normally have a better structure
for home pages of students or faculty members but not for
projects and courses pages. Nevertheless, the iWUM’s re-
sults for project were not representative as there were around
20 project instances in each test run. According to [6], at
least 30 positive/negative training examples are required for
a SVM classifier to deliver generalized classification perfor-
mance. In the iterative web unit classification process, there
were less than 20 positive training project web units.

The performance results with α = 0.5 for the 3 methods
are reported in Table 5. Each web unit is evaluated with
the key page having a weight of 0.5 and a total weight of 0.5
for all the support pages. Note that this only causes slight
degradations to most precision and recall values compared to
those with α=1. This comparison reveals that the heuristic
rules in web unit construction work well.

7. CONCLUSIONS
In this paper, we propose the concept of web unit and

define the web unit mining problem. We also develop an
iterative web unit mining method (iWUM) that involves web
fragment generation, web fragment classification, iterative
web unit construction and web unit classification.

The method is evaluated against two baseline methods us-
ing a specially crafted dataset derived from WebKB. We also
propose appropriate measures for evaluating web unit min-
ing performance. We have shown that our iWUM method
works well in the experiments and is extremely effective for
well-structured web sites.

2The F1 measure is computed with F1 = 2·Pr·Re
Pr+Re

.



Table 4: Web unit mining results (α = 1)
baseline baseline(fragment) iWUM

Concept Pr Re F1 Pr Re F1 Pr Re F1
project 0.378 0.119 0.173 0.394 0.119 0.175 0.186 0.218 0.171
student 0.808 0.659 0.721 0.856 0.659 0.741 0.940 0.984 0.958
faculty 0.825 0.413 0.542 0.865 0.396 0.533 0.850 0.916 0.876
course 0.702 0.603 0.643 0.778 0.549 0.641 0.505 0.708 0.547
MacroAve 0.678 0.449 0.520 0.723 0.431 0.523 0.620 0.706 0.638
MicroAve 0.771 0.562 0.648 0.828 0.548 0.658 0.704 0.850 0.762

Table 5: Web unit mining results (α = 0.5)
baseline baseline(fragment) iWUM

Concept Pr Re F1 Pr Re F1 Pr Re F1
project 0.378 0.113 0.166 0.394 0.113 0.168 0.181 0.218 0.167
student 0.807 0.624 0.700 0.847 0.644 0.728 0.924 0.971 0.945
faculty 0.774 0.392 0.515 0.763 0.393 0.512 0.772 0.889 0.820
course 0.717 0.509 0.591 0.785 0.526 0.625 0.492 0.685 0.538
MacroAve 0.669 0.409 0.493 0.697 0.419 0.508 0.592 0.691 0.617
MicroAve 0.770 0.518 0.618 0.815 0.534 0.644 0.684 0.835 0.744

Web unit mining is a new and interesting problem. We
believe that our proposed iWUM method can be further im-
proved, particularly the web fragment generation and clas-
sification, web unit construction and classification. In addi-
tion, much more research should be conducted in web unit
indexing and searching, i.e., using web units for organizing
information instead of web pages.
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