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ABSTRACT

The adoption of hashtags in major social networks including Twit-
ter, Facebook, and Google+ is a strong evidence of its importance
in facilitating information diffusion and social chatting. To under-
stand the factors (e.g., user interest, posting time and tweet con-
tent) that may affect hashtag annotation in Twitter and to capture
the implicit relations between latent topics in tweets and their cor-
responding hashtags, we propose two PLSA-style topic models to
model the hashtag annotation behavior in Twitter. Content-Pivoted

Model (CPM) assumes that tweet content guides the generation of
hashtags while Hashtag-Pivoted Model (HPM) assumes that hash-
tags guide the generation of tweet content. Both models jointly in-
corporate user, time, hashtag and tweet content in a probabilistic
framework. The PLSA-style models also enable us to verify the
impact of social factor on hashtag annotation by introducing social
network regularization in the two models. We evaluate the pro-
posed models using perplexity and demonstrate their effectiveness
in two applications: retrospective hashtag annotation and related
hashtag discovery. Our results show that HPM outperforms CPM

by perplexity and both user and time are important factors that af-
fect model performance. In addition, incorporating social network
regularization does not improve model performance. Our experi-
mental results also demonstrate the effectiveness of our models in
both applications compared with baseline methods.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering
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1. INTRODUCTION
Twitter is one of the most popular social networking and micro-

blogging platforms. It has accumulated a tremendous amount of
text data; as at January 2014, on average 58 million tweets are
posted per day by more than 645 million active Twitter users.1
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These tweets cover a larger number of diverse topics, including
comments on recent or ongoing events and emerging topics, per-
sonal activities, politics and many others. Due to the informal writ-
ing style and the 140-character length constraint, tweets are short,
noisy, and are often posted with very limited context.

Hashtag (i.e., keyword prefixed with # symbol) has demonstrated
its effectiveness in bringing organization to the sparse information
in Twitter. Hashtags associated with tweets enhance information
diffusion and tweet search as well as facilitate social chatting. Re-
ported in a recent survey by RadiumOne [20], 58% of Twitter users
utilize hashtags on a regular basis. Because of its effectiveness,
hashtag has been adopted as a key feature in other micro-blogging
services like Tumblr and Sina Weibo, and recently has been offi-
cially supported in Google+ and Facebook.2

The effectiveness of hashtags in tweets, however, is limited by
the freedom of users in deciding (i) whether or not to annotate
tweets with hashtags, and (ii) which hashtags to use (e.g., #cikm,
#cikm14, or #cikm2014). In 2010, only about 11% of tweets were
annotated with one or more hashtags [11]. Detailed in our literature
survey, lots of studies related to hashtags in Twitter have been car-
ried out. However, there is a lack of study on the formal modeling
of the latent relationship between the important factors in affect-
ing hashtag annotation. In this study, we consider and model user
interest, posting time, tweet content, and hashtag in a probabilis-
tic framework for better understanding hashtag annotation at topic
level. A topic-level modeling of these factors in hashtag annotation
benefits many applications such as retrospective hashtag annota-
tion, related hashtag discovery, hashtag summarization, etc..

Each tweet contains at least three attributes, i.e., tweet content,
author (also known as user in this paper), and posting time. As
previously mentioned, tweets cover a large number of diverse top-
ics, such as personal activities and comments on recent or ongoing
events. As a form of high-level topic abstraction, hashtags in a
collection of tweets directly reflect these topics. In other words,
hashtags reflect topics related to personal interests/activities of in-
dividual users, and also reflect the popular or trending topics in
Twitter at that time period. We therefore aim to model the latent
topical relationship between tweet content, user, time, and hashtag.

Tweet content. As an annotation, a hashtag is a high-level abstrac-
tion of the content of a tweet. Among all factors, tweet content is
the most important factor affecting the usage of hashtags. However,
there could be two kinds of possible associations between a hash-
tag and a tweet: (i) a user composes a tweet and then finds one or
more appropriate hashtags to describe the tweet. In other words,
before user finishing writing this tweet, she has no particular hash-
tag in mind to use. A hashtag is chosen because it best describes
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the tweet content. (ii) a user composes a tweet with a specific hash-
tag in mind. In this case, the tweet content could be considered as
a detailed elaboration of the pre-chosen hashtag or comment on the
event indicated by the hashtag. In this paper, we propose two mod-
els to model the two different generation processes between tweet
content and hashtag.

User. In general, a large portion of tweets from a common user
are about her personal interests/activities (e.g., music, sports, food,
travel). The hashtags adopted by a user often reflect such interests
and activities. Some of the common hashtags (e.g., #nowplaying,
#nba) adopted by a large number of users sharing similar inter-
ests lead to informal social communities through these common
hashtags as well as mention mechanism. It is reported that social
network formed through mentions among users is essential for in-
teraction in Twitter [12]. Intuitively, users who often mention each
other are more likely to share similar interests (or similar topics).
We therefore consider user as a factor in affecting hashtag annota-
tion and also evaluate the impact of social factor on affecting hash-
tag annotation.

Time. Twitter is a real-time social media. Many of the tweets are
about recent or ongoing events. Many tweets, hence their associ-
ated hashtags, published in a time period are about hot events at
that time period. Take the royal wedding as an example, on April
29, 2011, hashtags like #royalwedding and #bbcwedding were used
to annotate thousands of tweets reporting the wedding of Prince
William and Catherine Middleton. The usage of both hashtags re-
duces significantly in a week’s time. The time factor enables our
models to better associate time-sensitive hashtags with tweets.

Considering the three factors and the two generation processes,
we propose two PLSA-style models, namely, Content-Pivoted Model

(CPM) and Hashtag-Pivoted Model (HPM), to jointly model the
relationship between user, time, tweet content and hashtag, at topic
level. CPM assumes that a user composes a tweet and then finds
the appropriate hashtags to describe the tweet. HPM assumes that
a user composes a tweet with pre-selected hashtag(s) in mind. We
further incorporate and evaluate the impact of social factor in our
models. Specifically, we evaluate CPM sn (resp. HPM sn) by in-
troducing social network regularization to CPM (resp. HPM) with
the assumption that users mention each other more often are more
likely to adopt similar hashtags.

As case studies, we utilize our models in two example applica-
tions. Retrospective hashtag annotation aims to annotate existing
tweets with the most appropriate hashtags because 90% of hash-
tags are not tagged, observed from our data and reported in other
studies [11]. Related hashtag discovery is to search for most re-
lated hashtags of a given query hashtag. The related hashtags help
in hashtag query refinement, query extension and query recommen-
dation. To summarize, contributions arising from this paper are:

1. To the best of our knowledge, we are the first to model the re-
lations between user interest, time, tweet content, and hash-
tag through latent topics. Two PLSA-style models, Content-
Pivoted Model (CPM) and Hashtag-Pivoted Model (HPM)
are proposed to simulate the two hashtag generation pro-
cesses and both consider these important factors. Based on
the assumption that users who often mention each other are
more likely to share similar topics, we further introduce so-
cial network regularization into the two models to evaluate
the impact of social factor.

2. Through extensive experiments, we evaluate our models by
perplexity, a standard metric for estimating topic models, and
demonstrate that HPM outperforms CPM by perplexity. We
also show that the topics discovered by both CPM and HPM

cover all major hot events and personal activities in our Twit-
ter data. Our experimental results also indicate that incorpo-
rating social network regularization does not improve model
performance.

3. We define the problems of retrospective hashtag annotation
and related hashtag discovery and utilize our models to ad-
dress the two problems. Compared against baseline methods,
the topic-level representation brings significant improvements
on the accuracies in both applications.

The rest of the paper is structured as follows. We survey the re-
lated work in Section 2. Section 3 describes the proposed models
and their inference algorithms for model parameter estimation. In
Section 4, we evaluate the performance of the proposed models by
perplexity and the discovered topics. Two applications,retrospective
hashtag annotation and related hashtag discovery, are presented and
evaluated in Section 5. Section 6 concludes this paper.

2. RELATED WORK
In this section, we begin with a brief overview of the studies on

hashtags in Twitter. We then survey the related work on hashtag
recommendation, followed by topic models proposed for Twitter.

Hashtags in Twitter. The wide adoption of hashtags in Twitter has
attracted significant research attention. Hashtags have been studied
from many different perspectives in the literature, such as hash-
tag adoption prediction [29], hashtag popularity prediction [15,27],
hashtag diffusion [24], and hashtag sentiment analysis [2, 28].

In the study of hashtag adoption prediction [29], Yang et al.

stated that there are two main purposes for hashtag adoption, book-
marking tweet content and joining a community on the same topic
or trend. The features used in the prediction include (i) relevance

and preference derived from tweets annotated with hashtags, and
(ii) prestige and influence derived from social graph formed by
users who adopt a hashtag. In [27], Tsur and Rappoport predicted
hashtag popularity on weekly basis using regression model. Both
features derived from hashtag itself (e.g., orthography, number of
characters in a hashtag) and features derived from tweet content are
used in the prediction. Their experiments showed that content fea-
tures improve prediction performance. Both studies reveal a strong
relationship between hashtag adoption and tweet content. In our
work, we jointly model hashtag and tweet content to capture their
relations at topic level.

Romero et al. [24] categorized hashtags into 8 classes (e.g., pol-

itics, celebrity, and game) and analyzed the differences in the me-
chanics of information diffusion of hashtags from different classes.
They reported that hashtags on politics are adopted for a longer time
period and the exposure times of a hashtag (i.e., how many times a
user observes this hashtag in her Twitter stream) plays an important
role in hashtag diffusion. A user graph based on mention relation-
ship was constructed in their work to trace information diffusion.
Our work also considers the impact of user factor on hashtag adop-
tion and models the social network as a regularization, assuming
that users who often mention each other share similar topics.

Hashtag Recommendation. Tag recommendation has established
itself into an important research topic. Many techniques like tensor
factorization [22,23,26] and graph model [5,7] have been proposed
and applied to different social tagging systems like Flickr and De-
licious. For Twitter, both user-based recommendation [4, 14] and
tweet-based recommendation have been proposed for hashtag rec-
ommendation [13, 16, 25, 32]. Next, we briefly survey tweet-based
recommendation for being more relevant to our work.



To recommend hashtags for a tweet, Zangerle et al. [32] searched
for similar tweets to the given tweet by content similarity, then
ranked the hashtags by their usage on the similar tweets. Mazzia
et al. [16] also utilized tweet content for hashtag recommendation
using a Bayesian model. Kywe et al. [13] further incorporated user
preference into the model in [32]. That is, hashtags to be recom-
mended to a tweet d by user u are the hashtags used to annotated
many similar tweets to d and the hashtags adopted by many similar
users to u. In our experiments, we use this method to be our base-
line method in the retrospective hashtag annotation application.

Topic Models for Twitter. Topic models, including Probabilistic
Latent Semantic Analysis (PLSA) [9] and Latent Dirichlet Alloca-
tion (LDA) [1], are widely employed in text mining and informa-
tion retrieval. PLSA [9] is a classic topic model and has been used
to model various types of data, with or without regularization. Yin
et al. [30] proposed a model to discover regional topics in Flickr
and incorporated GPS information into PLSA with the assumption
that topics of nearby regions are more coherent. In [8], a PLSA-
style model was presented to mine topics of search queries. The
authors incorporated regularization in the model with the assump-
tion that topic distribution of two users are similar if they click on
similar documents retrieved. Recently, PLSA models have been
applied to mine Twitter data [10, 31]. In [10], a PLSA-style model
was proposed to discover topics and identify user’s interests from
geo-tagged tweets for both topic tracking and location estimation.
The PLSA model proposed in [31] further incorporated time factor
in addition to geo-location information for location prediction.

Many LDA extensions have been proposed to Twitter. Due to
the shortness of tweets, it is often assumed that each tweet has one
unique topic [33]. To find bursty topics in Twitter, Diao et al. [3]
proposed a TimeUserLDA model. This model assumes that tweets
posted around similar time are more likely to share similar topics
and tweets posted by the same user are more likely to share similar
topics. Labeled LDA, a semi-supervised learning model, was pro-
posed in [21], to model the latent relationship between users and
tweets in Twitter. Topic models have also been applied to hash-
tag recommendation [6]. Given a tweet, Godin et al. employed
LDA to generate its topic distribution, and then recommended top
keywords from the dominant topics to this tweet as hashtags. In
our proposed solution, we recommend existing hashtags rather than
keywords to tweets.

Although both PLSA and LDA extensions have been used to
model tweet data, we choose to adopt the PLSA framework for
its flexibility in introducing social network regularization.

3. HASHTAG ANNOTATION MODELS
In this section, we present the two hashtag annotation models:

Content-Pivoted Model (CPM) and Hashtag-Pivoted Model (HPM).
Both models jointly model tweet content, user, time, and hashtag,
but with different assumptions on the generation of hashtag and
tweet content. In the following, we start with the notations used in
our models and the intuitions in our models. We then present the
two models and their inference algorithms. Lastly, we detail the
inference algorithms considering social network regularization in
the two models CPM and HPM . The models with social network
regularization are denoted by CPM sn and HPM sn respectively.

Notations. Let d be a tweet and D be a collection of tweets. Let
U be a collection of users each of which has published at least
one tweet. We partition time into a sequence of time slots of fixed
length and map the publication time of a tweet to a time slot t.3 Let
T be the collection of time slots, V be the word vocabulary, and E

3In this paper, the length of a time slot is a day.

be the hashtag vocabulary. A tweet d is a 4-tuple d = {u, t,wd ,hd }:
u ∈ U is the author of the tweet; t ∈ T is the time slot within which
d was published; wd is the word collection in d, where the words
are drawn from V ; and hd is the set of distinct hashtags annotated
to tweet d, where the hashtags are drawn from E. Note that, a tweet
may have more than one hashtag and even duplicated hashtags. In
our work, we only consider distinct hashtags for the same tweet.

Intuitions and Assumptions. All our models are designed based
on the following two intuitions:

• The topic of a tweet is guided by the personal interest (or ac-
tivity) of the user who has published this tweet. As discussed
in Section 1, a large portion of tweets reflect the users’ per-
sonal interests or activities. Based on this intuition, we model
each user as a topic probability vector. The topic of a tweet
from a user is generated based on her corresponding topic
probability distribution.

• The topic of a tweet may be affected by time. A large number
of tweets are related to recent and ongoing events or trend-
ing topics. In other words, each time slot is associated with
some major events or popular topics happened or discussed
within that time slot. Tweets published in different time slots
reflect different topic distributions. Based on this intuition,
we model each time slot as a topic probability vector and the
topic of a tweet published in that time slot could be generated
based on its corresponding topic probability.

As discussed in Section 1, a hashtag is a high-level abstraction of
the tweet content. Among all factors, words in a tweet is the most
import factor affecting hashtag annotation. However, when com-
posing a tweet with hashtag(s), there could be two possible cases:
(i) user composes the tweet first and then finds appropriate hash-
tags to annotate this tweet, or (ii) user has a hashtag (e.g., a hashtag
created for a popular event) in mind and writes a tweet for the hash-
tag. To model the difference in the order of generating tweet con-
tent and hashtags, we propose two models: Content-Pivoted Model
which assumes the tweet content is drafted first and the generation
(or selection) of the hashtag is guided by the tweet content, and (ii)
Hashtag-Pivoted Model which assumes that the user has selected
the hashtag and then drafts the tweet content based on her under-
standing of this hashtag. In both models, we assume that each tweet
has only one topic due to its short length. The same assumption has
been adopted in many other works [3,33]. In the following, we de-
tail the two models and their inference algorithms.

3.1 Content-Pivoted Model (CPM)
Figure 1(a) (without dotted line) illustrates the Bayesian graph-

ical representation of CPM . Some of the notations used in the
model are summarized in Figure 1(c).

The topic z of tweet d is generated from personal interest of u

or topic distribution of time slot t. That is, when user u publishes
a tweet d in time slot t, she first decides whether to write anything
related to her personal interests/activities or to comment on some
hot topics in that time slot. More specifically, the topic z of tweet
d can be generated from the user topic distribution p(z |u) and the
time topic distribution p(z |t). We use a parameter α to balance the
importance between p(z |u) and p(z |t):

p(z |u, t) = αp(z |u) + (1 − α)p(z |t)

After a topic z is generated, all words wd in the tweet d are sampled
from p(w |z). Then the hashtags of tweet d, hd , are sampled from
p(h|z). The generative process of CPM is summarized as follows:



T

D

U

wd hd

u

z

w h

t

Social

Network

(a) CPM and CPM sn

u

T

D

U

wd

H

h z

w

t

Social

Network

(b) HPM and HPM sn

Symbol Description

D Collection of tweets
H Collection of hashtags
U Collection of users
T Collection of time slots
Du Collection of tweets posted by user u
Dt Collection of tweets posted at time slot t
Dh Collection of tweets having hashtag h

Dw Collection of tweets having word w

wd Collection of words in tweet d
hd Set of hashtags in tweet d

(c) Notations used in the models

Figure 1: Graphical model representations of CPM and HPM (without dotted line), graphical model representations of CPM sn and

HPM sn (with dotted line), and the notations used in the models.

• For each tweet d ∈ D, written by user u at time t

– Draw a topic z ∼ p(z |u, t)

– For each word w in wd , draw w ∼ p(w |z)

– For each hashtag h in hd , draw h ∼ p(h|z)

Observe that CPM model incorporates all factors user, time, tweet
content, and hashtag into a PLSA framework. Further, the tweet
content and hashtag are generated after a topic has been determined
based on the user interests and (popular) topics of that time slot.

3.2 Hashtag-Pivoted Model (HPM)
Similar to CPM, the HPM model also jointly considers user,

time, tweet content and hashtag. However, as illustrated in Fig-
ure 1(b) (without dotted line), HPM models hashtags as a high-
level feature partially guiding the generation of tweet content. That
is, when drafting a tweet, a user may choose to report her personal
interests or comment on some hot events in that time slot as in
CPM; in HPM a user may also choose to directly comment on a
specific hashtag. In short, the topic z of a tweet may be drawn
from user topic distribution p(z |u), time topic distribution p(z |t),
or hashtag topic distribution p(z |hd ). Note that, one tweet might
have multiple hashtags. We assume that all hashtags of a tweet hd
share equal importance to the tweet d:

p(z |hd ) =
1

|hd |

∑

h′∈hd

p(z |h′)

Considering the three factors p(z |u), p(z |t), p(z |hd ), the topic z of
a tweet d written by a user u at time slot t with hashtag(s) hd in
mind is:

p(z |u, t,hd ) = β(αp(z |u) + (1 − α)p(z |t)) + (1 − β)p(z |hd ) (1)

Here, the two parameters α and β balance the importance of the
three factors in selecting the topic of the tweet. Similarly, after
generating the topic z of tweet d, all words wd are sampled from
p(w |z). The generative process of HPM is as follows:

• For each tweet d ∈ D, written by user u at time t for hashtags
hd

– Draw a topic z ∼ p(z |u, t,hd )

– For each word w in wd , draw w ∼ p(w |z)

3.3 Inference Algorithms
For both CPM and HPM , there is one latent variable topic z to

be inferred. The exact inference algorithm is intractable. We pro-
pose an Expectation-Maximization (EM) algorithm for appropri-
ately inferring z in both models. Next, we first detail the inference

algorithm for CPM . In CPM , the joint probability over tweet d

and topic z can be represented as:

p(d, z) =p(u, t, z,wd ,hd )

=p(u)p(t)p(z |u, t)p(wd |z)p(hd |z) (2)

where

p(z |u, t) = αp(z |u) + (1 − α)p(z |t) (3)

p(wd |z) =
∏

w′∈wd

p(w′ |z) (4)

p(hd |z) =
∏

h′∈hd

p(h′ |z) (5)

Accordingly, the log-likelihood in CPM is L =
∑

d log
∑

z p(d, z).
We train the model using EM algorithm as follows:

• In E-step,

p(z |d) =
p(d, z)

p(d)
=

p(d, z)∑
z p(d, z)

(6)

• In M-step, it is complicated to estimate p(z |u) and p(z |t),
because they are coupled by the sum in logarithm in log-
likelihood, i.e., log(αp(z |u) + (1 − α)p(z |t)). We apply
Jensen’s inequality to get a lower bound: log(αp(z |u) + (1−
α)p(z |t)) ≥ α log p(z |u) + (1− α) log p(z |t). We now maxi-
mize the log-likelihood to estimate the following parameters:

p(z |u) =

∑
d∈Du

p(z |d)
∑

d∈Du

∑
z′ p(z′ |d)

(7)

p(z |t) =

∑
d∈Dt

p(z |d)
∑

d∈Dt

∑
z′ p(z′ |d)

(8)

p(w |z) =

∑
d∈Dw

n(d,w)p(z |d)
∑

w′
∑

d∈Dw′
n(d,w′)p(z |d)

(9)

p(h|z) =

∑
d∈Dh

p(z |d)
∑

h′
∑

d∈Dh′
p(z |d)

(10)

where n(d,w) represents number of appearances of word w

in d, or w’s term frequency in d.

The joint probability for HPM over tweet d and topic z is de-
fined in the following equation, where p(z |u, t,hd ) is defined in
Equation 1:

p(d, z) =p(u, t,hd , z,wd )

=p(u)p(t)p(hd )p(z |u, t,hd )p(wd |z) (11)

In Equation 11, p(hd ) =
∏

h′∈hd
p(h′). The inference algo-

rithm for HPM is similar to that of CPM . Specifically, the E-steps



for both models are the same. In M-step, the estimations of p(z |u),
p(z |t), and p(w |z) in CPM also apply to HPM . The additional
parameter p(z |h) in HPM is estimated as follows:

p(z |h) =

∑
d∈Dh

p(z |d)/|hd |∑
d∈Dh

∑
z′ p(z′ |d)/|hd |

(12)

3.4 Social Network Regularization
As discussed in Section 1, users who often mention each other

are more likely to share similar topics. With the aim of obtain-
ing more accurate topics in Twitter data, we utilize the mention
relationship in Twitter as a regularization R over the topic distri-
bution of a pair of Twitter users who have mentioned each other.
More specifically, we minimize the proximity of topic distributions
p(z |u) and p(z |v) of two users u and v who have mentioned each
other for Cuv number of times in their tweets (regardless u men-
tions v or v mentions u):

R =
∑

u,v∈U

∑

z

Cuv (p(z |u) − p(z |v))2

The two models CPM and HPM with social network regulariza-
tion are denoted by CPM sn and HPM sn respectively. The dotted
lines in Figures 1(a) and 1(b) denote the social network regular-
ization. Regularized log-likelihood is expressed as RL = L − λR,
where λ is the regularization parameter (λ = 10 in our evaluation
following the setting in [8]). We maximize the regularized log-
likelihood using Generalized EM algorithm [18].

Except for p(z |u), all other parameters in CPM sn and HPM sn

are estimated in the same way as their corresponding models CPM

and HPM . Next, we use CPM sn as an example to estimate p(z |u)
and the same applies to HPM sn . Let pi (z |u) be the estimation
obtained in the i-th iteration of CPM sn , pi+1(z |u) in the (i + 1)-
th iteration is computed using Equation 13 based on the Newton-
Raphson method [19]. Note that p0(z |u) is the p(z |u) estimated in
CPM (see Equation 7).

pi+1(z |u) = (1 − γ)pi (z |u) + γ

∑
v∈U Cuvpi (z |v)∑

v∈U Cuv
(13)

In the above equation, γ is the step parameter ( γ = 0.1 in our im-
plementation following the setting in [8]) and Cuv is the number of
times users u and v who have mentioned each other in their tweets.
More details of the algorithm can be found in [8].

4. EXPERIMENT
We conduct experiments to evaluate the performance of CPM

and HPM using perplexity and show example topics discovered by
the two models. We also evaluate the impact of introducing social
network regularization in both models.

4.1 Data Set
The tweets used in our evaluation are published by Singapore-

based usersfrom January 1, 2011 to August 31, 2011.4 Because our
work focuses on the modeling of hashtag annotation, tweets with-
out hashtags are not considered in our evaluation. In other words,
each tweet used in our experiments contains at least one hashtag.
Stopwords and non-English words are also removed from all tweets
and tweets with empty content are then dropped. To ensure that
each hashtag has a reasonable number of tweets for topic modeling,
tweets annotated with extremely infrequent hashtags (i.e., each is
used to annotate fewer than 5 tweets in the whole collection) are

4User location information is based on the location specified in user profile.
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Figure 2: Hashtag frequency distribution and number of hash-

tags per tweet

Table 1: Statistics of the data set
Number of tweets |D | 1,217,928
Number of distinct hashtags |E | 14,055
Number of distinct words or vocabulary size |V | 61,274
Number of users |U | 13,711
Number of time slots (days) |T | 243

removed from our collection. As the result, every hashtag in our fi-
nal collection has been used to annotate at least 5 non-empty tweets
written in English.

After preprocessing, the data set used in our experiments con-
tains more than 1.2 million tweets published by over 13 thousand
users in 243 days. The tweets are annotated by more than 14 thou-
sand distinct hashtags. Table 1 reports the statistics of our pro-
cessed data set.

Plotted in Figure 2(a), the hashtag frequency distribution follows
a power-law like distribution. That is, most hashtags are used few
times by few users, while a small number of hashtags are extremely
popular and have been used to annotate many tweets. Observe that
82.2% of tweets in our collection are associated with one hashtag
each (see Figure 2(b)). The remaining 17.8% of tweets, each is
annotated by more than one hashtag. A small number of tweets are
annotated by more than 10 hashtags each.

4.2 Evaluation by Perplexity
Perplexity is a standard metric for evaluating topic models [1].

Defined in Equation 14, perplexity measures the ability of a model
in generating unseen data (i.e., Dtest in the equation, which is a
set of documents not used in model training). In this equation,
p(wd ) indicates the probability of generating all the words in a
test document d ∈ Dtest , and Nd denotes the number of words in
document d. Lower perplexity indicates better model performance.

Perplexity(Dtest ) = exp{−

∑
d∈Dtest

log p(wd )
∑

d∈Dtest
Nd

} (14)

In our evaluation, we randomly select 200,000 tweets to be the
testing data set, and the remaining 1,017,928 tweets are used to
train the models. Next, we first examine the impact of user factor,
time factor and the number of topics on the model performance of
CPM and HPM respectively by perplexity. We then evaluate the
effectiveness of social network regularization on the two models by
comparing their perplexity with that of CPM sn and HPM sn . In
all our experiments, the number of iteration in training the models
is fixed to 100.

CPM Model Performance. Recall that in CPM , the topic z of a
tweet d is generated from the user topic distribution p(z |u) and
the time topic distribution p(z |t), balanced with a parameter α:
p(z |u, t) = αp(z |u) + (1 − α)p(z |t). To evaluate the impact of
user interest p(z |u) and time factor p(z |t), we vary α from 0 to
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Figure 3: Perplexity of CPM and HPM with varying α, β or K (Figures (a), (b), and (c)), and the impact of social network regular-

ization on CPM and HPM (Figure (d)).

1, with a step of 0.1. Observe that when α = 0 topic z is gener-
ated from time topic distribution only; and when α = 1, topic z is
generated purely based on user interest. Figure 3(a) plots the per-
plexity of CPM with varying α from 0 to 1 for four topic number
settings K = {25,50,100,150}. We make three observations from
this result.

First, parameter α has a significant impact on the perplexity of
the model which is in the range from 3800 to 5400. With the four
different topic number settings, the perplexity values follow very
similar trends against the varying of α. When α = 0.9, the lowest
perplexity is achieved for all the four topic number settings. Ei-
ther α = 0 or α = 1 results in much poorer model performance,
indicating that (i) both user interest and time are important factors
affecting the topic of tweets, and (ii) user interest is often the dom-
inant factor in determining the topics of the tweets from a user.

Second, regarding the choice of number of topics, K = 25 or
K = 150 leads to poorer performance than K = 50 or K = 100.
Particularly, K = 100 and α = 0.9 delivers the best perplexity
in this set of experiments. In all our following experiments, we
therefore set K = 100 and α = 0.9 as the default settings.

Third, when tweet topics are purely drawn from time topic dis-
tributions (i.e., α = 0), the number of topics K has a limited impact
on the perplexity. However, when tweet topics are solely generated
based on user interest (i.e., α = 1), the smaller the number of topics
(i.e., K = 50), the better the perplexity. This observation suggests
that a common user usually does not show interests in too many
different topics.

HPM Model Performance. Compared with CPM , HPM con-
siders one more factor p(z |hd ) in generating the topic of a tweet.
More specifically, p(z |u, t,hd ) = β(αp(z |u)+ (1−α)p(z |t))+ (1−
β)p(z |hd ). Note that β = 0 leads to tweet topic generation solely
based on hashtags p(z |hd ).

Based on the results of CPM , we first set α = 0.9 and evaluate
the perplexity of HPM against the varying of β from 0 to 1 with a
step of 0.1. Demonstrated in Figure 3(b) the impact of β on HPM

is not significant when β ≥ 0.1 for all K values. When K = 100,
HPM achieves the best perplexity when β = 0.6. However, it is
observed that the perplexity is much poorer when β = 0, i.e., the
topic of a tweet is purely generated based on hashtags.

Next, we fix β = 0.6 and vary the values of α from 0 to 1 (see
Figure 3(c)). Similar to that in CPM , the perplexity of HPM is
best when α = 0.9 for all the four different numbers of topics.
Compared with CPM , HPM performs better by perplexity, with
perplexity ranging from 3600 to 4100. One reason is that HPM

treats hashtags as topic vectors which could better cluster the words
in tweets leading to better topic cohesion.

Social Network Regularization. We now evaluate the impact of
considering social factor in the two models. In this set of experi-
ments, we set number of topics K = 100 for all four models: CPM ,

Table 3: Example topics found by HPM but not CPM
Topic label Words with highest generative probability

royal wedding wedding kate club quay clarke royal river demi rd val-
ley

food singapore food news paying restaurant world bill cash
hotel free

business ltd pte singapore manager executive sales assistant
services tfeeds jeffs

shopping parade tampines st blk 33 corner 314 gaming sunnys
marine

CPM sn , HPM and HPM sn . For both HPM and HPM sn , β is
set to 0.6 based on earlier experimental results. The two additional
parameters γ and λ in CPM sn and HPM sn are experimentally set
to γ = 0.1 and λ = 10 (see Section 3.4).

Figure 3(d) shows the perplexity of all four models with α vary-
ing from 0 to 1. Note that when α = 0, user interest is not con-
sidered in the model and therefore no social factor is considered as
well. As shown in Figure 3(d), the introduction of social network
regularization makes both models much worse in terms of perplex-
ity. One possible reason is that, two users may mention each other
because of common interests in some but not all the topics. The
assumption that a pair of users who mention more about each other
are more likely to share similar topic distributions might be too
strong. However, on the other hand, predetermining a subset of
common topics for a given pair of users is infeasible in generative
models.

4.3 Topic Discovery
We now present 8 sample topics discovered by the two models

CPM and HPM . For both models, we set the number of topics to
be 100. From the 100 topics, we select 8 topics as examples.

Table 2 lists these 8 topics. We further manually label these
8 topics to better explain them. For each topic CPM generates
word probability p(w |z) and hashtag probability p(h|z) (see Sec-
tion 3.1). We therefore list both the top words and the top hashtags
according to their generative probabilities for each of the 8 sample
topics. For clarity, we name these two kinds of topics word topic

and hashtag topic respectively. For HPM , the model only gen-
erates word topic based on p(w |z) (see Section 3.2). Twitter top-
ics can be categorized into exogenous topics and endogenous top-

ics [17]. Exogenous topics (e.g., #earthquake and #flood) are orig-
inated outside of Twitter and endogenous topics (e.g., #10thingsi-

hate and #nowplaying) are originated within Twitter. As shown in
Table 2, both CPM and HPM models capture the major topics dis-
cussed by Singapore users in Twitter from January to August 2011.
Among them Singapore General Election5 and Japan earthquake6

5
http://en.wikipedia.org/wiki/Singaporean_general_election,_2011

6
http://en.wikipedia.org/wiki/2011_Tohoku_earthquake_and_tsunami



Table 2: Example topics with CPM topical words, CPM topical hashtags and HPM topical words
Topic label Topic type Top-10 words/hashtags with highest generative probability

job
CPM Hashtag #job #jobs #career #interview #hr #jobhunt #jobsearch #sg #interviews #recruit

CPM Word questions interviewer job difference photo seeking using hour building rapport
HPM Word job singapore basic based industry questions executive days interviewer sales

singapore election
CPM Hashtag #sgpresident #sgelections #singapore #sgelection #sgpolitics #fb #news #cars2race #yamahmee #pe2011

CPM Word tan tony president cheng dr jee bock kin vote lian
HPM Word tan tony cheng dr jee president bock kin presidential lian

japan earthquake
CPM Hashtag #prayforjapan #japanlife #fb #japan #tsunami #sgelections #singapore #prayfortheworld #earthquake #oscars

CPM Word japan life live earthquake hope join people goal please tsunami
HPM Word japan god please hope earthquake singapore people safe news tsunami

digital devices
CPM Hashtag #technews #technology #singapore #apple #fb #socialmedia #google #news #simonvideo #jobs

CPM Word apple iphone ipad video google app social facebook android media
HPM Word apple iphone ipad app google android video mobile phone mac

music
CPM Hashtag #nowplaying #replacesongnameswithcurry #replacesongnameswithbangla #np #replacebandnameswithbangla #sin-

gapore #fb #nowlistening #lastfm #thingsbrokepeopledo

CPM Word curry love perry katy bangla adele rock black rolling party
HPM Word curry love song listening mars 987 bruno perry lt3 katy

football
CPM Hashtag #lfc #mufc #fb #manutd #ynwa #arsenal #sleague #singapore #ff #sgfootball

CPM Word play game win time match singapore friends united goal liverpool
HPM Word united win game cant team fans cup liverpool manchester arsenal

daily life
CPM Hashtag #100factsaboutme #fml #fb #likeaboss #fail #nowplaying #justsaying #foreveralone #sosingaporean #random

CPM Word school lol time day sleep cant haha people gonna home
HPM Word school day time tomorrow homework study week gonna days doing

harry porter
CPM Hashtag #nowwatching #replacemovienameswithbacon #nowplaying #fb #harrypotterlive #singapore #glee #trueblood #royal-

wedding #replacemovienameswithvoldemort

CPM Word watching bacon harry watch potter love episode season movie cant
HPM Word bacon pancakes watching harry potter pants thinking voldemort green investigators

are major exogenous events in our data set. Jobs, music and daily

life are example continuous endogenous topics discussed in Twit-
ter. In short, CPM and HPM are able to explore both exogenous
topics and endogenous topics.

Next we discuss the relationship between word topic and hash-
tag topic generated by CPM (see rows labeled by “CPM Hash-
tag” and “CPM Word” in Table 2). Observe that most top-ranked
hashtags of hashtag topic are well associated semantically with the
corresponding word topics. Take the first topic job as an example,
the top-ranked hashtags (i.e., #job, #jobs, #career, #interview) and
the top-ranked words (i.e., questions, interviewer, job, difference)
are closely associated semantically. Generally speaking, topical
words of CPM are relatively more specific while topical hashtags
of CPM are more general. However, because a topic is usually an-
notated by few dominant hashtags only, the top-10 hashtags listed
for each topic in Table 2 might not all describe the corresponding
topic. For instance, hashtag #oscars is not very relevant to Japan

earthquake and #royalwedding is irrelevant to Harry Porter movie.
Some hashtags are extremely popular (e.g., #fb, #singapore) and
are often used to annotate many different topics.

HPM only generates word topics (see rows labeled by “HPM

Word” in Table 2). Some of the top-ranked topical words of CPM

and HPM are very similar. The topic labeled digital devices is an
example. However, HPM discovers several topics which can not
be found in CPM , listed in Table 3. These topics include royal

wedding, food, business, and shopping. HPM is more powerful in
finding less popular topics like business and shopping, which also
partially explains why the perplexity of HPM is better than that of
CPM .

Next, we show the topic distribution generated by HPM for
three example hashtags: #sgelections, #royalwedding and #pray-

forjapan. For each example hashtag, Figure 4(a) lists their top-10
topics ranked by probability p(z |h) in descending order. Observe
that both #prayforjapan and #royalwedding were popular for about
two weeks, a relatively short time period. For each of the two hash-
tags, there is one dominant topic, with the highest probability. For
instance, the probability of the top topic for #prayforjapan is nearly
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Hashtag p(z |h) Top-5 Keywords

#sgelections

0.209 pap vote grc aljunied wp
0.163 pap rally grc tan wp
0.110 lee pap singapore pm minister

#royalwedding

0.223 wedding kate club quay clarke
0.065 sleep time cant gonna watch
0.060 trending lol omg lt3 happy

#prayforjapan

0.467 japan god please hope earthquake
0.050 love people life youre time
0.025 news tan reuters singapore japan

(b) Topical keywords of the top-3 topics for each hashtag

Figure 4: Topic distribution of top-3 most relevant topics

50%. For #sgelections, it was popular for a few months and was
adopted to annotate tweets for two elections (parliamentary gen-
eral election and presidential election). Three topics are observed
to have high probabilities for this hashtag. For all the three example
hashtags, the topical keywords of the top-3 topics with the highest
probabilities are listed in Figure 4(b).

5. APPLICATIONS
In this section, we present two applications as case studies to

illustrate the effectiveness of our models in addressing practical



problems in Twitter. We first motivate the two problems, namely
Retrospective Hashtag Annotation and Related Hashtag Discovery,
and then present experimental results.

5.1 Retrospective Hashtag Annotation
Hashtag facilitates tweet search and information diffusion. How-

ever, only about 10% of tweets are annotated by hashtags, observed
from our data and also reported in other studies [11]. As surveyed
in Section 2, many studies have been carried out on hashtag rec-
ommendation. Most hashtag recommendation methods target on
online recommendation (i.e., to recommend one or more hashtags
when a user posts a new tweet) because Twitter is widely accepted
as a real-time media. However, the historical data accumulated in
Twitter remains an important and rich information source for more
advanced tweet search options and other applications like retro-
spective event detection. Annotating historical tweets also helps
to finding relevant tweets for less popular hashtags. As a case
study, we evaluate the effectiveness of our models in Retrospec-

tive Hashtag Annotation which aims to annotate existing tweets
without hashtags. More specifically, given a tweet d published by
user u at time t, the task of retrospective hashtag annotation is to
annotate this tweet with the most appropriate hashtag(s). That is,
we recommend hashtags to historical tweets. Next, we present the
baseline method proposed in [13] and discuss the solutions using
our models.

Baseline methods: CF and CFU. A collaborative-filtering (CF)
based method proposed in [13] recommends hashtags to a tweet by
considering both the tweet content and the user. Given a tweet d,
the method finds the top-x most similar tweets with hashtags by
content similarity (e.g., cosine similarity). The most frequent hash-
tags used by these top-x tweets are recommended. We name this
method the CF method. The authors in [13] also propose a method
which considers user factor, which we call the CFU method. In
CFU, each user is represented as a hashtag vector. This hashtag
vector is weighted by the TF − IDF scheme where the TF is the
number of times this user has used a hashtag in all her tweets, and
IDF is computed from the number of distinct users who have used
this hashtag. With this hashtag vector, the top-y most similar users
to a user u are retrieved. Then the hashtag to be recommended to a
tweet d by user u is based on (i) the number of times a hashtag is
used to annotate the top-x most similar tweets (from all users), and
(ii) the number of times a hashtag has been adopted by the top-y
most similar users.

Our proposed methods: CFU+CPM and CFU+HPM. Both CPM

and HPM model the three factors user, time, and tweet content
in hashtag annotation. Given a tweet d written by user u at time
t, the two models are able to directly estimate p(h|u, t,wd ). The
most straightforward method for retrospective hashtag annotation
is therefore to rank hashtags by this probability. This method, how-
ever, delivers poorer accuracy than the baseline methods. The rea-
son is that many hashtags are under-represented because of their
very limited usage in tweets. Recall that, the usage of hashtag
follows a power-law like distribution (see Figure 2(a)) and most
hashtags are used to annotate a small number of tweets, making the
estimation p(h|u, t,wd ) less accurate for these hashtags.

To address this issue, we combine the recommendation by our
models and the recommendation by the baseline methods. Gener-
ally speaking, the combined method recommends hashtags by con-
sidering both the global factors (i.e., the latent relationship between
hashtag and user, time, and tweet content based on our models)
and the local factors (i.e., the most similar tweets and most similar
users based on the baseline methods). In this following, we use
CFU + CPM as an example to illustrate the combined method.

Let rh be the number of times a hashtag h is recommended by
the baseline method CFU for tweet d. Let pn (h|u, t,wd ) be the
normalized recommendation score from CPM:

pn (h|u, t,wd ) =
p(u, t,wd ,h)∑
h′ p(u, t,wd ,h

′)

where the joint probability p(u, t,wd ,h) =
∑′

z p(u, t, z,wd ,h) and
p(u, t, z,wd ,h) can be estimated with Equation 2 by replacing hd

with h in the equation. For HPM , p(u, t,wd ,h) is computed in
a similar manner based on the joint probability p(u, t,hd , z,wd )
defined in Equation 11.

The recommendation score of hashtag h, denoted by Score(h),
by the combined method CFU + CPM is:

Score(h) = log(rh + 1) × pn (h|u, t,wd ) (15)

In the above equation, the logarithm function is introduced to re-
duce the impact of extremely popular hashtags. Note that, if a
hashtag h does not receive any recommendation from CFU, then
Score(h) = 0 and this hashtag will not be recommended.

Experimental Setting. We randomly select 200,000 tweets as test
set and the hashtags adopted by these tweets are considered as the
ground truth. We use Hit Rate to evaluate the annotation accuracy.
Given a tweet, a hit occurs if at least one of the top-n recommended
hashtags matches the ground truth hashtags of the tweet. The hit
rate for a method is computed by the number of hits divided by the
number of test tweets. We report the hit rate for top-5 and top-10
recommendations for all methods. We evaluated six methods in
total: CF, CFU, CFU + CPM , CFU + CPM sn , CFU + HPM ,
and CFU + HPM sn .

Experimental Results. Recall that in CFU, top-x most similar
tweets and top-y most similar users are retrieved for hashtag rec-
ommendation. In our experiments, we set x and y to be the same
and evaluated 4 settings: x = y = 5, 10, 15, or 20. The hit rates
of top-5 and top-10 recommendations are reported in Figures 5(a)
and 5(b) respectively for the six methods. We make the following
three observations from the results.

First, for both top-5 and top-10 hashtag recommendations, the
methods with either CPM or HPM perform better than both base-
line methods CF and CFU. In particular, in terms of hit rate for
top-5 hashtag recommendation with 5 similar tweets/users, CFU +

CPM outperforms CFU by 6.72% and CF by 14.34% respectively.
We also observe that CFU + HPM yields very similar results as
CFU + CPM , despite that HPM achieves better perplexity than
CPM in our earlier experiments.

Second, CFU + CPM sn performs slightly worse than CFU +

CPM and the same observation holds for CFU + HPM sn against
CFU + HPM . In other words, considering social network regular-
ization does not improve the hit rate for hashtag recommendation.
One possible reason is that the social network regularization intro-
duces noises in estimating p(z |u). Consequently, the poorer esti-
mation of p(z |u) results in less accurate p(h|u, t,wd ). This result
is consistent with the results reported in Section 4.2 where the con-
sidering social network regularization leads to poorer perplexity to
both models.

Third, evaluated by hit rate of top-5 hashtag recommendation,
the hit rate for all methods decreases along with increasing the
number of similar tweets/users. This observation suggests a larger
number of similar tweets/users likely brings in irrelevant hashtags
to the given tweet, particularly when the ground truth hashtag is an
infrequent hashtag. Recall that hashtag frequency distribution fol-
lows a power-law like distribution and a large number of hashtags
appear only 5 times in our dataset (see Section 4.1).
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Figure 5: Hit rate of the four methods for top-5/top-10 hashtags

5.2 Related Hashtags Discovery
Hashtags are chosen by Twitter users from an uncontrolled vo-

cabulary. For the same event or the same topic, multiple hashtags
might be chosen by users, e.g., #cikm, #cikm14,or #cikm2014 for
the same conference. Hashtags might also be related because of
other types of relationships such as subsumption relation. For ex-
ample the hashtag #sgelections has been used to annotate tweets
related to both the Singapore Parliamentary General Election7 in
May 2011 and the Singaporean Presidential Election8 in August
2011, while a more specific hashtag #sgpresident was also widely
adopted for the latter. Discovering related hashtags helps users in
refining, extending or reformulating hashtag-based queries.

Specifically, given a hashtag h and hashtag vocabulary E, related
hashtag discovery is to locate the top-n hashtags from E (without
h itself) that are most related to h. In this set of experiments, we
evaluate four methods for their effectiveness in finding most related
hashtags of a given hashtag.

Co-occurrence (COO). A straightforward method in finding the
related hashtags is through co-occurrence. If a hashtag h′ often
co-occurs with the given hashtag h in tweet annotation, then h′ is
believed to be related with h.

Content-based Similarity (CBS). Two hashtags are related if they
share similar semantic meanings defined by the sets of tweets an-
notated by them. Given a hashtag h, all tweets annotated by h

combined together form a virtual document. Then the similarity

7
http://en.wikipedia.org/wiki/Singaporean_general_election,_2011

8
http://en.wikipedia.org/wiki/Singaporean_presidential_election,

_2011

Table 4: Kappa scores between three pairs of volunteers (v’s)

Volunteer pair 〈v1,v2〉 〈v1,v3〉 〈v2,v3〉 Average

Kappa score 0.809 0.687 0.672 0.723

Table 5: Precision for related hashtag discovery with the best

result in boldface
Method COO CBS CT SCPM CT SHPM

Precision 0.520 0.681 0.705 0.729

between two hashtags is computed based on the cosine similarity
of the two corresponding virtual documents.

Content- and Topic-based Similarity (CT S). In this method, we
use the topic-based feature representation to enhance the hashtag
similarity computation. More specifically, each hashtag can be rep-
resented by a topic vector, where each dimension is one of the K

topics and is weighted by p(zi |h), 0 ≤ i ≤ K . Let Sc (h,h′) be
the content-based similarity between hashtags h and h′ computed
in CBS, and let St (h,h′) be the cosine similarity between the topic
vector representations of the two hashtags. The CTS similarity be-
tween the two hashtags is: Sct (h,h′) = η × Sc (h,h′) + (1 − η) ×
St (h,h′), where η is a parameter for the combination. The follow-
ing question is: how to compute p(z |h) using the two models?

• In CPM, p(z |h) =

∑
d∈Dh

p(z |d)

|Dh |
where p(z |d) is computed

using Equation 6.

• In HPM, p(z |h) is estimated directly from the model (see
Equation 12).

To summarize, we have four methods for evaluation: COO, CBS,
CT SCPM , and CT SHPM where for the latter two CPM and HPM

denote the model for computing the topic vector for hashtags.
To evaluate the effectiveness of the four methods in finding re-

lated hashtags, we randomly selected 50 hashtags among the top-
500 most popular hashtags to be the query hashtags.9 For each
of the 50 query hashtags, a method returns the top-5 most related
hashtags for manual assessment. In CTS, η is set to 0.6 in our ex-
periments based on observations using a few sample hashtags (not
included in the 50 query hashtags). We employ three volunteers to
label the relatedness of the top-5 hashtags returned by each method
and each hashtag receives a binary score: 0 for not-related and 1
for related. The kappa scores of the agreement between any pair of
the volunteers are reported in Table 4. The average kappa score is
0.723 suggesting substantial agreement between our volunteers.

The average precision for the 50 query hashtags from the three
volunteers is reported in Table 5. Observe that COO results in the
poorest precision. This is because 82.2% of tweets each is anno-
tated with only one hashtag (see Section 4.1). Consequently, there
might be too few co-occurring hashtags for a given query hashtag.
Among the other three methods, which utilize content similarity,
CT SCPM and CT SHPM outperform the method not using topic
vector. This demonstrates that the effectiveness of using topic vec-
tor as additional information in enhancing related hashtag discov-
ery. Observe that CT SHPM achieves the highest precision, prob-
ably because HPM discovers more meaningful topics reflected by
the lowest perplexity (see Section 4.2).

We now use two examples hashtags #prayforjapan and #movies

to illustrate the difference between the most related hashtags found

9Popular hashtags are expected to have higher chances of being co-occurred with other
hashtags.



Table 6: Top-5 most related hashtags to #prayforjapan and

#movies, discovered by the four methods
Method Top related hashtags to #prayforjapan

COO #japan #prayfortheworld #tsunami #fb #sleague

CBS #japan #tsunami #quake #fukushima #japans

CTSCPM #prayfortheworld #japan #helpjapan #godblessjapan #quake

CTSHPM #prayfortheworld #helpjapan #japan #godblessjapan #quake

- Top related hashtags to #movies

COO #imdb #singapore #sg #singaporean #film

CBS #imdb #celebrity #gossip #xinmsn #ryanreynolds

CTSCPM #imdb #movie #mfpgossip #seattle #eastboundanddown

CTSHPM #imdb #movie #sgfilm #trailer #video

by the four methods, listed in Table 6. Among the top-5 most re-
lated hashtags for #prayforjapan found by COO, #fb and #sleague

are not related. All the remaining three methods CBS, CT SCPM ,
and CT SHPM are able to find related hashtags for #prayforjapan.
Interestingly, the two methods with topic-level representation rec-
ommend the same set of hashtags in slightly different orders. An-
other example is #movies. All top-5 hashtags by CT SHPM are
relevant to #movie. The hashtags from the other three methods all
contain some irrelevant hashtags such as #sg, #xinmsn and #east-

boundanddown.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose two PLSA-style topic models to model

the latent relationship between tweet content, user interest, time,
and hashtag at topic-level. We also evaluate the impact of consid-
ering social network regularization based on mention relationship
in Twitter. Through extensive experiments, we show that Hashtag-
Pivoted Model outperforms Content-Pivoted Model in terms of per-
plexity measure. We also show that the social network regulariza-
tion based on mention relationship hurts the performance of both
models. We further demonstrate the effectiveness of the two models
in addressing two practical applications (i.e., retrospective hashtag
annotation and related hashtag discovery). The utilization of both
models improves the effectiveness in addressing both applications
compared to their corresponding baselines.

Recall that the two models follow different assumptions to sim-
ulate the two possible generation processes of hashtag and tweet
content. However, given a tweet, there is no mechanism to predict
which model best reflects the generation process between its hash-
tag and content. Research on such predicting mechanism is part
of our future work. Another piece of future work is to evaluate
the impact of social network regularization to the models based on
other types of user relationships other than mention relationship.
Furthermore, we will continue to apply our models to practical ap-
plications in tweets such as hashtag summarization.
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