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Abstract Influence maximization (im) is the problem
of finding a small subset of nodes (seed nodes) in a
social network that could maximize the spread of influ-
ence. Despite the progress achieved by state-of-the-art
greedy im techniques, they suffer from two key limi-
tations. Firstly, they are inefficient as they can take
days to find seeds in very large real-world networks. Sec-
ondly, although extensive research in social psychology
suggests that humans will readily conform to the wishes
or beliefs of others, surprisingly, existing im techniques
are conformity-unaware. That is, they only utilize an
individual’s ability to influence another but ignores con-
formity (a person’s inclination to be influenced) of the
individuals.

In this paper, we propose a novel conformity-aware
cascade (c2) model which leverages on the interplay
between influence and conformity in obtaining the in-
fluence probabilities of nodes from underlying data for
estimating influence spreads. We also propose a variant
of this model called c3 model that supports context-
specific influence and conformity of nodes. A salient fea-
ture of these models is that they are aligned to the pop-
ular social forces principle in social psychology. Based
on these models, we propose a novel greedy algorithm
called cinema that generates high quality seed set for
the im problem. It first partitions the network into a set
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of non-overlapping subnetworks and for each of these
subnetworks it computes the influence and conformity
indices of nodes by analyzing the sentiments expressed
by individuals. Each subnetwork is then associated with
a cog-sublist which stores the marginal gains of the
nodes in the subnetwork in descending order. The node
with maximum marginal gain in each cog-sublist is
stored in a data structure called mag-list. These struc-
tures are manipulated by cinema to efficiently find the
seed set. A key feature of such partitioning-based strat-
egy is that each node’s influence computation and up-
dates can be limited to the subnetwork it resides instead
of the entire network. This paves way for seamless adop-
tion of cinema on a distributed platform. Our empir-
ical study with real-world social networks comprising
of millions of nodes demonstrates that cinema as well
as its context-aware and distributed variants generate
superior quality seed set compared to state-of-the-art
im approaches.

Keywords Social networks · Influence maximization ·
Conformity · Network partitioning · Greedy algorithm

1 Introduction

Given a social network as well as an influence propaga-
tion (or cascade) model, the problem of influence maxi-
mization (im) is to find a set of initial users of size k (re-
ferred to as seeds) so that they eventually influence the
largest number of individuals (referred to as influence
spread) in the network [22]. Domingos and Richard-
son [32, 35] are the first to study influence maximiza-
tion as an algorithmic problem. Kempe et al. [22] are
the first to consider the problem of choosing the seeds
as a discrete optimization problem. They proved that
the optimization problem is NP-hard, and presented a
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Fig. 1: An example of real-world social network.

greedy approximate algorithm applicable to three pop-
ular cascade models, namely the independent cascade
(ic) model, the weighted cascade (wc) model, and the
linear threshold (lt) model. A key strength of this algo-
rithm is that it guarantees that the influence spread is
within (1− 1/e) of the optimal influence spread where
e is the base of the natural logarithm. However, deploy-
ment of these techniques on large-scale social networks
is infeasible as they have poor efficiency and scalabil-
ity [8]. Recently, several greedy approaches [8, 27, 39]
were proposed to address this issue. While these ap-
proaches have been able to make significant progress in
reducing the computation cost of the im problem, they
still suffer from the following limitations.

– Some of the aforementioned greedy approaches still
take days to find seeds in real-world networks con-
taining millions of nodes [17]. To alleviate this bot-
tleneck, several heuristic-based techniques [6–9, 18,
23] have been proposed which are orders of magni-
tude faster than the greedy approaches. However,
despite the blazing speed of these heuristics-based
techniques, greedy approaches are more reliable as
the former often produces inferior-quality seed set
(detailed in Section 2). Note that seed set quality is
paramount to companies as they would like to max-
imize the influence spreads of their new products.

– All these greedy and heuristic-based techniques as-
sume that the influence probability of an edge −→uv
depends only on node v’s ability to influence u. Typ-
ically, this influence is determined by an indepen-
dent probability (i.e., ic) or a probability propor-
tional to the node degree (i.e., wc) or even a binary
value controlled by a threshold (i.e., lt). Surpris-
ingly, these techniques ignore the conformity of u,
which refers to the inclination of u to be influenced
by others (e.g., v) by yielding to perceived group
pressure and copying the behavior and beliefs of oth-
ers [2–4]. It is well known that humans will readily
conform to the wishes or beliefs of others [2,4]. It was
perhaps a surprise when Solomon Asch [3, 4] found
that people will do this even in cases where they
can obviously determine that others are incorrect.
Although the notion of conformity has been studied
extensively in social psychology [3, 4, 10, 14, 19, 37]
and more recently in neuroscience [13, 24], to the
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Fig. 2: Graph representation of Fig 1.

Table 1: Expected influence size of nodes in Fig. 2.

Model σ(v1) σ(v2) σ(v3) σ(v4) σ(v5)

ic 1.75 1.75 1.5 1 1.875
wc 1.67 1.67 2 1 1.83
c2 1.66 1.66 1.04 1 1.06
c3 (for A1) 1.73 1 1.49 1 1

best of our knowledge, it has not been investigated
in the context of online im problem.

In this paper, we address the above limitations by
proposing a novel greedy approach which is not only
more efficient than state-of-the-art greedy techniques
but it is also conformity-aware. That is, it exploits the
interplay of influence and conformity of nodes in the
underlying network to find high quality seeds efficiently.

1.1 Why Conformity Matters?

Although conformity of human behavior is widely ac-
knowledged by social psychologists, does it influence
the im problem? In this section, we motivate our work
by answering this question affirmatively using an ex-
ample. Consider Fig. 1 which depicts a fragment of a
real-world social network consisting of five individuals.
The label of an edge (e.g., “iPad”) indicates the topic of
conversation between the source and target individuals.
To make it more discernible, part of the conversation is
magnified in the right hand side. An edge pointing from
u to v (−→uv) denotes the influence propagation path with
respect to the topic labeled on the edge. We can rep-
resent this network using the graph depicted in Fig. 2
where each node denotes an individual.

Suppose a company wants to present a free trial ver-
sion of an iPad to one of these individuals such that she
is most likely to recommend her friends to buy an iPad
in the future. That is, we aim to select a single seed
node (k = 1) to propagate a piece of information (e.g.,
iPad). Let us review the seed selection in an existing
conformity-oblivious greedy algorithm under ic model
first. Assume that influence propagates within the net-
work with probability p = 0.5. We need to calculate the
expected influence size for all the nodes and select the
highest one. Let X be the set of edges that are acti-
vated, through which influence propagates, and σX(v)
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Table 2: Nodes’ influence and conformity indices.

Node ID Φ(·) Ω(·) Φ1(·) Ω1(·)
v1 0.68 0.21 0.70 0.17
v2 0.68 0.11 - -
v3 0.18 0.94 0.70 0.70
v4 0.03 0.21 0.17 0.70
v5 0.18 0.11 - -

be the number of nodes that can be reached on acti-
vated edge paths from v. Thus, the expected number
of influenced nodes from v (denoted as σ(v)) can be
expressed as follows [22].

σ(v) =
∑
X

Prob[X] · σX(v) (1)

In the above equation, Prob[X] denotes the proba-
bility that all edges in X are activated. For instance, the
expected influence size of v3 under the ic model can be
computed as σ(v3) = Prob[−−→v3v4 ̸∈ X]×1+Prob[−−→v3v4 ∈
X]×2. As Prob[−−→v3v4 ̸∈ X] or Prob[−−→v3v4 ∈ X] equals to
0.5, σ(v3) is 1.5. Table 1 reports the expected influence
sizes of the five nodes under the ic and wc models (first
two rows). Based on Table 1 we may select v5 (resp. v3)
as the seed under the ic (resp. wc) model as it exhibits
the highest expected influence size.

Unfortunately, this might not be the best choice when
conformity of nodes are taken into account. Specifically,
in real applications the neighbors of a node (e.g., v1
of v5) may exhibit different conformity behavior. Ob-
serve that v5 cannot influence anyone else unless −−→v5v1
is activated. The second and third columns in Table 2
report the influence (denoted by Φ(.)) and conformity
(denoted by Ω(.)) values of all nodes, respectively. Intu-
itively, these values are computed by analyzing the sen-
timents expressed by edges in the underlying network
(detailed in Section 3). Clearly, v5 exhibits very small
influence whereas at the same time v1 exhibits low con-
formity. Note that the lower the conformity of a node
the less likely it is to be influenced by another. In other
words, v1 is not easily influenced by v5. Consequently, in
reality −−→v5v1 is hardly activated during influence propa-
gation! Hence, state-of-the-art im techniques may gen-
erate poor quality seed set as conformity of nodes are
ignored during seed selection.

1.2 Overview & Contributions

In this paper, we present a novel greedy algorithm called
cinema (Conformity-aware INfluEnce MAximization)
to solve the im problem in real-world social networks
by effectively utilizing the interplay of conformity and

influence. Pivotal to cinema is a conformity-aware cas-
cade model (c2) which provides a formal framework to
obtain the influence probabilities by leveraging the in-
fluence and conformity of nodes. A context-aware vari-
ant of this model, namely c3 model, is further proposed
to exploit contextual information (whenever available)
associated with these nodes towards this goal.

cinema first partitions the network into a set of
non-overlapping components (subnetworks) and then
distribute the conformity-aware influence maximization
computation to these components. As shown in [15],
many large real-world social networks are comprised of
a set of clusters, each of which was defined as closely
connected component, a piece of information can eas-
ily spread within the cluster (component) but hard to
propagate from one to another. Hence, a node’s influ-
ence in one component is not significantly affected by
nodes in other components. Consequently, each node’s
influence computation and updates can be limited to
the component it resides in. For each of these sub-
networks, cinema computes the influence and confor-
mity indices of nodes by leveraging an algorithm called
casino [28] (detailed in Section 3).

Next, cinema selects the seed set S from the sub-
networks. Specifically, a node v’s selection into S is in-
fluenced by the conformity indices of the nodes around
v at each iteration. A key challenge in this process is to
determine the subnetworks from which the seeds need
to be selected. To address this issue, inspired by [8,27],
we present an efficient data structure called mag-list
(MArginal Gain List), which stores the candidate node
having maximum marginal gain from each component
in the network and guides us to determine the members
of seed set. mag-list is space-efficient as it only requires
O(ℓ) space complexity, where ℓ is the number of par-
titioned subnetworks. Thus, in contrast to majority of
existing greedy approaches, we do not need to keep the
entire collection of nodes of the network in the memory,
which is prohibitively expensive for very large networks.
Additionally, it provides an efficient framework to up-
date the influence of nodes. Note that whenever a node
is selected into the seed set, some other nodes’ influence
may change as well. Thus, it is important to dynami-
cally update the influence of each node. Particularly,
cinema applies an on-demand update strategy in each
round to update the mag-list. Only when a node in
the mag-list is selected as a potential candidate for the
seed set, cinema updates all the nodes in the compo-
nent gain sublist (cog-sublist) of this node. It is not
necessary to update all nodes in the mag-list.

Observe that due to the partitioning-based strategy
in cinema, the mag-list can be maintained in a cen-
tral machine and the maximization of influence for the
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subnetworks can be distributed into several machines
and computed in parallel. Hence, as we shall see later,
cinema can not only be realized on a single machine
but also easily be adopted on a distributed platform by
leveraging the MapReduce paradigm [12]. This further
reduces the computation time of seed set.

In summary, the key contributions of this paper are
as follows.

– We discuss the roles of influentials and conformers
in the context of social influence analysis and show
how to quantify influence and conformity of each in-
dividual in a social network. Specifically, we propose
an iterative algorithm called casino (Conformity-
Aware Social INfluence cOmputation) that utilizes
signs of social interactions (edges) to compute the
influence and conformity indices of each node in an
arbitrary social network.

– To the best of our knowledge, this is the first im ap-
proach that leverages conformity of nodes to gener-
ate superior quality seeds. It is based on a novel cas-
cade model called conformity-aware cascade model
(c2) which provides a formal framework to obtain
the influence probabilities by taking into account
the indices of nodes computed from casino. More-
over, we propose a context-aware c2 model, called
c3 model, that takes into account the context-specific
influence and conformity of nodes.

– For the first time, we systematically demonstrate
the connection between cascade models deployed
in im problems and social psychology. Specifically,
we prove that both the c2 and c3 models are con-
sistent with the popular social forces principle [25]
as they can degenerate to the latter. We also show
how these models can be extended to align with the
social forces principle by incorporating social forces
exhibited by nodes that are more than a hop away
from a given node (e.g., influence of friend-of-friend
in Twitter or Facebook).

– Departing from several existing centralized, “non-
partitioning-based” solutions to the im problem, we
propose a novel approach that addresses this prob-
lem by partitioning the underlying network into a
set of non-overlapping subnetworks using an exist-
ing network partitioning technique and distributing
influence spreads computation to relevant subnet-
works. Specifically, we present a greedy algorithm
called cinema that efficiently exploits the mag-list
build on top of the partitioned subnetworks to com-
pute the seed set for influence maximization un-
der our proposed model while maintaining superior
quality of the influence spread. Importantly, cin-
ema produces superior quality seed set compared to
existing greedy techniques without compromising on

the computation cost. Note that our solution en-
sures that cinema is not tightly coupled to any spe-
cific partitioning or conformity computation tech-
nique. This enhances generality as well as portabil-
ity of cinema as it can be easily realized on top of
a superior graph partitioning or conformity compu-
tation approach.

– We demonstrate that due to its inherent charac-
teristics, the cinema algorithm can be gracefully
adopted on a distributed platform. We realize this
on a MapReduce framework. This further improves
the running time by an order of magnitude with the
increase in number of slave machines.

– By applying cinema and its distributed variant to
real social networks comprising of millions of nodes,
we show its effectiveness and significant improve-
ment of performance over state-of-the-art methods.

The rest of the paper is organized as follows. In
Section 2 we review related work. In Section 3, we in-
vestigate how to quantify influence and conformity of
nodes in a social networks. In Section 4 we present the
conformity-aware cascade models to study the influence
propagation process with respect to conformity. We for-
mally introduce the partitioning-based influence maxi-
mization problem based on this model in Section 5 and
present an overview of the proposed cinema algorithm.
In Sections 6 and 7 we discuss in detail various key steps
of cinema. A distributed implementation of cinema
on the MapReduce framework is presented in Section 8.
Section 9 presents our exhaustive experimental evalu-
ation. The last section concludes the paper. A shorter
version of this work appeared in [28,29]. The notations
used in this paper are given in Appendix A.

2 Related Work

2.1 Greedy IM Approaches

Domingos et al. [32] proposed a probabilistic method
to predict the number of influenced nodes in a network
by adopting markov random field to study the propaga-
tion of influence. Kempe et al. [22] proved that solving
such a problem is NP-hard. Hence, they proposed an
approximate greedy algorithm based on the fact that
if a greedy maximization algorithm of a submodular
function f returns the result Agreedy, then the follow-
ing holds f(Agreedy) ≥ (1 − 1/e)max|A|≤k f(A). That
is, it can give near optimal solution to the problem of
maximization of a submodular function. Accordingly,
Kempe et al. guaranteed that their greedy algorithm
can achieve influence spread within (1 − 1/e) of the
optimal influence spread. However, the proposed algo-
rithm takes O(knmR) time to solve the im problem
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where n and m are number of vertices and edges in
the network, respectively, and R denotes the number of
rounds of simulation. Note that this is computationally
very expensive for real-world social networks.

Leskovec et al. [27] proposed an algorithm called
celf (Cost-Effective Lazy Forward) that is reported to
be 700 times faster than the one proposed by Kempe
et al. It is also based on the submodular property of
the cascade influence function. They observed that in
each round, in most cases the marginal gain of a node
v, given by σ(v|S) = σ(S∪{v})−σ(S), may not change
significantly between consecutive rounds. So instead of
recomputing the spread for each node at every round
of seed selection, celf performs a lazy evaluation. In
the worst case, during each selection celf needs to re-
compute the marginal gain for all the remaining nodes
resulting in a worst-case time complexity of O(kmRn).

Chen et al. [8] reduced the computation of marginal
gain from O(mn) to O(m). Since in ic model each edge
has the probability p to take effect in the cascade, they
randomly remove each edge in the graph G with prob-
ability 1 − p. In this way, G is separated into pieces
and each piece is the scope of the node v’s influence
spread within it. Thus, computing the marginal gain of
a node will only require a linear traversal of the scope.
Similarly, when the network follows the wc model, each
edge is removed with probability 1 − 1/v.degree. The
influence of each node can be computed by adding the
gain in R iterations of random removal process. Based
on this, the authors proposed the MixGreedy algorithm
which follows the random removal process in computing
the marginal gains and then utilizes the celf approach
for updates. The time complexities of the MixGreedy
approach for the aforementioned two cascade models
are O(kRm) and O(kTRm), respectively, where T is
the number of iterations in gain computation. They
demonstrated that its running time is smaller than celf.

Wang et al. [39] proposed a community-based greedy
solution to the im problem. In order to reduce the run-
ning time, they first detect communities based on the
ic model and then mine the top-k nodes across commu-
nities. A cost function is proposed to optimize the com-
munity assignment in mobile networks. Particularly, the
community detection process takes O(m + nRℓm′ +
kℓRm′) where ℓ denotes the decrease in the number of
communities after the community combination process.
Consequently, it is time consuming in huge networks.
Furthermore, this effort does not consider conformity
of nodes and topic-awareness in influence propagation.
Also, there is a lack of systematic study on whether it
can be realized in a distributed environment.

2.2 Heuristic-based IM Approaches

The running times of the aforementioned greedy ap-
proaches are still large and may not be suitable for very
large social networks. Hence, Chen et al. [8] used de-
gree discount heuristic, where each neighbor of newly
selected seed discounts its degree by one, to improve
the running time (time complexity is O(klogn + m)).
More recently, they proposed pmia technique [7] over
ic model, which selects a limited number of paths that
satisfy a given threshold θ to compute the influence.
The authors demonstrated that pmia improves the in-
fluence spread generated by degree discount by 3.9%-
6.6% over Hep dataset [8]. However, the running time
of pmia is an order of magnitude slower than the de-
gree discount-based technique with time complexity of
O(ntiθ+knoθniθ(niθ+log n)) where tiθ, niθ, noθ are con-
stants decided by θ. The ldag model [9] is similar to
pmia except that it is specifically designed for the lin-
ear threshold model. More recently, Goyal et al. [18]
proposed a heuristic-based approach called simpath in
order to improve the seed quality of ldag by consum-
ing less memory. However, unlike greedy algorithms,
the quality of influence spread of these models are not
guaranteed to be within 63% of the optimal.

Jiang et al. [20] proposed a simulated annealing-
based approach for the ic model. Specifically, two heuris-
tic methods are proposed to accelerate the convergence
process of the algorithm. It initiates the seeds set by
randomly selecting k nodes. In each iteration after-
wards, a node in the current seed set is replaced by
another one which are not in the seeds, thus a new seed
set is formed. If the new seed set can generate better
influence spread than the old one under ic model, the
seed set is updated to the new one. This process is iter-
ated for T times until it converges. The time complexity
of the algorithm is O(Tkd) where d denotes the aver-
age degree of nodes. Experimental results have shown
that the two heuristic methods have similar running
time to the degree discount algorithm but better influ-
ence spread quality. However, the improvement in result
quality is limited (i.e., 3% to 8%).

Chen et al. [6] proposed a model called ic-n which
introduces a quality factor to control the negative opin-
ion propagation probability. In order to maximize the
influence under ic-n model, a heuristic algorithm called
mia-n, which borrows the core idea of pmia, is de-
veloped. It uses the notion of maximum influence in-
arborescence to estimate the influence to an arbitrary
node v from other nodes. Although this approach incor-
porates negative opinions in networks, it assumes that
each node have the same influence and consequently ex-
hibits the same quality factor. However, in real social
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networks individuals may exhibit different probabilities
to express opposite opinions. In fact, the quality factor
to control the negative opinion propagation probabil-
ity can be viewed as a special case of conformity where
an individual negatively follows another. cinema ad-
dresses this problem by computing a pair of influence
and conformity indices for each individual.

Recently, Kim et al. [23] proposed an approximate
im algorithm called ipa under ic model that efficiently
approximates influence by considering an independent
influence path (influence paths between two nodes) as
an influence evaluation unit. A parallelized version of
ipa using OpenMP meta-programming framework was
also proposed that fully utilizes multi-core CPU re-
sources. Empirical results revealed that it can solve the
im problem with competitive processing time and less
memory usage.

cinema differs from the aforementioned approaches
in the following ways. Firstly, our im technique lever-
ages on the conformity of nodes (extracted from real
data) to compute influence probability for estimating
influence spread. Secondly, we partition the network
into a set of non-overlapping subnetworks and distribute
the conformity-aware im problem to relevant subnet-
works to compute the seed set. Note that the time and
space complexities of cinema reduce significantly as
it runs on subnetworks which are often significantly
smaller in sizes compared to the entire network. In con-
trast, as existing techniques (except for [39]) are de-
signed to take the entire network as input for influence
maximization, all the greedy approaches result in high
computation cost due to the gigantic size of many online
social networks. In contrast to [39], instead of design-
ing an ic model-aware community detection method,
we adopt existing network partition models which not
only can be applied to all cascade models but also
exhibit significantly smaller time complexity (O(m)).
Last but not the least, as we shall see later, cinema
can find significantly better quality of seeds as it ex-
ploits both influence and conformity of nodes. Given
the fact that companies may invest months or years in
designing new products, it is paramount to find seeds
that give them opportunity to influence relevant popu-
lation. Even though existing heuristic-based approaches
are significantly faster than greedy strategies, we be-
lieve that companies are willing to wait few hours to
find superior quality seed set as it may have significant
impact on the marketing of products and its profits.

2.3 Action Log-based Approaches

Goyal et al. [16] proposed a supervised im model by
learning the influence probability from action logs. An

action log is a set of triples (u, a, t) which says user u

performed action a at time t. The basic idea is that if
user v takes action a and later on v’s friend u does the
same, then the authors assume that a has propagated
from v to u. They present a learning algorithm that not
only predict the probability for action propagation but
also the time when an action is expected to performed.
Specifically, they introduced the notion of influenceabli-
ity, which is defined as the ratio between the number
of actions for which we have evidence that the user was
influenced, over the total number of actions that have
been performed by the user. Such a ratio is learned from
action logs for each individual user and then utilized to
predict the action propagation.

More recently, they [17] proposed a credit distribu-
tion (cd) model that leverages the historical action logs
to estimate influence spread. It assigns “credits” to the
possible influencers of a node u whenever u performs
an action. The sophisticated variant of this model dis-
tinguishes between different influenceability of different
users by incorporating a user influenceability function.
It is defined as the fraction of actions that u performs
under the influence of at least one of its neighbors (e.g.,
v) and is learnt from the historical log data.

Our approach differs from the above methods in
the following ways. Firstly, influenceability learning re-
quires existence of a large amount of historical action
logs to compute influence probability as well as user in-
fluenceability. Unfortunately, historical action logs may
not be available to end-users in many real-world so-
cial networks. In contrast, cinema does not require any
historical action logs to compute conformity of nodes.
Secondly, the probability of action propagation relies
on the influenceability of the object user who is to be
influenced and independent of the subject user who is
influencing others. In contrast, in our model the proba-
bility of action propagation depends on both the object
and subject users. This leads to relatively superior seeds
set in cinema (an example is given in Appendix B).
Thirdly, in [16] influenceability is leveraged to predict
the node activation time for a propagation instead of in-
fluence maximization. Lastly, no systematic study has
been carried out to relate the notion of influenceabil-
ity to well-known conformity-related concepts in social
psychology to support the validity of the model.

Barbieri et al. [5] extended ic and lt cascade mod-
els to be topic-aware. They assume each item propa-
gated through the network is a mixture of hidden topics.
Then an expectation maximization method is adopted
to learn the topic distribution given the item propaga-
tion logs. However, they only apply the learned topic
on traditional ic and lt models without considering
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the impact of influence and conformity on the influence
propagation process.

2.4 Conformity-related Research

The notion of conformity originated in social psychol-
ogy. It is a type of social influence involving a change in
belief or behavior in order to fit in with a group [2–4].
This change is in response to real (involving the physical
presence of others) or imagined (involving the pressure
of social norms / expectations) group pressure. In social
psychology, there has been extensive study on the issue
of social conformity [2–4,10,14,19,37]. We are inspired
by these conformity studies and utilize it for influence
spread computation in online im problem.

Recently, Tang et al. [38] undertook conformity in-
fluence analysis in large social networks and proposed a
model to model users’ actions and conformity at three
different levels, namely individual, peer, and group. A
distributed learning algorithm is presented to efficiently
learn the proposed model. Specifically, the conformity
is defined and computed using users’ action histories
(e.g., the number of actions for which a user conforms
to another) whereas in cinema we analyze the senti-
ments expressed by individuals to compute individual
conformities. Hence, similar to [16,17], the former can-
not be utilized to compute conformity of individuals for
applications where action logs may not be available to
end users. Furthermore, the authors did not provide any
evidence on how the proposed conformity measures re-
late to well-known conformity-related concepts in social
psychology to justify the robustness of the definitions.
Most importantly, unlike cinema, this effort does not
address the conformity-aware im problem.

3 Influence and Conformity Computation

In this section, we formally introduce the notion of in-
fluence and conformity in the context of signed social
networks and propose the casino algorithm to compute
both indices. We begin by briefly introducing signed so-
cial networks, which lie at the foundation of our pro-
posed strategy.

3.1 Signed Social Networks

Social interactions in online social networks can be ei-
ther positive (indicating relations such as friendship) or
negative (indicating relations such as distrust and op-
position). For instance, in online discussion sites such
as Slashdot, users can tag other users as “friends” (posi-
tive) and “foes” (negative). In blogosphere and Twitter,
the reply relationship among users can be a positive
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Fig. 3: Conformity and negative edge effect.

or a negative one. In our following discussion, we treat
such social interaction as signed directed graph.

In a signed social network G(V,E), each edge has
a positive or negative sign depending on whether it ex-
presses a positive or negative attitude from the genera-
tor of the edge to the recipient [26]. Specifically in this
paper, a positive sign indicates that the recipient sup-
ports the opinion of the generator whereas the negative
sign represents otherwise. For example, Fig. 3(b) de-
picts a signed social network. The positive edge E+ =
{−−→u2v2} represents trust relationship while the negative
ones (E− = {−−−→w20v2,

−−−→u2w21,
−−−→u2w22,

−−−→u2w23}) represent dis-
trust relationships. Note that the signs on the edges
are not always available explicitly. In networks such
as Epinions and Slashdot, the sign of each edge is ex-
plicitly provided. However, in other networks such as
blogosphere and Twitter the sign of each edge is not
explicitly available. In this case, we need to prepro-
cess the network using text mining methods to discover
signs associated with the links (detailed in Section 3.3).
Consequently, a social network G(V,E) containing both
positive and negative edges can be represented using a
pair of graphs G+(V,E+) and G−(V,E−) such that the
following hold.

∀−→uv ∈ E,

{
(−→uv ∈ E+) ∩ (−→uv ∈ E−) = 0,

(−→uv ∈ E+) ∪ (−→uv ∈ E−) = 1

In other words, G+(V,E+) denotes the induced graph
of positive edges E+ (trust/agreement relationship) and
G−(V,E−) denotes that of negative edges E−

(distrust/disagreement relationship).

3.2 Influence and Conformity Indices

In our approach, each individual (vertex) in a signed
network is associated with a pair of influence index
and conformity index to describe the power of influ-
ence and conformity of the individual, respectively. So-
cial psychologists have been using the term conformity
to refer to the act of matching attitudes, beliefs, and
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behaviors to group norms since 1951 [4, 14, 25, 37]. Re-
searchers in social psychology have proposed principles
modeling the ratio of individuals conforming to a group
with respect to the group size, number of neighbors, etc.
However, these works assume that individuals exhibit
exactly the same conformity towards their neighbors,
which may not necessarily be true in reality. More-
over, these approaches neither propose any quantita-
tive method to evaluate the conformity of each individ-
ual nor take into account the negative conformity phe-
nomenon, where an individual may explicitly break the
group norms. In the following, we propose a novel algo-
rithm to compute the conformity and influence indices
for arbitrary social networks. Reconsider the signed net-
work in Fig. 3(b). Intuitively, the influence of v2 should
increase as aggregated conformity of those who trust v2
(i.e., u2) increases. On the other hand, the influence
of v2 should decrease if the aggregated conformity of
those who distrust v2 (i.e., w20) increases. Thus, the
influence index of an individual should capture this in-
terplay of influence and conformity and penalize her
whenever necessary.

Definition 1 [Influence Index] Let G+(V,E+) and
G−(V,E−) be the induced graphs of the signed social
network G(V,E). The influence index of vertex v ∈ V ,
denoted as Φ(v), is defined as follows.

Φ(v) =
∑

−→uv∈E+

Ω(u)−
∑

−→uv∈E−

Ω(u)

where Ω(u) represents the conformity index of vertex
u ∈ V .

Similarly, the conformity index of u2 in Fig. 3(b) de-
pends on the influences of vertices which are trusted or
distrusted by u2. Intuitively, as the aggregated influence
of those vertices which u2 trust (e.g., v2) increases, u2 is
more inclined to conform to others. On the other hand,
when the aggregated influence of vertices which u2 dis-
trust (e.g.,, w21, w22, w23) increases, u2 is less inclined
to conform to others. This intuition is inspired by re-
search in social psychology which advocates that higher
influence of an individual leads to higher conforming
behaviors [11, 34]. To elaborate further, suppose node
u (resp. v) distrusts a group of neighbors, namely Su

(resp. Sv), consisting of k nodes. Assume that the ag-
gregated influence of Su is much larger than that of Sv.
Since more influence can lead to a higher probability of
action propagation [11], each node in Su has a proba-
bility proportional to its influence to activate u. If we
ignore the conformity of users, u (resp. v) will be acti-
vated with probability 1−(1−pu)

k (resp. 1−(1−pv)
k)

where pu (resp. pv) is the influence probability in Su

(resp. Sv). Obviously, u should have higher probability

Algorithm 1: The casino algorithm.
Input: Social network G(V,E)
Output: the influence index

IT = (ΦT(u1), ΦT(u2), . . . , ΦT(uℓ)) and
conformity index
CT = (ΩT(u1), ΩT(u2), . . . , ΩT(uℓ)) for
V = {u1, u2, . . . , uℓ} and for each topic T

1 begin
2 G ← extractSubgraph(G);
3 G = {G};
4 foreach GT ∈ G do
5 if GT is not a signed network then
6 (G+

T (VT, E
+
T ), G−

T (VT, E
−
T ))←

edgeLabel(GT);

7 (IT,CT)←
indicesCompute(G+

T (VT, E
+
T ), G−

T (VT, E
−
T ));

to be activated than v as pu ≫ pv. If we consider this
along with the fact that u and v exhibit different con-
formity and distrust Su and Sv, respectively, then it is
reasonable to assume that u is less inclined to conform
to others compared to v.

Definition 2 [Conformity Index] Let G+(V,E+) and
G−(V,E−) be the induced graphs of the signed social
network G(V,E). The conformity index of vertex u ∈
V , denoted as Ω(u), is defined as follows.

Ω(u) =
∑

−→uv∈E+

Φ(v)−
∑

−→uv∈E−

Φ(v)

Thus, according to the above definition the influence
index of v2 in Fig. 3(b) can be computed as Φ(v2) =
Ω(u2) − Ω(w20). The conformity index of u2 is com-
puted as Ω(u2) = Φ(v2) − Φ(w21) − Φ(w22) − Φ(w23).
Hence, the conformity of u2 is positively affected by
the influence of v2 and negatively by the influences of
w21, w22, and w23. Thus, the above definition for confor-
mity index is in accord with the intuition of conformity.
Observe that the aforementioned definitions of influ-
ence and conformity are mutually dependent on each
other. Consequently, a recursive computation frame-
work is necessary to compute these two indices.

3.3 The Algorithm CASINO

We begin by briefly describing the notion of context-
aware and context-free signed social networks to repre-
sent real-world online networks.

Online social networks can be classified into context-
aware and context-free networks. The former represent
networks where the edges are associated with topics
(context) as social interactions may often involve con-
versations on specific topics. For example, each conver-
sation in Twitter is based on a specific topic. Fig. 1
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Fig. 4: Overview of casino.

depicts interactions between three users on the topic
iPad 2. The leftmost social network in Fig. 4 is an-
other example of context-aware social network where
an edge labeled as T1,T2 indicates that the pair of in-
dividuals communicate with each other on topics T1

and T2. On the other hand, interactions in context-free
networks do not involve specific topics. For example, in
Epinions and Slashdot individuals trust (distrust) each
other regardless of any specific topic.

The casino (Conformity-Aware Social INfluence
cOmputation) algorithm is outlined in Algorithm 1 and
consists of three phases, namely the topic-based sub-
graph extraction phase (Line 3), the edge labeling phase
(Line 6), and the indices computation phase (Line 7).
Fig. 4 depicts an overview of the algorithm. Given a
social network G(V,E), if it is a context-aware network
then the topic-based subgraph extraction phase extracts
a set of subgraphs of G (denoted by G) where each
subgraph GT(VT, ET) ∈ G contains all the vertices and
edges in G associated with a specific topic T. Each sub-
graph GT represents positive or negative attitudes of in-
dividuals toward opinions of others in G with respect to
the topic T. For instance, in Fig. 4, this phase generates
three topic-based subgraphs, namely, GT1 , GT2 , and
GT3 , for topics T1, T2, and T3, respectively. Recall that
edges of a social network may not be explicitly labeled
with positive or negative signs. This is especially true
for context-aware networks (e.g., Twitter). In contrast,
links in many context-free networks (e.g., Slashdot and
Epinions) are explicitly labeled with signs. Hence, it is
important to label the edges in each topic-based sub-
graph GT. The objective of the edge labeling phase is
to assign a sign to each edge by analyzing the senti-
ment expressed by the generator and recipient of the
edge. Fig. 4 depicts the labeling of GT1 . Finally, given
a set of signed topic-based subgraphs G, the goal of
the indices computation phase is to iteratively compute
the influence and conformity indices of each individual
in each GT ∈ G. Observe that a vertex v in G may
have multiple pairs of indices if v is involved in more
than one topic-based subgraph. Since the first phase is
straightforward, we describe the remaining two phases.

Algorithm 2: The edgeLabel procedure.
Input: Topic-based subgraph GT(VT, ET) induced by

topic T,
Output: G+

T (VT, E
+
T ) and G−

T (VT, E
−
T ) such that:

E+
T ∪ E−

T = ET and E+
T ∩ E−

T = ∅
1 begin
2 E+

T = E−
T = ∅;

3 foreach
−−→
uTv ∈ ET do

4 u.sentiment← LingP ipe.sentExtr(u);
5 v.sentiment← LingP ipe.sentExtr(v);
6 if |u.sentiment− v.sentiment| < ϵ then
7 E+

T = E+
T ∪ {

−−→
uTv}

8 else
9 E−

T = E−
T ∪ {

−−→
uTv}

The edge labeling phase. In this paper, we adopt
the method described in Algorithm 2. We denote each
edge −→uv associated with topic T as

−−→
uTv. This enables us

to differentiate between an edge which shares the same
generator and recipient for more than one topic. For
each edge

−−→
uAv in a topic-based subgraph GT, we iden-

tify 5-leveled sentiment (i.e., like, somewhat like, neu-
tral, somewhat dislike, dislike) expressed at both ends
using LingPipe [1], a popular sentiment mining pack-
age adopted in several recent studies [21, 31, 40] (Lines
4-5). Note that LingPipe has been tested to provide
very promising results (i.e., accuracy over 85% in most
cases [21,31]) on sentiment extraction. If the sentiments
at both ends are similar (sentiment similarity threshold
is less than ϵ), we denote the edge as positive (Lines
6-7). Otherwise, we denote it as negative (Lines 8-9).

Indices computation phase. Given a topic T and
topic-based subgraph GT, the preceding phase gener-
ates G+

T and G−
T . Without loss of generality, assume

that there are |G| different topics. Then, we are able to
compute an individual’s influence and conformity in-
dices for each topic (i.e., ΦT(u) and ΩT(u)). We now
elaborate on the algorithm for computing these indices.

Algorithm 3 outlines the strategy for computing a
pair of influence and conformity indices (Φ(u), Ω(u))
for each vertex u. It first initializes the influence index
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Algorithm 3: The indicesCompute procedure.
Input: G(V,E) = G+(V,E+) ∪G−(V,E−)
Output: the influence index

I = (Φ(u1), Φ(u2), . . . , Φ(uℓ)) and conformity
index C = (Ω(u1), Ω(u2), . . . , Ω(uℓ)) for
V = {u1, u2, . . . , uℓ}

1 begin
2 k = 1 /*initialize iteration counter*/ ;
3 foreach u ∈ V do
4 Φk(u) = Ωk(u) = 1

5 while I or C not converged do
6 foreach u ∈ V do
7 Φk+1

0 (u) =
∑

−→vu∈E+

Ωk(v)−
∑

−→vu∈E−
Ω(v);

8 Ωk+1
0 (u) =

∑
−→uv∈E+

Φk(v)−
∑

−→uv∈E−
Φ(v);

9 foreach u ∈ V do
10 Φk+1(u) =

Φk+1
0

(u)√ ∑
v∈V

Φk+1
0 (v)2

;

11 Ωk+1(u) =
Ωk+1

0
(u)√ ∑

v∈V

Ωk+1
0 (v)2

;

12 Ik+1 = (Φk+1(u1), Φk+1(u2), . . . , Φk+1(ul));
13 Ck+1 = (Ωk+1(u1), Ωk+1(u2), . . . , Ωk+1(ul));
14 k = k + 1;

and conformity index of all vertices to be 1 (Lines 1-
4)1. Subsequently, in each iteration it computes them
for each vertex by using the values of the indices in
previous iteration (Lines 6-8) and normalizing these
values using the square root of the summation of all
vertices’ index values (Lines 9-13). The algorithm ter-
minates when all indices converge. We shall now prove
that the proposed algorithm is guaranteed to converge
after a fixed number of iterations n. In other words, the
difference between an arbitrary node’s indices between
n and n+1 rounds of iteration is insignificant and hence
we do not need to consider additional iterations.

Theorem 1 The indicesCompute procedure described
in Algorithm 3 converges.

Proof The proof is given in Appendix C. ⊓⊔

During each iteration, Algorithm 3 traverses all the
edges attached to each node. Hence, the complexity for
running an iteration take O(m′n′) time, where m′ (resp.
n′) is the maximal number of edges (resp. nodes) in
a subgraph. Without loss of generality, assume Algo-
rithm 3 converges after k′ iterations. Thus, time com-
plexity of Algorithm 3 is O(k′m′n′).

Observe that the aforementioned technique can eas-
ily be extended to compute the aggregated indices of an

1We have experimented with different initial values. All strategies
converge to the same results with different number of iterations (see
Appendix D for details).

individual by taking into account the entire social net-
work G over all topics T = 1, . . . , |G|. In this case, E+

and E− in Definitions 1 and 2 are replaced by
∪|G|

T=1 E
+
T

and
∪|G|

T=1 E
−
T , respectively.

4 Conformity-Aware Cascade Model

In the preceding section, we have described how to
quantify conformity behavior of individuals in a social
network. In this section, we formally introduce a novel
cascade model that takes into account conformity of
nodes for influence propagation. We begin by briefly de-
scribing the classical influence maximization (im) prob-
lem that has been considered in the literature.

4.1 Classical Influence Maximization Problem

A social network is modeled as directed graph G =

(V,E), where nodes in V modeling the individuals in
the network and edges in E modeling the relationship
between them. The influence maximization (im) prob-
lem is defined as follows [22].

Definition 3 [Influence Maximization Problem]
Given a social network G(V,E), a specific cascade model
C and a budget number k, the influence maximiza-
tion ( im) problem is to find a set of nodes S in G,
which we call as seed set, where |S| = k such that ac-
cording to C, the expected number of nodes that are
influenced by S (denoted by σ(S)) is the largest. It can
be expressed as follows:

S = argmax
S′⊆V,|S′|=k

σ(S′)

Note that cascade model refers to the model that
defines how a piece of information propagates from an
individual to another in the network. Majority of the
literature on influence maximization have focused on
the independent cascade (ic), weighted cascade (wc),
and linear threshold (lt) models [22] (See Appendix E
for details). The optimum solution to the im problem
is NP-hard for the aforementioned cascade models [22].
However, as remarked earlier, greedy approximation al-
gorithms exist for the optimal solution to be approxi-
mated to within a factor of (1 − 1/e) as long as the
influence function σ(·) is submodular. Let S be a fi-
nite set. Then a function f : 2S → R is submodular if
f(A∪{v})−f(A) ≥ f(B∪{v})−f(B) for ∀A ⊆ B ⊆ S
and v ∈ S. In another word, the marginal gain from
adding an element to a set A is at least as much as the
marginal gain from adding the same element to a super-
set of A. In the case of im problem, σ(·) is submodular,
takes only nonnegative values, and is monotone in the
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sense that adding an element to a set cannot cause f to
decrease. The marginal gain of a node v given the seed
set S is defined as following [22].

Definition 4 [Marginal Gain] Given a cascade model
C, a node v, and the current seed set S, the marginal
gain of v with respect to S, denoted by σ(v|S), is de-
fined as σ(v|S) = σ(S ∪ {v}) − σ(S). That is, σ(v|S)
denotes the increase in the expected number of nodes
that are influenced due to the addition of v in S.

Greedy solution towards im problem works by itera-
tively selecting the node which shows the most marginal
gain for current S. Thus, each time after adding a node
into S, the greedy algorithm has to update each node’s
marginal gain for current S and select the one with the
maximum marginal gain.

4.2 Conformity-Aware Cascade Model

Recall that existing im techniques do not leverage con-
formity of nodes for computing influence probabilities.
We also showed that the presence of an edge between
a pair of node u and v is highly affected by the influ-
ence of u and the conformity of v. Thus, the probability
of influence propagation from u to v is affected by not
only influence of u but also conformity of v. Inspired
by this finding, we define the conformity-aware cascade
(c2) model as follows.

Definition 5 [c2 Model] Let Ai be the set of nodes
that are influenced in the i-th round and A0 = S. Let
M be the adjacency matrix of a social network G(V,E).
For any (u, v) ∈ E ( i.e., M [u, v] ̸= 0) such that u is
already in Ai and v is not yet influenced, v is influenced
by u in the next (i+ 1)-th round with a probability that
is proportional to the product of u’s influence (denoted
by Φ(u)) and v’s conformity (denoted by Ω(v)). Thus,
the probability v ∈ Ai+1 can be computed as:

1−
∏

u∈Ai,M [u,v] ̸=0

(1− Φ(u)Ω(v))

This process is repeated until Ai+1 is empty.

The c2 model is suitable for networks where the in-
fluence and conformity indices are independent of any
specific topic of discussion (e.g., Epinions, Hep). Hence
it is applicable for context-free networks as interactions
in such networks do not involve specific topics. How-
ever, in a context-aware network the influence and con-
formity of nodes are topic-dependent. Thus, we need
to extend c2 model so that it can be applied to such
networks where the influence and conformity indices are
correlated with specific topics. We refer to this model as
conformity and context-aware cascade (c3) model and
is formally defined as follows.

Definition 6 [c3 Model] Let Ai be the set of nodes
that are influenced by topic T in the i-th round and
A0 = S. Let MT be the adjacency matrix of a social net-
work GT(V,ET). For any (u, v) ∈ ET ( i.e., MT[u, v] ̸=
0) such that u is already in Ai and v is not yet influ-
enced, v is influenced by u in the next (i+ 1)-th round
with a probability that is proportional to the product
of u’s influence (denoted by ΦT(u)) and v’s conformity
(denoted by ΩT(v)). Thus, the probability v ∈ Ai+1 can
be computed as: 1−

∏
u∈Ai,MT[u,v]̸=0

(1− ΦT(u)ΩT(v)). This

process is repeated until Ai+1 is empty.

Reconsider the example in Section 1.1. Recall that
v5 (resp. v3) was selected as a seed under the ic (resp.
wc) model. However, this may not be true if we take
into account the conformity of nodes or topics-related
information in the network. The influence and confor-
mity indices of each node is listed in Table 2 (fourth and
fifth columns). Based on Definition 6, Prob[−−→v3v4 ̸∈ X]

can be computed as 1 − (Φ1(v3)Ω1(v4)) = 0.51. Thus,
σ(v3) = 0.51× 1 + 0.49× 2 = 1.49. The expected influ-
ences of the remaining nodes with respect to the topic
“iPad” under c3 model are listed in Table 1 (forth row).
Thus, we should select v1 (instead of v5 or v3) as the
seed when we consider conformity of nodes in a context-
aware network. We shall validate our hypothesis empir-
ically in Section 9.

Theorem 2 Given a social network graph G(V,E), the
influence function σ(·) under c2 (resp. c3) model is sub-
modular.

Proof The proof is given in Appendix F. ⊓⊔

4.3 Implication and Interpretation of c2 and c3

Models in Social Psychology

Existing cascade models (e.g., ic, lt) are defined specif-
ically for online social networks and are tuned to sup-
port algorithms designed for measuring influence. Sur-
prisingly, to the best of our knowledge, there is no
systematic study to connect such models to real-world
principles related to social influence which are endorsed
by the social psychology community. Hence, a key issue
related to our proposed conformity-aware models is that
whether they are aligned with well-known conformity-
related principles in social psychology? In this section,
we provide answer to this question affirmatively.

In social psychology there has been a host of study
investigating social impact [25] between individuals within
a social network. A well-known principle of social im-
pact states that when some number of social sources
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are acting on a target individual, the amount of so-
cial forces experienced by the target should be a mul-
tiplicative function of the strength S, the immediacy
I, and the number of sources N present [25]. That is,
F = f(S × I ×N). Here the strength S represents the
power, importance, or intensity of a source to the tar-
get and the immediacy I represents the closeness in
space or time. In the following, we prove that both our
proposed c2 and c3 models are consistent with this so-
cial forces principle by degenerating these models to the
aforementioned principle, F = f(SIN).

According to Definition 5, v is influenced with prob-
ability 1−

∏
u∈Ai,M [u,v]̸=0

(1− Φ(u)Ω(v)). In fact, the prob-

ability of v to be influenced can be viewed as a variation
of social forces v experienced, thus,

1− F =
∏

u∈Ai,M [u,v]̸=0

(1− Φ(u)Ω(v)).

Hence,

ln (1− F ) =
∑

u∈Ai,M [u,v] ̸=0

ln (1− Φ(u)Ω(v)).

Let αj , β denote Φ(u), Ω(v) respectively, then the above

equation is ln (1− F ) =
N∑
j=1

ln (1− αjβ), where N =|

{u|u ∈ Ai,M [u, v] ̸= 0} | . Thus,

F = 1− exp(
N∑
j=1

ln (1− αjβ)).

If we assume all individuals exhibit similar influence
index α then the above equation degenerates to the
following form

F = 1− exp(N ln (1− αβ))

.
Observe that the above equation is consistent with

social forces principle F = f(SIN) as ln (1− αβ) in
fact evaluates the importance and intensity of a source
to the target, namely S. Hence, our models are consis-
tent with the social forces principle in social psychology.

4.4 Immediacy-aware Cascade Models

Observe the differences between the social forces prin-
ciple F and our proposed models. Firstly, both c2 and
c3 models assume that different individuals exhibit dif-
ferent degree of influence on the target node, which is
more realistic in real-world social networks. Secondly,
they only consider source nodes which are immediate
neighbors to the target node limiting the immediacy I

to 1. That is, we do not consider nodes that are more
than a hop away from the target node (I ≥ 1). At first
glance, it may seem that such assumption is justified
in online social networks as two nodes that are more
than one hop away from each other may not have influ-
ence between them. While this may be true for many
cases, it is indeed possible to be influenced by individ-
uals more than a hop away. For example, in social net-
working sites such as Facebook and Twitter it is possible
for one to view a friend-of-friend’s comments or posts
(depending on the privacy settings) and be influenced
although there is no direct friendship (edge) between
them. Hence, in this section we extend c2 and c3 mod-
els by incorporating effects of nodes with I ≥ 1.

Definition 7 [ic2 Model] Let Ai be the set of nodes
that are influenced in the i-th round and A0 = S; let
M be the adjacency matrix of a context-free social net-
work G(V,E). For any (u, v) ∈ E ( i.e., M [u, v] ̸= 0)
such that u is already in Ai and v is not yet influenced,
v is influenced by u in the next (i + 1)-th round with
a probability that is proportional to Φ(u)Ω(v). More-
over, for any node u′ ∈ Aj , (j < i) and M i−j [u′, u] ̸= 0

( i.e., u is reachable from u′ which is (i−j)-hops away),
v is influenced by u′ with a probability ej−iΦ(u′)Ω(v).
Hence, v is influenced by u and all u′ with a probability∑
Mi−j [u′,u] ̸=0

ej−iΦ(u′)Ω(v). Especially, when j = i, the

matrix M i−j is an identity matrix and M i−j [u′, u] ̸= 0
if and only if u′ = u. Thus, the probability v ∈ Ai+1

can be computed as:

1−
∏

u∈Ai,M [u,v] ̸=0

(1−
∑

Mi−j [u′,u]̸=0,j∈[0,i]

ej−iΦ(u′)Ω(v)).

This process is repeated until Ai+1 is empty.

In fact, the above model is a more generalized form
of the c2 model which takes into account social forces
exhibited by nodes that are more than 1-hop away.
Hence, it is identical to the social forces principle F =

f(SIN) as ej−i can be interpreted as the immediacy
between source and target nodes. In particular, the ic2

model degenerates to the c2 model when the distance
between u, v (i.e., (i+ 1− j)) is 1 (i.e., i = j).

Similarly, it is intuitive to generalize the c3 model
to ic3 model by taking into account the immediacy in
context-aware subgraphs as follows.

Definition 8 [ic3 Model] Let Ai be the set of nodes
that are influenced by topic T in the i-th round and
A0 = S; let MT be the adjacency matrix of a context-
aware social network GT(V,ET). For any (u, v) ∈ E
( i.e., MT[u, v] ̸= 0) such that u is already in Ai and v

is not yet influenced, v is influenced by u in the next
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(i + 1)-th round with a probability that is proportional
to ΦT(u)ΩT(v). Moreover, for any node u′ ∈ Aj , (j < i)
and M i−j

T [u′, u] ̸= 0 ( i.e., u is reachable from u′ which
is (i−j)-hops away), v is influenced by u′ with a proba-
bility ej−iΦT(u

′)ΩT(v). Hence, v is influenced by u and
all u′ with a probability

∑
Mi−j

T [u′,u] ̸=0

ej−iΦT(u
′)ΩT(v).

Thus, the probability v ∈ Ai+1 can be computed as:

1−
∏

u∈Ai,MT[u,v]̸=0

(1−
∑

Mi−j
T [u′,u] ̸=0,j∈[0,i]

ej−iΦT(u
′)ΩT(v))

This process is repeated until Ai+1 is empty.

Observe that the ic2 (resp., ic3) model theoreti-
cally demonstrates that it is possible to generalize the
c2 (resp., c3) model, if necessary, to align it to the
aforementioned social forces principle. Interestingly, in
Section 9 we shall empirically demonstrate that in on-
line social networks both these types of models tend to
generate similar seed sets. That is, the impact of nodes
more than one hop away is not significant in represen-
tative networks as far as seed set quality is concerned.
Thus c2 (resp., c3) model is a good approximation of
the ic2 (resp., ic3) model in im task by removing un-
necessary computation on distant neighbors. It is worth
noting that given the dynamic nature of social net-
works, we may leverage ic2 (resp., ic3) model if the
influence of friend-of-friend becomes significant (espe-
cially in the context of certain topics).

In summary, our ic2 (resp., ic3) model is not only
well-aligned with social forces principle in social psy-
chology but collectively with c2 (resp., c3) model it
gives us the flexibility to use appropriate model for the
im problem depending on the influence characteristics
of the underlying dynamic network.

5 Overview of CINEMA

We now have all the machinery in place to facilitate
conformity-aware influence maximization in social net-
works. In this section, we give an overview of key steps
of the Algorithm cinema, designed towards this goal.
For ease of exposition, we assume that the social net-
work is context-free. Hence, the topic-based subgraph
extraction phase of casino is disabled. We begin by
formally define the partitioning-based influence maxi-
mization problem.

5.1 Partitioning-Based IM Problem

Existing greedy approximation algorithms consume sig-
nificant time on updating the marginal gains of the top
nodes in the list and their rearrangements [8, 22, 27].

Hence, avoidance of unnecessary updates of marginal
gains along with reduction of the size of the node list
can reduce the computation cost significantly. We achieve
this by taking a partitioning-based approach where the
whole social network is partitioned into a set of non-
overlapping subnetworks. By doing so, we ensure that
changes to the marginal gain of a node in a subnet-
work Gi do not affect nodes in another subnetwork Gj .
Hence, the update of the marginal gains of nodes in Gi

is restricted within it instead of the entire network. In
fact, as we shall see later, the computation time of the
update operation is reduced by a factor of m/mi where
mi represent the number of edges in Gi.

Definition 9 [Partitioning-based Influence Max-
imization Problem] Given a budget k and a social
network G(V,E), let Γ = Partition(G) be the parti-
tions of G containing a set of subnetworks where V =
V1 ∪ V2 ∪ . . . ∪ V|Γ |, Vi ∩ Vj = ∅ ∀ i ̸= j, 0 ≤ i, j < |Γ |,
and (u, v) ̸∈ E for ∀ u ∈ Vi, v ∈ Vj. Let each Gi exhibits
a specific cascade model Ci. Then the partitioning-
based influence maximization problem finds a set
of seeds S in Γ where |S| =

∑|Γ |
i=1 |Si| = k such that

the expected number of nodes that are influenced by S
is the largest in G. That is,

S = argmax∑
|Si|=k

∑
Si⊆Vi

σ(Si)

Observe that in the aforementioned definition we
theoretically generalize the problem by adopting differ-
ent influence models in different subnetworks. Clearly,
it can also handle the case where different subnetworks
have the same cascade model (e.g., c2 model) to reflect
many real-world applications.

Theorem 3 Given the social network graph G(V,E)
and Γ = Partition(G), if the influence function σi(·)
for each of the cascade model Ci of Gi ∈ Γ is submod-
ular, then σ(S) in Definition 9 is also submodular.

Proof The proof is given in Appendix G. ⊓⊔

Observe that Theorem 3 states that if the influence
functions within each partition are submodular, then
we have the usual (1 − 1/e) guarantee for the solution
quality for the partitioned network. Obviously, due to
edge cuts during partitioning, it does not indicate that
the partitioning-based solution will have the (1 − 1/e)
guarantee for the original optimization problem defined
on the whole network. In spite of this, as we shall see
later, our empirical results on variety of real social net-
works demonstrate that cinema consistently produces
superior quality spreads compared to the conventional
greedy approaches having (1− 1/e) guarantee.
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Algorithm 4: The cinema algorithm.
Input: Graph G(V,E), budget k, and the cascade

influence function σ(·)
Output: Seed set S of nodes, |S| = k

1 begin
2 Γ ← NetworkPartition(G);
3 foreach Gi ∈ Γ do
4 (Gi, (Φi(·), Ωi(·)))←

ComputeConformity(Gi) /* Alg. 1 */;

5 (M, Υ ) ← MAGConstruction(Γ , σ(·), Φi(·),
Ωi(·));

6 S ← SeedsSelection(G, k, σ(·),M, Υ , Φi(·),
Ωi(·));

Finally, we propose a theoretical analysis of how
an arbitrary node’s influence spread quality is effected
in a partitioning-based im method compared to non-
partitioning approaches. The main factor that affects
the influence spread quality in partitioning-based method
is that some edges maybe cut such that a group of
nodes’ expected influence may thus be discounted.

Theorem 4 Let χ(V ) be the maximal loss of expected
influence of a node v in G(V,E) due to the employ-
ment of a partitioning-based im technique ( i.e., χ(V ) =

max
v∈V

(σ0(v)− σ(v))). Then

max
mi∈∆

pmiσ(v
e
i ) ≤ χ(V ) ≤

∑
mi∈∆

pmiσ(v
e
i )

where σ0(v) is the expected influence of v if partitioning
is not employed, ∆ is the set of cut edges and vei is the
end node of a cut edge mi ∈ ∆.

Proof The proof is given in Appendix H. ⊓⊔

5.2 Algorithm CINEMA

The cinema algorithm is outlined in Algorithm 4 and
consists of four phases, namely the network partition-
ing phase (Line 2), the conformity computation phase
(Lines 3-4), the mag-list construction phase (Line 5),
and the seeds selection phase (Line 6).

Phase 1: The network partitioning phase. For
any cascade model, influence always flows along edges
in the social network graph. Hence, if there is no path
between two nodes then it is not possible for influ-
ence to flow between these nodes. In this phase, we
first partition the social network graph to a set of non-
overlapping connected components (also referred to as
subnetworks). As each component is unconnected to an-
other component, the influence computation in a sub-
network is not affected by other subnetworks or com-
ponents.
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Fig. 5: The structures of mag-list and cog-sublists.

Note there are several existing techniques to gener-
ate disjoint dense connected components from a graph
efficiently [36]. We take the bfs (Breadth First Search)-
based strategy to traverse the graph and extract the
connected components. The running time of this pro-
cess is O(m+ n). Note that some real-world networks
(e.g., LiveJournal) are highly clustered and cannot be
easily separated into a set of non-overlapping subnet-
works using the bfs technique. Particularly, the bfs-
based method may generate components having m′ ≈
m for these networks. In this case, we partition the net-
work into non-overlapping components using a ℓ-way
partitioning algorithm provided by cluto2 [36]. In Sec-
tion 9, we shall justify choosing this graph partitioning
algorithm over several existing ones. Given the num-
ber of partitions ℓ as input, it can provide good quality
partitions in O(m) time. Note that such partitioning
process may inevitably remove some edges in the net-
work. However, as graph partitioning algorithms often
minimize the size of edge cuts, the removal of edges does
not have significant adverse effect on the estimation of
influences of nodes in comparison to existing greedy ap-
proaches. In fact, our experimental results in Section 9
demonstrate that for these networks cinema can still
preserve high quality seed set.

In summary, we undertake the following strategy
for partitioning the social network graph. If the net-
work can be easily clustered into non-overlapping com-
ponents by bfs-based method such that m′ ≪ m, then
we create the final subnetworks based on this strat-
egy. However, if the bfs-based method fails to generate
disjoint components or there exists components after
partitioning such that m′ ≈ m, then we adopt the ℓ-
way partitioning technique to generate the set of non-
overlapping subnetworks.

2
glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Phase 2: The conformity computation phase.
In this phase, we use the casino algorithm (Section 2.4)
to compute the influence and conformity indices of the
nodes in each subnetwork generated from the preceding
phase. Note that these indices will be used to compute
the influence probabilities based on our conformity-aware
cascade models. It is worth mentioning that cinema is
not tightly coupled to any specific conformity computa-
tion technique and as a result its benefits can be realized
on any superior conformity computation approach.

Phase 3: The mag-list construction phase. In
contrast to the strategy of lazily updating the marginal
gains of nodes existing in a single set, in cinema the up-
date of marginal gains needs to be carried out within
each node set representing each subnetwork indepen-
dently. Given that there may be a large number of
subnetworks, how can we efficiently perform the up-
date operations? Inspired by [8, 27], in this phase we
construct two data structures, namely mag-list and a
set of cog-sublists over the subnetworks, that enable
us to efficiently determine which subnetwork the next
seed should be selected from and how to effectively
perform updates of marginal gains across subnetworks.
Informally, a mag-list contains nodes with maximum
marginal gain in the subnetworks. Each cog-sublist is
associated with a subnetwork or component and stores
the marginal gains of all nodes in the subnetwork. We
shall elaborate on this phase in Section 6.

Phase 4: The seeds selection phase. Lastly, this
phase exploits the mag-list to compute the seed set
from the set of subnetworks (Section 7). It iteratively
selects the node having maximum marginal gain from
the mag-list and, if necessary, efficiently updates and
reorders nodes in relevant cog-sublists dynamically.

6 MAG-List Construction

In this section, we present the mag-list (MArginal Gain
List) data structure which we shall be exploiting for the
influence maximization problem. We begin by introduc-
ing the notion of component gain sublist (cog-sublist)
which we shall be using to define mag-list. Given a
subnetwork Gi(Vi, Ei) where Gi ∈ Γ , the component
gain sublist of Gi, denoted by βi, contains the list of
nodes Vi. Each node v ∈ βi and v ∈ Vi is a 3-tuple
(ID, gain, valid) where ID is the unique node identi-
fier of v in G, gain is the marginal gain with respect to
Si, and valid is a boolean variable indicating whether
the marginal gain of v is up-to-date. The list is sorted
in descending order based on the marginal gains of the
nodes. Hence, the node with maximum marginal gain
is the top element in the sublist, denoted by top(βi).
The size of cog-sublist is denoted by |βi| = |Vi|. Note

Algorithm 5: The MAGConstruction Algorithm.
Input: Non-overlapping subnetworks Γ =

{G0(V0, E0), G1(V1, E1), . . . , Gℓ−1(Vℓ−1, Eℓ−1)}
of the social network graph G(V,E), the
cascade influence function σ(·), the influence
and conformity indices (Φ(v), Ω(v)) for all
v ∈ V .

Output: mag-listM and a set of cog-sublists of Γ
denoted by Υ .

1 begin
2 initialize the mag-listM of size ℓ;
3 foreach Gi(Vi, Ei) ∈ Γ do
4 initialize cog-sublist βi;
5 foreach v ∈ Vi do
6 v.valid = 0;
7 βi.append(v);

8 Υ.add(βi);

9 for iter = 1 to R do
10 for i = 0 to ℓ− 1 do
11 compute G′

i(Vi, E′
i) by removing each

edge −→uv from Gi(Vi, Ei) with probability
1− Φ(u)Ω(v);

12 foreach v ∈ Vi do
13 v.gain+ = σi(v);

14 for i = 0 to ℓ− 1 do
15 sort(βi) by βi.gain in descending order;
16 top(βi).valid = 1;
17 M[i] = top(βi);

18 return (M, Υ )

that since a social network graph is partitioned into a
set of non-overlapping subnetworks, each subnetwork is
associated with a cog-sublist.

Informally, a mag-list, denoted by M, contains a
list of nodes where each node represents the node with
maximum marginal gain in a cog-list. Note that the
size of M is the number of non-overlapping subnetworks
or components generated from the social network graph
G. Fig. 5 depicts an example of the structures of cog-
sublists and mag-list.

Definition 10 [mag-list] Given the social network graph
G(V,E), let Γ = Partition(G) where |Γ | = ℓ. Then,
the mag-list, denoted by M, is a list of nodes of size
ℓ where M[i] = top(βi) ∀ 0 ≤ i < ℓ.

To facilitate the discussions on algorithms, we as-
sume some auxiliary functions of nodes. Given a node
v, append(v) and remove(v) append and remove v from
a node set or cog-sublist, respectively. Algorithm 5 out-
lines the mag-list construction algorithm. For each sub-
network Gi(Vi, Ei) it first initializes a cog-sublist βi

and populates it by setting the valid attributes of the
nodes to 0 (Lines 3-8). Next, for nodes in each subnet-
work Gi it computes the marginal gains based on the
proposed cascade model and assigns them to the list of
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Algorithm 6: The SeedsSelection Algorithm.
Input: Graph G(V,E), the budget k, the cascade

influence function σ(·), the influence and
conformity indices (Φ(v), Ω(v)) for all v ∈ V ,
mag-listM and cog-sublist βi for
i = 0, . . . , ℓ− 1

Output: Seed set S of nodes, |S| = k
1 begin
2 while

∑ℓ−1
i=0 |Si| < k do

3 v′ =M[r] = argmax
v∈M

(v.gain);

4 if v′.valid == 1 then
5 Sr.append(v′);
6 V.remove(v′);
7 Vi.remove(v′);
8 βr.remove(v′);

9 else
10 update(βr,G(Vr, Er),σ(·), Φ(·), Ω(·)) /*

Alg. 7 */;

11 M[r] = top(βr);

12 return S =
∪ℓ−1

i=0 Si;

nodes in βi (Lines 9-13). The nodes in βi are sorted in
descending order of their marginal gains (Line 15). We
set the valid attributes of all top(βi) to 1 as in the first
iteration their marginal gains equal to their influences
(Line 16). Lastly, the algorithm constructs the mag-list
M by inserting the top element top(βi) of each βi (Line
17). Note that the mag-list construction requires only
a linear traversal over the cog-sublists.

7 Seeds Selection

Let us first illustrate the seeds selection phase intu-
itively with the example in Fig. 5. The mag-list M
contains the nodes v5, v4, and v9. In the first round of
iteration, we select the node having maximum marginal
gain from the mag-list (i.e., v5) as a candidate. We
check if its gain is up-to-date (valid field is 1). Recall
from Algorithm 5, the top node in each cog-sublist is
marked as valid. That is, the marginal gains of all nodes
except the top one in a cog-sublist is set to 0 (not up-
to-date). Thus, v5 is valid in this round. We insert it
into S and remove it from G and the cog-sublist β0.
Now v1 moves to the top of β0 and hence it is copied
to M[0]. In the next round, assume that v1 is the node
with the maximum marginal gain in M and hence is
selected as a candidate. However, v1’s gain is not up-
to-date. Consequently, we need to update v1’s gain as
it may change due to addition of v5 in S. The update
process works as follows. We recompute the marginal
gain of v1 in β0 and check whether v1’s gain is still the
highest. If it is, then we mark v1 as valid. Otherwise,
we move v1 to the correct position in the cog-sublist

Algorithm 7: The update Algorithm.
Input: cog-sublist βr = [v1, v2, . . . , vj ], Subnetwork

Gr(Vr, Er), the influence and conformity
indices (Φ(v), Ω(v)) for all v ∈ V and the
cascade influence function σr(·).

Output: Updated cog-sublist βr whose top node’s
top(βr).valid = 1

1 begin
2 for iter = 1 to R do
3 compute G′

i(Vi, E′
i) by removing each edge −→uv

from Gi(Vi, Ei) with probability 1−Φ(u)Ω(v);
4 top(βr).gain+ = σr(top(βr))

5 if top(βr).gain ≥ βr[1].gain then
6 top(βr).valid = 1;

7 else
8 foreach i = 1 to j − 1 do
9 if βr[i− 1].gain < βr[i].gain then

10 t = βr[i− 1];
11 βr[i− 1] = βr[i];
12 βr[i] = t;

13 return βr;

β0 to ensure that the list remains sorted in descend-
ing order. After the update is completed, we select the
next candidate for the next round. The seed selection
process terminates when there are k nodes in S.

Algorithm 6 outlines the aforementioned intuition
for finding the seed set using the mag-list. It iteratively
selects from the mag-list the node v′ having the maxi-
mum gain as a candidate (Line 3). Then the algorithm
checks whether the v′’s gain is updated by evaluating
its valid field (Line 4). If it is already updated, then it
inserts v′ into Sr. Next, it removes v′ from the cog-
sublist βr as well as G and continue to the next round
(Lines 5-8). Otherwise, the candidate node’s gain is not
up-to-date. Consequently, the algorithm updates v′’s
marginal gain and reorders βr by invoking the update
procedure (Lines 10), which we shall elaborate later.
Then it updates M[r] using the top element top(βr)
(Line 11). The algorithm terminates when there are k

nodes in S.

7.1 On-demand Update

Algorithm 7 outlines the update strategy of cinema. In
order to speed up seeds selection, we propose a strategy
that dynamically updates a specific cog-sublist only
when it is demanded. We refer to this strategy as on-
demand update. Observe from Algorithm 6 only when a
node is selected to be a candidate for S and its marginal
gain is not up-to-date with respect to the current S,
the update process is invoked for a specific cog-sublist
βr (Line 10 in Algorithm 6). Consequently, a node’s
marginal gain is not always guaranteed to be valid. In-
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stead, it is updated only when demanded. The algo-
rithm recomputes the marginal gain of top(βr) based
on c2 (resp. c3) model (Lines 2-4 in Algorithm 7). Ob-
serve that we only need to recompute G′

r by random
removing edges for R iteration when v ∈ Vr is selected.
In contrast, state-of-the-art greedy approaches [8] iter-
atively recompute it over the whole network G for R

times after selecting a node into the seed set. That is,
it takes O(Rm) operations. Instead, as we have limited
the update of the marginal gain to a subnetwork Gr,
the time complexity for selecting a node improves to
O(Rmr) (i.e., mr is the number of edges in the subnet-
work Gr).

Next, it checks whether top(βr) still achieves the
highest marginal gain in βr (Line 5). If it does, then
the node’s valid field is set to 1 (Line 6). Otherwise,
it reorders cog-sublist βr by moving the top element
towards the tail to a proper position j such that βr[j−
1].gain > βr[j].gain > βr[j + 1].gain (Lines 8-12). Ob-
serve that our reordering strategy (Lines 5-12) is similar
to that of celf [27]. Finally, the algorithm returns the
cog-sublist βr.

For example, consider the aforementioned scenario
in Fig. 5. As discussed earlier, we have selected the first
seed v5. In the next round of seed selection, v1 is the
node with the highest marginal gain. As its gain is not
up-to-date, v1 and β0 are updated. During the update,
the gain of v1 changes to 0 with respect to the seed
S = {v5}. Consequently, the algorithm reorders v1 in
β0 to the tail as it has the least marginal gain.

The aforementioned update strategy makes sense in
our partitioning-based im problem as the gains of ele-
ments in a cog-sublist are not affected by other cog-
sublists, which results from the fact that a node v is
only connected with other nodes in v’s cog-sublist.
Thus, if v is considered to be selected for the seed set S
then it will only affect the marginal gain of those nodes
that belong to the same cog-sublist as v. The marginal
gain of nodes in other cog-sublists are not affected and
need not to be updated. Observe that in cinema only
the global mag-list and a specific cog-sublist are kept
in the memory at an arbitrary timepoint. Hence, the
memory required for cinema is only O(n′) where n′

denotes the number of nodes in the largest component.
Consequently, it is more efficient than several existing
algorithms [8,22,27] which have O(n) space complexity.

7.2 Synchronized Update

An alternative update strategy, which we refer to as
synchronized update, guarantees that the nodes in mag-
list are all up-to-date. That is, in this strategy we up-
date all the gains of nodes in βi whenever an update

happens for βi. Thus, in each iteration M[i].valid is al-
ways guaranteed to be 1 and we can directly select the
best node from M and update the corresponding cog-
sublist βi. For instance, reconsider the aforementioned
example. Based on synchronized update strategy, we do
not need to wait for checking v1’s valid field. Instead, we
update β0 as soon as v5 is inserted into S, guaranteeing
that the nodes in the mag-list are all valid. Although,
this strategy may avoid unnecessary selection of candi-
date nodes from M, it introduces significant amount of
updating and reordering of the cog-sublist.

Theorem 5 The time complexity of cinema is
O(k′m′n′ + kTRm′) where k′ is the number of itera-
tions in casino in Algorithm 1.

Proof The proof is given in Appendix I. ⊓⊔

8 cinema on Distributed Platform

We now discuss how cinema can be elegantly adopted
on a distributed and parallel environment. We utilize
Hadoop3, which is an open source project maintained
by Apache Software foundation and has been widely
used in the research of distributed computing [30].

We first partition a large social network graph into
subnetworks and distribute each subnetwork to a pro-
cess node (i.e., slave machine). In each subnetwork,
there is a cog-sublist storing the expected influence
for the nodes within the local subnetwork in descend-
ing order. The partitioning of the social network graph
results in ℓ non-overlapping subnetworks. As a node in
one subnetwork cannot influence nodes in another sub-
network, the marginal gain computation and reorder-
ing of nodes in different subnetworks can run in par-
allel. Ideally, we should distribute ℓ subnetworks to ℓ
slave machines. However, due to the limitation of com-
puting resources, we distribute the subnetworks into q
slaves (q < ℓ), each of which contains a set of subnet-
works. Furthermore, we store the mag-list in a master
machine, and the cog-sublists are distributed into sev-
eral slave machines. Each slave machine is in charge of
recomputing the marginal gain in one or more subnet-
works and outputs the updated top nodes. For ease of
explanation, assume that a subgraph Gi is distributed
to i-th slave machine and thus the map stage and the
reduce stage can be defined as follows.

In the map stage, each process node scans Gi, up-
dates the corresponding cog-sublist and selects the node
with the most expected influence in Gi according to Al-
gorithm 7. Note that this computation is independent
of other subgraphs and thus it can be run iteratively

3
http://hadoop.apache.org/core/
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and continuously. Thus, the map function is defined for
each node u in Gi. It issues an intermediate key/value
pair ((u, σi(u)), (i, j)) where j is the order of u in the
cog-sublist.

In the reduce stage, each process node collects all
values associated with an intermediate key to generate
a list of candidate seeds, namely the mag-list. Thus,
the reduce function in each process node is defined for
each intermediate key/value pair ((u, σi(u)), (i, j)) and
works as follows. It collects all available intermediate
key/value pairs ((u′, σi′(u

′)), (i′, j′)) for i′ ̸= i and ranks
them according to the expected influence (i.e., σi(u)
and σi′(u

′)), the result of which is denoted as r. Then,
the output for reduce stage is key/value pairs
((u, σi(u)), r+ j−1). The combinations over all output
for the reduce task constructs the final list of selected
seeds (i.e., mag-list).

Note that due to the aforementioned strategy, the
selection of nodes from mag-list is independent of the
updating and reordering of cog-sublists. Moreover, the
updating and reordering of cog-sublists are also inde-
pendent of each other. Consequently, selection of nodes
from the mag-list as well as updating and reordering of
a cog-sublist can be processed in parallel.

9 Performance Study

cinema is implemented in Java. Note that there is no
existing im algorithm that is conformity-aware. Nev-
ertheless, since our goal is to demonstrate that our
proposed technique produces superior quality influence
spread without sacrificing running time compared to ex-
isting greedy approaches, we confine ourselves to com-
pare cinema against state-of-the-art ic model-based im
techniques [5,6,8,22]. For fair comparison we implement
all the algorithms in Java. We run all experiments on
3.2GHz Quad-Core machines with 16gb ram, running
OS X Mountain Lion.

9.1 Experimental Setup

We use four real-world context-free social network graphs
for our experiments (see Appendix J for statistics). Phy
and Hep are two academic collaboration networks from
the paper lists in two different section of the e-print
arXiv. Each node in the network represents an author,
and the number of edges between a pair of nodes is
equal to the number of papers the two authors col-
laborated. The Hep network is from the “High Energy
Physics - Theory” section with papers from 1991 to
2003. The Phy network represents the full paper list
of the “Physics” section4. Note that these datasets are

4Net and Phy are downloaded from http://research.microsoft.

com/enus/people/weic/graphdata.zip.

also used in several prior studies such as [7,8,18,22,27].
The Wiki-talk5 is a large network containing millions
of nodes representing all the users and discussions in
Wikipedia from its inception to January 2008. Nodes in
the network represent Wikipedia users and edges rep-
resent talk page editing relationship. Lastly, the Live-
Journal6 is an on-line community with almost 10 mil-
lion members; a significant fraction of these members
are highly active [23].

We use the Twitter dataset to investigate the perfor-
mance on a context-aware network (see Appendix J for
statistics). The dataset was crawled using the Twitter
api 7 during Dec 2010 to Feb 2011. We extracted top
20 trends keywords at hourly duration and retrieved up
to 1500 tweets for each trend. Then we identified the
relationships between all tweets in the dataset. Note
that we remove non-English tweets (using Twitter api).
In order to compute accurate influence and conformity
indices, we need to have large context-aware network.
We removed spam trend keywords which contain only
meaningless IDs. Thus, we selected top 492 trends that
contain more than 1,000 tweets to compute the indices.
For each trend (topic), we identified all tweets associ-
ated to it. Then the edges connecting different tweets
using the ‘@’ tag are extracted and their signs are as-
signed as positive or negative. Additionally, there ex-
ists another tag ‘RT’ in many tweets indicating that a
tweet author supports another author’s opinion by re-
tweeting it. That is, if an author u directly re-tweets
another twitter v, then it indicates that u wants to dis-
tribute this tweet to her followers. Hence, we assign
positive signs to such re-tweet edges.

We run the following algorithms.

– MixGreedy-ic: The MixGreedy algorithm [8] for the
ic model.

– MixGreedy-wc: The MixGreedy algorithm for the
wc model.

– DegreeDiscount-ic: The degree discount heuristic [8]
for the ic model.

– SingleDiscount: The single discount heuristic [8] that
can be applied to ic and wc models.

– mia-n: The mia-n heuristic [6] algorithm (with q =
0.9) that can be applied to ic-n model.

– Greedy-ic: The general greedy algorithm [22] for
the ic model.

– tic: The tic algorithm [5] for the topic-aware ic
model8.

– cinema-c2: The cinema algorithm for the c2 model.
– cinema-c3: The cinema algorithm for the c3 model.

5
http://snap.stanford.edu/data/wiki-Talk.html.

6
http://snap.stanford.edu/data/soc-livejournal1.html.

7
http://dev.twitter.com/doc

8We thank the first author for sending us the code.
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Fig. 6: Influence vs. Conformity Distribution Heatmap of Twitter and LiveJournal.

– cinema-ic2: The cinema algorithm for the ic2 model.
– d-cinema-c2-q: The distributed cinema algorithm

with q slaves.

We set T = 5 (number of iterations in gain computa-
tion under wc model and c2/c3 model) and R = 20000
(number of rounds of simulation) for all the models,
which is in line with the experiments in [6, 8]. We vary
k from 10 to 100 for different seed set size. Note that
we do not compare cinema with [17] as the latter re-
quires historical action logs, which is not available from
the data sources.

9.2 Experimental Results

Indices Distribution. We first investigate the perfor-
mance of the casino algorithm in computing the influ-
ence and conformity indices. Fig. 6 depicts the distribu-
tion heatmap of influence index versus conformity index
for Twitter and LiveJournal datasets. The heatmaps of
other datasets are given in [28]. For each individual u
in a network we compute her influence index Φ(u) and
conformity index Ω(u) and represent it as a point in
the influence-conformity 2-D plane. Then we separate
the plane into grids of size 0.005× 0.005 and count the
number of points in each grid. The color shade of a grid
denotes the number of points residing in it. Note that
both influence index and conformity index are normal-
ized into the range of [0, 1). For each figure, we explicitly
draw a boundary line along which the vertices exhibit
identical influence index and conformity index. Observe
that the line separates the influence-conformity plane
into two areas. In the sequel, we refer to the top area as
‘Area I ’ and the down one as ‘Area II ’. The points be-
longing to ‘Area I ’ exhibit higher influence index com-
pared to conformity index, indicating that individuals
in this area are more prone to influence others than
being influenced. We refer to them as influence-biased.
On the other hand, the points in ‘Area II ’ represent in-
dividuals who are conforming in nature. That is, they
are more prone to be influenced than influencing others.
We refer to these individuals as conformity-biased.

Fig. 6(a)-(b) show the distributions of influence and
conformity indices for the top-2 topics (Mumford & Sons

and BornThisWayFriday) with the most number of tweets
(4390 and 4046, resp.). Observe that 40% and 45% of
all the individuals fall in ‘Area I ’ for Fig. 6(a) and (b),
respectively. Notably, both these figures exhibit certain
influence-biased characteristics. That is, there are a few
influence-biased individuals who exhibit very high in-
fluence but are not easily influenced by others. This
may be due to the fact that Twitter is driven by user
conversations where majority are commenting or fol-
lowing a few individuals who started the conversations.
Fig. 6(c) plots the distribution of indices computed over
all topics. In this case, 41% of all individuals belong to
‘Area I ’. The most influential author has influence in-
dex of 0.138 whereas the most conforming individual
has a conformity index of 0.082. Similar phenomenon is
also observed in LiveJournal dataset (Fig. 6(d)). A case
study of influence-biased and conformity-biased users in
Twitter dataset is given in Appendix K.

Effect of Partitioning Algorithms. Recall that
in the first phase of cinema, we may employ a ℓ-way
partitioning algorithm in cluto to create the subnet-
works. We now empirically justify the reason for choos-
ing cluto as the graph partitioning algorithm for cin-
ema. Specifically, we compare three partition algorithms,
namely cluto, EdgeBetweenness [15] and scotch [33],
on Wiki-talk and LiveJournal and investigate their ef-
fects on influence spreads. EdgeBetweenness method
partitions a given graph by removing a specified num-
ber of edges that exhibit the highest betweenness score.
Both cluto and scotch are multi-level algorithms
aiming to partition a graph into clusters by removing
a limited number of edges. Both cluto and scotch
partition LiveJournal in around 1000 seconds whereas
EdgeBetweenness takes more than 100 hours.

Fig. 7(a) and (b) show the influence spreads (the
number of influenced nodes) generated by feeding the
partitioned graphs from these three algorithms into the
remaining three phases of cinema (Algorithm 4). Ob-
serve that the seeds quality is not affected significantly
by adopting different partitioning methods. Hence, a
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Fig. 8: Comparison of the seeds generated by cinema-c2 and cinema-ic2

key advantage of cinema is that it is not tightly cou-
pled to any specific partitioning technique. In the se-
quel, cluto is used to partition the networks as it is
faster than EdgeBetweenness. Note that adoption of a
more superior partitioning technique which is particu-
larly sensitive to the power-law characteristics of real-
world networks will only enhance the influence spread
quality of cinema. Also, the increase of ℓ means that
more edges are ignored resulting in poorer performance
of cinema. Note that in practical applications the seed
set tends to be small due to budget restriction.

We also show in Fig. 7(a) the effect on the influence
spread if we employ cinema on the entire Wiki net-
work without partitioning it (e.g., ℓ = 1). Observe that
the influence spread quality is affected modestly due to
partitioning (decreased by less than 4.2% if ℓ = 40).

Seeds Selection of c2 and ic2 models. Consider
our proposed c2 and ic2 models. In this set of experi-
ments, we compare the seeds selection results by using
these models to test whether our proposed models are
consistent with the theories proposed in social psychol-
ogy. We run cinema under c2 and ic2 models from
which a pair of seeds sets are generated, namely S2 and
IS2, respectively. We conduct a series of analysis over
both sets by varying k (i.e., number of seeds selected).

Let rank(v, S) denote the ranked order of node v

in S. For instance, rank(v, S2) represents the order of
v to be selected by cinema-c2. Firstly, we compute
the Pearson Correlation Coefficient of rank(v, S2) and
rank(v, IS2) of the same seed v for different k values

Table 3: Pearson Correlation Coefficient between
rank(v, S2) and rank(v, IS2)

Hep Phy Wiki-talk

k=10 1 1 0.987345
k=20 0.913142 0.96391 0.927575
k=30 0.961885 0.982364 0.905673
k=40 0.926156 0.982319 0.916321
k=50 0.952166 0.984696 0.942389

(i.e., rank(v, S2) ≤ k). Table 3 reports the results.
Clearly, rank(v, S2) and rank(v, IS2) are highly cor-
related with each other. Secondly, we plot the pair of
ranked orders for these nodes in a 2-D plane. Fig. 8
shows the ranked distribution of all the selected seeds
for S2 and IS2 with k = 50. X-axis represents the
rank of a seed in S2 while Y-axis represents that in
IS2. For instance, a seed u with rank(v, S2) = 3 and
rank(v, IS2) = 4 is plotted at the position (3, 4). More-
over, we fit all the 50 points to the line rank(v, S2) =
rank(v, IS2) and examined the parameters for this hy-
pothesis. In summary, data points in Hep, Phy and
Wiki-talk fit to rank(v, IS2) with extremely high confi-
dence with p ≪ 0.05. This indicates that for the repre-
sentative online networks, nodes that are more than one
hop away (e.g., friend-of-friend) do not significantly im-
pact the seeds selection. Consequently, the social forces
principle degenerates to F = f(SN) for the im problem
for these networks. In other words, c2 is a good approx-
imation for ic2. In the subsequent experiments we shall
use the c2 model instead of the ic2 model.
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Fig. 9: [Best viewed in color] Influence spread.

Influence Spread. In this set of experiments, we
compare the influence spreads of cinema against var-
ious approaches. A pertinent issue how do we com-
pare it among different techniques under different cas-
cade models? Simply comparing the expected influence
spreads between different cascade models can be mis-
leading. For instance, assume the seed sets computed
using MixGreedy-ic and MixGreedy-wc are S1 and S2,
respectively. Let the expected influence spread of S1

under ic model and S2 under wc model be E1 and E2,
respectively. Clearly, simply comparing E1 and E2 will
not shed light on which algorithm is better in terms of
influence spread. To address this issue, Chen et al. [9]
adopts the strategy to unify the cascade model un-
der which the expected influence is computed. That
is, the results from MixGreedy-ic and MixGreedy-wc
are all applied in lt model to test their performance in
this model. We also adopt the same strategy. Specifi-
cally, we utilize c2 model instead of ic and wc models
and compare the spreads generated by cinema against
conformity-unaware algorithms.

We select k (varies from 10 to 100) nodes using
different approaches and compute the expected influ-
ence of those nodes under c2 model. Parameter p in
MixGreedy-ic and MixGreedy-wc is set to 0.01 which is
in line with [8]. In fact, the value of p does not affect
the final seed set selected according to the study [8].
Besides, we set the negative opinion propagation factor
q in mia-n algorithm as 0.9 which is in line with [6]. In
LiveJournal, MixGreedy-ic, MixGreedy-wc, Greedy-ic
and mia-n did not finish due to excessive memory us-
age over 16GB. In contrast, cinema does not consume
so much memory and can finish execution due to the
usage of mag-list and cog-sublist. Note that tic [5] is a
supervised method requiring learning of topic distribu-
tions from action logs which is only available in Twitter
dataset. Hence, its performance is reported later in the
context of context-aware networks.

Fig. 9 reports the performances of different approaches.
We can make the following observations. Firstly, the
cinema-c2 curves follow diminishing pattern which sup-
port the submodular nature of influence function. Sec-

ondly, it consistently performs better than conformity-
unaware approaches. We attribute it to the design of
cinema tailored specifically to the c2 model. Recall
from Definition 5, in contrary to existing cascade mod-
els, the “activation probability” is defined as multiplica-
tion of Ω(·) and Φ(·). Consequently, it may seem that
the number of influenced users should be smaller. In-
terestingly, Figure 9 depicts the opposite phenomenon
here. This is primarily due to the following reason.
There are a number of nodes, although relatively small,
whose influence or conformity indices are more than 0.1
(both accounts for over 1% of all nodes). Moreover, 5%
of all nodes in each dataset have either influence index
or conformity index more than 0.05. The limited num-
ber of seeds selected by im algorithms tends to belong
to these groups of nodes. Furthermore, the neighbors as
well as the neighbors of neighbors of these seeds tend
to belong to these groups as well. Hence, the final ac-
tivated number of users is not as small as expected.
Thirdly, Fig. 9(c)-(d) depict the influence spread of cin-
ema-c2 on Wiki-talk and LiveJournal networks for dif-
ferent values of ℓ. Recall that both networks were par-
titioned using ℓ-way partitioning algorithm which may
results in removal of some edges. As ℓ increases the size
of each subnetwork may decrease. Consequently, more
edges are ignored resulting in slightly lower quality of
seeds. In spite of this, cinema-c2 shows superior perfor-
mance compared to the conformity-unaware techniques.

Lastly, cinema-c2 outperforms the heuristic-based
approaches consistently for all networks. Although these
approaches are shown to be orders of magnitude faster
than greedy approaches [8], the influence spreads com-
puted by these approaches can be as low as 42% and
38% of the size of influence spread computed by cin-
ema-c2 for the Hep and LiveJournal datasets, respec-
tively. In addition to ignoring conformity of nodes in
computation of influence probabilities, these heuristics
approaches discount a node’s degree if it has a neighbor
selected as a seed. However, discounting the degree does
not incorporate the fact that most highest-degree nodes
are clustered and hence it cannot avoid unnecessary tar-
geting. Moreover, to the best of our knowledge, there
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Fig. 10: Running times.

is no evidence showing that for a single seed, higher
degree will definitely lead to larger scope of influence
spread. Nodes with lower degree may influence more
users. Importantly, as discussed in Section 1, we believe
that the seed set quality is paramount to companies as
they would like to maximize the influence spreads of
their products. Hence, it cannot be significantly com-
promised.

Running Times. We now investigate the response
times of various approaches. For the LiveJournal and
Wiki-talk datasets, the response times of cinema-c2

include initial partitioning attempt using the bfs tech-
nique. Fig. 10a reports the running times of different ap-
proaches. Observe that in spite of the additional steps
of network partitioning and indices computation, the
running times of cinema-c2 is almost the same with
MixGreedy-ic and much less than MixGreedy-wc and
Greedy-ic in both Hep and Phy (MixGreedy-ic and
MixGreedy-wc cannot finish in LiveJournal due to ex-
cessive memory usage. Similarly, Greedy-ic cannot fin-
ish in Wiki-talk and LiveJournal.). Thus, it is reason-
able to be applied in real applications. Since it is already
demonstrated in [8] that the heuristic-based techniques
under ic and wc are orders of magnitude faster than
all greedy algorithms, for the sake of visual clarity, we
do not plot them here. However, the gain in speed is
achieved by sacrificing quality of influence spreads as
reported in Fig. 9. Lastly, we study the effect of varying
ℓ results on the running time of cinema-c2. Fig. 10b
depicts that the running time of cinema-c2 over the
LiveJournal and Wiki-talk networks. Observe that the
running time decreases as ℓ increases.

Cost of Phases 1-4. Next, we analyze the cost of
Phases 1–4 of cinema. Fig. 7c compares the running
times of these phases for the four datasets. Since the
running time of mag-list construction is significantly
smaller than the rest, we plot the total running time of
Phases 1 and 2. Observe that the seed selection phase
dominates the running time agreeing with our analysis
in Sec. 5.2. Note that in order to ensure fair comparison
with Hep and Phy, for Wiki-talk and LiveJournal we
depict only the partitioning times of the ℓ-way parti-
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tioning algorithm and not its initial failed attempt to
partition using bfs technique.

On-demand vs. Synchronized Update. Next, we
compare the on-demand and synchronized update strate-
gies introduced earlier and justify our choice of the for-
mer. Note that the choice of using one of these strategy
only affects the update performance of mag-list and
cog-sublist and not the seed set quality. Figures 11a
and 11b plot the comparison of the running times be-
tween the two strategies for different values of k. The
running times of both strategies increase linearly with
k. Besides, the on-demand strategy is slightly better
than the synchronized one which also agrees with our
discussion in the preceding section.

cinema on Distributed Platform. Lastly, we test
the scalability of d-cinema over LiveJournal in dis-
tributed platform varying the number of slaves q. Dur-
ing the experiments, the influence spread results keep
stable when q ranges from 1 to 10. Hence, varying the
slave number does not affect the influence spread results
as long as q ≤ ℓ. We then test the running time over
different q values, the results are shown in Fig. 12. Ob-
viously as q increases the running time decreases sub-
linearly indicating that adding more slaves will speedup
the algorithm. Due to the limitation of computation re-
source, we can only test the running time with q ≤ 10.
Observe that cinema on distributed platform takes less
than 6 hours when q = 10 in comparison to cinema
on a single machine (over 80 hours). In summary, d-
cinema-c2 is able to complete the maximization task
much faster than cinema while preserving similar in-
fluence spread.



Conformity-aware Influence Maximization in Online Social Networks 23

Table 4: Seeds selected from Twitter.

cinema-c3

Mumford & Sons WeLoveTokioHotel BornThisWayFriday Mubarak MixGreedy-ic cinema-c2

3453454 4093419 950596 388397 8994366 8994366
56068621 191059547 190108655 4725921 6837510 950596
3984874 114799747 3498571 5549 143131074 6837510

133282617 22418179 147327886 25817119 12732578 4976883
199855121 90276810 49126931 4112233 969858 106789932
8234375 201647517 121158546 957238 20735827 179500
4051581 146896900 79897503 3238537 1327826 20735827
2894822 97497115 4051581 69290548 2494788 124440574

202658279 204479139 193820280 190736000 4740643 4740643
780597 206998557 83629945 1314262 1111124 940898

cinema on Context-aware Networks. Next we
study the c3 model and influence spread in a context-
aware network (Twitter). Recall that if the network is
context-aware then we compute the influence and con-
formity indices of nodes with respect to a given topic
T in each partitioned subgraphs. Thus, a pair of topic-
specific influence and conformity indices is associated
with each node. Then we can maximize the influence
with respect to a given topic T by selecting k seeds us-
ing Algorithm 4. We also create context-aware variants
of MixGreedy (denoted by MixGreedy-ic/wc-t), mia-
n and DegreeDiscount (denoted by DegreeDi-scount-ic-
t) where the topic-specific subgraph related to topic T
is first extracted from the social network graph and
then MixGreedy (resp. DegreeDiscount, mia-n) is exe-
cuted on the subgraph. Figures 13(a)-(h) plot the influ-
ence spreads for the top 4 topics with maximum num-
ber of tweets (Mumford & Sons, Born- ThisWayFriday,
WeLoveTokioHotel and Mubarak). Clearly, cinema-c3

consistently outperforms all existing methods as well
as cinema-c2. This is because the context-unaware ap-
proaches are unable to distinguish whether a seed ex-
hibits any influence with respect to a specific topic T.
Many of the seeds selected by these approaches may
not influence anyone else for topic T. Thus, the influ-
ence spreads from these seeds are poor. Also observe
that topic-sensitive approaches such as tic did not out-
perform our approach either. In contrast to cinema-c3,
tic assumes a topic distribution for each item and im is
performed nodes which probably will tweet on a specific
topic but with less probability on influence propagation.

Table 4 reports Twitter IDs of seeds selected by dif-
ferent models for k = 10. The first four columns re-
port the seeds computed by cinema-c3 for four dif-
ferent topics. The seeds set computed by MixGreedy-
ic and cinema-c2 over the entire network are shown
in the last two columns. We can make two key ob-
servations. Firstly, the seeds identified by cinema-c3

are completely distinct from those selected by context-
unaware techniques (MixGreedy and cinema-c2). In
other words, it further strengthen our conclusion that

the result quality can improve significantly if topic in-
formation is incorporated in the im problem. Secondly,
the seeds generated by cinema-c2 and MixGreedy-ic
are significantly different (only 4 out of 10 seeds appear
in both sets) highlighting the importance of conformity-
awareness for im problem.

Finally, we compare the running times of different
approaches. Figures 14(a)-(h) plot the running times
of the benchmark techniques for the top 4 topics. Ob-
serve that the context-aware approaches (i.e., cinema-
c3, MixGreedy-ic/wc-t, mia-n-t, and DegreeDiscount-
ic-t) spend less than an hour to select seeds for each
topic. In contrast, the context-free greedy approaches
(i.e., MixGreedy-ic/wc and cinema-c2) spend around
10 hours to select seeds. This is because context-aware
approaches only select seeds from the nodes which are
related to a given topic and thus significantly reduce
the network size. Interestingly, although tic is context-
aware and a heuristic-based approach, it requires more
than 10 hours for learning the topic distribution and
node authorities in the Twitter dataset.

9.3 Summary

From the experimental results we find the following:
(a) im techniques that incorporate the interplay of con-
formity and influence produce superior quality seeds
compared to state-of-the-art conformity-unaware tech-
niques. Additionally, in [28] we have demonstrated how
such technique can also be used for link prediction.
(b) Partitioning a social network into pieces of non-
overlapping subnetworks and distributing the influence
and conformity computation to these components is
a viable strategy for computing high quality seeds at
lower computational cost. Particularly, the choice of a
partitioning technique has limited impact on the quality
of the influence spread. (c) The distributed variant of
cinema on the MapReduce framework further reduces
the response time by an order of magnitude without
compromising on the spread quality. (d) The context-
aware variant of cinema produces superior quality seeds
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Fig. 13: [Best viewed in color] Influence spread on a context-aware network. (a-d) Comparison with MixGreedy
and DegreeDiscount-ic; (e-h) Comparison with mia-n and tic.

within reasonable time compared to context-unaware
strategies by limiting the im problem to portions of the
network that are relevant to a specific topic of inter-
est. (e) The proposed c2 (resp. c3) model is a good
approximation of the ic2 (resp. ic3) model.

10 Conclusions

In this paper, we propose a novel conformity-aware greedy
algorithm called cinema to address the influence max-
imization (im) problem. Specifically, it is built on top
of a novel conformity-aware cascade model that incor-
porates the interplay between conformity and influence
to estimate influence probabilities. cinema first par-
titions the network into a set of subnetworks and for
each of these subnetworks it obtains the influence prob-
abilities of nodes from the underlying network by com-
puting both influence as well as conformity indices of
nodes. Then, each subnetwork is associated with a cog-
sublist which stores the marginal gains of its nodes in
descending order. The node with maximum marginal
gain in each cog-sublist is stored in a structure called
mag-list. cinema exploits these lists along with an on-
demand update strategy for marginal gains to efficiently
find the seed set. We also demonstrate that cinema
can be elegantly realized on a MapReduce framework
by maintaining the mag-list in a central machine and
the maximization of influence for the subnetworks are
distributed into several machines and computed in par-
allel. Lastly, cinema can be seamlessly extended to sup-
port context-specific influence maximization by target-
ing “topic-relevant” individuals in a social network.

Our empirical study has demonstrated that cinema
and its context-aware and distributed variants have ex-
cellent real-world performance compared to state-of-
the-art im approaches. Specifically, we demonstrated
that partitioning-based, conformity-aware im strategy
is a more realistic solution as it can not only improve
computation time but also maintain high quality seed
set that is more relevant to real-world applications.
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Fig. 14: [Best viewed in color] Running times on a context-aware network. (a-d) Comparison with MixGreedy and
DegreeDiscount-ic; (e-h) Comparison with mia-n and tic.
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A Table of Notations

Table 5: Key notations used in this paper.

Symbol Definition
G(V,E) A social network graph
n number of vertices in G

m number of edges in G

Gi(Vi, Ei) ith component (subnetwork) in G(V,E)

Γ A set of subnetworks (components)
m′ max

Ei∈E
|Ei|

k number of seeds to be selected
ℓ number of subnetworks
R number of rounds of simulation
βi A cog-sublist
Υ A set of cog-sublists
M mag-list
S seed set
Si seed nodes selected from Gi(Vi, Ei)

Ω(·) conformity index
Φ(·) influence index
−→uv the edge pointing from u to v

σi(·) influence function under cascade model Ci

T number of iterations in gain computation
T A topic
ET edge correlated with topic T
GT subgraph correlated with topic T
ΩT(·) conformity index with respect to topic T
ΦT(·) influence index with respect to topic T

B Example related to Influenceability-based
Approach

Consider the network in Fig. 15 where each node denotes
an individual. Suppose we aim to select a single seed node
(k = 1) to propagate a piece of information (e.g., iPad).
Suppose we use the influenceability-based technique [16] to
determine the seed. Recall that “influenceability” is defined as
the ratio of propagated actions divided by the total number
of actions. For example, in Fig 15 user v1 performed 3 actions
on topic A1, A2 and A3, respectively. Among these actions,
actions on A2 and A3 are propagated from v5. Therefore,
the influenceability of v1 is 2/3 = 0.667. Similarly, the influ-
enceability of other nodes can be computed and are shown
in Table 6 along with their influence and conformity indices.
We can computed the expected influence for each node by
using the influenceability as the propagation probability. The
results are shown in Table 7 along with related approaches
including our conformity-aware models. Hence, we may se-
lect any of v1, v2 or v5 as the seed. However, v5 exhibits
very small influence whereas at the same time v1 exhibits
low conformity. In other words, v1 is not easily influenced by
v5 and as a result −−→v5v1 is hardly activated during influence
propagation.

3 2

5 4

1 A1

A2,A3 A1,A3

A2

Fig. 15: A network.

Table 6: Nodes’ influence and conformity indices.

Node ID Φ(·) Ω(·) Φ1(·) Ω1(·) influenceability
v1 0.68 0.21 0.70 0.17 0.667
v2 0.68 0.11 - - 0
v3 0.18 0.94 0.70 0.70 0.667
v4 0.03 0.21 0.17 0.70 1
v5 0.18 0.11 - - 0

Table 7: Expected influence size of nodes in Fig. 15.

Model σ(v1) σ(v2) σ(v3) σ(v4) σ(v5)

ic 1.75 1.75 1.5 1 1.875
wc 1.67 1.67 2 1 1.83
[16] 2.333 2.333 2 1 2.333
c2 1.66 1.66 1.04 1 1.06
c3 (for A1) 1.73 1 1.49 1 1

C Proof of Theorem 1

According to Definition 1, for each vertex u its influence index
Φ(u) can be computed as the following.

Φ(u) =
∑

−−→
u′u∈E+

Ω(u′)−
∑

−−→
u′′u∈E−

Ω(u′′)

If we denote I =(Φ(u1), Φ(u2), . . ., Φ(uℓ))⊤ and C =(Ω(u1),
Ω(u2), . . ., Ω(uℓ))⊤ for V = {u1, u2, . . ., uℓ}, then the com-
putation of both indices in each iteration can be represented
as: {

I = A⊤
+C− A⊤

−C
C = A+I− A−I

If we substitute C in the first equation using the second equa-
tion, then the first line turns into the following:

Ik+1 =
1

Z
(A⊤

+ − A⊤
−)(A+ − A−)Ik

=
1

Z
(A+ − A−)⊤(A+ − A−)Ik

where Z is a normalizing factor such that ∥Ik+1∥ = 1. If we
compute Ik+1 using Ik for k = 1, 2, . . . , n recursively, then
In+1 should be the unit vector along the direction of

((A+ − A−)⊤(A+ − A−))n(A+ − A−)⊤(1, 1, . . . , 1)⊤.

Similarly, Cn+1 should be the unit vector along the direction
of

((A+ − A−)(A+ − A−)⊤)n+1(1, 1, . . . , 1)⊤.

If M is a symmetric matrix, and v is a vector not orthog-
onal to the principal eigenvector ω1(M), then the unit vector
in the direction of Mkv converges to ω1(M) as k increases.

Comparing with our case, (1, 1, . . ., 1)⊤ is not orthogonal
to ω1((A+−A−)(A+−A−)⊤), thus Ck converges. Similarly,
Ik also converges.

In summary, both Φ(u) and Ω(u) converge.
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D Initial Value of CASINO

Besides setting the initial values of indices for each node to
1, we test two other initial value settings. One is to set the
initial value for each node by sampling from a uniform distri-
bution ranging from 0 to 1 (denoted as UniDist for brevity);
the other method is to set the initial values proportional to
the degree of the nodes where both indices for the nodes with
the largest degree are set to 1 (referred to as DegreePro for
brevity). We use datasets in Tables 9 and 10 to investigate
the impact of these initial values. We observe that all ap-
proaches converge to the same result set but with different
number of iterations. The number of iterations for different
initial values for each dataset is reported in Table 8. Since
the number of iterations does not differ significantly among
different strategies, we set all initial values to 1 for simplicity.

Table 8: Number of Iterations before Convergence

Initial Value Hep Phy Twitter Wiki LJ

All set to 1 33 31 30 35 41
UniDist 38 32 34 37 42
DegreePro 35 29 31 34 40

E Cascade Models

Majority of the literature on influence maximization have fo-
cused on the following cascade models as defined in [22].

– Independent cascade ( ic) model. Let Ai be the set of
nodes that are influenced in the i-th round and Ao = |S|.
For any (u, v) ∈ E such that u is already in Ai and
v is not yet influenced, v is influenced by u in the next
(i+1)-th round with an independent probability p, which
is referred to as the propagation probability. Thus, if there
are t neighbors of v that are in Ai, then v ∈ Ai+1 with
probability 1 − (1 − p)t. This process is repeated until
Ai+1 is empty.

– Weighted cascade (wc) model. The wc model can be con-
sidered as an instance of ic model [22]. Let (u, v) ∈ E. In
this model, if u is influenced in round i, then v is influ-
enced by u in round (i+ 1) with probability 1/v.degree.
Thus, if v has t neighbors influenced at the i-th round
then the probability for a node v to be influenced in the
next round is 1− (1− 1/v.degree)t.

– Linear threshold ( lt) model. Here each node v has a
threshold θv uniformly and randomly chosen from 0 to
1; this represents the weighted fraction of v’s neighbors
that must become influenced (active) in order for v to be
influenced. All nodes that were influenced in step (i− 1)
remains so in step i, and any node v is influenced when
the total weight of its influenced neighbors is at least θv.

F Proof of Theorem 2

Let S1 and S2 be two sets of nodes such that S1 ⊆ S2. R(v,X)
denotes the set of all nodes that can be reached from v on all
the activated edges that are in X. Consider the expression of

σX(S1 ∪ {v}) − σX(S1). It denotes the number of elements
in R(v,X) that are not already in

∪
u∈S1

R(u,X), which is
at least as large as the number of elements in R(v,X) that
are not in

∪
u∈S2

R(u,X). That is σX(S1 ∪{v})−σX(S1) ≥
σX(S2∪{v})−σX(S2), which means that the function σX(·)
is submodular. Moreover, we have shown that σ(·) can be
computed from σX(·) using Equation (1). It means σ(·) is a
non-negative linear combination of another submodular func-
tion σX(·). Hence σ(·) is also submodular.

G Proof of Theorem 3

According to Definition 9, σ(S) can be represented as the
following.

σ(S) = max∑
|Si|=k

∑
σi(Si)

Assume S′ ⊂ S, v ∈ Vt \ St where t ∈ {1 . . . ℓ} and S =
S1∪S2∪. . .∪Sℓ, S′ = S′

1∪S′
2∪. . .∪S′

ℓ, then S′
i ⊆ Si. Besides,

the following expression holds as Si ∩Sj = ∅ ∀ 0 < (i, j) ≤ ℓ.

σ(S ∪ {v})− σ(S) = σt(St ∪ {v})− σt(St)

σ(S′ ∪ {v})− σ(S′) = σt(S
′
t ∪ {v})− σt(S

′
t)

As S′
t ⊆ S′ and the influence function σt(·) is submodular,

then σt(St ∪ {v}) − σt(St) ≤ σt(S′
t ∪ {v}) − σt(S′

t) holds
according to the definition of submodularity. Thus, σ(S ∪
{v}) − σ(S) ≤ σ(S′ ∪ {v}) − σ(S′) holds too, which means
that the influence function σ(S) is submodular.

H Proof of Theorem 4

Without loss of generality, let ∆ be the set of edges that
are cut during the partitioning phase. Let vsi and vei be the
source node and end node of a cut edge mi(mi ∈ ∆), re-
spectively. Assume that the expected influence of vsi after
cutting mi is σ′(vsi ). Then before the cut the influence of vsi
can be calculated as (1−pmi)σ′(vsi )+pmi(σ′(vsi )+σ(vei )) =
σ′(vsi )+pmiσ(vei ), where pmi represents the influence proba-
bility of edge mi, which depends on the cascade model. Hence,
the cut edge mi will cause vsi ’s expected influence reduced by

pmiσ(vei ). Generally, for
−−−−−−−→
v−n
i v−n+1

i , . . . ,
−−−−→
v−1
i vsi ∈ E, the re-

moval of edge mi (edge
−−→
vsi v

e
i ) will result in a deduction of

σ(v−n
i ) by pmiσ(vei )

n∏
j=1

p−j
mi, where p−j

mi represents the in-

fluence probability of edge
−−−−−−−→
v−j
i v−j+1

i . Specially, v0i = vsi .
Obviously, the influence probability pmi ≤ 1 for ∀mi ∈

∆. Therefore, the loss of expected influence for an arbitrary
node, denoted by χ(V ) (i.e., χ(V ) = max

v∈V
(σ0(v)− σ(v)))

is upper bounded by
∑

mi∈∆

pmiσ(vei ) when all edges in ∆

share the same source node. In contrary, the maximal loss of
expected influence for an arbitrary node is lower bounded by
max
mi∈∆

pmiσ(vei ) when none of the edges in ∆ share the same

source node.

I Proof of Theorem 5 (Sketch)

The time complexity of the indices computation step using
casino (Line 2 in Algorithm 4) is O(k′m′n′) where k′ is the
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Table 9: Description of real-world networks.

network nodes edges components m′

Phy 37,154 231,584 3,883 134,358
Hep 15,233 58,891 1,781 19,630
Wiki-talk 2,394,385 5,021,410 34 5,018,445
LiveJournal 4,847,571 68,993,773 1,145,331 65,825,429

Table 10: Description of the context-aware Twitter network.

#tweets #trends #tweeters #edges #components m′

1,054,261 21,917 576,894 1,230,748 24 271,319

number of iterations in influence and conformity indices com-
putation. The time complexity of the influence maximization
step (Lines 4-6 in Algorithm 4) is O(kTRm′). Hence, the time
complexity of cinema is O(k′m′n′ + kTRm′).

J Statistics of Datasets

The statistics of the five networks used in experimental study
are given in Tables 9 and 10.

K A Case Study in Twitter

Table 11 shows IDs of top-10 authors who exhibit the high-
est influence index and conformity index for the top-2 topics
as well as for all topics. Consider the top two twitters for all
topics. The author ‘142987924’ who has the highest influence
index receives 66 conforming edges out of 73 in-links over 22
topics. Similarly, the author ‘49276778’ receives 61 conform-
ing edges out of 82 in-links over 24 topics. On the other hand,
the author ‘51389816’ who exhibits the highest conformity
index initiates 35 conforming edges out of 37 out-links over
37 topics indicating that she has high chance to conform to
others’ opinions in almost all the topics she is involved in.
Furthermore, we can make the following observations. Firstly,
none of the top-10 authors occupies a position in both indices
for each category (all, top-1, and top-2 ). Secondly, the top-10
individuals having highest influence and conformity indices
are different for different topics. This confirms our hypoth-
esis that social influence phenomenon is context-sensitive as
same individual may exhibit different influence and confor-
mity over different topics of social interactions.
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Table 11: Top 10 authors with the highest influence index and conformity index.

Rank Influential twitter (#positive in-links/#in-links) Conformer twitter (#positive out-links/#out-links)
All Top-1 Top-2 All Top-1 Top-2

1 142987924 (66/73) 3453454 (13/13) 950596 (31/34) 51389816 (35/37) 121836131 (14/16) 49276778 (101/144)
2 49276778 (61/82) 56068621 (11/11) 190108655 (11/11) 172039151 (31/34) 105332925 (13/14) 202346609 (45/61)
3 119394881 (60/77) 3984874 (10/10) 3498571 (8/9) 177173204 (30/35) 177255919 (11/12) 197538544 (26/30)
4 231134989 (55/71) 133282617 (11/11) 147327886 (5/5) 143062806 (27/34) 193206052 (11/12) 184930795 (22/26)
5 2109823 (56/72) 199855121 (7/7) 49126931 (5/5) 128118710 (25/33) 36525648 (9/10) 148335502 (21/23)
6 92503401 (55/78) 8234375 (5/5) 121158546 (5/5) 130414633 (30/41) 90723076 (7/8) 171387567 (17/20)
7 206661373 (51/66) 1465130 (3/3) 129009252 (5/5) 4782790 (23/30) 123606641 (6/8) 126407259 (18/22)
8 220490093 (46/60) 2894822 (3/3) 79897503 (4/4) 125551983 (22/34) 51513825 (6/6) 114455733 (14/20)
9 168175236 (40/51) 21755211 (2/2) 83629945 (4/4) 91930055 (21/28) 203774695 (5/6) 217826740 (15/20)

10 171287044 (41/62) 4051581 (2/2) 166830172 (4/4) 145339829 (22/31) 203780314 (4/4) 159724683 (12/17)


