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Abstract—Knowledge bases have shown their effectiveness
in facilitating services like Web search and question-answering.
Nevertheless, it remains challenging for ordinary users to fully
understand the structure of a knowledge base and to issue
structural queries. In many cases, users may have a natural
language question and also know some popular (but not all)
entities as sample answers. In this paper, we study the Reverse
top-k Neighborhood Pattern Query problem, with the aim of
discovering structural queries of the question based on: (i) the
structure of the knowledge base, and (ii) the sample answers of
the question. The proposed solution contains two phases: filter
and refine. In the filter phase, a search space of candidate queries
is systematically explored. The invalid queries whose result sets do
not fully cover the sample answers are filtered out. In the refine
phase, all surviving queries are verified to ensure that they are
sufficiently relevant to the sample answers, with the assumption
that the sample answers are more well-known or popular than
other entities in the results of relevant queries. Several optimiza-
tion techniques are proposed to accelerate the refine phrase. For
evaluation, we conduct extensive experiments using the DBpedia
knowledge base and a set of real-life questions. Empirical results
show that our algorithm is able to provide a small set of possible
queries, which contains the query matching the user question in
natural language.

I. INTRODUCTION

With the effectiveness of utilizing knowledge bases in
various applications, the problems of harvesting, storing, and
accessing structured knowledge are being actively investigated.
Several real-world knowledge bases have been built to de-
scribe entities (e.g., persons, locations, and books) and their
relations (e.g., born in, located in, and written by), including
DBpedia [1], Freebase [3], YAGO [23], and NELL [6],
to name a few. A knowledge base is commonly modeled as a
directed labeled graph. Figure 1 depicts an example knowledge
base, where entities are represented as nodes, their types as
node labels, and relations as labeled edges.

Although a few structured query languages (e.g., SPARQL
for RDF data, MQL for Freebase, and Cypher for neo4j
graph database) have been developed, it remains challenging
for most users to formulate a query using these languages.
Users have to learn the query language syntaxes and also
be familiar with the structure of knowledge bases, e.g., the
types of entities and their relations. On the other hand, due
to the inherent complexity and vagueness of natural language,
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Fig. 1: A toy knowledge base. Strings inside nodes are IDs.

it is hard to fully map human language to structural query
languages. According to the evaluation1 of the third Ques-
tion Answering over Linked Data contest (QALD-3), all six
competing systems generally did well on natural language
questions whose structural queries had simple shapes, like the
ones shown in Figures 2a and 2b. However, for the question
“which daughters of British earls died in the same place they
were born in?” whose query resembles Figure 2c, only three
systems managed to respond. Among them, only one survived
from getting a zero F1 score. In short, it is hard for users to
directly formulate structural queries and it is also hard to fully
map a natural language question to a structural query.

When a user raises a question whose answer consists of a
list of entities, it is often the case that she can provide one or
two entities as sample answers. Compared with other unknown
and wanted entities, these sample answers may be more well-
known or of higher popularity (e.g., persons with more fame,
or movies with better box-office records), thus are easier to
recall. The following problem becomes interesting: can we use
the given examples as clues to discover the structured query?

Motivating Example. Consider the toy knowledge base in
Figure 1, where all person nodes are ranked in the first column
of Table I by their popularity. When a user asks a question
“which chess players died in the same place they were born
in?”, she lists Mikhail Botvinnik as an example answer. Based
on this toy knowledge base, numerous structural queries may
return persons as answers, as shown in Figure 2. Query 2a is
invalid, because M. Botvinnik is not in its result set. Query 2b
is a false positive, because if the user meant to ask for persons
who was born in Europe, she would have probably come up
with V. Putin as a sample answer who is more famous than

1http://greententacle.techfak.uni-bielefeld.de/∼cunger/qald/3/documents/
qald3 results.pdf
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(a) Chess players dying
in the United States

(b) (Persons) born
(somewhere) in Europe

(c) Chess players born and
dying in the same (place)

Fig. 2: Three neighborhood pattern queries, each containing
a solid node, called a pivot. When executed, they return all
entities in the knowledge base that match their pivots.

TABLE I: Motivating example

Popularity order Query 2a Query 2b Query 2c
B. Obama E. Lasker V. Putin M. Botvinnik
V. Putin P. Morphy G. Kasparov P. Morphy

G. Kasparov E. Lasker
E. Lasker M. Botvinnik

M. Botvinnik
P. Morphy Rank: +∞ Rank: 4

√
Rank: 1

M. Botvinnik among persons born in Europe. An appropriate
algorithm should return all queries like 2c, which not only
cover the example answers, but also consider the popularity
ranks of the sample answers.

In this paper, we formulate the above query discovery
problem as the Reverse top-k Neighborhood Pattern Query
problem (or RkNPQ for short). Here, neighborhood pattern
queries refer to structural queries that look for entities by
describing their neighborhood structures in the knowledge
base. Formally, given some example entities I in a knowledge
base D, we want all neighborhood pattern queries q such that:
1) when evaluated against D, the results D(q) covers I; and
2) when entities in D(q) are ranked according to their relative
popularity, the given entities I all appear in the top-k positions.

Discovering SQL queries using full or partial result tables
has been investigated in [21], [24], [30]. Hence, the problem of
reverse engineering queries using results is not new. However,
we note that their research differ from ours from three aspects.

1) Problem Setting. The solutions that require full result
table as input [24], [30] do not fit in the knowledge base
setting. If a user knows all answers of her question, there is
no need to find the query. If user input is only regarded as a
partial answer like in [21], the information that a user tends to
list well-known entities as example answers is not exploited.
Without considering entity ranking, many more queries would
be returned. For instance, in the motivating example, both
queries 2b and 2c will appear as discovered queries.

2) Solution Framework. Relational databases have well-
defined schemas. Therefore, the schema of the result table may
serve as clues to guide the query search. Tuples in the result
table are only used to refine the search space. In our problem,
a knowledge base often has weak (or even no) schema. The
one-column results (i.e., entities) provide little information
on the potential shape of the query. To exploit such limited
information, we map the problem to a frequent neighborhood
pattern mining problem [9], establishing a preliminary search
space for further refinement.

3) Candidate Refinement. In the full or partial result set-
ting, to confirm that a candidate query is a true positive,
the query itself need not be evaluated; the result tuples are

verified against the query. In our problem, query evaluation is
inevitable, because the top-k condition poses extra constraints
on the ranking positions of the input entities in the answers. To
deal with this, we identify indicator answers instead of full an-
swers as the only factor affecting the top-k condition. We also
propose two optimization techniques, shared evaluation and
partial evaluation, to further reduce unnecessary overheads in
evaluating indicator answers.

Reverse query problems have also been extensively investi-
gated for other data types or settings. Examples include reverse
nearest neighbor queries [12], reverse skyline queries [7],
reverse top-k queries [26], and reverse top-k RWR (Random
Walk with Restart) queries [29], to name a few. Compared
with them, our problem is more related to graph pattern
matching, which has a fundamentally different nature. To the
best of our knowledge, our work is the first attempt to address
reverse query problems for graph pattern matching queries. We
summarize the contributions of this paper as follows:

1) We formulate the reverse top-k neighborhood pattern
query problem, which helps users formulate structured
queries in knowledge bases using popular partial answers.

2) We propose a filter-refine framework for solving RkNPQ,
and show that the filter sub-problem is reducible to the
problem of mining a class of frequent patterns.

3) We explore three tailored optimizations in the refine
phase, namely shared evaluation, indicator answers, and
partial evaluation, to accelerate reverse query processing.

4) We conduct extensive experiments to verify the effective-
ness and efficiency of the proposed solution.

The rest of this paper is organized as follows. We formally
define the research problem in Section II. In Section III, we
present the filter-refine framework for RkNPQ, and describe
how the filtered search space is organized. Optimizations
of the refine phase are discussed in Section IV, and the
issue of redundant queries is addressed in Section V. Our
experiments are reported in Section VI. After literature survey
in Section VII, we conclude this study in Section VIII.

II. PROBLEM DEFINITION

In this section, we first introduce basic graph terminologies
to model knowledge bases. By adopting the concept of pivoted
subgraph isomorphism in [9], we use neighborhood pattern
queries to model semantics of natural language questions
which require lists of entities as sample answers. We then
define the RkNPQ problem.

A. Preliminaries

Definition 1 (Directed labeled graph): A directed labeled
graph is a 5-tuple G = 〈V,LV , E,ΣV ,ΣE〉, where 1) V is
the set of all nodes; 2) ΣV and ΣE denote label names used
to form node and edge labels, respectively; 3) LV ⊆ V ×ΣV

is the set of all node labels; 4) E ⊆ V ×V ×ΣE is the set of
labeled edges.

When using directed labeled graphs to model knowledge
bases, we uniquely map entities to nodes, and entity types to
node labels. E.g., (v1, t) ∈ LV indicates that entity v1 has type
t. Note that an entity may have multiple types, represented
by multiple node labels. We use labeled edges to represent
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relations between two entities. E.g., (v1, v2, r) ∈ E indicates
that relation r holds between entities v1 and v2. When multiple
relations exist between two entities, we use parallel edges with
one label on each to represent them, instead of an edge with
multiple labels. Similar as node types, we also treat node IDs
as node labels for a unified formulation, though each node
may have only one ID label. We define the size of G as
|G| = |LV |+ |E|, i.e., the number of node labels and labeled
edges. When the context is clear, we will mix the use of graph
terminologies and knowledge base terminologies.

Definition 2 (Pivoted graph [9]): A pivoted graph is a tu-
ple G = 〈G, vp〉, where G is a directed labeled graph, and
vp ∈ V (G) is a chosen node in G, called the pivot of G.

Definition 3 (Pivoted subgraph isomorphism [9]): A piv-
oted graph G1 is pivoted subgraph isomorphic to G2, de-
noted by G1 ⊆p G2, if there exists an injective mapping
f : V (G1) → V (G2) such that f preserves all node and edge
labels, and maps the pivot of G1 to that of G2. Formally, 1)
∀v1 6= v2, f(v1) 6= f(v2) holds; 2) ∀(v, t) ∈ LV (G1) we
have (f(v), t) ∈ LV (G2); 3) ∀(v1, v2, r) ∈ E(G1) we have
(f(v1), f(v2), r) ∈ E(G2); 4) f(vp(G1)) = vp(G2).

Compared with traditional subgraph isomorphism, pivoted
subgraph isomorphism has a different node-oriented semantics.
When seeking for an isomorphic mapping, the pivot of G1

should be mapped to that of G2. Later we will show that it
helps depict the question/answer relationship between natural
language questions and entities, and the sub-super relationship
between questions.

Definition 4 (Neighborhood pattern query): A neighbor-
hood pattern query q is a connected pivoted graph. Given a
graph database D, the result set of q on D, denoted by D(q),
consists of all node instances from D that match pattern q’s
pivot, i.e., appear at q’s pivot position; D(q) = {v ∈ V (D)

∣∣
q ⊆p 〈D, v〉}.

We further define the size of a neighborhood pattern query
to be the size of the labeled graph it is based on, and its radius
to be the largest distance (ignoring edge direction) between its
pivot and any other node.

Figure 2 shows three example neighborhood pattern
queries, where the three solid nodes stand for the three pivots.
The result sets of them evaluated against the knowledge base
shown in Figure 1 are listed in Table I. Note that a query may
have constant nodes, i.e., nodes with node IDs as labels, which
indicates that they should only be bound to the corresponding
nodes in the knowledge base.

B. Problem Statement

Definition 5 (Top-k neighborhood pattern query): Let ≺
be an order representing the relative popularity of nodes in D.
v1 ≺ v2 means that v1 has the same type (e.g., person, country,
or movie) with, and is more popular than v2. We assume that
for a neighborhood pattern query q, D(q) consists of entities
with the same type. By abusing the notation of set, the top-k
result set of a query q, denoted by Dk(q), is the top-k subset
of D(q) when the entities in D(q) is ranked by ≺.

In a knowledge base, it is natural that some entities are
more well-known, and are accessed or queried more often than

others. If a query returns a long list of entities, a user may be
interested in the most famous ones. Conversely, when a user
cannot formulate a structured query but can list several entities
as sample answers, there is a high probability that these entities
are among the most popular ones in the answer set. Based on
this observation, we propose the reverse top-k neighborhood
pattern query problem.

Problem Statement. Given a set of nodes I ⊂ V (D), a reverse
top-k neighborhood pattern query on I , denoted by D−1

k (I),
returns all neighborhood queries q such that the top-k result
set of q contains all nodes in I . Formally, D−1

k (I) = {q
∣∣ I ⊆

Dk(q)}. By definition, |I| ≤ k.

The Expressivity of Neighborhood Pattern Queries. When
mapped to SPARQL, neighborhood pattern queries are equiv-
alent to a constrained fragment, where the SELECT clause
contains only one variable and the WHERE clause contains
no advanced operations such as regular expressions and range
selections. For example, the query in Figure 2c is equivalent
to the following SPARQL query (URI prefixes omitted):

SELECT ?uri WHERE
{

?uri :type :ChessPlayer .
?uri :birthPlace ?place .
?uri :deathPlace ?place

}
FILTER(?uri != ?place)

Note that the additional FILTER condition is caused by
Definition 3, where different variables in the query are required
to be bounded to different entities. In the following parts of
the paper, we will drop it for brevity though its existence
should not be neglected. Despite those limitations, we argue
that neighborhood pattern queries are essentially a significant
subclass of knowledge base queries for two reasons. First,
unlike structured queries, real-world questions often require
a list of entities as answers, rather than a list of entity
tuples. Second, constraints on the type of entities and relations
between entities could be sufficiently expressed by the triples
in the WHERE clause.

The Popularity Order ≺. When ranking entities in D(q) to
obtain the top-k results of a neighborhood query q, we assume
that entities in D(q) are of the same type, and that their relative
popularity is independent of q. These assumptions are practical
for neighborhood pattern queries. The type of a query’s pivot is
decided explicitly by node labels on it, or implicitly by labeled
edges associated to it. For example, all queries in Figure 2
return only person entities as answers. Moreover, the match
between an entity and a query is binary, so the popularity rank
of entities is not query-sensitive. We admit that, in practice, the
popularity order may be subjective and contextual, and takes
efforts to estimate (e.g., based on query logs, entity related
page viewing frequency). Considering the current scope of this
paper, we adopt PageRank as a simple estimation and leave
the ideal estimation for future study.

III. SOLUTION FRAMEWORK

In this section, we adopt the filter-and-refine scheme to
discuss a possible baseline solution to the reverse top-k
neighborhood pattern query problem. Specifically, by dropping
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Fig. 3: The search space of D−1({M. Botvinnik})

the top-k constraint in the problem definition, we show that
the relaxed problem, i.e., reverse neighborhood pattern query
problem, is reducible to the frequent neighborhood pattern
mining problem [9] with a constrained input. This reduction
filters out the queries whose answers do not cover all input
nodes in I , and provides an approach to organizing and
searching the surviving candidate queries. We further refine
those candidates by evaluating their answer sets to prune false
positives and make up for the top-k constraint.

A. Filter

By dropping the top-k constraint in the problem definition,
we have a relaxed version of the problem: Given a set of input
nodes I ⊂ V (D), the reverse neighborhood pattern query of I ,
denoted by D−1(I), returns all neighborhood pattern queries
q whose result set covers I , i.e., D−1(I) = {q

∣∣ I ⊆ D(q)}.
Proposition 1: Given a database D, for any I ⊆ V (D),

we have D−1
k (I) ⊆ D−1(I).

We ignore the proof because it is obvious. This proposition
actually enables a filter-and-refine approach to our problem. If
we are able to search the space of D−1(I), it is possible to
check each q ∈ D−1(I) on whether q ∈ D−1

k (I) holds. In
fact, the FNM algorithm proposed in [9] for mining frequent
neighborhood patterns in graph database can be utilized. Given
a graph database D, a subset V0 ⊆ V (D), and a threshold τ ,
FNM outputs all neighborhood patterns, each of which matches
at least τ nodes in V0. Noticing that the neighborhood patterns
in FNM are essentially equivalent to neighborhood pattern
queries in this study, we constrain the input of FNM as follows:
we set V0 = I and τ = |I|, and run FNM on the given database
D. Because this parameter configuration of V0 and τ requires
that all mined patterns match |I| nodes in I , i.e., all nodes in I ,
we simply get the exact D−1(I) after running FNM algorithm.

Through the above parameter configuration, FNM does a
level-wise search on the query space of D−1(I) as a query
lattice2, defined as follow:

Definition 6 (Sub-query and query lattice): A query q1 is
a sub-query of q2 if q1 ⊆p q2, and super-query vice versa.
Given a set of queries, we organize them level-wisely accord-
ing to the query size, and connect any two queries q1 and
q2 if q1 ⊆p q2 and |q1| + 1 = |q2|. We call the level-wise
arrangement a query lattice.

2Strictly speaking, the lattice discussed here does not meet the conditions of
a mathematical lattice. However, we abuse the concept here only for reference
within this paper.

Algorithm 1 The RkNPQ framework
1: function RKNPQ(D, I, k)
2: Q1 ←

⋂
v∈ILEVEL 1 QUERIES(v); n← 2;

3: while Qn−1 6= ∅ do . Filter phase
4: for all qi, qj ∈ Qn−1 do . Join operation
5: q ←JOIN(qi, qj );
6: Discard q if does not cover I or is discovered before;
7: Qn ← Qn ∪ {q};
8: end for
9: for all qi ∈ Qn−1 do . Extend operation

10: q ← EXTEND(qi); Qn ← Qn ∪ {q};
11: end for
12: n← n + 1;
13: end while
14: return {q ∈

⋃
n≥1 Qn

∣∣ I ⊆ Dk(q)}; . Refine phase
15: end function

In Figure 3, we show the D−1({M. Botvinnik}) lattice.
For the sake of this example, not all queries are listed. Queries
at the same level have the same size, e.g., queries 1-3 have a
size of one, and queries 4-9 have a size of two.

FNM generates this lattice in the following manner. It
initializes with level-1 queries by scanning I and finding all
common incoming edges, outgoing edges, and node labels.
Then it goes to higher levels. At each level, it generates can-
didates belonging to the level by carrying out two operations,
join and extend, on queries at the previous level. The joining
operation is attempted between every pair of queries (self-join
is possible, though it is not demonstrated in this example).
For example, query 7 is obtained by joining queries 1 and 2,
and query 14 could be generated by joining queries 7 and 9.
Moreover, for path-like queries such as queries 1 and 4, FNM
checks I and D to perform an additional extend operation to
lengthen it or terminate it by a node label. In Figure 3, all
extend operations are marked by dotted lines. For example,
by extending query 1 we get queries 4 and 5, and we get
query 10 by extending query 4. The extend operation is vital
to the completeness of the results because queries like 4 and
10 cannot be obtained by joining two smaller queries.

We emphasize that the join operation may introduce false
positives. Therefore, every query obtained by join should be
checked on whether its answers indeed covers I by |I| pivoted
subgraph isomorphism checks (denoted by PSI checks for
short). For example, in Figure 3, the join of queries 1 and 2
not only produces query 7 (persons born and dying in the same
place) as Figure 3 shows, but also produces query 15 (persons
born and dying in different places). However, after checking
the database D in Figure 1 and confirming that it does not
cover the node M. Botvinnik, FNM immediately discards query
15 to avoid checking its super-queries such as queries 16 and
17, which do not cover M. Botvinnik, neither.

Like all other frequent pattern mining algorithms, the result
size and running time of FNM may be exponential in the worst
case. However, it ensures a complete traversal of D−1(I),
rendering the filter stage a safe one.

B. Refine

After obtaining D−1(I), it might be tempting to refine
it by verifying I ⊆ Dk(q) for every query q ∈ D−1(I) in
the following manner: 1) evaluate D(q) using SPARQL or
some graph query engines like neo4j, gStore [34], and
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Algorithm 2 RkNPQ-S (with Shared evaluation)
1: function RKNPQ-S(D, I, k)
2: Q1 ←

⋂
v∈ILEVEL 1 QUERIES(v); n← 2;

3: for all q ∈ Q1 do
4: q.RS ← D(q) . Initialize results;
5: end for
6: while Qn−1 6= ∅ do
7: for all qi, qj ∈ Qn−1 do
8: q ←JOIN(qi, qj );
9: Discard q if does not cover I or discovered before;

10: q.RS ← PSICHECKS(q, qi.RS ∩ qj .RS); . Maintain results
11: Qn ← Qn ∪ {q};
12: end for
13: for all qi ∈ Qn−1 do
14: q ← EXTEND(qi); Qn ← Qn ∪ {q};
15: q.RS ← PSICHECKS(q, qi.RS); . Maintain results
16: Qn ← Qn ∪ {q};
17: end for
18: n← n + 1;
19: end while
20: return {q ∈

⋃
n≥1 Qn

∣∣ I is ranked top-k in q.RS};
21: end function

JENA-TDB3; 2) rank nodes in D(q) to get Dk(q); 3) check
whether I ⊆ Dk(q) holds. This results in an preliminary
algorithm like Algorithm 1. However, we note that such a
refine phase contains duplicate computations, thus is less
efficient. In the following section, we will discuss observations
on such inefficiency, and propose three optimizations.

IV. OPTIMIZATIONS

We now discuss three optimizations of the refine phase,
namely shared evaluation, indicator answers, and partial eval-
uation. The first two are orthogonal to and compatible with
each other, while the third one depends on the first two.

A. Shared Evaluation

When refining D−1(I), the candidate queries are evaluated
in a batch manner. Noticing that their shapes heavily overlap
with each other, we propose the following observation:

Observation 1: Queries in D−1(I) are highly overlapped
in shape, thus may share computations when evaluated on D.

For example, in Figure 3, after obtaining the answers
of query 9 “chess players with a known death place”, we
know that G. Kasparov is not in its answers. Therefore, when
checking any super-query of query 9 like queries 13 and 14,
G. Kasparov could be ignored because it cannot appear in their
answers. Based on this, we propose the following property of
sub-super queries to reduce duplicate computations:

Proposition 2: D(q1) ⊇ D(q2) if q1 ⊆p q2.

Proof: ∀v ∈ D(q2), q2 ⊆p 〈D, v〉 holds. Based on the
transitivity4 of pivoted subgraph isomorphism, we have q1 ⊆p

〈D, v〉, or v ∈ D(q1). Then D(q1) ⊇ D(q2) is immediate.

Proposition 2 ensures that D(q) for large queries needs
not to be evaluated from scratch. Instead, the result sets of
large queries can be obtained by checking those of their sub-
queries. They are then kept for larger queries’ use, detailed in
Algorithm 2.

3http://jena.apache.org/documentation/tdb/index.html
4See proof in [9].

In Algorithm 2, we start with all level-1 queries that cover
I . At Line 4, we calculate the result set q.RS for every query q,
and attach it to q. This only involves one look-up in the indices
built on all node and edge labels. Then the algorithm goes to
higher levels of the query lattice, which involves joining and
extending smaller queries to generate larger ones.

At higher levels, according to Proposition 2, it is sufficient
to generate q.RS by scanning the results of its sub-queries
and picking out those that q matches. This is done by the
function PSIChecks(q, V ), which sequentially performs PSI
checks between q and nodes in V and returns those that pass
the check. At Line 10, when a query q is generated by joining
two of its sub-queries, we only need to pick out q.RS from
the intersection of the two sub-queries’ results. Similarly, at
Line 15, q.RS is generated by calling function PSIChecks
on that of its only sub-query. At Line 20, the top-k condition
for each q is verified by ranking and checking q.RS.

B. Indicator Answers

In Section III-B, we discussed evaluating the whole result
set D(q) using SPARQL or graph query engines. However, this
approach does not exploit the following fact:

Observation 2: Nodes that are less popular than the least
popular node in I do not affect the rank of all nodes in I , thus
may be ignored when evaluating the results of q.

For example, assume we are processing the reverse
query D−1

1 ({M. Botvinnik}), i.e., finding all queries where
M. Botvinnik is ranked at the first position. According to
Table I we have M. Botvinnik ≺ P. Morphy, therefore for
any query q, whether P. Morphy ∈ D(q) holds will not have
any influence on the rank of M. Botvinnik in D(q), since it is
always ranked below M. Botvinnik. Based on this observation,
we propose evaluating the indicator answers instead of the full
answers of each query, defined below:

Definition 7 (Indicator Answers): For any q ∈ D−1(I),
we call IA(q) the indicator answers of q, which consists of all
the nodes v satisfying: 1) v appears in the answer set of q, 2)
v is more popular than the least popular node in I (denoted by
inf(I), which is short for infimum), and 3) v does not appear
in I . Formally, IA(q) = {v

∣∣ v ∈ D(q)∧v ≺ inf(I)∧v 6∈ I}.
Intuitively, the indicator answers of q are nodes that are

ranked above or between nodes of I in D(q). In other words,
they are precisely nodes that may affect the rank positions of I
in D(q). Therefore, if |IA(q)| is small enough, it may enable
nodes in I to be ranked high in D(q), and cause q ∈ D−1

k (I).
The following proposition shows how small |IA(q)| should be
to make q ∈ D−1

k (I) hold.

Proposition 3: For any q ∈ D−1(I), q ∈ D−1
k (I) if and

only if |IA(q)| ≤ k − |I|.
Proof: (|IA(q)| + |I|) is in fact the rank position of

inf(I) in D(q). Therefore, the sufficiency and necessity of
the proposition is clear.

The indicator answer optimization is orthogonal to the
shared evaluation optimization. To implement it alone, we need
to customize SPARQL or graph query engines. The additional
constraints in Definition 7 need to be pushed down to the
early stages of query evaluation in order to reduce intermediate
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Algorithm 3 Partial evaluation
1: procedure PARTIALEVAL(q, V )
2: for all v ∈ V do
3: V ← V \ {v}
4: if q ⊆p 〈D, v〉 then
5: q.IA← q.IA ∪ {v}
6: if |q.IA| > k − |I| then
7: break
8: end if
9: end if

10: end for
11: q.ĨA← V
12: end procedure

results. However, the following proposition points out that
indicator answers share similar properties with ordinary result
sets, and need not be evaluated from scratch:

Proposition 4: Given I , for any q1 ⊆p q2, we have
IA(q1) ⊇ IA(q2).

Proof: For any q1 ⊆p q2, we have D(q1) ⊇ D(q2).
Therefore, D(q1) ∩ {v

∣∣ v ≺ inf(I)} \ I ⊇ D(q2) ∩ {v|v ≺
inf(I)} \ I holds. Then IA(q1) ⊇ IA(q2) is immediate.

To implement indicator answers on top of the shared eval-
uation optimization, only a few modifications to Algorithm 2
are needed: At Lines 4, 10, and 15, we need to initialize
or maintain indicator answers q.IA for each q in the same
manner as q.RS. Meanwhile, Line 20 should be substituted
by a verification of the condition in Proposition 3.

C. Partial Evaluation

Even if the indicator answer optimization is implemented,
the major overhead of Algorithm 2 still lies in Lines 10
and 15, where the indicator answers of each candidate query
is maintained. To obtain q.IA, the algorithm has to perform a
series of PSI checks between q and its sub-queries’ indicator
answers. For a relatively large graph and less popular example
nodes, the size of IA(q) for most queries in D−1(I) may be
large, causing the number of PSI checks to be high. Recall
that in Proposition 3, a threshold k− |I| on the size of IA(q)
is given. If |IA(q)| exceeds the threshold, q is confirmed as a
false positive. This implies the following observation:

Observation 3: To reject a false positive query q, we need
not know the exact size of IA(q). A lower bound of it is
enough to reject q, as long as the bound is larger than k− |I|.

For example, in the motivating example of Table I, if
we know that V. Putin appears in the indicator answers of
query 2b (i.e., it is ranked above M. Botvinnik in the answers
of query 2b), we immediately know that the rank position of
M. Botvinnik must be two at best. So we reject query 2b
without spending computations on the ranking position of
G. Kasparov and E. Lasker. Motivated by this observation, we
propose the following strategy: when checking the indicator
answers of q’s sub-queries to obtain q.IA, we only evaluate
a subset of q.IA which is sufficient to reject q. We call this
strategy partial evaluation. Note that all following discussions
in this section will be based on Algorithm 2 with indicator
answer optimization.

At Line 4, we initialize all level-1 queries q with the exact
indicator answers IA(q), for this involves no PSI checks.
However, for all queries q at level-2 and above, instead of

IA(q) itself, we maintain two disjoint node sets IA(q) and
ĨA(q). IA(q) consists of the nodes that are confirmed to match
q, while ĨA(q) contains the nodes whose membership to D(q)

is unknown. It is obvious that the union of IA(q) and ĨA(q)
covers IA(q), which ensures that all nodes that contribute to
|IA(q)| are not missed and the lower bound of |IA(q)| is not
under-estimated:

Proposition 5: Let IA(q) = IA(q) ∪ ĨA(q), and we have
IA(q) ⊆ IA(q).

We maintain IA(q) and ĨA(q) as follows. In Algo-
rithm 2, the calls of function PSIChecks(q, V ) and updates
of q.IA are replaced by function PartialEval(q, V ) in Algo-
rithm 3. Specifically, after joining queries qi and qj , we call
PartialEval(q, V ) where V is specified using qi.IA∩qj .IA.
Similarly, after extending query qi, PartialEval(q, qi.IA) is
called instead. When performing partial evaluation between
query q and node set V , we scan nodes v in V and check
whether q matches v. The matching Nodes v are added to
q.IA, otherwise v is discarded. Note that as soon as the size
of q.IA exceeds the threshold k − |I|, we confirm that q is a
false positive and end the check. Before the function returns,
nodes in V that are not scanned are added to q.ĨA because
it remains unknown whether q matches them, and they should
be taken into consideration when checking the super-queries
of q. Finally, the check of whether |q.IA| exceeds (k− |I|) at
Line 20 should be performed on q.IA instead.

We note that, being a heuristic-based greedy optimization,
partial evaluation may not always reduce the number of PSI
checks globally. However, in our experiments, partial evalu-
ation improves the efficiency for almost all questions. More
details about the experiments are in Section VI.

V. REDUNDANT QUERY ELIMINATION

Though modeled as directed labeled graphs, knowledge
bases are more complicated than graphs. One thing that dif-
ferentiates a knowledge base is that there are various kinds of
dependencies among the occurrences of its nodes, edges, and
labels. For example, an edge labeled birthPlace can only
link a Person node and a Location node. Therefore, when
formulating the query “persons whose birth place is Russia”,
the node label Person can be safely dropped, being implied
by the edge label birthPlace. As a result, dependencies in
a knowledge base may cause queries with different shapes to
be equivalent to each other.

We emphasize that such equivalent queries should not
appear simultaneously in the results of a reverse neighborhood
pattern query search. The reasons are two-fold. First, equiva-
lent queries make the final results redundant to users. Second,
the equivalent queries incur unnecessary computational costs
(e.g., query generation and indicator answer maintenance). To
this end, we denote longer queries in which some elements
are implied by the others as redundant queries, and use known
dependencies in the knowledge base to avoid searching for
them. In the following, we propose three types of utilizable
dependencies, and show example redundant queries in Table II.

Edge-node Label Dependency. In a knowledge base, some
relations only exist between entities of certain types. For ex-
ample, in DBpedia, the relations birthPlace and gender
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TABLE II: Dependencies and example redundant queries

Dependency Name Example Query Redundant Form Simpler Form

Edge-node label Persons born in Russia

Intra-node label All chess players

Cross-node ID Persons having the same gender with G. Kasparov

TABLE III: Statistics
of DBpedia dataset

Size

|V | 3,995,882
|LV | 10,784,441
|E| 12,724,403
|ΣV | 388
|ΣE | 678

must start from Person entity. An example is shown in row
1 of Table II.

Intra-node Label Dependency. In a knowledge base, there
may be subsumption between certain entity types. For ex-
ample, in DBpedia, all ChessPlayer entities also have
the type of Person. Therefore, in row 2 of Table II, when
the algorithm generates a query where a node contains label
ChessPlayer, the node should not have any super type of
ChessPlayer as additional node labels, including Person.
Moreover, constant nodes (i.e., nodes with node IDs as labels)
should not carry any other type labels, because they are
actually implied by the IDs.

Cross-node ID Dependency. In a query, when a constant node
appears, it is bounded to a certain node in the knowledge base.
This may cause some adjacent node to have a definite bind.
For example, in row 3 of Table II, given that G. Kasparov
has only gender Male, the middle node is uniquely bound
to Male when the query is evaluated against the knowledge
base. Therefore, the query may be simplified by explicitly
adding a Male label to the middle node, and deleting the
other unnecessary nodes and edges.

The implementation of redundant query elimination is
simple but effective. First, the redundancy check does not
involve query execution. In our current implementation on
the DBpedia knowledge base, we adopt the corresponding
OWL (Web Ontology Language) metadata5 which explicitly
describes the first two dependencies in the data. Specifically,
the edge-node type dependency is given by the 〈rdfs:domain〉
and 〈rdfs:range〉 fields of each relation record, while the hierar-
chical node type dependency is given by the 〈rdfs:subClassOf〉
field of each type record. For constant node dependency, we
build an index on the graph, which returns all ending nodes a
given node links to via a given type of edge. Second, we do
not need to generate every redundant query before eliminating
it. Because any super-query of a redundant query is also
redundant, we directly block a redundant query from entering
higher levels of D−1(I) once it is found, to avoid generating its
super-queries. In experiments, the three types of dependencies
help pruning redundant queries in D−1(I) by almost halving
its size. We will demonstrate the details in Section VI-B.

VI. EXPERIMENTS

In this section, we extensively evaluate our solution using
real-life datasets. First, we introduce the knowledge base, ques-
tions, and experimental terminology used in the experiments.
Second, we verify the necessity of eliminating redundant
queries by showing their proportions in the search space. Based

5http://downloads.dbpedia.org/3.9/dbpedia 3.9.owl.bz2

on the reduced search space, we investigate the effectiveness
of our algorithm in terms of the number of candidate queries
it returns. Third, we study the optimizations proposed in
Section IV and compare the efficiency of our algorithm with
other methods. Finally, we discuss the impact of parameter k
on the effectiveness and efficiency of our algorithm.

A. Experimental Settings

Knowledge Base. We used DBpedia 3.9 as our knowl-
edge base. It consists of several sub-datasets. Specifically,
our entity type information was from the “Mapping-based
Types” sub-dataset, while relation information was from the
“Mapping-based Properties” sub-dataset. Note that DBpedia
also provides an “Infobox Properties” sub-dataset containing
relation information. However, we did not involve this sub-
dataset because it is noisy and inconsistent with the ontology
according to manuals from DBpedia.

To perform redundant query elimination, we used the OWL
metadata mentioned in Section V. We ignored all relationships
which are marked as “DatatypeProperty” by the metadata,
because they point to numerical/datetime/coordinate type of
data instead of entities, which falls out of the scope of this
paper. The statistics of the processed knowledge base are
shown in Table III.

Ideally, the relative popularity of entities in a knowledge
base shall be estimated from the number of times the entities
are accessed/viewed by users. Without the luxury of accessing
such data, we simulate the relative popularity ≺ of entities by
using PageRank algorithm on the corresponding labeled graph.
The damping factor d is set to 0.85 as default in [18].

Questions. For real-life questions, we used the
QALD-4-Task-16 dataset (denoted by QALD-4 for
short). This dataset was first introduced by a contest on
natural language question answering over linked data. It
includes 250 questions in natural language, each with a
SPARQL query and an answer set.

Note that some questions cannot be expressed by neigh-
borhood pattern queries, thus are beyond the scope of this
paper. Therefore, we discarded questions meeting any of the
following criteria. 1) It is marked as “OUT OF SCOPE” by
the dataset, which means it cannot be answered by DBpedia.
2) It contains operators not expressible in neighborhood pattern
queries, such as UNION, COUNT, FILTER, and ORDER BY.
3) Its answers are not entities; e.g., a question may require
dates, decimals, or booleans as answers. 4) It involves datasets

6http://greententacle.techfak.uni-bielefeld.de/∼cunger/qald/index.php?x=
task1&q=4
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TABLE IV: Question groups with examples. Groups are named after the size and radius of corresponding queries.

Group Question
Number Example Question SPARQL Query Top-2

Answers
Neighborhood
Pattern Query

G(2, 1) 24 Give me all Apollo 14
astronauts.

SELECT DISTINCT ?uri WHERE
{?uri :mission :Apollo 14 .}

Alan Shepard
Edgar Mitchell

G(3, 1) 18
Which chess players died
in the same place they
were born in?

SELECT DISTINCT ?uri WHERE
{?uri :type :ChessPlayer .
?uri :birthPlace ?x .
?uri :deathPlace ?x .}

Mikhail Botvinnik
Vladimir Alatortsev

G(4, 1) 4
Give me all people that
were born in Vienna and
died in Berlin.

SELECT DISTINCT ?uri WHERE
{?uri :birthPlace :Vienna .
?uri :deathPlace :Berlin .}

Richard Thurnwald
Alfred Halm

G(5, 1) 3
In which films directed
by Garry Marshall was
Julia Roberts starring?

SELECT DISTINCT ?uri WHERE
{?uri :type :Film .
?uri :starring :Julia Roberts .
?uri :director :Garry Marshall.}

Valentine’s Day
Runaway Bride

G(∗, 2) 3 Which rivers flow into a
German lake?

SELECT DISTINCT ?uri WHERE
{?x :inflow ?uri .
?x :country :Germany .}

Rhine
Havel

not used in our experiments, such as the “Infobox Properties”
sub-dataset, YAGO2, and FOAF. Moreover, we discarded ques-
tions whose answers consist of only one entity, because users
do not need more answers for such questions.

After pre-processing, we got 52 questions, whose sizes
range from 2 to 5, and radiuses from 1 to 2. We grouped all
questions by the shapes of their SPARQL queries. Questions
with radius-1 queries were grouped by their sizes, and were
denoted by G(2, 1), G(3, 1), G(4, 1), and G(5, 1), respectively.
All questions with radius-2 queries were in one group denoted
by G(∗, 2), because there were only three of them. In Table IV,
an example is provided for each group. Besides persons, films,
and locations involved in the table, the 52 questions also cover
many other types like countries, languages, books, etc.

Experimental Protocols. We treated all questions uniformly.
For each question, we regarded the corresponding SPARQL
query provided by QALD-4 as ground truth. We constructed
the input entity set I using one or two entities with the largest
PageRank scores in the answer set. When varying |I|, we
required that k = |I|. In other words, the returned queries
should promote all entities in I above other entities. When
studying the effects of parameter k, we fixed |I| = 1. Because
entities with large PageRank scores tend to lie in the dense
areas of the labeled graph, it is impossible to enumerate all
queries that match these entities. Therefore, we employed
techniques in [9], [10], and used the size and radius of the
ground truth query to bound the search space. Removing this
limitation is part of our future work.

Compared Methods. We compared four variants of RkNPQ
distinguished by their candidate query refinement approaches:
1) RkNPQ-gStore: evaluate full answers using gStore7; 2)
RkNPQ-S: Shared evaluation of full answers; 3) RkNPQ-SI:
Shared evaluation of Indicator answers; 4) RkNPQ-SPI:
Shared Partial evaluation of Indicator answers. All four meth-
ods have identical outputs and only differ in efficiency.

The experiments were conducted on two identical PCs,
each with two Xeon 2.50GHz processors and 64GB memory.

7We also experimented with the neo4j graph engine and JENA-TDB RDF
engine. We only report gStore here because in our experiments it has the
best performance among all three query engines.

The RkNPQ framework and the last three variants were imple-
mented in C# and run on one PC running Windows system. All
query evaluations involving gStore were done on another PC
running Linux system. All experiments ran on a single core,
and we report efficiency results in seconds.

B. Effectiveness Evaluation

In this section, we demonstrate two empirical observations
related to effectiveness. First, redundant query elimination
can halve the preliminary search space at most. Second, our
algorithm returns a reasonable number of possible queries for
most questions, even if limited examples are provided. Note
that, for every question, we ensure that its ground truth query
(those in the last column of Table IV) always appears in the
output. This leads to perfect recall of the output, and precision
to be the inverse of the output size. Therefore, we only need
to care about the output size and do not consider qualitative
metrics like precision, recall, and F-measure.

Redundant Query Elimination. In Section V, we proposed
three types of redundant queries. We also discussed how to
eliminate them to avoid duplicate results and reduce running
time. The amount of time to be saved depends on the propor-
tions of redundant queries in the search space D−1(I).

In Figure 4a, we show the average proportion of redundant
queries within each group, when only one example entity
was given as input. The respective and overall percentages
of different types of redundant queries are both reported. Note
that the three redundancy types may overlap, so the overall
percentage is smaller than the sum of all three percentages.
From the figure, it is clear that by eliminating redundant
queries, the search space is reduced by 25%-50% in size.

In Figure 4b, when two example entities were provided,
the percentages of redundant queries follow a similar trend
as in Figure 4a. The only difference is that the percentage of
the third redundancy type drops significantly. Recall that this
type of queries involve constant nodes. When more than one
example entities were provided, it is harder to find constant
nodes that connects to all input entities in the same manner.
Therefore, such queries are less likely to appear. From now on,
we enable redundant query elimination by default, and report
all results based on this setting.
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Fig. 4: Redundant queries: respective & overall percentages
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Fig. 5: Distribution of questions w.r.t. size of their query sets

Number of Returned Queries. After redundant queries are re-
moved from D−1(I), our algorithm refines queries in D−1(I)
to return the final query set D−1

k (I). The user then looks
through D−1

k (I) to find the query she wants. By checking
the returned queries of every question, we confirmed that all
ground truth queries were included in the corresponding query
sets. Therefore, the size of the returned query set is the only
matter to the user. The smaller the query set is, the easier it
is for the user to look through them. We treated the difficulty
to view query sets whose sizes were in [1,10], (10,100], and
(100,+∞) as easy, moderate, and hard, respectively.

In Figure 5, we report the number of corresponding ques-
tions w.r.t. their query sets’ difficulty. The two figures show
that, for questions with simple query shapes, it is relatively
easy for users to browse the returned queries. For example, the
group G(2, 1) contains 24 questions. When the user provided
one example, our algorithm returned no more than 10 queries
for 11 questions (45.8%). When the input consists of two
examples, the number of easy questions grows to 19 (79.2%).

However, for questions whose query shapes are compli-
cated, our algorithm returned too many queries with only one
input entity. For example in Figure 5a, for all questions whose
queries are of size 5 or radius 2 (i.e., groups G(5, 1) and
G(∗, 2)), an intolerable query set of over 100 queries was
returned. We note that complicated ground truth queries and
too few input entities are both the causes of large query sets. By
comparing Figure 5a and 5b, we find that, in all five groups,
if two examples were given instead of one, the number of
easy questions increased significantly, and much fewer hard
questions remained.

We exemplify the above observations with an example
question “in which films directed by Garry Marshall was
Julia Roberts starring” of Group G(5, 1) in Table IV. When
only “Valentine’s Day” is provided as input, the user may
be asking for the above question. But she may also be
asking for films directed by Garry Marshall and starred by
Anne Hathaway. In fact, our algorithm returned more than two
thousand queries including the above two. However, when the
user gave a second example “Runaway Bride”, the question
about Anne Hathaway was ruled out because she did not
starred in this film, and the algorithm returned only 6 queries.

C. Efficiency Evaluation

In this section, we validate the observations and optimiza-
tions proposed in Section IV. We compare four variants of
RkNPQ, namely RkNPQ-gStore, RkNPQ-S, RkNPQ-SI,
and RkNPQ-SPI. Each time we competed the running time of
two adjacent methods in the list to support one observation/op-
timization. As Figure 6 shows, we compared two methods by
plotting each question as a data point, where the running time
of the two methods were treated as x and y coordinates. Note
that the refine phase of RkNPQ-gStore was much slower
than the filter phase, causing the filter phase to be negligible.
Therefore only refine time is reported for RkNPQ-gStore.
For all other variants, we report end-to-end running time.

RkNPQ-gStore vs. RkNPQ-S (Shared Evaluation). Fig-
ure 6a compares RkNPQ-gStore and RkNPQ-S when only
one example entity was provided. We observed that both
methods spent too much time on some questions in G(∗, 2).
Therefore, we terminated the search when it took more than
105 seconds (approximately three hours), and reported the
running time as infinity (+∞). In Figure 6a, three observations
are made. First, almost all points are located below the dotted
line y = x/4. This indicates that when computations were
shared among evaluations of similar queries, our algorithm
could be accelerated by at least four times. Second, there are
two outliers on the upper-right corner. They were actually
caused by timeout and terminated runs, and are not against
the previous observation. Third, most data points lie above the
dotted line y = x/100, which indicates that shared evaluation
could achieve an efficiency gain of approximately two orders of
magnitude at best. When two example entities were provided
(see Figure 6b), the above observations hold.

RkNPQ-S vs. RkNPQ-SI (Indicator Answers). In Sec-
tion IV-B, we discussed out that only indicator answers are
responsible for the ranking positions of example entities.
We also emphasized that indicator answer evaluation could
benefit from shared evaluation as well. Here we only compare
RkNPQ-SI with RkNPQ-S to demonstrate that indicator
answers can reduce computations when shared evaluation is
applied.8 Figure 6c shows that, when the input consisted of
only one example answer, the algorithm could be accelerated
by up to 300 times if only indicator answers were considered.
When two examples were given (see Figure 6d), RkNPQ-SI
was 70 times faster than RkNPQ-S at best, which was less
significant compared with Figure 6c. This is because when
more examples are given, the indicator answer set IA(q) tends

8This is because it takes time to modify gStore to implement an
RkNPQ-I method which only employs the indicator answer optimization.
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Fig. 6: Pairwise running time comparisons among RkNPQ-gStore, RkNPQ-S, RkNPQ-SI, and RkNPQ-SPI.

to converge to D(q) for all surviving candidate queries q,
which makes RkNPQ-SI less beneficial.

RkNPQ-SI vs. RkNPQ-SPI (Partial Evaluation). In Fig-
ure 6e, we demonstrate the benefit of partially evaluating
the indicator answer sets. For most questions, this heuristic
reduces about 30 times of extra computations. By checking
each question, we found that the number of PSI checks
was successfully reduced except for the example question of
G(5, 1). This caused RkNPQ-SPI to be seven seconds slower
than RkNPQ-SI, as is marked by the outlier in Figure 6e. The
same situation also happens for some data points in Figure 6f.
We note that being heuristic-based, partial evaluation does not
strictly ensure a reduction of PSI checks. We will consider
optimizations with theoretical guarantees in future work.

D. Analysis of Parameter k

In this section, we analyze the impact of parameter k.
Recall that our algorithm only returns queries whose top-
k results cover the example entities I . Therefore by simple
reasoning, the impact of increasing k are two-sided. Because
different users may have different judgements on the relative
popularity of entities, a larger k makes the algorithm more
tolerable on the ranking positions of I . This avoids the situation
where the user cannot find a satisfactory query. However, a
larger k also causes more queries to be returned.

Currently we do not have real input data of I , so we
limit our empirical analysis to the number of returned queries
and running time, when I consists of the top entities in the
answer set. Because similar observations are made for both
|I| = 1 and |I| = 2, we only report results for |I| = 1 due to

space limitation. In Figure 7, we report the number of returned
queries and running time of RkNPQ-SPI of the five questions
in Table IV when k varied between 1 and 20. We also use
dotted lines to denote the running time of RkNPQ-SI. Note
that the running time of RkNPQ-SI does not depend on k.

Impact on Effectiveness. The above results show that our
algorithm returned more queries with increasing k. Recall that
in Section I, we mentioned differences between the partial
answers setting [21] and our setting. In fact, the setting where
entities in I are only treated as partial answers is equivalent to
our setting when k →∞. In Figure 7, we follow the trend to
see what may happen when k approaches infinity. In Figure 7a
and 7b, the questions enjoyed a small search space. The query
numbers quickly converge to 7 and 25, which indicates an
easily or moderately readable set, respectively, according to
the criteria in Section VI-B. However, in Figure 7c, the query
number only demonstrates a linear growth when k is below 20,
which implies that the query set is at most moderately readable
when it converges. In this situation, an appropriately set k may
help balance the query set size and the possibility that the
ground truth query is returned. Unfortunately, in Figures 7d
and 7e, the query sets are both large and grow quickly when
k is small. The only way to reduce them may be to ask the
user to give more example answers.

Impact on Efficiency. Figure 7 demonstrates three obser-
vations. First, the running time of RkNPQ-SPI does not
necessarily grow monotonically when k increases. Second, for
most cases the line for RkNPQ-SPI is below the dotted line,
indicating that the partial evaluation optimization is feasible
for a broad range of k. Third, in Figure 7d when k = 1, the
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Fig. 7: Impacts of k on the number of returned queries and
running time for the example questions in Table IV.

line for RkNPQ-SPI is above the dotted line. We note that
this case corresponds to the discussed outlier in Figure 6e.

VII. RELATED WORK

Our research is related to reverse engineering structured
queries, query by example entities/tuples, question-answering
on knowledge bases, and query optimization techniques.

Reverse Engineering Structured Queries. The problem of
reverse engineering queries using answers has been extensively
studied in the relational database and SQL setting. In [24],
Tran et al. proposed the problem of query by output. Given
the output table of an unknown SQL query q on a database
D, they explored techniques to find all queries q′ having
exactly the same result with q. To reverse engineer the WHERE
clauses, i.e., conjunctions and disjunctions of constraints on
the attributes, they built decision trees with the relational data,
and interpreted the trees into WHERE clauses. Zhang et al. [30]
pointed out that [24] posed an impractical restriction on the
structure of q′, i.e., no multiple instances of a single relation are
allowed in the FROM clause. They dropped the restriction and
proposed a sound and complete searching approach to discover
all complex join queries. Shen et al. [21] addressed the problem
in a slightly different setting. They allow the input table to have
empty cells. Moreover, the results of the discovered queries
need not match the input exactly, but only inclusion is required.

In [5], Bonifati et al. studied an interesting variation of
the reverse engineering query problem. Instead of providing
the answer herself, the user only needs to judge each tuple
presented by the system on whether it appears in the answers to
her query. Therefore, their major concerns were on identifying

informative tuples to minimize the number of interactions.
Authors of [5] also investigated inferring twig queries on
XML data [22] and path queries on graph databases [4]
with theoretical guarantees. Their queries support expressive
features such as descendant edges and regular expressions.
However, they are limited to tree and path shapes. We note
that neither of them subsumes or is a fragment of neighborhood
pattern queries studied in this paper.

Reverse Query Problems for Vector Data. In [26], Vlachou
et al. studied the problem of reverse top-k queries with
an application on product recommendation. They modeled
products as property vectors, and buyers as preference vectors
on the same dimensions. The potential interest of a buyer
for a product was measured by the inner product of the two
vectors. Given a product, the algorithm returns every buyer for
whom this product is among the top-k ones he is interested in.
The manufacturer may then find promotional targets based on
the results. Other reverse query problems like reverse nearest
neighbor queries [12] and reverse skyline queries [7] have also
been studied in previous work. Due to the inherent difference
between vector-based and graph-based data, our algorithmic
details are significantly different.

Query by Example Entities & Tuples. The input of our
problem are example entities, which is literally similar to
the well-known Query by Example [32] (QBE) framework of
specifying queries in relational databases. However, the “exam-
ples” of QBE are actually joins and constraints expressed via
manipulating tables, rather than real tuples from the database.

Recently, various studies [11], [14], [16], [17] were con-
ducted on querying with real examples like entities and tuples.
They all required a mixed list of similar entities (tuples) as out-
put, instead of structural queries as in this paper. Specifically,
Lim et al. [14] represented entities as feature vectors, where
the features are distances between the entities and concepts in
a concept hierarchy. Metzger et al. [16] measured the similarity
between entities by their overlapping aspects. Mottin et al. [17]
required returned tuples to have an isomorphic embedding
to, and a good connectivity with, the input tuple. Jayaram et
al. [11] generated a maximal query graph by exploring the
neighborhood of the input tuple. Subgraphs of the maximal
query graph were treated as queries, and tuples were ranked by
heuristical scores on the queries they match and the quality of
the match. We note that this line of work and ours are based on
different assumptions of user intentions. If a user only wants
results broadly similar to her examples, our technique may
not help because she may not have a clear and describable
question. On the contrary, if her information need is precise, it
may be inappropriate to return her a list like the first column
of Table I, which is a mixture of answers from three queries.

Natural Language QA over Knowledge Bases. As more
large knowledge bases [1], [3], [6], [23], [27] are becoming
available, researchers are trying to re-address the traditional
question answering problem using knowledge bases instead of
unstructured text data. To translate a natural language question
into an executable structured query, Unger et al. [25] proposed
a template-based approach. Yahya et al. [28] formulated the
translating task as an integer liner program problem. Berant
et al. [2] studied a learning approach using question-answer
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pairs. Zou et al. [33] suggested unifying the query translating
and evaluating stages for some ambiguity in the question may
be resolved better at the second stage. Currently, we do not
need the textual question to be provided as extra input, though
it may greatly reduce the number of possible queries. We plan
to address this new setting in our future research.

Multi-query-based and View-based Query Optimization.
The problem of multi-query optimization ( [19], [20], [31], to
name a few) has been studied for decades. Specifically, Le et
al. [13] attacked the problem in the RDF and SPARQL setting.
The proposed solutions first identified common substructures
residing in the input queries, and then used them to share
computations. View-based query optimization (see [8] for
a comprehensive survey) aims at answering queries using
materialized views. For a new query, the proposed solutions
generate execution plans which only access the pre-computed
answers to some given views. In our problem, after building
the query lattice, the algorithm is actually aware of the contain-
ment relationship between candidate queries. This information
makes common structure detection unnecessary. It also allows
us to directly reduce duplicate computations for a query by
intersecting and filtering results of its sub-queries instead of
generating more complicated execution plans.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we formulated the reverse top-k neighborhood
pattern query problem to help discover knowledge base queries
using popular partial answers. A solution framework based
on filter-refine scheme was introduced. We reduced the filter
phase to the frequent neighborhood pattern mining problem,
and proposed three optimizations on the refine phase, namely
shared evaluation, indicator answers, and partial evaluation.
Experiments on real-life datasets demonstrated the effective-
ness of our problem setting, and the efficiency of our approach.
We would like to address the following future works. First,
we will investigate utilizing the question text to cut the search
space. Second, we are interested in discovering queries with
two pivots, which is related to meta-path queries studied
in [15]. Finally, numerical nodes and range selections may
be introduced to neighborhood pattern queries, and tailored
searching techniques may be challenging to explore.
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