
Efficient Recursive XML Query Processing

Using Relational Database Systems

Sandeep Prakash a, Sourav S Bhowmick a and Sanjay Madria b

aSchool of Computer Engineering, Division of Information Systems, Nanyang
Technological University, Singapore 639798

bDepartment of Computer Science, University of Missouri-Rolla, Rolla 65409

Abstract

Recursive queries are quite important in the context of XML databases. In addi-
tion, several recent papers have investigated a relational approach to store XML
data and there is growing evidence that schema-conscious approaches are a better
option than schema-oblivious techniques as far as query performance is concerned.
However, the issue of recursive XML queries for such approaches has not been dealt
with satisfactorily. In this paper we argue that it is possible to design a schema-
oblivious approach that outperforms schema-conscious approaches for certain types
of recursive queries. To that end, we propose a novel schema-oblivious approach,
called Sucxent++ (Schema Unconcious XML Enabled System), that outper-
forms existing schema-oblivious approaches such as XParent by up to 15 times and
schema-conscious approaches (Shared-Inlining) by up to 8 times for recursive query
execution. Our approach has up to 2 times smaller storage requirements compared
to existing schema-oblivious approaches and 10% less than schema-conscious tech-
niques. In addition Sucxent++ performs marginally better than Shared Inlining
and is 5.7 - 47 times faster than XParent as far as insertion time is concerned.

Key words: Recursive queries, XML storage, relational databases, query
translation, query optimization, performance.

1 Introduction

XML is gradually becoming the standard in exchanging and representing data.
Not surprisingly, effective and efficient querying of XML data has become an
increasingly important issue. Recursive XML queries are considered to be
quite significant in the context of XML query processing [9] and yet this issue
has not been addressed satisfactorily in existing literature. Recursive XML

Email addresses: assourav@ntu.edu.sg, madrias@umr.edu (Sanjay Madria).

Preprint submitted to Elsevier Science 25 May 2005

<!ELEMENT site (regions,…,...)>
<!ELEMENT regions (africa, ..., europe,
...)>
<!ELEMENT africa (item*)>
<!ELEMENT europe (item*)>
<!ELEMENT item
(name,price,description)>
<!ELEMENT name (#PCADATA)>
<!ELEMENT price (#PCDATA)>

site

regions

africa europe

item
name

*
*

price

...

...

(a) Partial DTD.

<site>
<regions>

<europe>
<item>

<name>Gold Ingot</name>
<price>$100</price>
<description>

<text>desc1</text>
<keyword>kwd1</keyword>

</description>
</item>
<item>

<name>Item1</name>
<price>$10</price>
<description>

<text>desc2</text>
<parlist>

<listitem>
<text>...stone...</text>
<parlist>...</parlist>

</listitem>
</parlist>
<keyword>kwd2</keyword>

</description>
</item>

</europe>
<africa>

<item>
<name>Item2</name>
<price>$20</price>
<description>

<text>desc3</text>
<parlist>

<listitem>
<text>...gold...</text>
<parlist>...</parlist>

</listitem>
</parlist>
<keyword>kwd3</keyword>

</description>
</item>

<item>
<name>Item3</name>
<price>$30</price>
<description>

<text>desc4</text>
<keyword>kwd4</keyword>

</description>
</item>

</africa>
</regions>
</site>

(b) XML document.

Fig. 1. An example.

queries are XML queries that contain the descendant axis (//). The use of
the ‘//’ is quite common in XML queries due to the semi-structured nature
of XML data [9]. For example, consider the XML document in Figure 1 (for
clarity, only partial structure is shown). The partial tree representation of
the document is shown in Figure 2. The element item could occur either
under europe or africa. Consider the scenario where a user needs to retrieve
all item elements. The user will have to execute the path expression Q =
/site//item. Another scenario could be that the document structure is not
completely known to the user except that each item has a name and price.
Suppose, the user needs to find out the price of the item with name "Gold

Ignot". Q = //item[name=”Gold Ignot”]/price will be the corresponding path
expression.

Efficient execution of XML queries, recursive or otherwise, is largely deter-
mined by the underlying storage approach. There has been a substantial re-
search effort in storing and processing XML data. There are basically three
alternatives for storing XML data: in semi-structured databases [6], in object-
oriented databases [1], and in relational systems [2–5,7,14,15,18,19]. Among

2

site

regions

europe africa

item

descriptionname price

item

descriptionname price
“Gold Ignot” $100

text keyword
“desc1” “kwd1”

“Item1” $10

“desc2”
text keyword

“kwd2”

item

descriptionname price

item

descriptionname price
“Item2” $20

text keyword
“desc3” “kwd3”

“Item3” $30

“desc4”
text keyword

“kwd4”

1 2

Leaf Order
3

Level 2

Level 3Level 3

parlist

listitem

text parlist

...
“..gold..”

listitem

text parlist

...
“..stone..”

parlist

Fig. 2. Tree representation.

these approaches, the relational storage approach has attracted considerable
interest with a view to leveraging their powerful and reliable data manage-
ment services. In order to store an XML document in a relational database,
the tree structure of the XML document must first be mapped into an equiv-
alent, flat, relational schema. XML documents are then shredded and loaded
into the mapped tables. Finally, at runtime, XML queries are translated into
SQL, submitted to the RDBMS, and the results are then translated into XML.

There is a rich literature addressing the issue of managing XML documents
in relational backends [2–5,7,14,15,18,19]. These approaches can be classified
into two major categories as follows.

(1) Schema-conscious approach: This method first creates a relational schema
based on the DTD/schema of the XML documents. First, the cardinality
of the relationships between the nodes of the XML document is estab-
lished. Based on this information a relational schema is created. The
structural information of XML data is modeled by using primary-key
foreign-key joins in relational databases to model the parent-child re-
lationships in the XML tree. Examples of such approaches are Shared
Inlining [14], LegoDB [2,11]. Note that this approach depends on the ex-
istence of a schema describing the XML data. Furthermore, due to the
heterogeneity of XML data, in this approach a simple XML schema/DTD
often produce a relational schema with many tables.

(2) Schema-oblivious approach: This method maintains a fixed schema which
is used to store XML documents. The basic idea is to capture the tree
structure of an XML document. This approach does not require exis-
tence of an XML schema/DTD. Also, number of tables is fixed in the
relational schema and does not depend on the structural heterogeneity

3

of XML documents. Some examples of schema-oblivious approaches are
Edge approach [5], XRel [18], XParent [7].

Schema-oblivious approaches have obvious advantages such as the ability to
handle XML schema changes better as there is no need to change the rela-
tional schema and a uniform query translation approach. Schema-conscious
approaches, on the other hand, have the advantage of more efficient query
processing [16]. Also, no special relational schema needs to be designed for
schema-conscious approaches as it can be generated on the fly based on the
DTD of the XML document(s).

1.1 Overview

In this paper, we present an efficient approach to process recursive XML
queries using a schema-oblivious approach 1 . At this point, one would ques-
tion the justification of this work for two reasons. First, this issue may have
already been addressed. Surprisingly, this is not the case as highlighted in [9].
Second, a growing body of work suggests that schema-conscious approaches
perform better than schema-oblivious approaches. In fact, Tian et al. have
demonstrated in [16] that schema-conscious approaches generally perform sub-
stantially better in terms of query processing and storage size. However, the
Edge approach [5] was used as the representative schema-oblivious approach
for comparison. Although the Edge approach is a pioneering relational ap-
proach, we argue that it is not a good representation of the schema-oblivious
approach as far as query processing is concerned. In fact, XParent [7] and XRel
[18] have been shown to outperform the Edge approach by up to 20 times, with
XParent outperforming XRel [7]. However, this does not mean that XParent
outperforms schema-conscious approaches. In fact, we shall show in Section 6,
schema-conscious approaches still outperform XParent. Hence, it may seem
that schema-conscious approaches generally outperforms schema-oblivious ap-
proaches in terms of query processing. In this paper we argue that it is indeed
possible to design a schema-oblivious approach that can outperform schema-
conscious approaches for certain types of recursive queries.

To justify our claim, we propose a novel schema-oblivious approach, called
Sucxent++ (Schema Unconcious XML Enabled System (pronounced “suc-
cinct++”)), and investigate the performance of recursive XML queries. We
only store the leaf nodes and the associated paths together with two additional
attributes for efficient query processing (details follow in Section 3). Sucx-
ent++ outperforms existing schema-oblivious techniques, such as XParent,
by up to 15 times and Shared-Inlining - a schema-conscious approach - by
up to 8 times for recursive queries with characteristics described in Section 6.

1 A shorter version of this paper has appeared in [10].

4

In addition, Sucxent++ can reconstruct shredded documents up to 2 times
faster than Shared-Inlining. The main reasons Sucxent++ performs better
than existing approaches are as follows.

• Significantly lower storage size and, consequently, lower I/O-cost associated
with query processing;

• Fewer number of joins in the corresponding SQL queries; and
• Additional optimization techniques discussed in Section 5 improve the query

plan generated by the relational query optimizer.

In summary, the main contributions of this paper are as follows.

(1) A novel schema-oblivious approach whose storage size depends only on
the number of leaf nodes in the document.

(2) Through an extensive experimental study, we show that our approach sig-
nificantly outperform state-of-the-art schema oblivious approaches and a
schema-conscious approach for certain types of recursive queries. To the
best of our knowledge, this is the first attempt to show that it is in-
deed possible to design a schema-oblivious approach that can outperform
schema-conscious approaches as far as the execution of certain types of
recursive XML queries is concerned.

(3) Traditional schema-oblivious approaches have been hampered by the poor
query plan selection of the underlying relational query optimizer[16,19].
We developed optimization techniques to improve the query plan gener-
ated by the relational query optimizer. Our experimental results demon-
strate the effectiveness and efficiency of our optimization techniques.

The rest of the paper is organized as follows. Section 2 briefly discusses exist-
ing techniques to store and query XML in an RDBMS. The database schema
of Sucxent++ is presented in Section 3. We will briefly describe how an
XML document is stored in an RDBMS using Sucxent++. In Section 4, we
present how recursive XML queries are translated to SQL in Sucxent++.
This is followed by a discussion of optimization techniques to improve query
performance in Section 5. Section 6 presents the performance results of Sucx-
ent++ and compare it with a schema-oblivious (XParent) and one schema
conscious (Shared-Inlining) approaches. The last section concludes the paper.

2 Related Work

There is a substantial body of work on using relational databases to store
XML documents. The various approaches differ in which meta-data they use
(i.e., schema or schemaless); how the relational configuration is generated;
and which information is preserved in the relational side. Table 1 gives the
summary of existing approaches.

5

Techniques Schema-
oblivious

Cost-
based

Order Pre-
serving

Class of XML
schema consid-
ered

Class of XML Query
considered

STORED [4] Yes No Yes All STORED

Edge [5] Yes No Yes All Path expressions

Interval [3] Yes No Yes All XQuery

XRel [18] Yes No Yes All Path expressions

XParent [7] Yes No Yes All Path expressions

[15] Yes No Yes All Order-based queries

[19] Yes No Yes ll Path expressions

SUCXENT++ Yes No Yes All XQuery

Inlining [14] No No No Recursive -

LegoDB [2] No Yes No tree XQuery

Oracle XML
DB [21]

Yes No Yes Recursive SQL/XML restricted
XPath

DB2 XML Ex-
tender [20]

Yes No Yes non-recursive SQL extensions
through UDFs

Table 1
Summary of XML storage and querying techniques.

2.1 Schema-oblivious Approaches

Techniques which store XML documents in generic (pre-defined) relational ta-
bles are called schema-oblivious. One of the first proposals for schema-oblivious
mapping of XML documents was the Edge approach [5]. In this approach, the
input XML document is viewed as a graph and each edge of the graph is
represented as a tuple in a single table. In a variant known as the Attribute
approach, the edge table is horizontally partitioned on the tag name yielding
separate table for each element/attribute. Two other alternatives, the Univer-
sal table approach and the Normalized Universal approach are proposed but
shown to be inferior to the other two. In this approach, resolving ancestor-
descendant relationships requires the traversal of all the edges from the an-
cestor to the descendant (or vice-versa). Thus it is an expensive approach as
it typically requires many joins for navigating and/or reconstructing the doc-
ument. Note that the Edge approach uses recursive SQL queries using the
SQL99 With construct to evaluate recursive XML queries.

In STORED [4], given a semistructured database instance, STORED map-
ping is generated automatically using data mining techniques - STORED is a
declarative query language proposed for this purpose. This mapping has two
parts: a relational schema and an overflow graph for the data not conform-
ing to the relational schema. STORED can be considered as schema-oblivious
approach as the data inserted in the future is not required to conform to the
derived schema. Thus, if an XML document with completely different struc-
ture is added to the database, the system sticks to the existing relational

6

Document (DocId, Name)

Path (PathId, PathExp, CPathId)

PathValue (DocId, PathId, LeafOrder,
CPathId, BranchOrder, BranchOrderSum,
LeafValue)
TextContent (DocId, PathId, LeafOrder,
CPathId, BranchOrder, BranchOrderSum,
Text)

DocumentRValue (DocId, Level, RValue)

(a) Sucxent++.

LabelPath (ID, Len, Path)

DataPath (Pid, Cid)

Element (PathID, Did, Ordinal)

Data (PathID, Did, Ordinal, Value)

Ancestor (Did, Ancestor, Level)

(b) XParent.

Fig. 3. Relational schemas.

schema without any modification whatsoever. In STORED, an algorithm is
outlined for translating an input STORED query into SQL. The algorithm
uses inversion rules to create a single canonical data instance, intuitively cor-
responding to a schema. The structure component of the STORED query is
then evaluated on this instance to obtain a set of results, for each of which a
SQL query is generated incorporating the rest of the STORED query. How-
ever, similar to the Edge, in this approach it is necessary to perform one join
per step in the path expression during query translation.

The system proposed by Zhang et al in [19] labels each node with its preorder
and postorder traversal numbers. Then, ancestor-descendant relationships can
be resolved in constant time using the property preorder(ancestor) <
preorder(descendant) and postorder(ancestor) > postorder(descendant). How-
ever, it still results in as many joins as there are path separators.

To solve the problem of multiple joins, XRel [18] stores the path of each node in
the document. For each element, the path id corresponding to the root-to-leaf
path as well as an interval representing the region covered by the element are
stored. Then, the resolution of path expressions only requires the paths (which
can be represented as strings) to be matched using string matching operators.
However, the query translation algorithm in XRel is correct for nonrecursive
data sets - it turns out that it does not give the correct result when the
input XML data has an ancestor and descendant element with the same tag
name [8]. Moreover, this approach still makes use of the containment property
mentioned above to resolve ancestor-descendant relationships. It involve joins
with θ (< or >) operators that have been shown to be quite expensive due to
the manner in which an RDBMS processes joins [19]. In fact, special algorithms
such as the Multi-predicate merge sort join algorithm [19] have been proposed
to optimize these operations. However, to the best of our knowledge there
is no off-the-shelf RDBMS that implements these algorithms as the issue of
how we extend the relational engine to identify the use of these strategies is
an open problem. In particular, the question of how the optimizer maps SQL
operations into these strategies needs to be addressed.

7

XParent [7] solves the problem of θ-joins by using an Ancestor table that
stores all the ancestors of a particular node in a single table. It then replaces θ-
joins with equi -joins over this set of ancestors. However, this approach results
in an explosion in the database size as compared to the original document.
The number of relational joins is also quite substantial. XParent requires a
join between the LabelPath, DataPath, Element and Ancestor tables for
each path in the query expression. The joins are quite expensive especially
when the Ancestor table is involved as it can be quite large in size. Note
that XParent and XRel handle recursive queries like any other query.

In [15], the focus is on supporting order based queries over XML data. The
schema assumed is a modified Edge relation where the path id is stored as in
XRel, and an extra field for order is also stored. Three schemes for supporting
order are discussed. Algorithms for translating order-based path expression
queries into SQL are also provided. As this approach is based on the Edge
and XRel, it suffers from the same limitations as discussed above.

In dynamic intervals approach [3], all XML data is stored in a single table
containing a tuple for each element, attribute and text node. For an element,
the element name and an interval representing the region covered by the ele-
ment is stored. Analogous information is stored for attributes and text nodes.
In order to distinguish children from descendants, a level number is recorded
with each node. This approach supports a larger fragment of XQuery with
arbitrarily nested FLWR expressions, element constructors and built-in func-
tions including structural comparisons. Special purpose relational operators
are proposed for better performance. We note that without these operators,
the performance is likely to be inferior even for simple path expressions. As an
example, using their technique, the path expression /site/people is trans-
lated to an SQL query involving five temporary relations created using the
With clause in SQL99, three of which involve correlated subqueries [8]. Hence,
without modifications to the relational engine, its performance may not be
acceptable.

In Oracle XML DB [21] and IBM DB2 XML Extender [20], a schema oblivious
way of storing XML data is provided, where the entire XML document is
stored using the CLOB data type. Hence, evaluating XML queries in this case
is similar to XML query processing in a native XML database. Also, many
types of XML queries suffer from poor performance due to the treatment of
XML documents as CLOB.

Sucxent++ is different from existing approaches in that it only stores leaf
nodes and their associated paths. For each level in an XML document, we
store an attribute called RValue. Rather than storing the ancestor-descendant
and parent-child of all nodes in the XML document, we store only the leaf
nodes and their corresponding values along with the root-to-leaf paths in the

8

document. Additionally, for each leaf node we store two additional attributes
called BranchOrder and BranchOrderSum. These attributes along with the
RValue enable us to efficiently check whether the level of the nearest common
ancestor of a pair of relevant leaf nodes satisfies the query constraints. This
reduces the storage size significantly as well as the number of joins needed
to be executed in the translated SQL queries. In addition, we propose opti-
mization techniques that enable the underlying relational query optimizer to
generate near-optimal query plans for our approach, resulting in a substantial
performance improvement.

2.2 Schema-conscious Approaches

Departing from generic mapping as discussed above, several specialized strate-
gies have been proposed which make use of schema information to generate
efficient mappings. These approaches are called schema-conscious approaches.

In [14], three techniques for using a DTD to choose a relational schema are
proposed - basic inlining, shared inlining, and hybrid inlining. The main idea
is to inline all elements that occur at most once per parent element in the
parent relation itself. This is extended to handle recursive DTDs.

LegoDB [2,11] takes a cost-based approach to derive a mapping that best suits
a given application - characterized by a schema, query workload and document
samples. LegoDB uses the information in the XML schema to derive several
possible mapping alternatives, and selects the one which leads to the lowest
cost for executing a given query workload over sample documents. Compared
to Shared Inlining, LegoDB system exploits a richer set of mapping primitives.
In addition to parent-child relationships, LegoDB also takes into account addi-
tional schema constructs such as choice and repetition, and it allows multiple
mapping functions for a given construct.

Unlike the schema-oblivious approaches, schema-conscious techniques have fo-
cused on structural and constraint mapping, often ignoring the order among
elements. Because these techniques ignore order, the resulting mapping are
lossy [8]. For example, the mapping strategies in [14] do not allow mapped doc-
uments to be faithfully reconstructed. Furthermore, schema-conscious strate-
gies have to treat recursion in both schema and queries as special cases. In [9],
the authors propose a generic algorithm to translate recursive XML queries
for schema-conscious approaches using the SQL99 With construct. However,
no performance evaluation of the resulting SQL queries is presented and it is
assumed that schema-conscious approaches will outperform schema-oblivious
approaches. Sucxent++ maintains document order and also treats recursive
XML queries like any other queries.

9

Document (DocId, Name)

Path (PathId, PathExp, CPathId)

PathValue (DocId, PathId, LeafOrder,
CPathId, BranchOrder, BranchOrderSum,
LeafValue)
TextContent (DocId, PathId, LeafOrder,
CPathId, BranchOrder, BranchOrderSum,
Text)

DocumentRValue (DocId, Level, RValue)

(a) Sucxent++.

LabelPath (ID, Len, Path)

DataPath (Pid, Cid)

Element (PathID, Did, Ordinal)

Data (PathID, Did, Ordinal, Value)

Ancestor (Did, Ancestor, Level)

(b) XParent.

Fig. 4. Relational schemas.

3 Storing XML Data

In this section we present the database schema for storing XML documents.
Then, we present the algorithm for lossless extraction of XML documents from
the relational database. We use the sample XML document in Figure 1 as the
running example in this section.

3.1 Schema Description

We first define some symbols to facilitate exposition. Let nk be a node in the
XML tree X. Then the level of nk is denoted as `k. We denote the maximum
level of the X as Lmax. Also, Ak denotes the set of ancestor nodes of nk.
The relational schema for Sucxent++ is shown in Figure 4(a). There are
five relations in the schema. We elaborate on the detail semantics of these
relations. The semantics of DocumentRValue relation and BranchOrderSum
attribute in PathValue table are going to be elaborated in Section 4 in the
context of query processing. The CPathId in Path is discussed in Section 5
as it is used for optimization.

The Document Relation

The table Document is used for storing the names of the documents in the
database. This name could be the file name of the XML document or its URL.
Whenever a new document is inserted in Sucxent++ its file name or URL
is stored in the Name attribute and a unique identifier is stored in the DocId
attribute. This identifier is used as a reference to this document in the rest of
the schema. Figure 5 shows the shredded version of the example document.

10

PathExp

site.regions.europe.item.description.text

site.regions.europe.item.price
site.regions.europe.item.name

site.regions.europe.item.description.keyword

PathId

5
6

7
8

LeafOrderDocId PathId BranchOrder BranchOrderSum LeafValue

11 7 0 0 Gold Ignot
21 8 4 3 $100

31 6 4 6 gold
41 5 5 8 kwd1
...1
131 3 3 85 Item3
141 4 4 88 $30

Path

PathValue

DocId Name

1 Auction.xml

2 ..

Document

RValueDocId Level

3291 1
411 2

101 3
31 4

21 5

DocumentRValue

site.regions.africa.item.description.text

site.regions.africa.item.price
site.regions.africa.item.name

site.regions.africa.item.description.keyword

3
4

1
2

151 2 4 91 desc4
161 1 5 93 kwd4

11 6

2
4

6
8

5
7

1
3

CPathId

CPathId

6
8

4
2

...
5

7
3

1

Fig. 5. XML data in RDBMS.

The Path Relation

The Path table records every unique root-to-leaf path encountered in the
XML documents stored in the database. The path expression corresponding
to the path is stored in the PathExp attribute. A unique identifier (integer
type) to reference this path is stored in the PathId attribute. The rest of
the schema uses this PathId to refer to this path. This table maintains path
identifiers and relative path expressions recorded as instances of PathId and
PathExp respectively.

The PathValue Relation

This table stores the leaf nodes of the XML documents stored in the database.
Each tuple stores one leaf node. The DocId attribute in a tuple refers to the
document the leaf node in this tuple belongs to. This refers to the DocId
unique identifier of the Document table. The shredded document in Figure 5
has DocId equal to 1 and the leaf nodes corresponding to this document are
stored in the PathValue table with this DocId value. The PathId attribute
refers to the root-to-leaf path corresponding to this leaf node as stored in the
Path table. The LeafValue attribute stores the textual content of the leaf
node. Consider the first tuple in the PathValue table. This stores the first
leaf node, name, of the document. As shown in Figure 2 this leaf node has the
root-to-leaf path site/regions/europe/item/name corresponding to PathId
equal to 7 in the Path table. The text value of this node is "Gold Ingot"

and this is stored as an instance of LeafValue attribute.

The LeafOrder attribute (denoted as leaforder(n)) records the order of the
leaf node n. This corresponds to the order in which leaf nodes are encountered
when the document is parsed in preorder traversal. For example, the first leaf

11

node encountered in the document of Figure 2 is name. The first tuple in the
PathValue table of Figure 5 represent this node and has a LeafOrder value
equal to 1. Similarly, price is the next leaf node encountered and, therefore,
its LeafOrder is 2. The text value of this node is "$100". This node is shown
in the second tuple in the PathValue table. Formally,

Definition 1 [LeafOrder] Let P = {n1, n2, . . . , nk} be the set of leaf nodes in
X such that preorder(ni) < preorder(ni+1) ∀ 0 < i < k Then leaforder(n1) =
1 and leaforder(nj) = leaforder(nj−1) + 1 ∀ 1 < j ≤ k.

Observe that the PathValue provides a list of leaf nodes together with their
paths (as referenced by PathId). The tree structure shown in Figure 2 can
be obtained by “stitching” together these leaf nodes. However, in order to
do this, the level at which a leaf node path intersects the adjacent leaf node
paths (nearest common ancestor of the two adjacent nodes) must be known.
Consider the node with LeafOrder=2 in Figure 2. The path of this leaf node
will intersect with path of the leaf node with LeafOrder equal to 1 at the
node item which is at level 4. By recording this information the portion of
the document corresponding to these two leaf nodes can be reconstructed.
Observe that only the intersection level with the path of either of the two
adjacent leaf nodes needs to be recorded. Here, the intersection level with the
nodes on the left hand side is recorded. This is because standard XML parsers
follow preorder traversal and hence recording the intersection level with the
nodes on the right hand side would require backtracking.

The BranchOrder attribute (denoted as branchorder(n)) records the inter-
section level (nearest common ancestor) of the leaf node n with leaf node
that immediately precedes it. For instance, the BranchOrder value for the
node with LeafOrder=2 in Figure 2 is 4. Similarly, the node name with value
"Item2" has BranchOrder=2 (intersecting the node to the left at regions). It
is useful for reconstructing the XML documents from their shredded relational
format as discussed in the next section. Formally,

Definition 2 [BranchOrder] Let ni and nj be two leaf nodes in the XML
tree X such that leaforder(ni) = leaforder(nj)−1. Let na be an internal node
of X at level `a such that na ∈ Ai, na ∈ Aj and @ nk s.t. `k > `a, nk ∈ Ai and
nk ∈ Aj for k 6= a. Then (1) branchorder(n1) = 0 if leaforder(nj) = 1 and
(2) branchorder(nj) = `a if leaforder(nj) > 1.

The TextContent Relation

Large text data (e.g., DNA sequences) can cause problems while indexing
the corresponding column. So, they are not stored in the PathValue table.
Instead, a separate table, TextContent that has the same structure as Path-
Value table, is maintained for large text data. In Sucxent++, all textual
data larger than 255 bytes in size is stored in this table.

12

Algorithm 1 Document reconstruction algorithm.

Input: L = {n1, · · · , nk}, a list of leaf nodes arranged in order of LeafOrder values
Output: D is the document to be returned.
1: c is an XML node.
2: c ← φ
3: C ← list of XML nodes.
4: for all ni in L do

5: /* /book/authors/author would give p = [book,authors,author]*/
6: p is the array of nodes in a path.
7: p = ni.Path.GetNodes()
8: /*s is a counter*/
9: s ← 0

10: if c = φ then

11: c ← new XmlDocumentNode(p[0])
12: /* Make c the root. This happens only once. */
13: D.AddNode(c)
14: C.Add(c)
15: s ← 1
16: else if

then

17: s ← ni.BranchOrder()
18: end if

19: /* Keep only those nodes in C that are common between ni−1 and ni. */
20: C.ClearFromIndex(s)
21: q is an XML node
22: /*Need to keep it as the starting node for processing ni+1 */
23: q ← c
24: while s < p.Length() do

25: m ← new XmlDocumentNode(p[s])
26: q.AppendChild(m)
27: C.Add(m)
28: q ← m
29: s + +
30: end while

31: end for

1

Fig. 6. Extraction algorithm.

3.2 Document Extraction Algorithm

The algorithm for reconstruction is presented in Figure 6. The input to the
algorithm is a list of leaf nodes arranged in ascending LeafOrder. This list could
be obtained as a result of a query or could simply be the whole document.
The reconstruction proceeds as follows.

(1) Each leaf node path is first split into its constituent nodes (lines 5 to 7).
This process can be optimized by already storing the constituent nodes
of each root-to-leaf path of the Path table.

(2) If the document construction has not yet started (line 10) then the first
node obtained by splitting the first leaf node path is made the root (lines
11 to 15).

(3) When the next leaf node and the corresponding root-to-leaf path is ana-
lyzed we only need to process the nodes starting after the BranchOrder
level of that path as the nodes till this level have already been added to
the document (lines 20 to 22). The nodes starting after this level are now
added to the document (lines 27 to 31).

(4) Document extraction is completed once all the leaf nodes have been pro-
cessed.

13

This algorithm can be used to construct the whole document if all leaf nodes
in the document are presented as input. A fragment of the document can be
generated if a partial list of consecutive leaf nodes is provided. In fact, query
results are returned as a list of leaf nodes and the result XML fragment(s)
is constructed using this algorithm. As an example, consider reconstructing
the document fragment corresponding to the first two LeafOrders in Figure 2.
Essentially, we start with the first two tuples (in terms of LeafOrder) in the
PathValue table in Figure 5. The reconstruction proceeds as follows.

(1) The first leaf node has the path site.regions.europe.item.name. It
is split up into the nodes site, regions, europe, item, and name (line 7).
Since this is the first leaf node (line 10), all the nodes in the path are
added to the document and the value of the name node is set to Gold

Ingot (lines 23 to 30).
(2) The next leaf node has the path site.regions.europe.item.price.

Now, only those nodes that start after the BranchOrder level of this
path need to be considered (line 17). Since, its BranchOrder is 4, nodes
are processed starting from price (lines 23 to 30). So, this node is added
to the document and its value is set to $100.

(3) The other nodes are processed similarly to produce the partial or complete
document.

4 Recursive Query Processing

In this section, we first analyze the approach taken by existing schema-oblivious
schemes and highlight their drawbacks. Then, a discussion of the Sucxent++
approach to query processing, including translation of XQuery to SQL, will
follow.

4.1 Current Schema-oblivious Approaches

Consider the recursive query XQuery 1 in Figure 7(a). A tree representation
of the query is shown in Figure 7(b). This query returns those price leaf nodes
that intersect the constraint-satisfying text leaf node at item. Consider how
XParent resolves this query. The schema for XParent is shown in Figure 4(b).
XParent evaluates this query by locating leaf nodes from the Data table that
satisfy the constraint on text. This involves a join between the LabelPath
and Data to satisfy the path constraint /site/regions/africa/item//text
and a predicate on the Data to satisfy the value constraint. Next, Label-
Path and Data tables are joined again to obtain those leaf nodes that satisfy
/site/regions/africa/item/price. These two results sets are joined using
the Ancestor table to find nodes that have a common ancestor at level 4 (at

14

For XQuery 1
 $b in document(“auction”)/site/regions/africa/i tem
Where
 contains($b//text, “Gold Ignot”)
Return
 <price>$b/price</price>

(a) XQuery example.

site

regions

africa

item

text
price

*

Contains(“Gold Ignot”)

������

(b) Query tree.

Fig. 7. XQuery.

item). Thus, the final SQL query involves five joins - two between the Label-
Path and Data, two between the Data and Ancestor and one between two
Ancestor tables (SQL query translation details for XParent can be found in
[7]). These joins can be quite expensive due to the large size of Ancestor.
XRel follows a similar approach to resolving path expressions except that it
uses the ancestor-descendant containment property instead of an Ancestor
table. This produces θ-joins resulting in performance worse than XParent. A
detailed evaluation of XRel vs. XParent can be found in [7].

Query performance can be improved by reducing the number of joins. The
joins should be executed on smaller data to further improve performance.

4.2 The Sucxent++ Approach

Reconsider the query in Figure 7. It is evident that XML fragments that satisfy
the query must satisfy the following structural constraints: the XML document
must have paths that satisfy the path expressions /site/regions/africa/

item//text and /site/regions/africa/item/price and these paths must
intersect (nearest common ancestor) at a level 4. In general, given an XQuery,
often we need to determine if a pair of nodes n1 and n2 intersect at a specific
level ` of the XML tree. For instance, consider the XML tree in Figure 8(a).
Suppose that the root-to-leaf paths to nodes n and m satisfy the constraints of
a query. Then we need to identify the intersection level or level of the nearest
common ancestor of these two nodes (level 3) efficiently in order to identify
related query results.

The attributes discussed till now in Sucxent++ are insufficient for identi-
fying such intersection level efficiently. Recall that the BranchOrder attribute
records the intersection level of a leaf node n with leaf node that immediately
precedes it. However, the nodes n and m may not be adjacent to one another.
Hence, we need to extend the Sucxent++ schema so that we can determine

15

R1

R2

R3

R4

R5

n

m

(a) BranchOrderSum and RValue

1 SELECT
2 V2.*
3 FROM
4 PATHVALUE V1,
5 PATH P1,
6 PATHVALUE V2,
7 PATH P2,
8 DOCUMENTRVALUE D
9 WHERE
10 P1.PATHEXP LIKE '.site.regions.africa.item.%.text' AND
11 P1.ID = V1.PATHID AND
12 V1.LEAFVALUE = '%Gold Ignot%' AND
13 P2.PATHEXP LIKE '.site.regions.africa.item.pr ice' AND
14 P2.ID = V2.PATHID AND
15 V1.DOCID = V2.DOCID AND
16 V1.DOCID = D.DOCID AND
17 D.LEVEL = 3 AND
18 ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

(b) Translated SQL query.

Fig. 8. Query processing in Sucxent++.

the intersection level by inspecting the nodes n and m only without processing
all the leaf nodes and root-to-leaf paths between n and m (Black leaf nodes in
Figure 8(a)). We achieve this by extended the schema in the following ways.
First, we store an attribute RValue (denoted as R`) in the DocumentRValue
table for each level ` of the XML tree. Second, an attribute BranchOrderSum,
denoted as Sn, is assigned to a leaf node with LeafOrder n. As we shall later,
these attributes allow us to determine the intersection levels of any two leaf
nodes efficiently. This results in a substantial reduction in storage size and
query processing time. We now elaborate on these attributes. We begin by
first defining the notion of maximum k-consecutive leaf node set which shall
be used to define RValue.

Definition 3 [Consecutive Leaf Node Set] Let C = {n1, n2, . . . , nr} be
a set of leaf nodes in X such that leaforder(nj) = leaforder(nj+1) − 1 ∀
1 ≤ j < r. Then C is called the consecutive leaf node set.

Let us illustrate the above definition with an example. Consider Figure 2.
The nodes labeled “$100”, “desc1”, and “kwd1” consist of a consecutive leaf
node set as they have leaf order values 2, 3, and 4 respectively That is, C1 =
{“$100”, “desc”, “kwd1”}. Similarly, C2 = {“desc”, “kwd1”, “item1”, “$10”}.

Definition 4 [k-Consecutive Leaf Node Set] Let C = {n1, n2, . . . , nr} be
a consecutive leaf node set. Then C is called k-consecutive leaf node set,
denoted as Ck, if the following conditions are true.

• branchorder(ni) ≥ k ∀ 1 ≤ i ≤ r and k ∈ [1, Lmax].
• If leaforder(n1) > 1 then branchorder(n`) < k and leaforder(n`) =

leaforder(n1)− 1.
• If nr is not the rightmost leaf node in X then branchorder(nr+1) < k and

leaforder(nr+1) = leaforder(nr) + 1.

16

The number of nodes in Ck is denoted as |Ck|.

For instance, consider C1 in the above example. Let k = 4. Then, C1 is a
k-consecutive leaf node set (also denoted as C4) as the BranchOrder values of
the nodes “$100”, “desc1”, and “kwd1” are 4, 4, and 5 respectively, and the
BranchOrder values of “Gold Ignot” (LeafOrder is 1) and “item1” (LeafOrder
is 5) are 0 and 3 respectively. However, C2 is not a k-consecutive leaf node
set as it has nodes having BranchOrder value less than 4. Note that C ′

1 =
{“desc”, “kwd1”} is not k-consecutive leaf node set as “$100” (LeafOrder is
2) has BranchOrder value equal to 4. Observe that |C4| = 3.

Definition 5 [Maximum k-Consecutive Leaf Node Set] Let C1
k , C2

k , C3
k

. . . Cm
k be the set of k-consecutive leaf node sets for a given k. Then Cj

k is
maximum k-consecutive leaf node set, denoted as Mk, if |Cj

k| ≥ |Ci
k| ∀

0 < i ≤ m and i 6= j. The number of nodes in Mk is denoted as |Mk|.

Definition 6 [RValue] Let Lmax be the maximum level of an XML tree. Then
RValue of level `k for 0 < k ≤ Lmax, denoted as Rk, is defined as follows.

(1) If `k = Lmax then Rk = 1 and |Mk| = 1.
(2) If `k < Lmax then Rk = Rk+1 × |Mb|+ 1 where b = k + 1.

Reconsider the XML tree in Figure 2. For simplicity, ignore the subtrees rooted
at parlist node. Then Lmax = 6. Therefore, from the above definition, R6 = 1
and |M6| = 1. This means that R5 = 1× 1 + 1 = 2. The maximum number
of consecutive leaf nodes with BranchOrder ≥ 5 (maximum 5-consecutive leaf
node set) is 1 (Node “kwd1” with LeafOrder equal to 4). Therefore, R4 =
2 × 1 + 1 = 3. Similarly, |M4| = 3 (e.g., price, text, keyword under the first
item element). So, R3 = 3 × 3 + 1 = 10. Observe that as the level of the
XML tree decreases the value of RValue increases. Formally,

Property 1 Let `i and `j be two levels in the XML tree X where 0 < (i, j) ≤
Lmax. If `i > `j then Ri < Rj.

Next, we define the notion of BranchOrderSum.

Definition 7 [BranchOrderSum] Let n be a leaf node of X. Let bn =
branchorder(n). Then the BranchOrderSum of n, denoted as Sn, is defined
as follows:

• If leaforder(n) = 1 then S1 = 0.
• Otherwise, Sn =

∑i≤n
i=1 Rbi

.

For example, BranchOrderSum of the first leaf node in Figure 1 is 0. Since
BranchOrder of the second leaf node is 4 and R4 = 3, the BranchOrderSum
of the second leaf node is 3 (S2 = Rb1 + Rb2 = R0 + R4 = 3).

17

We now discuss how the RValue and BranchOrderSum enables efficient query
processing. We first introduce the following theorem which is key to efficient
query processing in Sucxent++.

Theorem 1 Let ni and nj be two leaf nodes in the XML tree X. Let i =
leaforder(ni) and j = leaforder(nj). If |Si − Sj| < R` then the nearest
common ancestor of ni and nj is at a level greater than ` .

Proof 1 Let ni and nj be two leaf nodes in the XML tree X and leaforder(ni) <
leaforder(nj). Let the nearest common ancestor of ni and nj be at level `′ in
X. We would like to prove that if |Si − Sj| < R` then `′ > `.

The BranchOrderSums of ni and nj are as follows:

Si = Rb1 + Rb2 + . . . + Rbi

Sj = Rb1 + Rb2 + . . . + Rbj

Then, |Si − Sj| = |Rbi+1
+ Rbi+2

+ . . . + Rbj−1
+ Rbj

| where bi+1, bi+2, . . .,
bj−1 are the BranchOrder values of nodes between ni and nj, i.e., ni+1, ni+2,
. . ., nj−1. Also, leaforder(ni) < leaforder(ni+1) < leaforder(ni+2) < . . . <
leaforder(nj−1) < leaforder(nj). The maximum value of |Si − Sj| depends
on the BranchOrder values of the nodes between ni and nj (inclusive). Based
on Property 1, the value of Rbk

increases as bk decreases. Hence, we need to
find the minimum possible BranchOrder (level) of the nodes between ni and
nj.

As leaforder(ni+1) > leaforder(ni), the nearest common ancestor of ni and
ni+1 (BranchOrder) cannot be at a level less than `′. Therefore, BranchOrder
of ni+1 is `+ ≥ `′. Similarly, it can be shown that BranchOrder values of ni+2,
ni+3, . . ., bj−1, nj are greater than or equal to `′. Therefore, minimum value
of BranchOrder for a node nr is `′ where i < r ≤ j. Hence,

|Si − Sj|max = (|Rbi+1
+ Rbi+2

+ . . . + Rbj−1
+ Rbj

|)max

= |R`′ + R`′ + . . . + R`′ + R`′ |
= |kR`′| where k = i− j

Therefore, we can say |kR`′| < R`. Now, if `′ = ` then this statement cannot
be true. Also, if `′ < ` then it is also not true as R`′ > R` (Based on Property
1). Therefore, `′ > `.

The attributes RValue and BranchOrderSum allow the determination of the
intersection level between any two leaf nodes efficiently. Let us elaborate on
this further. Suppose a query Q is evaluated on the XML tree in Figure 8(a).
We wish to determine if the level of the nearest common ancestor (node A)
of the nodes n and m in Figure 8(a) satisfies the structural constraints of Q.
Note that the level of the intersecting nodes (denoted as `a) can be computed

18

in Sucxent++ in two ways. If there is no descendant axis preceding the
intersecting node in the path expressions of Q then the exact value of `a can be
computed from Q. Otherwise, the minimum value of `a can be computed from
the path expressions in the Path table. Next, based on the above theorem, we
compute the difference between the BranchOrderSums of n and m (|Sn−Sm|)
and compare it with the RV alue of the level `a−1. For instance, in Figure 8(a)
the nearest common ancestor of n and m is in level 3 and consequently |Sn −
Sm| < R2. Therefore, the subtree rooted at A satisfies the query constraints if
`a is computed to be at least 3. Let us illustrate this with an example.

Consider XQuery1 in Figure 7. The BranchOrderSum value for the first con-
straint satisfying text is 6. The BranchOrderSum value for the first price node
is 3. Also, R3 = 10. Using the theorem proven above we conclude that these two
nodes have ancestors till a level greater than or equal to 3 (since |3−6| < 10).
Since, item is at level 4 in both cases it is clear that they have a common item
node and, therefore, satisfy the query. Similarly, we can conclude that the first
text node and the item node with name Item3 intersect at a level greater than
1 (since R1 = 329 and |85− 3| < 329) and therefore do not form a part of the
query result.

Note that in XParent the determination of intersection level depends on the
size of the Ancestor and Data tables as a join between these tables is re-
quired to determine the ancestor node at a particular level. This reduces the
query processing time drastically in Sucxent++. Since this is achieved with-
out storing separate ancestor information, the storage requirements are also
reduced significantly.

4.3 SQL Translation

In this section, we discuss how XQuery queries are translated to correspond-
ing SQL queries in Sucxent++. A full implementation of the XML query
processing system would require a fully-functional XQuery support. However,
building a system like this would take a significant number of person-years to
implement. Instead, we implemented an interface that supports basic types
of recursive XQuery queries which do not include aggregate functions and or-
dering of result elements. These queries are sufficient to justify the positive
contributions made by our approach.

The main structure of an XQuery query can be formulated by an FLWOR expres-
sion with the help of XPath expressions. An FLWOR expression is constructed
from FOR, LET, WHERE, ORDER BY, and RETURN clauses. FOR and LET clauses
serve to bind values to one or more variables using path expressions. The FOR

clause is used for iteration, resulting in a single binding for each variable. As
the LET clause is usually used to process grouping and aggregate functions, the

19

processing of the LET clause is not discussed here. The optional WHERE clause
specifies one or more conditions to restrict the tuples generated by FOR and
LET clauses. The RETURN clause is used to specify an element structure and to
construct the result elements in the specified structure. The optional ORDER
BY clause determines the order of the result elements. We ignore the ORDER

BY clause in this paper.

A basic recursive XQuery query can be formulated with a simplified FLWOR

expression:

FOR x1 in p1, . . . , xn in pn

WHERE c

RETURN s

In the FOR clause, iteration variables x1, x2, . . ., xn are defined over the path
expressions p1, p2, . . ., pn. In the WHERE clause, the expression c specifies con-
ditions for qualified binding-tuples generated by the iteration variables. Some
conditions may be included in pi to select tuples iterated by the variables xi.
In the RETURN clause, the return structure is specified by the expression s.

4.3.1 The Algorithm

Figure 9 shows the translation algorithm for Sucxent++. We shall illustrate
the algorithm with two recursive queries. These queries vary in the number of
descendant axis in XQuery statement. These examples are taken to highlight
the differences in the final translated SQL query. Note that in this paper we
only focus on the recursive feature of the XML queries.

Consider the query in Figure 10(a). Figure 10(b) shows the translated SQL
query as obtained by applying the translation algorithm. The translation pro-
ceeds as follows.

(1) Lines 10 to 12 in Figure 10(b) translate the part of the query that seeks an
entry with "Photography" under its topic element. Note that we store
only the leaf nodes, their textual content and PathIds in the PathValue
table. The actual path expression corresponding to the leaf node is stored
in the Path table. Therefore, we need to join the two to obtain leaf
nodes that correspond to the path //topic//title and contain the value
"Photography". This corresponds to the lines 7 to 9 in Figure 9. Also
notice the use of the function GetPathExprCondition. It returns an SQL
fragment containing the LIKE operator if the path contains ‘//’.

(2) Line 13 (Figure 10(b)) extracts the leaf nodes that correspond to the path
//topic/description.

(3) Lines 15 to 18 in Figure 10(b) represent the SQL fragment that ensures
that the extracted leaf nodes have the correct intersection relationships.

20

Input:
 XQuery query X
Output:
 Translated SQL query Q
1: parse(X) /* generates the parse tree */
2: WhereClause w = Q. getWhereClause() /* this is determined by the for and where claus es */
3: SelectClause s = Q. getSelectClause() /* the return clause determines this */
4: for all ComparisonExpr ei in X do
5: if typeof(ei.lhs) is PathExpr and typeof(ei.rhs) is Literal then
6: replace ei with
7: GetPathExprCondition(ei.lhs);
8: +"and Path i.Id=PathValuei.Id"
9: +"and PathValue i.value <ValueComp> ei.Literal"
10: else if then
11: replace ei with /* this is a join expression */
12: GetPathExprCondition(ei.lhs);
13: +"and Path i.Id = PathValue i.Id"
14: +"and Path i+1.Path = ei.PathExpr"
15: +"and Path i+1.Id = PathValue i+1.Id"
16: +"and PathValue i.value <ValueComp> PathValue i+1.value"
17: end if
18: w. add(ei)
19: end for
20: for all PathExpr pi in X do
21: for all PathExpr pj <> pi in X do
22: if pi and pj bind to the same variable then
23: w. add("PathValue i.DocId=PathValue j.DocId")
24: l = PreIndex(pi , pj)
25: w. add("abs(PathValue i.BranchOrderSum"
26: +"-PathValue j.BranchOrderSum) < l")
27: end if
28: end for
29: if pi in X. returnClause() then
30: s. add("PathValue i.*")
31: end if
32: end for

33: GetPathExprCondition(pathExpr) {
34: if pathExpr contains ’//’ or pathExpr contains ’*’ then
35: replace ’//’ with
36: end if
37: replace ’/’ with ’.’ /* Sucxent++ uses ’.’ as the path separator */
38: return pathExpr; /* modified in the lines above to suite Sucxent++’s storage mechanism */
 }
39:
40: PreIndex(path1, path2) {
41: x = highest common node between path1 and pat h2
 /* this represents a recursive query where th e intersection level
 cannot be determined beforehand - has to be done while the query is executing */
42: if x is preceeded by ’//’ in both path1 and path2 then
43: return indexOf(x, path1);
44: end if
 /* even if the path involves ’//’ the interse ction level is
 not determinable beforehand only if both p aths have ’//’ before the
 intersection node. Else, return the follow ing */
45: return level of x in the path where it is not preceeded b y ’//’
 }
46:

Fig. 9. Query translation algorithm.

In this example, the nodes have to intersect at the level of the first topic
node in either of the paths corresponding to the leaf nodes. This level
is determined by the user-defined function indexOf. It takes as input
the path expressions from Path table containing the topic element and
computes the intersecting level. The query, calculates the absolute value
of the difference between the BranchOrderSum values and ensures that it
is below the RValue for the level returned by indexOf. This corresponds
to lines 23 to 26 and 40 to 45 in Figure 9. Notice the use of the function
PreIndex (Line 40). It returns ‘indexOf’ only if both the paths have
‘//’ preceding the intersection node. It must be highlighted here that the
intersection level can be pre-computed in every case except when both

21

Q2: FOR $b in document(“odp.xml”)//topic
WHERE $b//Title = “Photography”
RETURN $b/Description

(a) XQuery example

1 SELECT
2 V2.*
3 FROM
4 PATHVALUE V1,
5 PATH P1,
6 PATHVALUE V2,
7 PATH P2,
8 DOCUMENTRVALUE D
9 WHERE
10 P1.PATHEXP LIKE '%TOPIC.%TITLE' AND
11 P1.ID = V1.PATHID AND
12 V1.LEAFVALUE = 'PHOTOGRAPHY' AND
13 P2.PATHEXP LIKE '%TOPIC.DESCRIPTION%' AND
14 P2.ID = V2.PATHID AND
15 V1.DOCID = V2.DOCID AND
16 V1.DOCID = D.DOCID AND
17 D.LEVEL >= INDEXOF('TOPIC', P1.PATHEXP) - 1 AND
18 ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

(b) Translated SQL query.

Fig. 10. Query processing in Sucxent++.

the paths have ‘//’ preceding the intersection node. The next example
will highlight the case where only one of the paths has a ‘//’ preceding
the intersection node.

(4) The select clause of Lines 1-2 return the properties of the leaf nodes
corresponding to the description element. Note that the RETURN clause
in the XQuery query determines the select clause. We return all the
attributes of PathValue tables as these properties are needed to con-
struct the corresponding XML fragment. The reconstruction algorithm
discussed in Figure 6 is used to construct the XML document from this
relational result set.

Now, consider the query in Figure 7(a). Figure 8(b) shows its SQL translation
as obtained by applying the translation algorithm. The translation proceeds
as follows.

(1) Lines 10 to 12 in Figure 8(b) translate the part of the query that seeks an
entry with "Gold Ignot" under its text element. This part is the same
as in the previous translation example.

(2) Line 13 extracts the leaf nodes that correspond to the path
/site/regions/africa/item/price.

(3) Lines 15 to 18 in Figure 8(b) represent the SQL fragment that ensures
that the extracted leaf nodes have the correct intersection relationships.
In this example, the nodes have to intersect at the item node. The func-
tion PreIndex returns this value (level 4). Since the intersection has to
be at level 4 or higher the RValue taken is that of level 3. Notice that
preIndex returns a pre-computed value even though one of the paths has
a ‘//’.

(4) Line 2 in Figure 8(b) (translated from Line 3 in Figure 9) returns the
properties of the leaf nodes corresponding to the text element. These
properties are needed to construct the corresponding XML fragment.

22

The procedure of construction of XML fragments is the same as the
previous query. Observe that if the RETURN clause in Figure 7(a) was
<item>$b</item>, then the line 13 in the translated SQL query (Fig-
ure 8(b)) would change to P2.PathExp LIKE ’.site.regions.africa.

item%’ to extract all leaf nodes that have paths beginning with $b. This
way, elements and their children can be retrieved.

Compared to XParent, Sucxent++ uses only the PathValue, Path and
DocumentRValue tables to evaluate a query. The size of the PathValue
and Path tables is the same as that of the Data and LabelPath tables in
XParent. The DocumentRValue has the same number of rows as the depth
of the document as compared to the Ancestor table in XParent which stores
the ancestor list of every node in the document. This results in substantially
better query performance in addition to much smaller storage size.

5 Optimization Techniques

A preliminary performance evaluation using the above translation procedure
yielded some interesting results. We checked the query plans generated by the
query optimizer and noticed that the join between the Path and PathValue
tables took a significant portion of the query processing time. This was because
for most of the queries this join was being performed last. For example, in
the SQL query in Figure 8(b) the join between Path and PathValue tables
was performed last. The initial query plan is shown in Figure 11. We have
not shown the DocumentRValue table in the plan, even though the query
optimizer includes it, as it does not influence the optimization. The two Hash-
Joins (labelled 1 and 2) in this plan are both very expensive. The first takes the
PathValue table (with alias v2) as one of its inputs. The second join takes the
result of this join as one of its inputs. Both these inputs are quite substantial
in size resulting in very expensive join operations. In order to improve the
above query plan we propose three optimization techniques that are discussed
below.

5.1 Optimization for Simple Path Expressions

The join expression v1.PathId = p1.Id and p1.PathExp = path is replaced
with v1.PathId = n where n is the PathId value corresponding to path in
the table Path. Similarly, v1.PathId = p1.Id and p1.PathExp LIKE path %

is replaced with v1.PathId >= n and v1.PathId <= m. For the second case
PathIds are assigned in lexicographic order and (n, m) correspond to the first
and last occurrences of expressions that have the prefix path. This changes the
query plan to the one in Figure 12. Since there is no join between the Path-

23

V1.ValueIdx P1.PathIdx

NL Join V2

Hash Join P2.PathIdx

Hash Join

1

2

Fig. 11. Initial query plan.

V1.ValueIdx,
V1.PathIdx V2.PathIdx

Hash Join

Fig. 12. Path optimiza-
tion.

V1.ValueIdx,
V1.PathIdx V2.PathIdx

NL Join

tmp1

Fig. 13. Multiple-queries
optimization.

book

title author section

title para figure

title image

*

*
*

* *

book

title

author

section

para

figure

image

book

section

figure
title

image

author

para

1, 2,…,n

n+1

n+2
n+3

DTD DTD Graph Reordered DTD Graph

CPathId values

Fig. 14. Optimization for recursive path expressions.

Value and Path tables anymore, the joins in Lines 15-18 now get executed
the last. The PathId and LeafValue predicates are evaluated earlier result-
ing in smaller inputs to the join operations. This optimization resulted in an
improvement of up to 60% in query execution time as shown in Section 6.

5.2 Optimization for Recursive Path Expressions

A lexicographic numbering of paths is not sufficient for recursive expressions
when the DTD structure is a graph. Figure 14 shows an example of such a
DTD. It has a graph structure due to the recursion on the section element.
If only lexicographic PathId is available, expressions such as //title cannot
be optimized i.e., converted to a range expression instead of a join. We assign
another pathId, called CPathId, to a Path based on the following rules.

(1) Elements in the DTD graph are ordered by the number of incoming edges.
Lexicographic ordering is followed within this ordering. Figure 14 shows
the “reordered” graph. The element title is ordered first as it has the
highest number of incoming edges. 1 . . . n are the CPathId values for
paths ending in title.

24

For
 $b in document("auction.xml")/site/regions//item
Where
 contains($b/name, "gold")
Return
 <Gold_Item>$b/name</Gold_Item>

01: SELECT
02: V1.*
03: FROM
04: PATHVALUE V1,
05: PATH P1
06: WHERE
07: P1.PATHEXP LIKE '.site.regions.%.item.name' AND
08: P1.ID = V1.PATHID AND
09: V1.LEAFVALUE LIKE '%gold%'

01: SELECT
02: V1.*
03: FROM
04: PATHVALUE V1,
05: WHERE
06: V1.CPATHID >= 5 AND
07: V1.CPATHID <= 6 AND
08: V1.LEAFVALUE LIKE '%gold%'

Normal

Optimized

Fig. 15. Example of using CPathId for optimization.

(2) Cycles in the DTD graph are handled by clustering paths with the same
non-recursive element after the end of the cycle. Based on this rule,
/book/section/title, /book/section/section/title,. . ., /book/

section/. . ./section/title would all occur consecutively for the DTD
in Figure 14. This allows the replacement of paths such //section//title

with range expressions in the SQL translation.

The Sucxent++ schema has to be extended to incorporate the CPathId at-
tribute together with the existing PathId column in PathValue (Figure 5).
Any recursive path expression can be now be converted to a range query on
the CPathId attribute. To expedite query processing, we also store CPathId
in the Path table. For example, consider the expression //title. It is re-
placed by (p.CPathId >= 1 and p.CPathId <= n) as all paths ending in
title have CPathId values between 1 and n. Similarly consider the path
//section/title. First, the first and last CPathId values of %section/title
in the Path table are obtained. Say, these are nf and nl, respectively. Then, the
join expression is replaced by (p.CPathId >= nf and p.CPathId <= nl).

Consider another query in Figure 15. The non-optimized translation involves a
join between the Path and PathValue tables (line 8 in the SQL query). This
join is replaced with a comparison on the CPathId attribute of the PathValue
table. First, the first and last CPathId values of
/site/regions%item/name are determined from the Path table. These two
values are then used in a range comparison on the CPathId column of the
PathValue table (lines 6 and 7 of the optimized SQL query). This reduce the
number of joins in the final SQL query.

5.3 Optimization Using Multiple Queries

After performing the above two optimizations the new query plans still had one
major limitation. The last two join expressions (lines 15-18 in Figure 7) were
still being evaluated using Hash-Joins. The analysis of the two intermediate

25

1 SELECT
2 v1.* into tmp1 FROM PathValue v1, Path p1
3 WHERE p1.PathExp LIKE '.site.regions.africa.item.%.text'
4 AND v1.PathId = p1.PathId
5 AND v1.LeafValue LIKE '%Gold Ignot%'

1 SELECT
2 v1.* into tmp2 FROM PathValue v1, Path p1
3 WHERE p1.PathExp LIKE '.site.regions.africa.item.price'
4 AND v1.PathId = p1.PathId

1 SELECT
2 t2.* FROM tmp1 t1, tmp2 t2, DocumentRValue r1
3 WHERE t1.DocId = t2.DocId AND t1.DocId = r1.DocId
4 AND r1.Level = 3 AND
5 abs(t1.BranchOrderSum-t1.BranchOrderSum) < r1.RV alue

SQL 1.1

SQL 1.2

SQL 1.3

(a) Multiple queries for Figure 7

1 SELECT
2 v1.* into tmp1 FROM PathValue v1, Path p1
3 WHERE p1.PathExp LIKE '.%topic.%title'
4 AND v1.PathId = p1.PathId
5 AND v1.LeafValue = 'photography'

1 SELECT
2 v1.* into tmp2 FROM PathValue v1, Path p1
3 WHERE p1.PathExp LIKE '%topic.description%'
4 AND v1.PathId = p1.PathId

1 SELECT
2 t2.* FROM tmp1 t1, tmp2 t2, DocumentRValue r1
3 WHERE t1.DocId = t2.DocId AND t1.DocId = r1.DocId
4 AND r1.Level = indexOf('topic', t1.PathExp) - 1 AND
5 abs(t1.BranchOrderSum-t1.BranchOrderSum) < r1.RV alue

SQL 1.1

SQL 1.2

SQL 1.3

(b) Multiple queries for Figure 10.

Fig. 16. Optimization using intermediate materializations.

SD (Single-Document) MD (Multiple-Document)

TC (Text-centric) Online dictionaries Digital libraries, news corpus

DC (Data-centric) E-commerce Catalogs Transactional data

Fig. 17. Data set.

results used for the evaluation of the join expression found that Nested-Loop
would be a better option.

Forcing a Nested-Loop-based query plan is not a good choice as there are cases
where Hash-Join (or Merge-Sort join) is still a better option. Our conclusion
was that we should separate the pre-join results, execute a separate join query
on these temporary results and let the query optimizer decide. We materialized
these pre-join results into separate temporary tables and then executed a join
on these temporary tables. The query optimizer now generated a better plan
for all queries. This optimization resulted in an improvement of up to 7 times
as shown in Section 6. The final set of queries for the given example, in order
of execution, is shown in Figure 16(a). SQL 1.1 and SQL 1.2 correspond to
the intermediate results. The final result is obtained by using the intermediate
results as shown in SQL 1.3. The resulting query plan is shown in Figure 13.

Figure 16(b) shows the multiple queries obtained when applied to the query
in Figure 10. Notice that now the PathExp column of the Path table needs to
be stored in the intermediate tables. This is because it is needed in the final
query by the user-defined indexOf function. However, the resulting query plan
is still significantly better than that for one single query.

6 Performance Evaluation

In this section, we present the results of our performance evaluation. First,
we present the results for insertion and extraction times and storage space

26

Data set No of Nodes
10MB 100MB 1GB

DC/MD 219,382 2,183,331 23,821,115
DC/SD 238,260 2,394,886 24,810,315
TC/MD 229,258 2,335,180 23,704,294
TC/SD 279,004 2,765,209 28,419,013

(a) Data set of XBench

Data set

ODP
XMark

Swiss-Prot

Size (MB) Node

142
150
150

2,884,074
2,668,227
6,508,774

(b) Data set.

Fig. 18. Data set.

Query Database Query Features

Q1: FOR $b in document(“odp.xml”)//topic
WHERE $b/Title = “Photography”
RETURN $b/Description

Q2: FOR $b in document(“odp.xml”)//topic
WHERE $b//Title = “Photography”
RETURN $b/Description

Q3: FOR $b in document(“odp.xml”)//topic
WHERE month($b/lastUpdate) >= 10
RETURN $b/Description

Q4: FOR $b in document(“odp.xml”)//topic
WHERE month($b//lastUpdate) >= 10
RETURN $b/Description

Q5: FOR $b in document(“auction.xml”)/site/regions
RETURN count($b//item)

Q6: FOR $b in document(“auction.xml”)/site
RETURN count($b//description)+count($b//annotation) +count($b//
email)

Q7: FOR $b in document(“auction.xml”)/site/regions /africa/item
WHERE contains($b//description,”gold”)
RETURN $b/name

Q8: FOR $b in document(“sprot.xml”)/sptr/entry
WHERE $b/reference//authorList/person[@name=”Muelle r P.”]
RETURN $b/accession

Q9: FOR $b in document(“sprot.xml”)/sptr/entry
WHERE $b/reference//person[@name=”Hermann R.”]
RETURN $b/reference

Q10: FOR $b in document(“sprot.xml”)/sptr/entry
WHERE $b/reference//@type=”journal article”
RETURN $b/accession

ODP1

ODP

ODP

ODP

Xmark[10]

XMark

XMark

Swiss-
Prot2

Swiss-
Prot

Swiss-
Prot

- Recursive schema
- One // axis in query

- Recursive schema
- Two // axis in query

- Recursive schema
- One // axis in query
- typecast

- Recursive schema
- Two // axis in query
- typecast

- One // axis
- Aggregate function

- One // axis with respect to
root
- Aggregate function

- One // axis on Recursive
portion of schema
- Text search

- One // axis
- Distant return and where clause

- One // axis
- Distant return and where clause
- Shallow return clause

- One // axis
- Large result size

�The Open Directory Project. http://dmoz.org.
�The Swiss-Prot Database. http://us.expasy.org

Fig. 19. Queries and their features.

requirements of Sucxent++ and compare it with a schema-oblivious (XPar-
ent) and a schema-conscious (Shared Inlining) approach. Next, we compare
the recursive query performances of Sucxent++ to these systems. Proto-
types for Sucxent++, XParent and Shared-Inlining were developed using
Java JDK1.5 and a commercial RDBMS 2 . The experiments were conducted
on a P4 1.4GHz machine with 256MB of RAM and a 40GB (7200rpm) IDE
hard disk. The operating system was Windows 2000 Professional.

2 Our licensing agreement disallows us from naming the product

27

0

700

1400

2100

2800

3500

TCMD
(10MB)

TCSD
(10MB)

TCMD
(100MB)

TCSD
(100MB)

TCMD
(1000MB)

TCSD
(1000MB)

Dataset

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared-Inlining

XParent

SUCXENT++

5865 29434

(a) Text-Centric Dataset (b) Data-Centric Dataset

0

3000

6000

9000

12000

15000

DCMD
(10MB)

DCSD
(10MB)

DCMD
(100MB)

DCSD
(100MB)

DCMD
(1000MB)

DCSD
(1000MB)

Dataset

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared-Inlining

XParent

SUCXENT++
20917

27642140074

Fig. 20. Insertion times.

6.1 Data Set

The XBench [17] data set was used for comparison of storage size, insertion
and extraction times, as it provides a comprehensive range of XML document
types. Both text-centric and data-centric documents are provided with data
sizes ranging from 10 MB to 1 GB. Figures 17 and 18(a) summarize the
characteristics of the data sets used.

For recursive query processing, we experimented with the data sets shown in
Figure 18(b) and the queries shown in Figure 19. Note that the DTD graph of
the ODP dataset contains cycles. Also, the SQL translation of these queries
are shown in Appendix A.

6.2 Insertion Time

Figure 20 show the insertion times for the three approaches. Note that integrity
constraints are not created prior to insertion. This is because we wish to study
the insertion times independent of any overheads such as constraint checking.
The following observations can be made based on the results for insertion
times.

(1) XParent performs the worst for all four document types and across all
data set sizes (5.7 - 47 times worse than Sucxent++). This is as ex-
pected because XParent stores the greatest amount of data for a given
XML document in the form of every node and its ancestor information.

(2) Sucxent++ performs the best for all experiments. This is because it
stores the least amount of data among the schema-oblivious approaches.
It performs marginally better than Shared-Inlining (up to 1.5 times).
This can be due to the fact that the shredding process in Shared-Inlining
has to insert data into several tables whereas Sucxent++ only needs
to insert data into one table.

28

(a) Text-Centric Dataset (b) Data-Centric Dataset

0

1000

2000

3000

DCMD
(10MB)

DCSD
(10MB)

DCMD
(100MB)

DCSD
(100MB)

DCMD
(1000MB)

DCSD
(1000MB)

Data set

E
x

tr
a

c
ti

o
n

 T
im

e

Shared-Inlining

XParent

SUCXENT++

0

1000

2000

3000

4000

TCMD
(10MB)

TCSD
(10MB)

TCMD
(100MB)

TCSD
(100MB)

TCMD
(1000MB)

TCSD
(1000MB)

Data set

E
x

tr
a

c
ti

o
n

 T
im

e
Shared-Inlining

XParent

SUCXENT++

5011

Fig. 21. Extraction times.

(3) The difference in performance increases with data size. The maximum
difference in insertion performance for the 10 MB data set was 6 times for
the TCSD data set between Sucxent++ and XParent. This difference
increases to 47 times for the 1 GB DCSD data set. This is because the
number of non-leaf nodes (which are stored by Sucxent and XParent in
addition to the leaf nodes) increases at a faster rate than the number of
leaf nodes alone.

(4) The time taken to insert the MD (multiple document) data sets is higher
for both data-centric (DC) and test-centric (TC) data sets. This is be-
cause, the insertion process has to first enumerate the list of documents
and then insert them one by one. This adds an additional overhead to
the insertion process.

6.3 Extraction Time

Figure 21 shows the extraction times of the three approaches. The extraction
time depends on the time taken to extract the relevant tuples and main-
memory processing time to reconstruct the document. Based on the results in
Figure 21 the following observations can be made.

(1) The extraction performance of Sucxent++ is only slightly better than
XParent. Even though the time taken to extract the relevant tuples (only
leaf nodes) is smaller than the corresponding operation in XParent (that
involves retrieving all the nodes of the document), we still have to perform
substring operations to determine the nodes in a path in order to create
the document tree. In Step 7 of Figure 6 the process of obtaining the
node array from the path is accomplished by the substring operation.
This means that though retrieval time from the database is better, the
time taken for reconstruction is more.

(2) Even though, Shared-Inlining returns the least number of tuples while ex-
tracting a document, its performance is still marginally worse than Sucx-
ent++. This is because a join query needs to be executed to extract the

29

0

500

1000

1500

2000

2500

3000

3500

DCMD
(10MB)

DCSD
(10MB)

DCMD
(100MB)

DCSD
(100MB)

DCMD
(1000MB)

DCSD
(1000MB)

Data set

S
iz

e
 (

M
B

)

Shared Inlining

XParent

Sucxent++

0

500

1000

1500

2000

2500

3000

3500

TCMD
(10MB)

TCSD
(10MB)

TCMD
(100MB)

TCSD
(100MB)

TCMD
(1000MB)

TCSD
(1000MB)

Data set

S
iz

e
 (

M
B

)

Shared Inlining

XParent

Sucxent++

(a) Data-centric (b) Text-centric

Fig. 22. Storage size for data set in Figure 18(a).

document. In addition, the main memory processing time required is also
higher due to the fragmented nature of the retrieved data. This differ-
ence is most significant for the TCSD data set (up to 2 times slower).
The TCSD data set generates the most number of relations among the
four data sets for the Shared-Inlining approach.

6.4 Storage Size

Figure 22 shows the storage sizes for the three approaches for the data set in
Figure 18(a). The following observations can be made based on these results.

(1) XParent has the largest storage size (up to 2.5 times more than Shared-
Inlining). In fact, XParent has a significantly larger storage size than
Sucxent++ and Shared-Inlining. This is expected as they store sub-
stantially more data in the form of ancestor information.

(2) Shared-Inlining requires the least amount of storage. In Sucxent++
an index is created on the PathId, BranchOrderSum and LeafValue at-
tributes in the PathValue table. Effectively, the entire data set is in-
dexed. This is not the case in Shared-Inlining where individual columns
can be indexed based on the queries being executed. The storage size
values shown here are for the case where only those columns relevant to
the query workload are indexed.

6.5 Recursive Query Performance

Our preliminary experiments showed that Shared-inlining outperforms Sucx-
ent++ for query loads similar to the ones described in [16]. However, our
experiments also show that recursive queries with certain characteristics per-
form better in Sucxent++ especially with the optimization techniques dis-
cussed in Section 5. Query performance is partially influenced by the flexible
manner in which the XQuery RETURN clause can be specified. In particular,

30

0

4000

8000

12000

16000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

E
xe

cu
tio

n
Ti

m
e

(m
s)

Shared-Inlining

XParent

SUCXENT++

SUCXENT++ Opt1

51390 - 37232 - 28210

Fig. 23. Query performance.

two factors affect performance. First, the distance between the WHERE and
RETURN clause elements, defined as the number of edges with cardinality * (or
+) between these elements in the DTD. For example, the distance between
price and name under item in the DTD in Figure 1(a) is 0 as their is no edge
between them with cardinality of * or more. Similarly, the distance between
europe and price is 1. The distance corresponds to the number of joins in the
SQL query as generated by the Shared-Inlining approach. As another example,
consider the query in Figure 7 on the document in Figure 2. The distance be-
tween the RETURN WHERE elements is greater than 1. The exact distance is not
known as the schema is recursive and there could be any number of recursive
text elements. For the Shared-Inlining approach this distance is the number of
tables that need to be joined, thus effecting performance. The second factor
is the depth of the element specified in the RETURN clause. Shallow elements
would require a greater number of joins in the Shared-Inlining approach as
the descendants are likely to be fragmented across several tables.

Figure 23 shows the results for query performance. Figure 24(a) shows the
variation of query execution time with increasing distance between the WHERE

and RETURN clauses in the XQuery query. The ratio in the y-axis represents
the ratio of time when the distance between the WHERE and RETURN clauses is
equal to n (n > 0) to the time when the distance is 0. Figure 24(b) shows the
results as the depth of the RETURN clause element is reduced (or, as (D−depth)
is increased, where D is the maximum depth of the document). The ratio in
the y-axis represents the ratio of time when the depth of the RETURN clause
element is equal to n (n > 0) to the time when the depth is D. We now
elaborate on these performance results.

31

0

2

4

6

8

10

0 1 2

Distance between where and return clause

R
a

ti
o

Sucxent++ (Q8)

Sucxent++ (Q9)

Sucxent++ (Q10)

Shared-Inlining (Q8)

Shared-Inlining (Q9)

Shared-Inlining (Q10)

0

3

6

9

12

15

18

0 1 2

Max Depth of Document - Depth of Return Document

R
a

ti
o

Sucxent++ (Q8)

Sucxent++ (Q9)

Sucxent++ (Q10)

Shared-Inlining (Q8)

Shared-Inlining (Q9)

Shared-Inlining (Q10)

(a) Variation with Distance (b) Depth of the Return Clause

Fig. 24. Query performance.

6.5.1 Query Performance Without Optimization

Shared-Inlining performs better than Sucxent++ for queries Q1 and Q3.
This is because the corresponding SQL query only involves the topic table
and there is no need for any recursive SQL query as it is known that all topic
elements are in the topic table and only their immediate title values need
to be queried. Sucxent++, on the other hand, has to execute a join query
between the Path and PathValue tables. In addition Q3 involves a typecast
to date in Sucxent++’s case as all data is stored as strings. Q2 and Q4 are
quite similar to Q1 and Q3 except that the title element can be a descen-
dant and not just a child. A recursive SQL query is generated for the Shared-
Inlining approach using the technique mentioned in [9]. In Sucxent++ we
only need to ensure that the intersection level is equal to the length of the
path minus one as the Description element is a child of the topic element
in question. XParent also benefits from this approach and therefore performs
better than Shared-Inlining. For Q5, Shared-Inlining involves a UNION of the
joins between item and each of asia, namerica, samerica, europe, africa
and australia. In Sucxent++ this query merely look for paths with the ex-
pression /site/regions/*/item. However, the Shared-Inlining approach will
perform much better if we use the knowledge that item is not used anywhere
else in the document. Then, it would reduce to a count of the item table.
This is highlighted by Q6 where the Shared-Inlining approach performs much
better than Sucxent++ or XParent (by 35 times). Here, the result is merely
a sum of the tuples in description and annotation. This can be done be-
cause the paths are evaluated with respect to the root and it is implied that
all description and annotation elements will be counted.

Sucxent++ performs better than Shared-Inlining for Q7 to Q9. This is be-
cause the result that needs to be returned is in a different subtree. This leads
to a greater number of joins in Shared-Inlining whereas, the number of joins
remains unaltered for Sucxent++. The difference is greater for Q9 (about

32

Shared Inlining XParent Shared Inlining XParent
Q1 0.5385 1.0292 0.7000 1.3380
Q2 1.2055 1.1093 2.9509 2.7153
Q3 0.2661 1.9536 0.6865 5.0401
Q4 1.8217 0.6026 3.4455 1.1398
Q5 1.0100 1.1907 1.3484 1.5896
Q6 0.0280 1.2726 0.1888 8.5971
Q7 1.2978 2.0717 8.1250 12.9705
Q8 1.0500 2.9100 1.3636 3.7792
Q9 5.4806 9.3049 7.3902 12.5470
Q10 0.3127 2.3518 2.0324 15.2865

Non Optimized Optimized
Query

Fig. 25. Summary of query performance.

5 times) than the other queries as it involves recursion, significant distance
between the RETURN and WHERE clause elements and a shallow return clause
in the form of the reference element (whose descendants are spread across
4 tables). However, Sucxent++ performs worse for Q10. This is because of
the poor query plan generated by the database and can be resolved by ap-
plying the optimizations discussed in Section 5. To summarize, Sucxent++
outperforms Shared-Inlining for 6 out of 10 queries by up to 5 times.

6.5.2 Query Performance With Optimization

Notice that there is an improvement in most queries after the optimizations.
Q1 to Q4, Q7 and Q10 show a more remarkable difference. For Q3 and Q4, this
is partially due to the removal of the date typecast. When materializing the
intermediate result we insert lastUpdate leaf nodes as date types. Also, all
three optimizations are used for these queries. Q5 and Q6 only benefit from
the first two optimizations. The intermediate result sizes for Q8 and Q9 are
not large enough to benefit from the optimizations. In fact, Q8 is adversely
effected due to the overhead of the optimizations and performs worse. Q10, on
the other hand, shows a significant performance improvement and outperforms
Shared-inlining approach. This is due to the better query plan generated as a
result of using all three optimizations.

Figure 25 presents a summary of the query performance results for the com-
pared approaches with respect to Sucxent++. This figure shows the ratio
of time taken for a given approach to the time taken in Sucxent++.

6.5.3 Performance Variation with Distance

For this section we have used queries Q8 to Q10 for comparison. The rea-
son being that they represent real-world scenarios for queries with distant
elements in the RETURN and WHERE clauses. Notice that Sucxent++’s perfor-
mance is independent of the distance between the WHERE and RETURN clause

33

elements (Figure 24(a)). This is expected as the number of join operations
remains unchanged. A performance change will be seen only if the number of
elements that need to be returned changes. The performance of the Shared-
Inlining approach, on the other hand, is effected considerably. In fact, for
queries where the elements are in the same table, Shared-Inclining outper-
forms Sucxent++ significantly. As the distance increases Shared-Inlining
performs worse due to the increase in the number of joins. The increase can
be as much as 9 times depending on the sizes of the tables involved in the
joins.

6.5.4 Performance Variation with Shallowness of RETURN Clause

This effects the query performance significantly as shown in Figure 24(b). The
results are plotted against decreasing depth (or increasing (D−depth) where D
is the maximum depth of the document) of the RETURN clause. Notice that the
performance of Sucxent++ is also effected adversely by up to 8 times. This
is because a greater number of leaf nodes need to be returned. However, there
is no increase in the number of joins. Therefore, the performance degradation
is not as severe as it is for Shared-Inlining which can be effected by up to 17
times.

7 Conclusions and Future Work

Recently, a growing body of work suggests that schema-conscious approaches
perform better than schema-oblivious approaches. To the best of our knowl-
edge, this paper reports the first attempt to show that it is indeed possible
to design a schema-oblivious approach that can outperform schema-conscious
approaches as far as the execution of certain types of recursive XML queries is
concerned. In particular, our approach outperforms Shared-Inlining (schema-
conscious approach) by up to 8 times for recursive queries that have the fol-
lowing features: (a) Recursion in the schema; (b) a large distance between
the elements of the WHERE and RETURN clauses; and (c) shallow RETURN clause
elements. In fact, the non-optimized version of Sucxent++ outperformed
Shared-Inlining for 6 of the 10 queries we tested. Sucxent++ benefits sub-
stantially from the optimization techniques discussed in Section 5. The im-
provement is especially significant for queries that use all three optimization
techniques. Once the optimization techniques were used it performed better
for 7 queries. Also, Sucxent++ performs marginally better compared to
Shared Inlining as far as insertion and extraction times are concerned (up to
1.5 times and 2 times respectively).

Sucxent++ significantly outperforms existing schema-oblivious approaches
like XParent. It is 5.7 - 47 times faster than XParent as far as insertion time

34

is concerned. XParent takes 2.5 times more storage space compared to our
approach. Sucxent++ outperforms XParent for almost all recursive queries
that we have experimented with. The non-optimized version of our approach
outperforms XParent up to 9 times. The optimized version of Sucxent++
outperforms XParent by up to 15 times. Note that the optimization techniques
in Sucxent++ can also be applied to XParent. A preliminary study of the
query plans generated by the RDBMS for XParent suggests that XParent can
also benefit from these optimizations. However, a considerable performance
difference shall still exist between Sucxent++ and XParent, especially for
large data set, primarily due to XParent’s large storage requirements and
consequently, greater I/O-cost in evaluating queries.

Sucxent++ currently uses both PathId and CPathId in PathValue to op-
timize query performance. This adds to the storage size and can be elim-
inated by devising a technique to combine these two identifiers. Another
bottleneck in the performance of Sucxent++ is the optimization of the
abs(v1.BranchOrderSum-v2.BranchOrderSum) < r.RValue operation. This
requires the implementation of structural-join algorithms in the database en-
gine. However, as a preliminary study we implemented a variation of the MP-
MJN [19] algorithm using a stored procedure in the relational database. We
saw an improvement of up to 10 times for some queries. We plan to investigate
this further.

References

[1] F. Bancihon, G. Barbedette, V. Benzaken et al. The Design and
Implementation of O2, an Object-oriented Database System. proc. of the Second
International Workshop on Object-oriented Database , 1988.

[2] P. Bohannon, J. Freire, P. Roy, J. Simeon. From XML Schema to
Relations: A Cost-based Approach to XML Storage. In Proceedings of IEEE
ICDE , 2002.

[3] D. DeHaan, D. Toman, M. P. Consens, M. T. Ozsu. A Comprehensive
XQuery to SQL Translation Using Dynamic Interval Coding. In Proceedings of
ACM SIGMOD , 2003.

[4] A. Deutsch, M. Fernandez, D. Suciu. Storing Semistructured Data with
STORED. In Proceedings of ACM SIGMOD , 1999.

[5] D. Florescu, D. Kossman. Storing and Querying XML Data using an
RDBMS. IEEE Data Engineering Bulletin. 22(3), 1999.

[6] R. Goldman, J. McHugh, J. Widom. From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language. Proceedings of WebDB
’99 , pp. 25-30, 1999.

[7] H. Jiang, H. Lu, W. Wang and J. Xu Yu. Path Materialization Revisited: An
Efficient Storage Model for XML Data. 13th Australasian Database Conference
(ADC’02) , 2002.

35

[8] R. Krishnamurthy, R. Kaushik, J. F. Naughton. XML to SQL Query
Translation Literature: The State of the Art and Open Problem.In Proceedings
of XML Database Symposium (XSym’03), 2003.

[9] R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik, J. F. Naughton.
Recursive XML Schemas, Recursive XML Queries, and Relational Storage: XML-
to-SQL Query Translation.In Proceedings of IEEE ICDE, 2004.

[10] S. Prakash, S. S. Bhowmick, S. K. Madria. Efficient Recursive XML
Query Processing Using Relational Databases. In Proc. of ER, 2004.

[11] M. Ramanath, J. Freire, J. Haritsa, P. Roy. Searching for Efficient
XML-to-relational Mappings. In Proceedings of the International XML Database
Symposium, 2003.

[12] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu and
R. Busse. XMark: A Benchmark for XML Data Management. In Proceedings
of VLDB, 2002.

[13] A. Schmidt, M. Kersten, M. Windhouwer, F. Waas. Efficient Relational
Storage and Retrieval of XML Documents. In Proceedings of the Workshop on
Web and Databases (WebDB), 2000.

[14] J. Shanmugasundaram, K. Tufte et al. Relational Databases for Querying
XML Documents: Limitations and Opportunities. VLDB 1999.

[15] I. Tatarinov, S. Viglas, K. Beyer, et al. Storing and Querying Ordered
XML Using a Relational Database System. In Proceedings of the ACM SIGMOD ,
2002.

[16] F. Tian, D. DeWitt, J. Chen and C. Zhang. The design and performance
evaluation of alternative XML storage strategies. ACM Sigmod Record, Vol.
31(1), 2002 .

[17] B. Yao, M. Tamer Özsu, N. Khandelwal. XBench: Benchmark and
Performance Testing of XML DBMSs. In Proc. of ICDE , Boston, 2004.

[18] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a
path-based approach to storage and retrieval of xml documents using relational
databases. ACM TOIT 1(1):110-141, 2001.

[19] C. Zhang, J. Naughton, D. Dewitt, Q. Luo and G. Lohmann. On
Supporting Containment Queries in Relational Database Systems. In Proceedings
of ACM SIGMOD, 2001.

[20] DB2 XML Extender.
http://www-3.ibm.com/software/data/db2/extenders/xmlext/index.html.

[21] Oracle9i XML Database Developer’s Guide - Oracle XML DB Release 2 (9.2).
http://otn.oracle.com/tech/xml/xmldb/content.html.

36

A SQL Queries in SUCXENT++

Q1: SELECT

V2.*

FROM

PATHVALUE V1, PATH P1, PATHVALUE V2, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’%TOPIC.TITLE’ AND

P1.ID = V1.PATHID AND

V1.LEAFVALUE=’PHOTOGRAPHY’ AND

P2.PATHEXP LIKE ’%TOPIC.DESCRIPTION%’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = INDEXOF(’TOPIC’, P1.PATHEXP) - 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q2: SELECT

V2.*

FROM

PATHVALUE V1, PATH P1, PATHVALUE V2, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’%TOPIC.TITLE’ AND

P1.ID = V1.PATHID AND

V1.LEAFVALUE=’PHOTOGRAPHY’ AND

P2.PATHEXP LIKE ’%TOPIC.DESCRIPTION%’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = INDEXOF(’TOPIC’, P1.PATHEXP) - 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q3: SELECT

V2.*

FROM

PATHVALUE V1, PATH P1, PATHVALUE V2, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’%TOPIC.LASTUPDATE’ AND

P1.ID = V1.PATHID AND

MONTH(CONVERT(V1.LEAFVALUE, SMALLDATETIME)) >= 10 AND

P2.PATHEXP LIKE ’%TOPIC.DESCRIPTION%’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = INDEXOF(’TOPIC’, P1.PATHEXP) - 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q4: SELECT

V2.*

FROM

PATHVALUE V1, PATH P1, PATHVALUE V2, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’%TOPIC.LASTUPDATE’ AND

P1.ID = V1.PATHID AND

MONTH(CONVERT(V1.VALUE, SMALLDATETIME)) >= 10 AND

P2.PATHEXP LIKE ’%TOPIC.DESCRIPTION%’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = INDEXOF(’TOPIC’, P1.PATHEXP) - 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q5: SELECT

COUNT(DISTINCT(V1.VALUE)

FROM

PATHVALUE AS V1, PATH P1

WHERE

P1.PATHEXP LIKE ’.SITE.REGIONS%ITEM.NAME’ AND

V1.PATHID = P1.ID

Q6: SELECT

COUNT(DISTINCT(V1.VALUE)

FROM

37

PATHVALUE AS V1, PATH P1

WHERE

(

(

P1.PATHEXP LIKE ’.SITE.%ANNOTATION%’ AND

V1.BRANCHORDER <= INDEXOF(’ANNOTATION’, P1.PATHEXP)) OR

(

P1.PATHEXP LIKE ’.SITE.%DESCRIPTION%’ AND

V1.BRANCHORDER <= INDEXOF(’DESCRIPTION’, P1.PATHEXP)

) OR

(

P1.PATHEXP LIKE ’.SITE.%EMAIL%’ AND

V1.BRANCHORDER <= INDEXOF(’EMAIL’, P1.PATHEXP)

) AND

V1.PATHID = P1.ID

Q7: SELECT

V2.*

FROM

PATHVALUE V1, PATH P1, PATHVALUE V2, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’.SITE.REGIONS.AFRICA.ITEM.%DESCRIPTION%’ AND

P1.ID = V1.PATHID AND

V1.LEAFVALUE LIKE ’%GOLD%’ AND

P2.PATHEXP = ’.SITE.REGIONS.AFRICA.ITEM.NAME’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = 3 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q8: SELECT

V2.*

FROM

PATHVALUE V1, PATHVALUE V2, PATH P1, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’.SPTR.ENTRY.REFERENCE.%AUTHORLIST.PERSON.@NAME’ AND

P1.ID = V1.PATHID AND

V1.LEAFVALUE=’MUELLER P.’ AND

V2.PATHEXP = ’.SPTR.ENTRY.ACCESSION’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q9: SELECT

V2.*

FROM

PATHVALUE V1, PATHVALUE V2, PATH P1, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’.SPTR.ENTRY.REFERENCE.%PERSON.@NAME’ P1.ID = V1.PATHID AND

V1.LEAFVALUE=’HERMANN R.’ AND

V2.PATHEXP LIKE ’.SPTR.ENTRY.REFERENCE%’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

Q10:SELECT

V2.*

FROM

PATHVALUE V1, PATHVALUE V2, PATH P1, PATH P2, DOCUMENTRVALUE D

WHERE

P1.PATHEXP LIKE ’.SPTR.ENTRY.REFERENCE.%@TYPE’ P1.ID = V1.PATHID AND

V1.LEAFVALUE=’JOURNAL ARTICLE’ AND

V2.PATHEXP = ’.SPTR.ENTRY.ACCESSION’ AND

P2.ID = V2.PATHID AND

V1.DOCID = V2.DOCID AND V1.DOCID = D.DOCID AND

D.LEVEL = 1 AND ABS(V1.BRANCHORDERSUM-V2.BRANCHORDERSUM) < D.RVALUE

38

