
XANADUE: A System for Detecting Changes to XML Data
in Tree-Unaware Relational Databases

Erwin Leonardi Sourav S. Bhowmick
Singapore-MIT Alliance, Nanyang Technological University, Singapore

School of Computer Engineering, Nanyang Technological University, Singapore
{lerwin,assourav}@ntu.edu.sg

ABSTRACT
Recently, a number of main memory algorithms for detecting
the changes to XML data have been proposed. These ap-
proaches are not suitable for detecting changes to large XML
document as it requires a lot of memory to keep the two ver-
sions of XML documents in the memory. We have developed
a novel XML change detection system, called Xanadue that
uses traditional relational database engines for detecting
changes to large XML data. In this approach, we store the
XML documents in the relational database and issue SQL
queries (whenever appropriate) to detect the changes. This
demonstration will showcase the functionality of our system
and the effectiveness of XML change detection in relational
environment.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems – Relational databases.

General Terms: Algorithms, Design, Experimentation.

Keywords: XML, change detection, relational databases.

1. INTRODUCTION
Detecting changes to XML data is an important research

problem. Recently, a number of techniques for detecting
the changes to XML data have been proposed. XyDiff [1]
and X-Diff [7] are main-memory algorithms for detecting
the changes in ordered and unordered XML documents, re-
spectively. X-Diff detects minimum-cost edit script and has
quadratic CPU cost and memory usage. XyDiff, on the
other hand, has a linear CPU cost and memory usage but
its result quality is relatively worse than X-Diff.

Our study showed that the above main-memory algorithms
for XML change detection suffer from the scalability prob-
lem as they fail to detect changes to large XML documents
due to lack of memory. This demonstration features our
XML change detection system Xanadue (XML Change
Management in Relational Databases having Tree-Unaware
Kernel), to address the scalability issue by detecting changes
using the relational database system. The Xanadue project
is an investigation of how far we can push the idea of us-
ing mature RDBMS technology to design and build a full-
fledged XML change management system, without invading
the database kernel to make it “tree aware”. It is based
on our recent work on XML change detection in relational
environment as described in [2, 3, 4, 5]. To the best of our

Copyright is held by the author/owner(s).
SIGMOD’07,June 11–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

XANADUE GUI

XML2Rel
Module

Relational
Database

Delta Representation
Module

Tree
View

DB
View

XML

Relational tuples

DID1 DID2

SQL Queries

Relational
Tuples

SQL
Queries

Tuples of
Delta Tables

Edit
Scripts

DID1

DID2

Change Detection
Module

XANDY-U

XANDY-O

HELIOS

OXONE

Figure 1: System Architecture of XANADUE.

knowledge, Xanadue is the first system to detect changes
to XML data using relational backends.

Xanadue employs the following strategy for change de-
tection. Given the old and new versions of an XML docu-
ment, it first shreds both documents into sets of relational
tuples and stores them in the relational database. Next, a
set of SQL queries (wherever appropriate) is issued to de-
tect the changes. This demonstration will show that this
line of research has several important benefits and worth to
be followed.

2. OVERVIEW AND ARCHITECTURE
Figure 1 depicts the architecture of Xanadue. The sys-

tem adopts Browser/Server architecture. The browser (the
Xanadue GUI module) allows user to select two versions
of XML documents, detect changes, and visually see various
types of changes on these documents. The server consists
of three modules: the XML2Rel module, the Change De-
tection module, and the Delta Representation module. We
now discuss these four modules in more detail.

The XML2Rel Module: This component parses two ver-
sions of XML documents and loads them into tuples of rela-
tional tables in a standard commercial DBMS (the current
version of Xanadue uses Microsoft SQL Server 2005). Re-
cent research on relational support for XML data can be
classified into two representative types. In a tree-unaware
approach, the database kernel is not modified to support
XML processing. On the other hand, in a tree-aware ap-
proach, the database engine is invaded to teach it that it
is operating on tree-shaped data rather than any arbitrary
data points. The current version of Xanadue is built based
on “tree-unaware” strategy.

Note that there are two major approaches for storing
XML documents in a “tree-unaware” relational database.

In schema-conscious approach, a relational schema is cre-
ated based on the DTD/schema of the XML documents.
In the schema-oblivious approach, a fixed schema is main-
tained which is used to store XML documents. This ap-
proach does not require existence of an XML schema/DTD.
As the DTD/schema of XML documents may not always be
available, we support both approaches in Xanadue.

The Change Detection Module: Once the two versions
of a document is stored in the relational database, we are
ready to detect changes. The change detection module sup-
ports the following four submodules for detecting changes to
ordered and unordered XML documents based on schema-
oblivious or schema-conscious storage strategy.

• Modules Xandy-O [2] and Xandy-U [3] are used for
detecting changes to ordered and unordered XML doc-
uments, respectively, using schema-oblivious storage
approach.

• Modules Oxone [5] and Helios[4] are used for de-
tecting changes to ordered and unordered XML docu-
ments, respectively, using schema-conscious storage.

In all of these four modules, the algorithm for change de-
tection consists of two phases: the best matching subtrees
computation phase and the change detection phase. We
briefly describe these phases now. The reader may refer
to [2, 3, 4, 5] for complete details.

The Best Matching Subtrees Computation Phase: Given two
versions of XML documents, T1 and T2, stored in a relational
database, the objective of this phase is to find the most
similar subtrees (hereafter called best matching subtrees) in
T1 and T2. We match the subtrees in T1 to the ones in T2.
Note that a subtree in T1 can be matched to more than one
subtrees in T2 and vice versa. We measure the similarity of
each matching subtrees by calculating the similarity score
of these matching subtrees using a set of SQL queries. The
most similar subtrees are called best matching subtrees.

The process of finding the best matching subtrees is done
in a bottom-up fashion. We find the best matching config-
urations at every level of the tree such that the similarity
scores of the parent nodes are maximized. The problem of
finding best matching configurations is similar to the prob-
lem of finding maximum weighted bipartite matching. We use
a series of SQL queries and a modified Hungarian method
[6] to determine best matching subtrees.

Change Detection Phase: In this phase, we use the infor-
mation on best matching subtrees in order to detect dif-
ferent types of changes by issuing SQL queries (wherever
appropriate). First, we determine the changes on internal
nodes (both insertions and deletions). Next, the inserted
and deleted leaf nodes are detected. Finally, we detect up-
dated leaf nodes and moved nodes (for ordered XML only).
The different types of changes are stored in a set of delta
tables.

Delta Representation Module: Upon successful detec-
tion of changes, this module takes the delta tables as input
and generates the minimum-cost edit script. It also facili-
tates meaningful presentation of the changes in two modes:
the tree view and the table view. In the tree view, the sys-
tem will merge T1 and T2 and add annotations to the merged
tree. The annotations will help the users to know whether
a particular node is changed and the change type. Different

Figure 2: XANADUE GUI.

Figure 3: Performance visualization.

types of changes will then be displayed with different color
codes in the Xanadue GUI (discussed below). In the table
view, users are able to see the tuples of the delta tables.

The XANADUE GUI Module: Figure 21 depicts the
screen dump of the current version of Xanadue visual in-
terface. It consists of three panels. The left panel displays
change detection modules for ordered and unordered XML
based on schema-conscious and schema-oblivious storage ap-
proaches. The user chooses one of these modules for de-
tecting changes. The top panel displays the side-by-side
tree representations of two versions of an XML document.
The changes to these versions are shown in different colors.
The bottom panel displays the table view of different types
of changes. There is a one-to-one correspondence between
a tuple in the table view and a changed node in the tree
view. User can right click on a tuple in the table view to
view the corresponding changed node in the tree view. User
can also select only a specific type of changes (e.g., inser-
tion or deletion) to view only those types of changes in the
tree view. Finally, we also provide visualization of the per-
formance of various phases in the change detection process
using pie charts (Figure 3).

1
Note to readers: We recommend viewing the screenshots presented

directly from the color PDF, or from a color print copy, since the
grayscale version may not clearly register the various features.

3. SCALABILITY AND PERFORMANCE
Xanadue is entirely implemented in Java on top of a com-

mercial RDBMS. Our implementation is meant to assess the
viability of using relational back-ends for XML change de-
tection. RDBMSs are known to scale well with increasing
data volumes – an inevitable feature of XML change detec-
tion systems, if they are to support large XML documents.

For our experimental study, we use Microsoft SQL Server
2000 for storing shredded XML documents. The experi-
ments were conducted on a Microsoft Windows XP Profes-
sional machine having Pentium 4 1.7 GHz processor with
512 MB of memory. We used a set of synthetic XML data
based on SIGMOD DTD (http://www.sigmod.org/record/).
The numbers of nodes are varied from 331 nodes to 620,223
nodes. The second versions of the XML documents are gen-
erated by using our XML change generator. We compared
the performance of various submodules of Xanadue to the
Java version of X-Diff [7] (downloaded from
http://www.cs.wisc.edu/∼yuanwang/xdiff.html), and C ver-
sion of XyDiff [1] (downloaded from http://pauillac.inria.fr/
cdrom/www/xydiff/index-eng.htm). Note that despite our
best efforts (including contacting the authors), we could not
get the Java version of XyDiff. The C version of XyDiff
was run in a Pentium 4 1.7 GHz processor with 512 MB of
memory with Red Hat Linux 9 operating system.

Figures 4(a) and (b) depict the performance of our ap-
proaches compared to memory-based approaches in detect-
ing the changes to ordered and unordered XML documents,
respectively. The percentage of changes is set to 3%. We
observe that Xanadue is more scalable than X-Diff and
XyDiff. X-Diff is unable to detect the changes to XML
documents that have more than 6,000 nodes due to lack of
main memory. When we run the C version of XyDiff imple-
mentation, it cannot detect the changes to XML documents
that have more than 355,000 nodes as its process was killed
by Linux kernel. Note that the performance of Xanadue
is slower than main memory-based approaches for smaller
data sets as the database I/O cost is more expensive. How-
ever, for larger datasets, Helios and Xandy-U are orders
of magnitude faster than X-Diff. Also, Oxone has compa-
rable response time with XyDiff for large XML documents.
Finally, schema-conscious approaches (Helios and Oxone)
perform better than schema-oblivious approaches (Xandy-
U and Xandy-O) in Xanadue.

Let us now observe the result quality of Xanadue for var-
ious percentages of changes. The result quality is defined as
the ratio of the number of edit operations in a delta detected
by a particular approach to the number of edit operations in
the optimal delta. Figure 4(c) shows that Xanadue is able
to produce superior deltas compared to XyDiff. Figure 4(d)
depicts the result quality comparison between Xanadue and
X-Diff. When the percentage of change is large, Xanadue
produces better quality of delta. For other cases, we observe
that the result quality of Xanadue and X-Diff is compara-
ble.

Figures 4(e) and 4(f) show the effects of percentage of
changes to the performances of XML change detection. We
use data sets containing 890 and 2718 nodes for ordered
and unordered XML change detection, respectively. The
percentages of changes are equally distributed to different
types of changes. Overall, percentage of changes slightly
affects the performance of all change detection approaches.

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

OXONE
XANDY-O
X-Diff
XyDiff

(a) Performance: Ordered XML Document (log scale) (b) Performance: Unordered XML Document (log scale)

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

HELIOS-U

XANDY-U

X-Diff

0.8

1.0

1.2

1.4

0 4 8 12 16 20 24 28 32

Percentage of Changes

R
at

io

X-Diff

XANDY-U

HELIOS

0

1

2

3

4

5

0 3 6 9 12

Percentage of Changes (%)

R
e

su
lt

 Q
u

a
lit

y

OXONE
XANDY-O
XyDiff

11.25 8.17 6.625

(c) Result Quality: Ordered XML Document (554 nodes in T1) (d) Result Quality: Unordered XML Document (554 nodes in T1)

0.0

2.0

4.0

6.0

8.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

c
u

tio
n

 T
im

e
(s

)

OXONE

XANDY-O

X-Diff

XyDiff

(e) Percentages of Changes: Ordered XML (890 nodes in T1) (f) Percentages of Changes: Unordered XML (2718 nodes in T1)

0

3

6

9

12

15

0 5 10 15 20 25 30 35

Percentage of Changes (%)

E
x

ec
u

tio
n

 T
im

e
 (s

)

HELIOS

XANDY-U

1

10

100

0 5 10 15 20 25 30 35

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

HELIOS XANDY-U X-Diff

Figure 4: Performance results.

4. DEMONSTRATION
Our demonstration aims to showcase the functionality and

effectiveness of the Xanadue system in detecting changes to
XML documents. We will showcase the followings.

• How relational backend is used to detect different types
of changes to ordered and unordered XML in Xanadue.
We will show how this process is simplified by the
Xanadue GUI.

• Demonstrate the cases when the result quality of
Xanadue is comparable to X-Diff and cases when it
is better than X-Diff and XyDiff.

• Demonstrate better scalability of Xanadue compared
to main memory algorithms (say X-Diff). We will show
when Helios and Xandy-O are significantly faster
than X-Diff. We will also show cases where X-Diff fails
to detect changes due to lack of memory but Xanadue
is able to detect these changes.

5. REFERENCES
[1] G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in

XML Documents. In ICDE, 2002.

[2] E. Leonardi, S. S. Bhowmick. Xandy: A Scalable Change
Detection Technique for Ordered XML Documents Using
Relational Databases. DKE Journal, 59(2), Elsevier Science,
2006.

[3] E. Leonardi, S. S. Bhowmick, S. Madria. Xandy: Detecting
Changes on Large Unordered XML Documents Using
Relational Databases. In DASFAA, 2005.

[4] E. Leonardi, S. S. Bhowmick. Detecting Changes on Unordered
XML Documents Using Relational Databases: A
Schema-Conscious Approach. In CIKM, 2005.

[5] E. Leonardi, S. S. Bhowmick. Oxone: A Scalable Solution for
Detecting Superior Quality Deltas on Ordered Large XML
Documents. In ER, 2006.

[6] C. Papadimitriou, K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs,
NJ, 1982.

[7] Y. Wang, D. J. DeWitt, J. Cai. X-Diff: An Effective Change
Detection Algorithm for XML Documents. In ICDE, 2003.

