
PICASSO: Exploratory Search of Connected Subgraph
Substructures in Graph Databases

Kai Huang1,2 Sourav S Bhowmick1 Shuigeng Zhou2 Byron Choi3
1School of Computer Science and Engineering, Nanyang Technological University, Singapore

2 Shanghai Key Lab of Intelligent Info. Proc., School of Computer Science, Fudan University, China
3Department of Computer Science, Hong Kong Baptist University, Hong Kong

assourav@ntu.edu.sg, khuang14|sgzhou@fudan.edu.cn, bchoi@comp.hkbu.edu.hk

ABSTRACT
Recently, exploratory search has received much attention
in information retrieval and database fields. This search
paradigm assists users who do not have a clear search intent
and are unfamiliar with the underlying data space. Specif-
ically, query formulation evolves iteratively as the user be-
comes more familiar with the content. Despite its growing
importance, exploratory search on graph-structured data
has received little attention in the literature. We demon-
strate a system called picasso to realize exploratory sub-
structure search on a graph database containing a set of
small or medium-sized data graphs. picasso embodies sev-
eral novel features such as progressive (i.e., iterative) formu-
lation of queries visually and incremental processing, multi-
stream results exploration wall to visualize, explore, and an-
alyze search results to identify possible search directions.

1. INTRODUCTION
Explosive growth of graph data in many real-world ap-

plications has lead to a rejuvenation of research on graph
query processing. Particularly, techniques to efficiently sup-
port an important query primitive called substructure search
have attracted considerable attention from the data man-
agement community. In this search primitive, given a graph
database D and a query graph q, the aim is to find all data
graphs in D that contain (i.e., exact or isomorphic search)
or “nearly” contains (i.e., similarity search) q. The vast
majority of these efforts have focused on “lookup” retrieval
with the assumption that users have clear intent and suffi-
cient knowledge of D to accurately specify their search goal
in the form of a connected query graph.

Exploratory search represents a class of search activities
that go beyond such lookup retrieval and typically involves
users who may not be familiar with the underlying data in
a specific domain [7]. As the underlying data space is unfa-
miliar to the user, the query formulation evolves iteratively
or progressively as the user becomes more familiar with the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

content. Hence, exploratory search activities have no pre-
determined goals and are considered as open-ended [7]. For
instance, due to the topological complexity of data graphs,
end users may not possess precise knowledge of the sub-
graph structures in D. Also, they may not always have a
clear search intent leading to difficulty in formulating precise
query graphs. Consequently, support for exploratory search
on graph data is paramount.

In recent years, exploratory search in general has received
much attention in information retrieval and database fields [1,
3]. Specifically, in database research, the majority of efforts
have focused on building search and exploration frameworks
for structured data (e.g., relational) [3]. However, scant at-
tention has been paid to build such a framework on graph-
structured data. Particularly, exploratory search on a graph
database must confront the following challenges: ways to
formulate, reformulate, and process the query graph where
multiple and iterative (i.e., progressive) query formulation is
necessary; cues to guide users to learn about the underlying
graph data and identify possible search directions beyond
the starting point specified by the initial query graph.

In this demonstration, we present an exploratory sub-
structure search engine called picasso (ProgressIve
Connected SubgrAph Substructure Search TOol), which
exhibits the following innovative features. First, it provides
a user-friendly visual interface to formulate query graphs it-
eratively and a query processing engine to efficiently evalu-
ate each reformulation incrementally. Second, it generates a
multi-stream results exploration wall where the results of the
initial and reformulated query graphs are juxtaposed in the
form of parallel search streams (i.e., parallel query-results
pairs) that facilitates exploration of the underlying data and
possible identification of new search directions. Third, it
provides a framework to further search and analyze various
features of the search results during the exploration process
to facilitate understanding of the data.

2. SYSTEM OVERVIEW
Figure 1 shows the system architecture of picasso and

mainly consists of the following modules.
The Visual Query Editor module. Figure 2 depicts

the screenshot of a progressive substructure search (a.k.a
subgraph query) interface of picasso. It consists of four
panels. Panel 1 enables us to load a new graph dataset to
query, build indexes, trigger iterative formulation and pro-
cessing of a new query, visualize query results, set various
parameters (e.g., minimum support threshold, subgraph dis-
tance threshold), and invoke similarity search when no iso-

GUI

Load Manager

Visual Query Editor
Index

Constructor

Graph Database

Indices

Results

Actions

User

Progressive Query

Processor

Query

Results Exploration Wall

Multi-stream Results Viewer

Exploration

History Analyzer

Results Statistics

Generator

Figure 1: Architecture of PICASSO.

morphic matches to a subgraph query can be found. Panel 2
comprises of two subpanels. The top subpanel lists the graph
data stores that are currently available. Upon selecting a
specific dataset (e.g., the aids dataset), the bottom part of
Panel 2 displays the unique labels of nodes that appear in it.
Panel 4 displays the set of canned patterns, grouped accord-
ing to their size, which can be utilized to formulate a query
graph. Panel 3 depicts the area for progressively formulat-
ing visual queries. During the query formulation process, a
user may choose a label from Panel 2 or a canned pattern
from Panel 4 for creating a node or a subgraph, respectively,
in the query graph by dragging and dropping it in Panel 3.
An edge between two nodes in a query graph can be created
by left and right clicking on a pair of nodes. Particularly,
this module enables a user to construct a connected query
graph in Panel 3, reformulate it iteratively, and execute it
multiple times by clicking the "Run" icon in Panel 1.

The Load Manager module. This module enables us
to store all relevant information related to a data graph store
such as the ids of the data graphs, edge relations, node labels
of each data graph, and precomputed unique labels in the
data graph store [5]. When a user selects a data store to
query, it populates Panel 2 with appropriate information.

The Index Constructor module. The goal of this mod-
ule is to build indexes of the underlying graph database of-
fline to support exploratory visual subgraph search. Specifi-
cally, the indexing framework should support efficient evalu-
ation of a partially formulated query graph as well as lever-
age the result matches of former queries to generate results
of the current reformulated query on demand (i.e., whenever
a user clicks the "Run" icon). To this end, it implements the
action-aware indexing framework of prague [5] to support
such search paradigm. It first mines frequent fragments1

from the graph database D using an existing frequent graph
mining technique (the current version uses gSpan). Given a
fragment g which is a subgraph of G and G ∈ D, we refer
to G as the fragment support graph (fsg) of g. Since each
data graph in D has a unique identifier, fsgIds(g) denotes
the set of identifiers of fsgs of g. A fragment g is frequent
in D if its support is no less than α|D| where 0 < α < 1
is the minimum support threshold. Otherwise, g is an in-
frequent fragment. Specifically, it finds discriminative in-
frequent fragment (dif) [5], which is a smallest infrequent
subgraph of an infrequent fragment. Note that if one of the
subgraphs of g is a dif, then g is infrequent [5].

Next, it generates action-aware frequent index (a2f) and
action-aware infrequent index (a2i) to index frequent sub-
graphs and difs, respectively. The a2f index is a graph-

1
We use the term fragment (resp. query fragment) to refer to a small

subgraph existing in a graph database (resp. query graph).

Figure 2: GUI of PICASSO.

structured index that enables efficient retrieval of fsg iden-
tifiers of a given frequent fragment. The a2i-index is an ar-
ray of difs and associated information. It facilitates pruning
of the candidate space for infrequent queries.

Progressive Query Processor module. This module
extends the visual subgraph query processing technique of
prague [5] to support exploratory subgraph search. Specif-
ically, prague utilizes the latency offered by the gui ac-
tions to retrieve candidate data graphs matching a par-
tial query fragment during visual query formulation. Note
that prague assumes edge-at-a-time query formulation and
hence does not support canned patterns (e.g., Panel 4 in
Figure 2). Hence, we extend it to support both canned pat-
terns as well as exploratory search.

In an exploratory subgraph search, a user may iteratively
reformulate and re-execute a query fragment by adding new
query fragments or by deleting existing ones (an update is
a sequence of deletion and insertion). When a user adds a
new edge or a canned pattern p (from Panel 2 or 4) to the
current query fragment q (initially empty), then the edges
of p are inserted into a list eList for subsequent processing.
If eList contains multiple edges, then it reorders the edges
such that q will remain a connected subgraph at each step
when the edges in eList are added to q in the specified order.
Next, these edges are added to q and a dynamic on-the-fly
index called spig set [5] is constructed. For each new edge,
it retrieves identifiers of data graphs (i.e., fsg identifiers)
containing the query fragment q (denoted by Rq) and mon-
itors its status. If q is a frequent fragment or a dif, then
it retrieves fsgIds(q) by probing a2f-index or a2i-index,
respectively. If q is a non-dif infrequent fragment, then
it leverages the spig set and the action-aware indexes to
generate the candidate set. This is possible as a non-dif
infrequent fragment must contain at least one dif.

If Rq is non-empty at a specific step then q has exact
matches in D. On the other hand, if Rq becomes empty,
then q has evolved into a similarity search query and can-
didates that approximately match q are retrieved using the
spig set by identifying relevant subgraphs of q that need
to be matched for retrieving candidates. Given a subgraph
distance threshold (i.e., maximum number of missing edges
permissible for a query graph to be “nearly” contained in
a data graph), the approximate match in this framework is
based on maximum connected common subgraph (mccs) [5].

In the case of deletion of an edge or a fragment during
query reformulation, the spig set is updated by removing the
information related to it. Then, depending on the status of
the modified query fragment (i.e., frequent, dif, or non-dif
infrequent), Rq is updated.

Figure 3: Multi-stream results viewer.

Whenever the user clicks the Run button, the current query
fragment q is processed to retrieve result matches R by lever-
aging Rq. If q is a frequent fragment or a dif, then the
results are directly computed from Rq without performing
subgraph isomorphism test. If it is a non-dif infrequent
exact query fragment, then the exact results are computed
by filtering the false candidates using VF2. Otherwise, if
q has evolved to a subgraph similarity query then it gener-
ates the result set from the candidates by extending VF2
to handle mccs-based similarity verification [5]. Since in an
exploratory search a query may be executed several times,
for each run the (q,R) pair is stored to generate a search
stream. The candidate set Rq is also incrementally utilized
to generate candidates using the aforementioned strategy
whenever q is reformulated during the search process.

Observe that the expensive candidate verification step
is performed only after the Run button is clicked. Conse-
quently, Rq can be constructed efficiently throughout the
search process by utilizing the gui latency and indexes.

Results Exploration Wall module. This module gen-
erates a results exploration wall to view and analyze former
and current results during an exploratory search in a user-
friendly manner. It consists of the following submodules.

The Multi-stream Results Viewer submodule. To foster it-
erative query reformulation, we introduce the notion of search
streams, which is an interactive structure for viewing the
query graphs and related results. Figure 3 shows an exam-
ple of the multi-stream results view to enable viewing results
in the form of parallel multiple search streams. Each search
stream is divided into two areas: the query graph view at
the bottom and the results view on top. Each execution
of a query graph fragment creates an instance of the query
graph view and results view. Specifically, Figure 3 shows a
scenario where the query graph was iteratively formulated
and executed three times: (1) after dragging the shaded pat-
tern in Figure 2 (Pattern 0) on to Panel 3 and adding the
edge 6, (2) after deleting the edge 6 from the query fragment,
and (3) after adding edge 7. Hence, there are three parallel
search streams. Each result data graph in a stream displays
an exact or similar match to the corresponding query graph
by highlighting a matching subgraph with different colored
nodes and edges. The user can browse through results in
each stream by clicking on the Prev or Next button at the
top. She may also browse a specific result data graph by
selecting its GraphId using the drop-down menu. Note that
in the current instantiation (Figure 3), the query fragments
at timestamps 1 and 2 have exact matches in the database.

However, the reformulated query fragment at timestamp 3
does not have any exact match and hence similarity search is
invoked. Consequently, in the rightmost stream the results
are ranked based on the number of missing edges in ascend-
ing order. The number of missing edges and their details are
displayed in each data graph and the query fragment. For
example, in Figure 3, edges 4 and 7 in the query (highlighted
in red) are missing in the above data graph.

For visual clarity, picasso shows one representative match-
ing subgraph in each data graph. If one wishes to see all
matches in a data graph, she may simply click on the AllMatch
button to view them. Each match is shown separately in the
data graph by scrolling the results view panel of a stream
vertically. For example, consider the search stream at times-
tamp 2 in Figure 3. There are four isomorphic subgraphs to
the query graph in the data graph (id 76). We can retrieve
all of them by clicking on the AllMatch button.

The Exploration History Analyzer submodule. This sub-
module is invoked when the "Exploration history" item
is chosen from the drop down menu of Analysis in the menu
bar of Figure 3. It enables us to gain insights of the results
space by further searching it to track data graphs in the
search streams of an exploratory search. Figure 4 depicts an
instantiation of the analyzer. Currently, it supports two bi-
nary operators, namely "In" and "Not In". The former re-
trieves data graphs that appear in both input search streams
(identified by timestamp) whereas the latter retrieves those
that exist in the left operand search stream but not in the
right operand. For instance, in Figure 4, results that are
in timestamp 2 but not in 1 are retrieved. There are 3094
data graphs in the results that satisfy this condition. One
of them (graph 76) is shown in Figure 4. Consequently, this
feature enables a user to keep track of data graphs that ap-
pear or do not appear in the results of a reformulated query
graph and choose her search direction accordingly.

The Results Statistics Generator submodule. Results in dif-
ferent search streams may have different topological and sta-
tistical properties. This submodule aids a user to view and
compare them. For instance, it shows the number of re-
sults in each search stream and type of matches (exact vs
similar) using a bar chart. Figure 5 (left) depicts an exam-
ple for the three search streams in Figure 3. Clicking on
a bar of a search stream enables us to view the size distri-
bution of the data graphs in it. Figure 5 (right) shows the
size distribution when the first bar (stream at timestamp 1)
is clicked. This module also supports comparison of these
statistics across different search streams. It also visually

Figure 4: Exploration history analyzer.

displays several topological properties of the data graphs in
a search stream (e.g., average degree, k-core, label distri-
bution) and how they evolve with every reformulation of a
query.

In summary, the Results Exploration Wall module facil-
itates users to formulate queries toward their search goals.
Specifically, search streams foster to explore the underlying
data without fear of losing current work. It allows users to
keep track of former query fragments, revisit them if neces-
sary, while branching out to reformulate them to reach their
search goals. Furthermore, features to support results com-
parison can potentially facilitate quick instantiation of new
queries and query reformulation.

3. RELATED SYSTEMS AND NOVELTY
There has been considerable work on exact and approxi-

mate subgraph query processing on a collection of small or
medium-sized data graphs [6] and large networks [2]. Also,
several research prototypes on subgraph search have been re-
cently demonstrated in data management venues (e.g., [4]).
However, these efforts do not focus on exploratory search
and multi-stream exploration of query results.

Recently, an exploratory querying framework on knowl-
edge graphs (i.e., rdf graphs) has been demonstrated in [8].
It focuses on automatic query relaxation, query suggestions,
and explanation of answers. In contrast, picasso is designed
for a large collection of data graphs (e.g., chemical com-
pounds) and focuses on multi-stream exploration of query
results. Hence, picasso is complimentary to this effort.

More germane to this work is our effort in [4] where we
demonstrate the blending of visual subgraph query formu-
lation and processing. In particular, the final query graph
was executed once in contrast to iterative query reformula-
tion and execution during an exploratory search. Further-
more, it does not support multi-stream results exploration
framework as it is not designed for exploratory search.

4. DEMONSTRATION OBJECTIVES
picasso is implemented in Java JDK 1.8. Our demonstra-

tion will be loaded with a few synthetic and real datasets
(e.g., aids, eMolecules2) with different sizes (up to 1.3 mil-
lion data graphs). Example initial query graphs will be pre-
sented for exploratory search. Users can also formulate their
own search through our gui.

The key objective of the demonstration is to enable the
audience to interactively experience multiple reformulation
of the initial subgraph query in a progressive manner to
learn about the underlying information space and identify

2
www.emolecules.com/info/plus/download-database

Figure 5: Results statistics.

possible search directions by exploring query results itera-
tively in real-time. Through the Visual Query Editor, the
audience can gain such experience by exploring the underly-
ing data graphs through iterative refinement of a subgraph
query, generating results of a query fragment in real time
by leveraging the Progressive Query Processor module, and
multi-stream results exploration and analysis by utilizing
the Results Exploration Wall. Specifically, the Results Ex-
ploration Wall module facilitates gaining rich experience in
viewing query results of incremental exploration with its
multi-stream configuration and performing various analysis
on different search streams for sense-making and determin-
ing possible search directions.

Acknowledgement. Kai Huang and Sourav S Bhowmick are

supported by the Singapore-MOE AcRF Tier-2 Grant MOE2015-

T2-1-040. Shuigeng Zhou is funded by the Key Projects of Fun-

damental Research Program of Shanghai Municipal Commission

of Science and Technology under grant No. 14JC1400300. Byron

Choi is supported by HKRGC GRF 12201315 and 12232716.

5. REFERENCES
[1] J. Ahn, P. Brusilovsky. Adaptive Visualization for Exploratory

Information Retrieval. Info. Proc. & Man. 49, 5, 2013.

[2] F. Bi, L. Chang, X. Lin, L. Qin, W. Zhang. Efficient Subgraph
Matching by Postponing Cartesian Products. In SIGMOD,
2016.

[3] S. Idreos, O. Papaemmanouil, S. Chaudhuri. Overview of Data
Exploration Techniques. In SIGMOD, 2015.

[4] C. Jin, S. S. Bhowmick, X. Xiao, B. Choi, S. Zhou. Gblender:
Visual Subgraph Query Formulation Meets Query Processing.
In ACM SIGMOD, 2011.

[5] C. Jin, S. S. Bhowmick, B. Choi, S. Zhou. prague: A practical
framework for blending visual subgraph query formulation and
query processing. In In ICDE, 2012.

[6] F. Katsarou, N. Ntarmos, P. Triantafillou. Performance and
Scalability of Indexed Subgraph Query Processing Methods. In
PVLDB, 8(12), 2015.

[7] R. W. White, R. A. Roth. Exploratory Search: Beyond the
Query-response Paradigm. Synth. Lec. on Inf. Conc., Retr.,
and Serv. 1, 1, 2009.

[8] M. Yahya, K. Berberich, M. Ramanath, G. Weikum.
Exploratory Querying of Extended Knowledge Graphs. In
PVLDB, 9(13), 2016.

