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ABSTRACT
Web archives preserve the history of autonomous Web sites
and are potential gold mines for all kinds of media and
business analysts. The most common Web archiving tech-
nique uses crawlers to automate the process of collecting
Web pages. However, (re)downloading entire collection of
pages periodically from a large Web site is unfeasible. In
this paper, we take a step towards addressing this prob-
lem. We devise a data mining-driven policy for selectively
(re)downloading Web pages that are located in hierarchi-
cal directory structures which are believed to have changed
significantly (e.g., a substantial percentage of pages are in-
serted to/removed from the directory). Consequently, there
is no need to download and maintain pages that have not
changed since the last crawl as they can be easily retrieved
from the archive.

In our approach, we propose an off-line data mining algo-
rithm called near-Miner that analyzes the evolution history
of Web directory structures of the original Web site stored
in the archive and mines negatively correlated association
rules (near) between ancestor-descendant Web directories.
These rules indicate the evolution correlations between Web
directories. Using the discovered rules, we propose an effi-
cient Web archive maintenance algorithm called warm that
optimally skips the subdirectories (during the next crawl)
which are negatively correlated with it in undergoing sig-
nificant changes. Our experimental results with real data
show that our approach improves the efficiency of the archive
maintenance process significantly while sacrificing slightly
in keeping the “freshness” of the archives. Furthermore, our
experiments demonstrate that it is not necessary to discover
nears frequently as the mining rules can be utilized effec-
tively for archive maintenance over multiple versions.

1. INTRODUCTION
Web archiving is the process of collecting portions of the
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Web by repeatedly crawling entire Web sites and adding
versions of the contents and link structures of the pages
in the sites to an append-only local archive for future re-
searchers, historians, and the public [16]. The most well-
known effort of this type is the work of Internet Archive
(www.archive.org) which aims at building a digital library
of Internet sites and other cultural artifacts in digital form.
National libraries, national archives and various consortia
of organizations are also involved in archiving culturally im-
portant Web content. Preserving such history of digital in-
formation is a potential gold mine for all kinds of media and
business analysts [16]. In essence, a Web archive is a data
warehouse for Internet contents [23].

The most common Web archiving technique uses crawlers
to automate the process of collecting Web pages. Ideally,
these pages should be captured whenever there is a change
in any of the pages in the sites. However this is an unfeasible
strategy as doing so would place unacceptable burden on the
crawler as well as the Web sites. Hence, revisitation policies
that seek to capture Web sites at convenient time points are
more realistic for Web archiving.

Two key factors govern the quality and feasibility of Web
archiving from the crawler’s perspective.

• Data transfer and bandwidth issue: We can take a
brute-force approach by periodically copying the entire
original Web site over the Internet. However, such
approach is not feasible for archiving large Web sites.
Although it takes less than one second and 3 minutes
to scan 1mb and 1gb of data, respectively, it takes 2
days for scanning 1tb and 5.5 years for a pb of data [2].
Consequently, the archiving time may span hours or
even days. Often this may be longer than the available
time windows as well as it may cause severe network
bandwidth contention problems.

• Freshness and coherence of archive: It is expected that
the content of the archive should remain closely syn-
chronized with the original Web site. Good freshness
can be guaranteed trivially by simply revisiting all
pages very frequently. However, as mentioned above
frequent scan of the whole original site is not a realistic
strategy. Furthermore, even if the Web site is crawled
at convenient time points, the crawler requires an ex-
tended time period to gather all pages from the site.
During this period the Web site continues to evolve,
causing thus incoherencies in the archive [16, 23].

In this paper we focus on the first factor. In particular, we
aim to reduce data transfer at the original Web site without



sacrificing too much freshness of the pages in the archive.
We assume that the original Web site is autonomous in na-
ture and does not allow us to run any mining algorithm
or indexing mechanism on its data locally. Hence, simple
indexing scheme at the original site that maintains the in-
formation of inserted, deleted, or updated data cannot be
used to optimize data transfer and freshness aspects of the
problem.

1.1 Our Strategy
Our goal is to devise a policy for selectively download-

ing and (re)downloading of individual Web pages into the
archive so as to reduce overall data transfer without signifi-
cantly affecting the freshness of the archive. Naturally, there
is no need to (re)download pages that have not changed
since the last crawl as they can be easily retrieved from the
archive. We refer to this issue as Web archive maintenance
problem.

We assume that a Web site W to be crawled consists of
n Web pages that change over time and are organized in
a hierarchical directory tree. Note that the Web site hier-
archy can be inferred both from the url address and from
a Web site database that organizes most of the dynamic
urls along an “is-a” ontology of items as described in [18].
Given such a directory tree of W to be crawled, we pro-
pose a two-tier policy for selecting pages that need to be
(re)downloaded from W . At the site-level, we analyze the
evolutionary features of historical Web site directory struc-
ture and select only those (sub)directories that have high
chance of undergoing significant changes during the time
period. Informally, a (sub)directory undergoes significant
change if a large number of pages are inserted to or removed
from it during a specific time period. (Sub)directories that
are believed to have not changed are skipped. Then, at the
page-level, we download only those pages from these selected
(sub)directories whose content is believed to have changed
or been created since the last run. There are several research
efforts to address selective (re)downloading at the page-level
in the context of search engines [8, 9, 10, 13, 17, 20, 21].
Hence in this paper, we focus on the site-level policy.

Our proposed site-level strategy for optimized Web archive
maintenance consists of three steps as follows.

1. We first crawl the original Web site periodically over
a period of time and retrieve and store the historical
data in the archive in the form of hierarchical Web
directory structure.

2. Next, we examine certain evolutionary features from
the directory history in the archive to discover certain
rules, which will be discussed in details in Sections 3
and 4, respectively. This mining process is carried out
off-line.

3. Finally, these rules are used to selectively scan only
relevant directories in the original Web site during the
next crawl.

As there is a significant body of literature discussing ef-
ficient crawling of Web sites [8, 9, 13, 21], in this paper,
we focus on the second and third steps. We now briefly
describe the intuition behind the two steps. To the best
of our knowledge, there exists no research work on design-
ing optimized archive maintenance strategies by analyzing
evolutionary features of historical Web site directory struc-

(a) Degree of change of Web directories of www.freebsd.org

(b) Degree of change of Web directories of www.sec.gov
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Figure 1: Degree of change of Web site directories.

tures. Note that our strategy is orthogonal to the page-level
strategies proposed in the literature.

1.2 Role of Evolution of Web Directories in
Site-Level Archive Maintenance

Different types of evolutionary characteristics may be ex-
ploited to design optimized archive maintenance strategies.
Particularly, we are interested in discovering evolution asso-
ciations between ancestor-descendant Web directories. By
evolution associations, we mean the correlations between
Web directories in undergoing changes. For example, Fig-
ures 1(a) and (b) show the Degree of Change (Informally,
it refers to the percentage of changed files in a directory.)
of some directories of the Web sites at www.freebsd.org and
www.sec.gov, respectively. These are extracted from the real
data collected by A. Ntoulas et al. [19], who downloaded
pages from 154 “popular” Web sites every week from Oc-
tober 2002 until October 2003, for a total of 51 weeks. In
Figure 1, we show the data in the first 21 weeks. From
the data, we observed the following two types of evolution
associations between directories:

• Positive evolution association. As shown in Figure 1(a),
the Degree of Change of the root directory freebsd fre-
quently experiences peaks together with that of the
subdirectory freebsd/doc, which means the two directo-
ries frequently undergo (relatively) significant changes
together. We say the two directories have positive as-
sociation in their evolution. It is similar for the two
directories sec and sec/rules in Figure 1(b).

• Negative evolution association. As shown in Figure 1(a),
the root directory freebsd rarely has (relatively) high
values of Degree of Change together with the subdi-
rectory freebsd/news. Thus, we say the two directories
have negative association in their evolution. Similarly,
the directories sec and sec/rule/concepts/s72799 (or
sec/rule and sec/rule/ concepts/s72799 ) in Figure 1(b)
may have negative evolution association as well.

Thus, when maintaining the archive of a changed target
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Figure 2: Historical directory trees.

directory1, its subdirectories, which have positive evolution
association with it, should not be skipped from archiving
since they frequently change significantly together. On the
contrary, the archive maintenance process can be optimized
by skipping the subdirectories which have negative evolution
association with it since these subdirectories rarely undergo
significant changes together with the target directory. The
intuitive meaning behind the situation that a Web directory
is negatively correlated with its subdirectories in evolution
is as follows. Usually, a Web site is not organized randomly.
Different types of information are stored in different Web di-
rectories, which usually evolve at different frequencies with
different change degrees. Changes to a directory may be
attributed to subdirectories which frequently change signif-
icantly.

Therefore, in this paper, we study the evolution of a Web
site and mine interesting evolution associations among Web
directories. We aim to design optimized archive mainte-
nance strategies based on discovered evolution associations.
Note that our strategy leads to an approximate archive main-
tenance. That is, some updates in the original site may
not be reflected immediately in the archive. Approximate
archive maintenance strategies are useful in situations where
the workload, archiving time, or network bandwidth con-
tention is of main concern while the slight inconsistencies
between original and the archive are tolerable. Our objec-
tive is to achieve high maintenance efficiency with minimal
sacrifice in the “freshness” of archives2.

1.3 Road Map
The rest of the paper is organized as follows. We give an

overview of our proposed technique and highlight the contri-
butions of this work in the next section. We formally define
the notion of Negative Evolution Association Rules (near)
in Section 3. Section 4 presents the details of the algorithm
for mining near. The Web archive maintenance algorithm
based on nears is described in Section 5. Section 6 evalu-
ates the performance of the proposed algorithms. We review
related work in Section 7. Finally, the last section concludes
the paper.

2. OVERVIEW AND CONTRIBUTIONS
In order to discover interesting evolution associations (e.g.,

positive evolution association and negative evolution asso-
ciation) among Web directories of a Web site, we take the
historical versions of the site as input. For example, in our
study, we use the real data collected by A. Ntoulas et al. [19].
For each Web site, we represent each of its weekly version as

1
In addition to archiving a whole Web site, it is also common to

archive a particular subdirectory of a site.
2
The discussion on remedy methods to achieve complete freshness is

out of the scope of this paper.

a directory tree, which can be constructed based on the url
of pages [14, 18]. Thus, we can have a sequence of histor-
ical directory tree versions for each site. For example, the
sequence of four directory tree versions shown in Figure 2 is
an example input of our approach. Black nodes in the fig-
ure denote pages (or subdirectories) inserted in this version.
Grey nodes denote pages (or subdirectories) deleted in the
next version and nodes with bold boundary denote pages
modified in this version.

We now discuss the data mining rules we aim to dis-
cover from such an input. As described in the preceding
section, when archiving a target Web directory sa, we can
skip its subdirectory sb if it has negative evolution associa-
tion with sa. On the contrary, if sb has positive evolution
association with sa, we cannot skip it from archive main-
tenance. However, suppose there exists a subdirectory sc

of sb, which has negative evolution associations with both
sa and sb. We can still skip sc because it rarely undergoes
significant changes together with sa and sb (e.g., the subdi-
rectory sec/rules/concepts/s72799 in Figure 1(b) may have
negative evolution associations with both sec and sec/rules).
Hence, the objective of our approach is to discover Neg-
ative Evolution Association Rules (near) in the form of
sasb · · · ⇒ ¬sx, where sa through sx is a sequence of
Web directories such that each directory is an ancestor of
the subsequent directory. A near indicates that the Web
directory on the right side of the rule rarely undergoes sig-
nificant changes together with its ancestor directories on the
left side of the rule.

In order to discover useful nears for archive maintenance,
we first design a set of metrics to evaluate the interestingness
of nears and formally define nears based on the metrics.
Then, an efficient off-line data mining algorithm is developed
for mining nears from a sequence of historical directory
tree versions. Finally, optimized archive maintenance algo-
rithm called warm (Web ARchive Maintenance) is devel-
oped based on discovered nears. Our study on real life Web
data shows that near-based archive maintenance strategies
can improve the maintenance process significantly without
losing too much “freshness” of archives. Furthermore, our
experiments demonstrate that it is not necessary to discover
nears frequently as the mining rules can be utilized effec-
tively for archive maintenance over multiple versions.

The contribution of this study is not only at providing a
novel and efficient solution to site-level Web archive mainte-
nance problem, but also at the demonstration of how data
mining technology may help solving some of the challenging
issues in Web archiving. This may inspire us to further ex-
plore the application of data mining in Web archiving. In
summary, the main contributions of this paper are as fol-
lows.



• We introduce an approach that, to the best of our
knowledge, is the first one to discover evolution asso-
ciations among Web directories for Web archive main-
tenance.

• We propose a set of evolution metrics that quantita-
tively measures changes to Web directories from dif-
ferent aspects, based on which interesting nears can
be identified.

• Based on the evolution metrics, we propose an efficient
data mining algorithm called near-Miner for mining
nears.

• We describe a novel Web archive maintenance algo-
rithm called warm that uses near to maintain archives.

• We conduct extensive experiments with real datasets
to evaluate the effectiveness of the near-based archive
maintenance strategies. We also conduct experiments
on synthetic datasets to report the performance of
near-Miner.

3. NEGATIVE EVOLUTION ASSOCIATION
In this section, we first give some preliminary definitions

on directory tree structure and edit operations. Then, a set
of evolution metrics is defined. Finally, Negative Evolution
Association Rule (near) among Web directories is formally
defined based on the metrics.

3.1 Directory Tree Structure
As introduced in Section 1, given a Web site with direc-

tory structures, we model its file systems as a directory tree
S = 〈N, E〉, where N is the set of nodes where a node rep-
resents either a Web page corresponding to a file in the Web
server or a directory in the server, E is the set of edges where
each edge from a parent node to a child node represents the
consisting-of relationship between the corresponding direc-
tories and files. Each node carries a label which is the name
of the corresponding file or directory. Each file node is also
associated with a value which represents the content of file.
Particularly, a node r, r ∈ N , is the root of the tree which
represents the root directory of a Web site.

Accordingly, each Web subdirectory can be represented
as a subtree of the directory tree. Given a directory tree
S = 〈N, E〉, we say that a tree, rooted at the node i, si =
〈Ni, Ei〉 is a Web directory subtree of S, denoted as si ¹ S,
if and only if (1) i ∈ N (2) Ni ⊆ N , (3) Ei ⊆ E, (4) for a
node x ∈ N , if x ∈ Ni then all descendants of x (if any)
must be in Ni. That is, the notion of subtree adopted by us
is bottom-up subtree [25]. For example, given a directory tree
in Figure 2 (a), the Web directory subtree sg is highlighted
by the dotted circle.

Let T = 〈t1, t2, . . . , tn〉 be a sequence of time points with
a particular time granularity. Given a directory tree S of
some original Web site, we study the sequence of historical
versions of S on T , which is denoted as 〈St1 , St2 , . . . , Stn〉.
An example sequence of 4 historical tree versions, 〈St1 , St2 ,
St3 , St4〉, is shown in Figure 2.

3.2 Edit Operations
Given two versions of a directory tree structure, an edit

operation is an operation e that can be applied on a direc-
tory tree S1 = 〈N1, E1〉 to produce another directory tree

S2 = 〈N2, E2〉, denoted as S1
e→ S2. When an archiving

tool compares two directories, the following three basic edit
operations, Insert, Delete and Update, can be detected.

• Insert: An insertion operation, INS(x(name, value
), p), creates a new leaf node with a label name and a
value value as a child node of node p. If x represents
a directory node, its value is empty.

• Delete: This operation is the inverse of the insertion
operation. Deletion of leaf node x, DEL(x), causes x
to disappear from the tree.

• Update: UPD(x, new value) is an operation which
changes the value of file node x to new value.

Given two versions of a tree (subtree) structure, an edit
script is a sequence of basic edit operations that convert
one tree into another, E(Sti , Sti+1) = 〈e1, e2, . . . , en〉. The
cost of an edit script is the number of edit operations in-
cluded. Then, the edit distance between the two versions,
denoted as D(Sti , Sti+1), is the minimal cost [26] of all
valid edit scripts. For example, consider the first two ver-
sions of the subdirectory tree sg in Figure 2. The edit
script with the minimal cost that transforms st1

g to st2
g is:

E(st1
g → st2

g ) = 〈DEL(j), INS(l), UPD(k)〉3. Then, the
edit distance between st1

g and st2
g is 3.

3.3 Evolution Metrics
We now define some evolution metrics to measure changes

to Web directories from different aspects. Basically, we de-
fine the following three metrics, Degree of Change (DoC),
Frequency of Change (FoC) and Correlation of Change (CoC).
The first one is a local measure which measures how signif-
icantly a subtree changed between two versions. The last
two are global measures which respectively measure how
frequently a set of subtrees undergoes significant changes
together and how two sets of subtrees are correlated in un-
dergoing significant changes.

Definition 1. (Degree of Change) Given two tree ver-
sions Sti and Sti+1 , let D(Sti , Sti+1) be the edit distance
between the two versions. Then the Degree of Change of the
tree from version Sti to Sti+1 , denoted as DoC(Sti , Sti+1),

is:DoC(Sti , Sti+1) = D(Sti ,S
ti+1 )

|Sti]S
ti+1 | where |Sti ] Sti+1 | is the

size of the consolidated tree of Sti and Sti+1 . A tree S =
〈N, E〉 is a consolidated tree of S1 = 〈N1, E1〉 and S2 =
〈N2, E2〉 if i) N = N1 ∪N2, ii) e = (x, y) ∈ E, if and only
if x is parent of y in E1 or E2.

Example 1. Consider the first two versions of subtree sg

in Figure 2 again. The consolidated tree of the two versions
of sg contains both the deleted node j and inserted node
l. Hence, the size of the consolidated tree is 4. The edit
distance between st1

g and st2
g is 3. Hence, DoC(st1

g , st2
g ) =

3/4 = 0.75.

The value of DoC ranges from 0 to 1. If a tree does
not change in two versions, then its DoC is zero. If a tree
is totally removed or newly inserted, then the DoC of the
tree will be one. The greater the value of DoC, the more
significantly the tree changes.

3
A valid edit script with higher cost may be deleting the nodes j and

k and inserting the nodes l and k which has a new value.



Another two metrics are global measures defined with re-
spect to the whole sequence of historical tree versions. We
use the following notations for the remaining definitions.
Given a sequence of versions of directory tree Σ = 〈St1 , St2 ,

. . . , Stn〉, we use Ω = {si|∃tj (t1 ≤ tj ≤ tn), s
tj

i ¹ Stj} to
denote the set of directory subtrees occurring in any version
of S.

Definition 2. (Frequency of Change) Let X = {s1, s2,
. . . , sm} be a set of subtrees, X ⊆ Ω. Let the threshold of
DoC be α. Then the Frequency of Change of the set X, with
respect to α, denoted as FoCα(X), is:

FoCα(X) =

∑n−1
j=1 Gj

n− 1
, where Gj =

m∏
i=1

Gji

and Gji =

{
1, if DoC(s

tj

i , s
tj+1
i ) ≥ α

0, otherwise

and n−1 is the number of transitions between two successive
versions given the sequence of n directory tree versions.

That is, FoCα of a set of subtrees is the fraction of tran-
sitions where the set of subtrees undergo significant changes
together. The value of FoCα ranges in [0, 1]. If all sub-
trees in the set undergo significant changes together in each
transition between two successive versions, then the value
of FoCα equals to one. If the set of subtrees never undergo
significant changes together in any transition, then the value
of FoCα is zero.

Example 2. Consider the directory tree versions in Fig-
ure 2. Let X = {sb, sg}. The DoC of sb in the sequence
of three transitions are 0.5, 0.56 and 0.44 respectively. The
sequence of DoC of sg is 0.75, 0.67, 0.75. Let the DoC
threshold be 0.5. Then, FoC0.5(X) = 2/3 as both subtrees
undergo significant changes in the first two transitions.

We now define the metric to measure the correlation be-
tween subtrees in undergoing significant changes. Given a
DoC threshold α, in each transition between two succes-
sive versions, a set of subtrees either undergoes significant
changes together or not. This could be considered as a bi-
nary value. There are many correlation measures which are
suitable for analyzing binary data, such as φ-coefficient, odds
ratio, and the Kappa statistic etc. [24]. In our method, we
adopt the φ-coefficient. Given the contingency table in Ta-
ble 1, where X (Y ) represents that a set of subtrees X (Y )
undergoes significant changes together and ¬X (¬Y ) repre-
sents subtrees in X (Y ) do not undergo significant changes
together, the φ-coefficient between variables X and Y can
be computed by the following equation.

φ(X, Y ) =
Mf11 − f1+f+1√

f1+(M − f1+)f+1(M − f+1)
(1)

Particularly, in the context of our problem, the value of
M in Table 1 equals to n− 1, which is the total number of
transitions between successive versions. Furthermore, f11

refers to the number of transitions where all subtrees in
X and Y undergo significant changes together. Hence, f11

equals to FoCα(X ∪ Y ) × (n − 1). Similarly, f1+ equals to
FoCα(X) × (n − 1) and f+1 equals to FoCα(Y ) × (n − 1).
Thus, the equation (1) can be transformed as the follow-
ing one, which is formally defined as Correlation of Change
(CoC).

Y ¬Y Σrow

X f11 f10 f1+

¬X f01 f00 f0+

Σcol f+1 f+0 M

Table 1: 2× 2 contingency table.

Definition 3. (Correlation of Change) Let X and Y
be two sets of subtrees, s.t. X ⊆ Ω, Y ⊆ Ω, and X ∩ Y = ∅.
Given a DoC threshold α, the Correlation of Change of X
and Y , with respect to α, denoted as CoCα(X, Y ), is:

CoCα(X, Y ) =

FoCα(X ∪ Y )− FoCα(X) ∗ FoCα(Y )√
FoCα(X)(1− FoCα(X))FoCα(Y )(1− FoCα(Y ))

According to the definition of φ-coefficient, if CoCα(X, Y )
is greater than zero, two sets of subtrees X and Y are pos-
itively correlated in undergoing significant changes. Other-
wise, they are negatively correlated in undergoing significant
changes. In the rest of this paper, the subscript α in both
FoCα and CoCα is omitted if α is understood in the context.

Example 3. Reconsider Figure 2. Let X = {sa, sb} and
Y = {sf}. The DoC values of sa in the subsequence of
transitions are 0.5, 0.5, 0.36. The sequence of DoC val-
ues of sb are 0.5, 0.56, 0.44. The sequence of DoC val-
ues of sf are 0.0, 0.0, 0, 5. Let the DoC threshold α be
0.5. Then CoC(X, Y ) = 0−2×1√

2×(3−2)×1×(3−1)
= −1. Hence,

{sa, sb} and {sf} are negatively correlated in undergoing
significant changes.

3.4 Negative Evolution Association Rule (NEAR)
Based on the evolution metrics discussed above, inter-

esting Negative Evolution Association Rules (near) among
Web directories can be defined. Recall that we are inter-
ested in nears in the form of s1s2 · · · sk ⇒ ¬sk+1, where s1

through sk+1 is a sequence of Web directories with ancestor-
descendant relationships. That is, si Â si+1 (1 ≤ i ≤ k). A
near s1s2 · · · sk ⇒ ¬sk+1 means that the sequence of subdi-
rectories on the left side of the rule, 〈s1s2 · · · sk〉, frequently
change together. However, they rarely change together with
the subdirectory on the right side of the rule, 〈sk+1〉. We
then first define Positive Evolution Pattern (pep) as a se-
quence of Web directories that frequently change together
and Negative Evolution Pattern (nep) as two sequences of
Web directories that are negatively correlated in undergoing
changes. Then, nears can be derived from the patterns.

Definition 4. (Positive Evolution Pattern) Given the
DoC threshold α, the FoC threshold β (0 ≤ α, β ≤ 1),
X = 〈s1, s2, . . . , sk〉, where si Â si+1 (1 ≤ i < k), is a
Positive Evolution Pattern (pep) if FoC(X) ≥ β.

Definition 5. (Negative Evolution Pattern) Given the
DoC threshold α, the FoC threshold β, and the CoC thresh-
old γ (0 ≤ α, β ≤ 1, γ ≥ 0), P = 〈X, Y 〉, where X =
〈s1, s2, . . . , sk〉, Y = 〈sk+1〉, and si Â si+1 (1 ≤ i ≤ k), is a
Negative Evolution Pattern (nep) if (i) X is a (pep), i.e.
FoC(X) ≥ β; (ii) FoC(X∪Y ) < β; (iii) CoC(X, Y ) ≤ −γ.



Algorithm 1: The near-Miner algorithm

Input: Σ = 〈St1 , St2 , . . . , Stn〉, α, β, γ, θ
Output: A set of nears Γ
GDT ← Change Org(Σ, α) /* Phase 1 */;1

Γ ← Rule Gen(GDT.root, β, θ) /* Phase 2 */;2

return Γ3

Example 4. Let the thresholds be α = 0.5, β = 0.6 and
γ = 0.5. Based on the information in Example 3, 〈sa, sb〉
in Figure 2 is a pep because FoC(〈sa, sb〉) = 2/3 ≥ β while
〈〈sa, sb〉, 〈sf 〉〉 is a nep because FoC(〈sa, sb, sf 〉) = 0 < β
and CoC(〈sa, sb〉, 〈sf 〉) = −1 < −γ.

Given a nep 〈〈s1s2 · · · sk〉〈sk+1〉〉, valid near s1s2 · · · sk ⇒
¬sk+1 can be derived only if its confidence is no less than
some specified threshold. Similar to traditional association
rule mining, the confidence of a near can be defined as fol-
lows.

Definition 6. (Confidence) Given a nep P = 〈X, Y 〉,
where X = 〈s1s2 · · · sk〉 and Y = 〈sk+1〉, a rule in form
of s1s2 · · · sk ⇒ ¬sk+1 can be derived, whose confidence,
denoted as Conf(s1s2 · · · sk ⇒ ¬sk+1), can be computed
as:

Conf(s1s2 · · · sk ⇒ ¬sk+1) =
FoC(X)− FoC(X ∪ Y )

FoC(X)

Hence, the metric confidence measures how frequently the
directory sk+1 doesn’t change significantly when its ancestor
directories s1 through sk undergo significant changes. The
value of confidence ranges from 0 to 1. The higher the confi-
dence, the less likely that sk+1 changes significantly together
with its ancestor directories.

Definition 7. (Negative Evolution Association Rule)
Given a nep 〈〈s1s2 · · · sk〉〈sk+1〉〉 and a confidence threshold
θ, s1s2 · · · sk ⇒ ¬sk+1 is a Negative Evolution Association
Rule (near) if Conf(s1s2 · · · sk ⇒ ¬sk+1) ≥ θ.

Before formally defining the problem of near mining,
we identify two types of subsumption relationship of nears
first. As discussed in optimized archive maintenance strate-
gies in the next section, nears are not equally useful for
web archive maintenance. Specifically, the subsumed nears
add no further value to our archive maintenance algorithm.
Hence, we will exclude them from near mining.

Definition 8. (Tail Subsumption) Given two nears R1

= (X ⇒ ¬sk+1) and R2 = (X ⇒ ¬sk+2), where X =
〈s1s2 · · · sk〉, R1 subsumes R2 (or R2 is subsumed by R1),
denoted as R1 = R2, if sk+1 Â sk+2.

Definition 9. (Head Subsumption) Given a near R1 =
(X1 ⇒ ¬sk) and a pep X2, where X1 = 〈s1s2 · · · sm〉 and
X2 = 〈v1v2 · · · vn〉, R1 is subsumed by X2, denoted as R1 <

X2, if ∃i(1 < i ≤ m ≤ n) such that s1 = v1, · · · , si−1 = vi−1

while si ≺ vi.

Example 5. Consider the sequence of subtrees, 〈sasbsf 〉,
in Figure 2. If both sa ⇒ ¬sb and sa ⇒ ¬sf are valid nears,
then the former subsumes the latter. If there exists a pep
〈sasb〉, then the rule sa ⇒ ¬sf is subsumed by the pattern.

Figure 3: The result tree and General Delta Tree.

Thus, the problem of near mining is defined as follows.

Definition 10. (NEAR Mining) Given a sequence of
historical versions of a Web directory tree, DoC threshold
α, FoC threshold β, CoC threshold γ, and the confidence
threshold θ, the problem of NEAR Mining is to find a
set of nears where each rule is not subsumed by any other
nears (as defined in Definition 7) or peps (as defined in
Definition 4).

4. ALGORITHM NEAR-MINER
We now present the algorithm, near-Miner, for near

mining. Given a sequence of historical versions of a directory
tree and a set of DoC, FoC, CoC, and confidence thresh-
olds, the near-Miner algorithm is shown in Algorithm 1.
Basically, the algorithm can be decomposed into following
two phases.

• Phase I: Historical change organization. Given
the input as a sequence of historical versions of a di-
rectory tree, this phase detects changes between each
two successive versions and organize historical changes
into a special data structure, called General Delta Tree
(GDT ), which not only records the change information
of subtrees but also preserves the ancestor-descendant
relationships between subtrees.

• Phase II: Rule generation. The input of this phase
is the GDT constructed in the first phase. The set
of desired nears are discovered from the GDT with
respect to the set of given thresholds.

4.1 Phase I: Historical Change Organization
Given a sequence of historical versions of a directory tree

as the input, the changes between each two successive ver-
sions should be detected first. Many tree-structure based
change detection algorithms were proposed in the litera-
ture [26] [4]. Here, we borrow the algorithm X-Diff [26],
which effectively detects changes to unordered trees4. We
optimized X-Diff based on the speciality of a Web directory
tree that no two sibling nodes carry the same label. Please
refer to our technical report [7] for the details. Given two
tree versions, X-Diff generates a result tree which is a con-
solidated tree of the two versions. For example, Figure 3(a)
shows the example result tree generated by X-Diff after de-
tecting changes between the first two versions in Figure 2.

4
Web directory tree is unordered because changes to orders of sibling

subtrees incur no changes to the Web site.



Algorithm 2: Change Org

Input: Σ = 〈St1 , St2 , . . . , Stn〉, α
Output: A General Delta Tree GDT

Initialize GDT.root;1

foreach i < n do2

result treei ← WD-Diff(Sti , Sti+1);3

delta treei ← Depth Traverse(result tree);4

Merge Tree(GDT.root, delta tree, root, i, α);5

return GDT6

procedure: Merge Tree(x, x′, i, α);7

if DoC(sx′) ≥ α then8

Set the ith element of x.Bitmap = 1;9

foreach child y′ of x′ do10

find or create a child of y of x to match y′;11

call Merge Tree(y, y′, i, α);12

Similarly, gray nodes represent the detected deletions. Black
nodes represent the detected insertions and nodes with bold
boundaries denote detected updates.

For each result tree, the DoC value of each Web directory
subtree can be computed easily by traversing the result tree
in the depth-first manner. For example, for each node x, we
maintain two counters which respectively record the number
of its descendants (including itself) and the number of its
changed (inserted, deleted and updated) descendants. Then,
the DoC value of the subtree rooted at x can be computed
by dividing the latter counter by the former one.

Given a sequence of historical tree versions, we can ob-
tain a sequence of corresponding result trees. To record
the sequence of change information of each subtree concisely
and maintain the ancestor-descendant relationship between
Web directory subtrees, we construct a General Delta Tree
(GDT ) by merging all the result trees together. Each node
in the GDT is associated with a bitmap which reflects the
change information of the subtree rooted at this node.

Definition 11. (General Delta Tree) Given a sequence
of historical tree versions Σ, a sequence of consolidated trees

of each two successive versions can be obtained, 〈S′1 = 〈N1, E1〉,
S
′
2 = 〈N2, E2〉, · · · , S

′
n−1 = 〈Nn−1, En−1〉〉, where S

′
i =

Sti ] Sti+1 . A General Delta Tree GDT = 〈N, E〉, where
N = N1 ∪ N2 ∪ · · · ∪ Nn−1 and e = (x, y) ∈ E only if x is
a parent of y in any Ei(1 ≤ i ≤ n − 1). Each node x is
associated with a bitmap such that bit i is 1 only if subtree

DoC(sti
x , s

ti+1
x ) ≥ α.

Example 6. Consider the sequence of historical tree ver-
sions in Figure 2. Let the DoC threshold be α = 0.5. The
constructed GDT is shown in Figure 3(b). For simplicity, we
only show the bitmaps of several nodes. For example, the
bitmap of the node b indicates that the DoC value of the
subtree sb is no less than the 0.5 in the first two transitions
between successive versions.

The complete algorithm of Phase I, Change Org, is shown
in Algorithm 2. Firstly, the GDT is initialized. Then,
for each two successive Web directory tree versions, we use
the modified version of X-Diff, called WD-Diff, to detect
changes. The function Depth Traverse traverses the result
tree to calculate DoC values for each subtree. Then, we

Algorithm 3: Rule Gen

Input: GDT.root, β, γ, θ
Output: A set of nears Γ

Initialize Γ = null, n = GDT.root;1

if γ = null then2

γ = 0.53

if FoC(sn) ≥ β then4

Initialize current pattern CP with n;5

while (|R| == 0) and (γ > 0.3) do6

R = Specific Rule Gen(n, CP , β, γ, θ);7

γ −−;8

Γ = Γ ∪R;9

foreach child x of n do10

Γ = Γ∪ Rule Gen(x, β, θ);11

return Γ12

procedure: Specific Rule Gen(x, CP , β, γ, θ);13

foreach child y of x do14

if FoC(CP ∪ sy) ≥ β then15

CP = CP ∪ 〈sy〉,16

CP.bitmap = CP.bitmap ∩ y.bitmap;
Γ = Γ∪ Specific Rule Gen(y, CP , β, θ);17

else18

if (CoC(CP, 〈sy〉) ≤ −γ) and19

(Conf(CP ⇒ ¬sy) ≥ θ) then
Γ = Γ ∪ {CP ⇒ ¬sy};20

return Γ21

merge the tree containing DoC information with the GDT .
The complexity of this phase can be computed as follows.
Let |S| be the maximum tree size of all historical versions.
According to [7], the complexity of WD-Diff is O(|S| log(|S|)).
In the worst case, the complexity of Depth Traverse is
O(2|S|). The complexity of the merging process is O(2|S|)
as well. Hence, the total complexity of phase I is O((n −
1)× |S|log(|S|)).

4.2 Phase II: Rule Generation
The input of this phase is the GDT and the set of thresh-

olds. We aim to discover a set of nears where each rule
satisfies the thresholds and is not subsumed by any other
nears or peps.

If the threshold of CoC γ is not given specifically, our algo-
rithm decides it automatically according to Cohen’s study [12]
on the strength of the φ-coefficient value. The correlation
is strong if CoC is above 0.5, moderate if CoC is around
0.3, and weak if CoC is around 0.1. Hence, our algorithm
sets the initial threshold of CoC γ as 0.5 if it is not given
by users. If no near is discovered with respect to this value
and γ is greater than 0.3, γ is reduced progressively. Similar
to traditional association rule mining, the selection of other
thresholds is application-dependent.

The complete set of desired nears Γ can be divided into
disjoint partitions, Γ = Γ1∪Γ2∪. . .∪Γk, such that each par-
tition contains rules starting from the same subtree. That
is, ∀ Rx = (sxsx+1 . . . sm−1 ⇒ ¬sm) ∈ Γ and Ry = (sysy+1

. . . sn−1 ⇒ ¬sn) ∈ Γ, if sx = sy then Rx, Ry ∈ Γi; other-
wise, Rx ∈ Γi, Ry ∈ Γj , where i 6= j (1 ≤ i, j ≤ k). Then,
the problem of rule generation can be decomposed into a set



of subproblems where each mines rules of a particular parti-
tion. Algorithm 3 shows the general algorithm of Rule Gen,
which calls the function Specific Rule Gen to mine nears
of a particular partition.

When mining nears starting from a particular subtree,
we aim to directly discover rules where each is not sub-
sumed by any other nears or peps, instead of performing
some filtering process afterwards. For this purpose, we em-
ploy the following three strategies. Firstly, when mining
nears starting from a subtree sx, candidate neps are gener-
ated and examined by traversing sx in a depth-first manner.
For example, as shown in Algorithm 3, Specific Rule Gen
performs a depth-first traversal on the subtree rooted at
node x. Secondly, once a pep is discovered, candidate neps
must be extended from this pep. For example, Line 3 of
Specific Rule Gen updates the candidate nep CP by grow-
ing itself with the current subtree sy. This strategy pre-
vents generating nears which are subsumed by any other
peps. Thirdly, once a near is discovered, we stop travers-
ing nodes deeper than the current one. For example, Line
6 of Specific Rule Gen discovers a near and stops there
without iteratively calling itself. This strategy keeps from
generating nears that are subsumed by any other nears.

Lemma 1. No near which is subsumed by any pep or any
other nears will be discovered by near-Miner.

Proof. Suppose there is a near R1 = (s1s2 · · · sm ⇒
¬sm+1), which is head-subsumed by a pep X2 = 〈v1v2 · · · vn〉.
Based on the definition of head subsumption, ∃x(1 < x ≤
m ≤ n), s.t. s1 = v1, · · · , sx−1 = vk−1, and sx ≺ vx. Since
X2 is a pep, it is easy to prove that X1 = 〈v1 · · · vx−1〉
is a pep as well (this is because of the downward closure
property of the FoC metric). According the Strategy 1,
X1 is discovered earlier than X2. And after discovering
X1, candidate pattern 〈v1v2 · · · vx〉 will be examined be-
fore 〈s1s2 · · · sx〉. Since X2, 〈v1v2 · · · vx〉, is a pep also,
〈s1s2 · · · sx〉 will not be generated. Otherwise, it contra-
dicts to Strategy 2. Hence, no head-subsumed nears will
be generated. Given a near R1 = (X ⇒ ¬sm), if another
near R2 = (X ⇒ ¬sm+1), which is tail-subsumed by R1,
is discovered, then sm+1 ≺ sm. Then, it contradicts with
Strategy 3. Hence, there is no tail-subsumed rules that will
be discovered. Therefore, neither head-subsumed nor tail-
subsumed rules will be generated by near-Miner.

The complexity of this phase can be computed as fol-
lows. For each node x in the GDT , we need to call the
Specific Rule Gen method which traverses the subtree sx.
Hence, each node in GDT is traversed at most m times,
where m is the depth of the node. Then, let the depth of
GDT be dep(GDT ), the complexity is O(|GDT |×dep(GDT )).

5. WEB ARCHIVE MAINTENANCE
We now present the algorithm called warm (Web ARchive

Maintenance) for maintaining web archives based on dis-
covered nears. Recall that as an approximate maintenance
strategy, it aims to achieve high archive maintenance effi-
ciency while keeping the loss of freshness of archives as little
as possible. Hence, the basic strategy is that when main-
taining the archive of a Web directory sx, we do not skip
any of its subdirectories which have positive evolution as-
sociations with it. We also do not skip any subdirectories
which have neither positive nor negative evolution associa-
tion with it. Thus, only subdirectories which appear on the

Algorithm 4: warm

Input: Target directory sx, Σ, α, β, γ, θ

Γ = near-Miner(sx, Σ, α, β, γ, θ);1

Initialize P = 〈sx〉;2

Depth Archive(x, P , Γ);3

procedure: Depth Archive(x, P , Γ);4

foreach child y of x do5

if y is a leaf node then6

archive y;7

else8

if (∃ a rule P ⇒ ¬sy ∈ Γ) then9

skip archiving sy;10

else11

if (∃ a rule P ∪ sy ⇒ ¬sz ∈ Γ) then12

P = 〈sx, sy〉;13

Depth Archive(y, P , Γ);14

right-side of nears starting with sx will be skipped. How-
ever, nears starting from sx are not equally useful. Some
of them are redundant with respect to others while some of
them may even cause detriment to the quality of archives.
Particularly, we identify the following two situations.

• First, if a near is subsumed by another near, then
the subsumed rule adds no value to optimized archive
maintenance. For example, if both sx ⇒ ¬sy and
sx ⇒ ¬sz are valid nears, where sz ≺ sy, then the
subdirectory sz will be skipped based on the first rule
as well as the second rule.

• Second, if a near is subsumed by a pep, then the sub-
sumed rule is either redundant or excessive with respect
to other rules in terms of archive maintenance. For
example, given a near sx ⇒ ¬sz and a pep 〈sxsy〉,
where sz ≺ sy, if sxsy ⇒ ¬sz is a valid near also,
then the first rule is redundant. Otherwise, archive
maintenance strategies based on the first rule maybe
too excessive because the subdirectory sy, which con-
tains sz, should not be skipped based on the pep (Our
experimental results in next section investigate the ex-
cessiveness of such rules).

Since our near mining algorithm discovers rules which are
not subsumed by any other nears or peps, the mining re-
sults can be used in maintenance directly.

Algorithm 4 shows our archive maintenance algorithm
warm. Basically, it first discovers nears starting with the
target Web directory. Then, it performs a top-down traver-
sal on the directory and either skips a subdirectory based
on nears or archive pages using existing tools. Note that in
the algorithm, we assume every parent directory is changed
when traversing the directory tree in consideration of mini-
mizing the loss in freshness.

Two nears are contradictable if one rule indicates some
subdirectory should be archived while the other indicates
that it should be skipped. Then the following lemma holds.

Lemma 2. At each node, there exists no contradictable
nears that can be used.

Proof. For each node, the subtree rooted at the node ei-
ther isn’t involved in any near or is involved in some near.



If it is involved in some near, it either occurs in the head
of the near or occurs in the tail of the near. In the former
situation, the corresponding subdirectory will be archived.
In the latter situation, the corresponding subdirectory will
be skipped. However, it is impossible that the subtree oc-
curs in the head of a rule as well as in the tail of another
rule. Suppose sx is the current subtree and there is a pep
〈s1 · · · sx−1〉 along the path arriving at sx. According to
the algorithm of near-Miner, descendant subtrees of sx−1

should be examined by extending the pep 〈s1 · · · sx−1〉. If
sx occurs in the head of a rule, FoC(s1 · · · sx−1sx) ≥ β. If
sx occur in the tail of a rule, then FoC(s1 · · · sx−1sx) < β.
Hence, a subtree does not occur both in the head of a rule
and in the tail of another rule. That is, at each node, no
contradictable nears that can be used.

6. PERFORMANCE EVALUATION
In this section, we study the performance of our site-level

web archive maintenance approach. Our proposed algo-
rithms are implemented in the Java programming language.
All experiments are conducted on a Pentium IV 2GHz PC
with 2 gb memory. The operating system is Windows XP
professional. We first present some empirical experimen-
tal results on several real-life Web sites with different fea-
tures of Web directory evolution. Then, we evaluate our
archive maintenance approach from different aspects based
on a large set of real Web sites. Finally, we report the per-
formance of the near mining algorithm. Note that we do
not compare our approach with existing techniques for effi-
cient crawling [8, 9, 10, 13, 17, 20, 21] as these techniques
are page-level strategies and orthogonal to our problem. We
are not aware of any publicly-available site-level Web archive
maintenance techniques.

6.1 Empirical Examples
Dataset. A. Ntoulas et al. [19] collected Web pages of

154 “popular” Web sites every week from October 2002 un-
til October 2003, for a total of 51 weeks. In their paper, they
explained how the sites are selected so that it is a “repre-
sentative” yet “interesting” sample of the Web. We first
conduct experiments on some example sites, where Web di-
rectories exhibit different evolutionary features. Basically,
the group of example sites, shown in Figure 4, are different
in the evolution of their directory tree size. For each site,
Figure 4 shows the relative weekly-size, which is normalized
by the size of its first version. We observed that the evolu-
tions of the two sites www.sec.gov and www.ksc.nasa.gov
exhibit certain patterns, e.g., generally, the size of both sites
increase gradually. On the other hand, the evolutions of the
two sites www.fags.org and www.oracle.com are relatively
irregular. In addition, the size of the site www.biosis.org
does not change frequently or significantly. We aim to study
the effectiveness of our approach in maintaining archive of
sites with different evolutionary characteristics.

Methodology and Metrics. For each Web site, we have
total 51 historical versions of Web directory trees. We con-
duct experiments by using k successive versions as the train-
ing data to mine nears. With discovered rules, we test the
performance of our approach with respect to a baseline ap-
proach, which archives the complete subsequent (k + 1)th
version. Basically, we follow the algorithm warm in Al-
gorithm 4. However, instead of really archiving a page or
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Figure 4: Size evolution of example sites.

skipping a subdirectory, we count the number of archived
pages, the number of skipped pages as well as the number
of changed pages (both archived and skipped). Let N(Vt)
and C(Vt) be the set of pages and the set of changed pages
in the test version respectively, N(Vm) and C(Vm) be the
set of pages in the archived version and the set of changed
pages updated by our approach respectively, and S(Vm) be
the set of pages skipped by our approach. The following
four metrics are used to measure the performance:

Bypass Ratio(BR) =
|S(Vm)|
|N(Vt)| (2)

Overall Precision(OP ) =
|N(Vt) ∩N(Vm)|

|N(Vm)| (3)

Overall Recall (OR) =
|N(Vt) ∩N(Vm)|

|N(Vt)| (4)

Change Recall(CR) =
|C(Vt) ∩ C(Vm)|

|C(Vt)| (5)

The Bypass Ratio evaluates the efficiency gain of our ap-
proach. The Overall Precision and Overall Recall measures
the accuracy of our approach with respect to the baseline
approach, which achieves 100% precision and recall. The
Change Recall measures the accuracy of our approach with
respect to the real changes to the test version. Note that
since all changed pages updated by our approach belong to
the real changes to the test version, the change precision of
our approach is always one. In a good approximate archive
maintenance approach, values of all the four metrics should
be as high as possible.

These metrics are computed as follows by warm. In
warm, we maintain five counters: Ns is the number of
skipped pages, Nm is the maintained pages, Cm is the main-
tained changed pages, Ct is the total number of changed
pages (including insertion, deletion and modification), C1s

is the number of skipped insertions and C2s is the number
of skipped deletions. Then,

BR =
Ns

Ns + Nm
(6)

OP =
Ns + Nm − C1s

Ns + Nm + C2s
(7)

OR =
Ns + Nm − C1s

Ns + Nm
(8)

CR =
Ct − C1s − C2s

Ct
(9)

Results. Table 2 shows the results of the five example
sites by using 20 successive versions as the training data and
the subsequent version as the test data. Note that we inten-
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Figure 5: Performance of archive maintenance.

Site BR OP OR CR
www.sec.gov 0.62 0.99 0.99 0.87
www.ksc.nasa.gov 0.61 0.99 0.99 0.85
www.fags.org 0.30 0.99 0.90 0.81
www.oracle.com 0.40 0.99 0.97 0.79
www.biosis.org 0.85 0.99 0.99 0.65

Table 2: Empirical results.

tionally chose the the training data to be relatively “small”
as effective rules should be discovered “quickly” from smaller
number of versions (smaller datasets) so that they can be
quickly deployed for archive maintenance. The results are
averaged by running the experiment for 10 times on sequen-
tial 20 versions. From the results, we have the following
observations. First of all, with respect to the size of the
whole test version, our archive maintenance approach sac-
rifices only slight freshness. For example, both the Overall
Precision and the Overall Recall are high for all sites. Sec-
ondly, our approach gains more efficiency improvement on
sites with certain patterns in their evolution than sites with
irregular evolution. For example, the Bypass Ratio values
of the sites www.sec.gov and www.ksc.nasa.gov are higher
than those of the sites www.fags.org and www.oracle.com.
Similarly, the Change Recall value of the former two sites
are higher than those of the latter two sites. Thirdly, for a
site which does not change frequently, i.e., www.biosis.org,
our approach achieves a high BR value but a low CR value
because it is difficult to predict the location of changes for
a site which rarely changes.

6.2 Performance of Archive Maintenance
Dataset. In this experiment, we evaluate the perfor-

mance of our archive maintenance approach from different
aspects based on the whole set of Web sites collected by A.
Ntoulas et al. However, we noticed that data of some Web
sites are incomplete. For example, the Web server accom-
modating the site www.interplay.com blocked Web crawling.
Thus, we perform a preprocess on the set the of Web sites
collected by A. Ntoulas et al. to filter those sites with more
than 5 blocked historical versions. The list of remaining 102
sites used in our study is given in [7].

Methodology and Metrics. The following experiments

are conducted on the set of Web sites. (a) We fix the size
of the training data and vary the distance between training
data and test data. For example, nears are mined from the
first k versions and performance is evaluated with respect to
the (k + 1)th version, the (k + 2)th version, and so on. This
experiment aims to study the temporal validity of discovered
rules. (b) We vary the size of the training data and use
the subsequent version as the test data to study how the
training size affects the performance. (c) We evaluate the
effectiveness of our approach on sites from different domains,
such as .com, .gov, .org etc. (d) We study how the thresholds
(e.g., α, β, θ) affect the performance of our approach. (e) We
evaluate the performance of archive maintenance strategies
based on nears which are subsumed by others. The same
four metrics, Bypass Ratio, Overall Precision, Overall Recall
and Change Recall are used to evaluate the performance.

Results. Figure 5(a) shows the results of the first exper-
iment which varies the distance between the training data
and the test data. Similarly, the results corresponding to
each distance are averaged by running experiments 10 times
on sequential data. It can be observed that our approach
skips around one third of the pages of a site on average and
loses slight “freshness”, e.g., values of OP, OR and CR are
high (Note that the results are obtained by using the same
thresholds on all sites. As we show later, the performance
on each site can be tuned by setting appropriate thresh-
olds). Furthermore, the performance of our approach does
not deteriorate obviously with the increase of the distance.
This may be because that discovered evolution associations
hold for most of sites in the tested period. Consequently,
we do not need to incrementally maintain near for every
version. The discovered rules are stable enough to be used
for several subsequent versions without incurring the cost of
maintaining them incrementally.

Figure 5(b) shows the results of the experiment which
varies the size of the training data. We noticed that when
the size of the training data increases, the BR value of our
approach slightly decreases. It is because we fix the thresh-
olds for training data of different size. As a result, when
the size of training data increases, different sets of rules,
based on which fewer pages are skipped, are discovered. Ac-
cordingly, fewer changed pages are missed by our approach,



3000

4000

5000

1000 2000 4000 8000 16000

Number of Nodes

E
xe

cu
tio

n 
T

im
e 

(m
s)

3% percent
6% percent

12% percent

0

10

20

30

40

50

60

70

50 100 200 400 800

Number of Versions

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

3% percent
6% percent
12% percent

920
940

960
980

1000
1020

1040
1060
1080

1100
1120

0.1 0.3 0.4 0.5 0.6

E
xe

cu
tio

n 
T

im
e 

(m
se

c)

DoC FoC CoC

(a) Variation on tree size (b) Variation on versions (c) Variation on metric thresholds

Figure 6: Performance of NEAR-Miner.

which results in the improvement of the CR value.
In Figure 5(c), we present the performance of our ap-

proach with respect to sites from different domains. Ac-
cording to the results, it indicates that our approach works
better on sites from domains like .org and .gov than on sites
from domains such as .com and .edu. The reason may be
that Web sites from the latter two domains evolves more
irregularly.

Figure 5(d) shows the resulting BR value of sites on vari-
ation of the DoC threshold. Each point in the figure corre-
sponds to a site which achieves highest BR value at current
threshold (relatively highest in the DoC threshold range of
[0.01, 0.05]). It indicates that, similar to traditional associa-
tion rule mining, appropriate thresholds are site-dependent.

Figure 5(e) shows the performance of archive maintenance
based on nears subsumed by others nears. We normalize
the results (e.g., BR1) with respect to the performance of
our approach (e.g., BR). It can be observed that mainte-
nance strategies based on subsumed rules gain less efficiency
than our approach does (e.g., BR1/BR < 1). Correspond-
ingly, it sacrifices less freshness (e.g., CR1/CR > 1). How-
ever, the magnitude of the former is larger than the latter.
Similarly, Figure 5(f) shows the normalized performance of
maintenance strategies based on nears subsumed by other
peps. Compared to our approach, such strategies skip more
pages and miss more changed pages. However, the magni-
tude of the efficiency they improve is less than that of the
freshness they lose. Therefore, as an approximate archive
maintenance strategy which aims to achieve high efficiency
as well as sacrifice slight freshness, our approach works bet-
ter than approaches based on subsumed rules.

6.3 Performance of NEAR-Miner
We also evaluate the performance of our algorithm for

near mining on synthetically generated sequential tree ver-
sions. Basically, we generate the first tree version with re-
spect to three parameters, tree size (N), tree fanout (F )
and tree depth (D), and generate subsequent versions based
on the parameters of version numbers (V ) and the change
percentage C. We conduct experiments to evaluate the scal-
ability as well as the efficiency of our algorithm. The experi-
mental results are shown in Figure 6. Figure 6(a) shows the
scale-up feature with respect to the increase of the (first) tree
size (N) on three datasets which are generated with different
value of C. Figure 6(b) presents the scalability with respect
to the increase of version numbers (V ) on three datasets
generated with three C values also. Figure 6(c) presents
the execution time of the second phase of our algorithm by
varying the thresholds (the variation of the thresholds do
not affect the complexity of the first phase). In all experi-
ments, when the threshold of a metric is varied, the other

two thresholds are fixed at 0.1. From the results, we noticed
that the efficiency decreases when the thresholds of DoC
and FoC increase. While the threshold of CoC does not
affect the efficiency of the near-Miner algorithm.

7. RELATED WORK
Negative association rule mining. Although tradi-

tional association rule mining focuses on mining positive
associations between items, it was observed that negative
associations were useful as well in some situations [27]. Con-
sequently, several work have focused on mining negative as-
sociation rules [1, 3, 27]. They are different from each other
in the employed correlation metrics. As a result, the devel-
oped data mining algorithms are different as well. For ex-
ample, Wu et al. [27] added on top of the support-confidence
framework another measure called mininterest. They devel-
oped level-wise algorithms to find interesting itemset pairs
first and then derive negative association rules. Antonie and
Zäıane [1] used the correlation coefficient and integrated two
phases to mine patterns and derive rules together. How-
ever, none of the above efforts mine negative associations
from changes to tree structures. Also, our proposed rules
differ in the way that the Web directory trees have ancestor-
descendant relationships.

Mining evolution of trees. In our previous work [6], we
proposed a novel approach for mining structural evolution
of xml data to discover fracture patterns. A fracture
pattern is a set of subtrees that frequently changes together
and frequently undergoes significant changes together. Our
work differs from fracture mining in the following aspects.
Firstly, different evolution metrics are used. Secondly, the
nears are defined on a sequence of subtrees with ancestor-
descendant relationships, while the fractures are defined
on subtrees which may or may not be structurally related.
Lastly, unlike fractures, subsumption relationships are
taken into account in near mining. Recently in [5], we
proposed to discover nectar patterns where each pattern
refers to subtrees negatively correlated in undergoing signif-
icant changes. Our work differs from nectar mining funda-
mentally because we focus on site-level Web archive mainte-
nance, while [5] addresses a data mining problem defined on
general trees. Consequently, the specialty of Web directory
structure is exploited in our work to optimize the knowl-
edge discovery. Moreover, nectar discovers only patterns
of subtree sets. To develop effective web archive mainte-
nance strategies, we discover association rules from subtrees
which provide additional predictive power. Lastly, the key
contribution of this paper is a novel web archive maintenance
algorithm based on discovered nears. Such algorithm is not
discussed in [5].

Web archiving and crawling. None of the existing



archiving techniques [16, 23] exploit evolutionary associa-
tion to select pages for archiving. Since a crawler is a core
component of any Web archiving system, we compare our
work with existing Web crawling strategies.

Web crawling is a well-studied research problem. Majority
of recent research in this area focus on improving efficiency
and scalability of the crawler. Pant et al. [21] describes the
technical process involved in Web crawling. Cho et al. [9]
introduced the importance of crawler efficiency and present
an algorithm that retrieves most “relevant” pages first. Sub-
sequently, Cho and Garcia-Molina developed an effective in-
cremental crawler [8]. An incremental crawler does not visit
the entire Web each time it runs. Rather, the crawler visits
only those pages that it believes to have changed or been
created since the last run. They also studied refresh poli-
cies for Web pages in [10]. In another study in [11], they
develop several change frequency estimators in order to im-
prove Web crawlers and Web caches. Edward et al. [13]
also propose a change frequency-based adaptive model to
optimize performance of incremental crawlers. Olston and
Pandey [22] present a strategy to schedule Web pages for se-
lective (re)downloading into a search engine repository. This
strategy aims to maximize the quality of the user experience
for those who query the search engine. More recently, they
characterize longevity of information in Web pages and then
develop new and improved recrawl scheduling policies that
incorporate information longevity into account [20].

In comparison to the above approaches, our proposed tech-
nique of Web archive maintenance differs in the following
ways. Firstly, our strategy for selecting pages to archive is
at the level of Web directories whereas the above techniques
are defined at much finer granularity (page level). Hence,
our approach complements these efforts. Secondly, to the
best of our knowledge, none of these crawling techniques
exploit negatively correlated subtree structures to improve
crawling efficiency.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel optimized web archive

maintenance approach for autonomous Web sites. In our ap-
proach, we first present an algorithm near-Miner to mine
the evolution history of Web directories to extract rules re-
lated to negative evolution correlations (referred to as nears)
between Web directories with ancestor-descendant relation-
ships. In the next step, we designed an efficient archive
maintenance approach based on discovered rules. Our main-
tenance strategies optimally skip the subdirectories (in the
original site) which are negatively correlated with it in un-
dergoing significant changes. We conducted extensive ex-
periments on real-life datasets to evaluate the performance
of our archive maintenance algorithm called warm. The
promising results show that the proposed maintenance strate-
gies significantly improve the efficiency of maintenance pro-
cess without sacrificing too much “freshness” of the archives.
We believe that our proposed approach can also be used in
applications beyond archiving (e.g., maintaining local ware-
house of remote data sources).

As part of future work, we are interested in combining our
site-level maintenance strategies with page-level strategies.
For example, our current solution considers a leaf node as
either updated or not. To take into account the degree of
update, we may need to revise the definition of DoC so that
it considers not only changes to structures but also changes

to content. The combined strategies can be expected to be
more effective by skipping pages with minor changes (e.g.,
near-duplicate Web documents [15]) and subdirectories with
many slightly updated pages.
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