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ABSTRACT
Social tags describe images from many aspects including the vi-
sual content observable from the images, the context and usage of
images, user opinions and others. Not all tags are therefore use-
ful for image search and are appropriate for tag recommendation
with respect to visual content of images. However, the relation-
ship between a given tag and the visual content of its tagged im-
ages are largely ignored in existing studies on tags and in tagging
applications. In this paper, we bridge the two orthogonal areas
of social image tagging and query performance prediction in Web
search, to quantify tag representativeness of the visual content pre-
sented in the annotated images, which is also known as tag visual-
representativeness. In simple words, tag visual-representativeness
characterizes the effectiveness of a tag in describing the visual con-
tent of the set of images annotated by the tag. A tag is visually rep-
resentative if its annotated images are visually similar to each other,
containing a common visual concept such as an object or a scene.
We propose two distance metrics, namely cohesion and separation,
to quantify tag visual-representativeness from the set of images an-
notated by a tag and the entire image collection. Through extensive
experiments on a subset of Flickr images, we demonstrate the char-
acteristics of seven variants of the distance metrics derived from
different low-level image representations and show that the visu-
ally representative tags can be identified with high precision. Im-
portantly, these proposed distance measures are parameter free with
linear or constant computational complexity, thus are effective for
practical applications.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Multimedia databases;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering; H.1.2 [Models and Princi-
ples]: User/Machine Systems—Human information processing

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
The prevalence of digital photography devices (e.g., digital cam-

eras, mobile phones) has lead to huge volume of images accessible
online. As a result, there is an increasing research and commer-
cial interests in building effective search mechanisms for superior
image retrieval experience. Most commercial search engines adopt
similar interface for image and document search, where users’ in-
formation needs are specified in the form of textual queries. In
this query framework, images are assumed to be well annotated
with their presented visual concepts (e.g., a scene or an object).
However, in reality high quality annotations by experts are gener-
ally unavailable. As a result, there is growing research interest in
exploiting increasingly available social tags as well as the text seg-
ments surrounding images in Web pages to facilitate high quality
image annotation [8, 10, 15].

There are three major approaches to annotate images. Model-
based approach requires models to be trained for a predefined set
of visual concepts using labeled examples. The trained models are
then used to annotate new images according to their relevance to
the concepts [10]. Example-based approach assumes that visually
similar images are annotated by a similar set of tags. For a given
image, tags are recommended among those associated with its near-
est neighbors by visual content similarity [12]. Knowledge-based
approach typically does not consider the visual content of images.
Instead, it relies on the relationships (e.g., co-occurrence) among
tags [16]. In model-based approach, the set of visual concepts
are usually manually selected such that they are relatively easy to
model (e.g., water, lake, building) [3, 8, 15]. Methods in the lat-
ter two approaches often treat tags uniformly. That is, they do not
attempt to differentiate between tags used to describe visual con-
tent of images or other aspects. However, recent studies showed
that tags are often noisy and imprecise in nature [3]. Consequently,
as we shall discuss in the next section, not all tags contributed by
common users describe the visual content of images.

1.1 Motivation
Tags are from uncontrolled vocabulary and users tag web re-

sources including images from many different perspectives. A re-
cent study on the types of tags across different social platforms
reports that Flickr tags usually describe images with topic (or vi-
sual content), time, location, opinions, or self-reference [1]. That
is, not all tags contributed by users are representative of the visual
content presented in the images. For example, consider a photo
of the Forbidden City uploaded by Sara which she took using her
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Figure 1: Flickr tag search results for search tags sunset and
Asia. The images returned for visual-representative tag sunset
are visually coherent but not the images returned for tag Asia.

Canon 40D camera when she traveled to Beijing in 2009. This im-
age may be annotated by tags such as Canon, 40D, 2009, forbidden
city, travel, Beijing, and Asia. Notice that tags like 2009 and Asia do
not effectively describe the visual content of the image.

Although various studies have been conducted on image tags in
recent times, surprisingly, little attention has been paid to quanti-
tative study of tag visual-representativeness. Intuitively, a tag is
visually representative if it effectively describes the visual content
of its annotated images (e.g., all images share a common scene,
or contain a common object). A visually representative tag (such
as sunset, sky, tiger) easily suggests the scene or object an image
may describe even before the image is presented to a user. On the
other hand, tags like 2009, Asia, and Canon often fail to suggest
anything meaningful related to the visual content of the annotated
image. In other words, images annotated by a visually representa-
tive tag are visually coherent by containing similar visual content.
Figure 1 captures fragments of images returned by Flickr for search
tags sunset and Asia. Notice that there exists significant difference
between the visual coherence of the images returned in response to
these two search tags.

Quantifying tag visual-representativeness is an important prob-
lem and would offer twofold benefits to image retrieval. First, the
knowledge of tag visual-representativeness hints the search engine
about users’ intention of a tag query. Users may search for im-
ages relevant to the visual concept described by a tag (e.g., sunset,
beach); or search for images related to a tag if the tag does not ef-
fectively describe a visual concept (e.g., Asia). More diversified im-
age search results are therefore expected for the latter case. Second,
quantifying visual-representativeness would benefit image anno-
tation through all aforementioned annotation approaches (model-
based, example-based, knowledge-based). For model-based ap-
proach, it serves as a guideline on the selection of visual concepts
to be modeled as well as on the expected accuracy of the learned
model. Specifically, tags that are highly representative of visual
concepts (e.g., sunset, ocean) can enable learning of more accu-
rate models. For example-based and knowledge-based approaches,
tag visual-representativeness also serves as guideline on tag rec-
ommendation, particularly when images are available with content
only. In the absence of any context information, tags for camera
brand (e.g., Canon) or opinions (e.g., lonely) may be inappropriate
to be recommended even if the nearest neighbors happen to share
these tags.

1.2 Overview
Increasingly, tags are commonly used as queries to retrieve the

tagged resources such as images in Flickr. Analogous to the setting

in Web search, in this paper, we model each tag t as a query and its
tagged images It as the matching documents. Based on this model,
we take a novel approach to compute tag visual-representativeness
by exploiting query performance prediction techniques in the Web
search arena. The intuition behind this strategy is as follows. Anal-
ogous to query performance prediction, if images in It all share a
similar visual concept v (be it a scene or an object), then It is visu-
ally coherent (see Figure 1 for tag sunset as an example). We can
say that all users have implicitly developed consensus on the anno-
tation of tag t to images presenting the common visual concept v;
hence t is visually representative. If images in It are not visually
similar to each other, but more like a randomly drawn sample from
an image collection, then tag t is unlikely to describe any specific
visual concept, hence not visually representative. An example of
such tag is Asia as depicted in Figure 1.

It is worth mentioning that techniques proposed for query per-
formance prediction cannot be directly adopted to quantify visual-
representativeness of image tags. Tags are from textual space while
images are described in visual space. In query performance pre-
diction (see Section 2.1 for more details), queries literally appear
in documents. Consequently, a relevance score between the query
and each document can be computed by the adopted document re-
trieval model. Such a relevance function can no longer be applied
to tagged image search. Moreover, tags are assigned by different
users probably with different criteria for determining the degree of
relevance of an image to a tag. Another hurdle is the semantic gap
between the high-level visual concepts and the low-level features
extracted from images [15, 23]. That is, the low-level features may
not effectively represent the visual semantics of images. Such a se-
mantic gap does not exist between textual queries and documents,
as they are in the same feature space.

We propose two distance metrics, namely cohesion and sepa-
ration, to quantify the visual-representativeness of a tag by mea-
suring (a) how well the set of tagged images presents similar vi-
sual content among them, and (b) how distinct the common visual
content is with respect to the entire image collection. As we shall
show later, these two metrics are generic and can be plugged into
different distance functions and different image feature represen-
tations for computing tag visual-representativeness. Importantly,
these measures are parameter free with linear or constant computa-
tional complexity.

Our experimental study with the NUS-WIDE dataset [3] contain-
ing images from Flickr, demonstrates that the proposed measures
can effectively identify and rank visually representative tags. In
particular, separation-based measures are more effective in identi-
fying such tags. In summary, the major contributions of this work
are as follows:

• We bridge the two orthogonal areas of social image tagging
and query performance prediction in Web search, to quan-
tify visual-representativeness of image tags. Our effort also
paves way to many existing solutions for query performance
prediction to be further extended to address the problem of
tag visual-representativeness as well as other problems in
tagging.

• In Section 3, we propose to use two distance metrics, namely
cohesion and separation, to measure visual-representativeness
of social tags.

• In Section 4, we compare seven variants of the proposed
metrics with extensive experiments on (partial-) ground truth
data and popular tags in a large image collection. We demon-
strate the effectiveness of our approach to quantify visually



representative tags. Specifically, we propose a coverage mea-
sure to reflect the effectiveness of the visually representative
tags identified by a given method for image annotation.

2. RELATED WORK

2.1 Query Performance Prediction
In the preceding section, we highlighted that our proposed ap-

proach for identifying visually representative tags exploits the tech-
niques in the area of query performance prediction in Web search.
Hence, we first define query performance prediction and then com-
pare our approach with existing work on query performance pre-
diction.

The goal of query performance prediction in Web search is to
predict the effectiveness of a query in retrieving topically coher-
ent documents from a collection. Given a query, if the retrieved
documents are topically similar to each other, then the query is
effective or unambiguous; if the retrieved documents cover vari-
ous different topics, then the query is less effective or ambiguous.
For instance, an unambiguous query "Flickr" submitted to Google1

leads to top-ranked pages on Flickr website, Flickr API services,
Wikipedia entry of Flickr, Flickr Blog as well as Flickr for mobile
devices. All these pages are relevant to the photo-sharing website
and its services. However, an ambiguous query "2008" to Google
leads to top-ranked pages covering the following topics: Wikipedia
entry of 2008 listing the major events in 2008, the popular movies
released in 2008 from IMDb, Year 2008 Calendar of United States,
and website of the Beijing 2008 Olympic Games. Clearly the pages
for query "2008" are not topically similar to each other.

Query performance prediction enables search engines to better
answer poor performing queries through alternative strategies [6,
21, 26]. While our main focus is not the alternative strategies, in
the following, we discuss the major approaches for query perfor-
mance prediction. One of the significant direction in this area is
the computation of query clarity score [4]. For a given query, its
clarity score is the Kullback-Leibler (KL) divergence between the
language model estimated from the top-ranked retrieved documents
by the query and the language model estimated from the entire doc-
ument collection. A query is topical-specific or unambiguous if the
distance is large. That is, the retrieved documents contain unusually
large probabilities of words specific to a topic, such as the words
photo, photography, sharing, online, and community for the query
“Flickr". Observe that clarity score is analogous to the distance
Dist(Q,D) studied in the topic difficulty model proposed in [2].
A topic, denoted by (Q,R|D), is defined by a set of queries Q re-
flecting the information need, and a set of relevant documents R
satisfying Q, where R is drawn from collection D. In [2], five dis-
tance measures were studied and among them, Dist(R,D) was the
most effective distance in predicting query performance, followed
by Dist(Q,D). Both Dist(R,D) and Dist(Q,D) were computed
using Jensen-Shannon divergence between the centroids of sets Q,
R, and D respectively.

In our earlier work [18], we first introduced tag clarity in the
context of tagging behavior study in blogs where a tag language
model is estimated from the blog posts associated with the tag and
the collection language model from all blog posts. As mentioned
in the preceding section, the above techniques cannot be adopted
directly for quantifying tag visual-representativeness as tags are
from textual space while images are described in visual space. Our
first attempt of quantifying tag visual-representativeness using im-
age tag clarity was reported in [17], which however was not well

1The search results are obtained during March 2010 from www.google.com

evaluated. Observe that image tag clarity corresponds to one of
the 7 measures proposed in this paper, i.e., clarity-based separa-
tion with slightly different modelings of the tag clarity (see Sec-
tion 3.2.2). In this work, another 6 measures are proposed to quan-
tify tag visual-representativeness and more importantly all the 7
measures are evaluated and compared through two sets of experi-
ments.

2.2 Social Images and Tags
Recent years have witnessed increasing research efforts to study

images annotated with tags in social media sharing web sites like
Flickr. Tag recommendation, tag ranking, and tag-based classifica-
tion are identified as key research tasks in this context [3]. How-
ever, only few work exploit the relationship between a tag and the
content of its annotated images.

Very recently, Flickr distance was proposed by Wu et al. [25] to
model two tags’ similarity based on their annotated images. For
each tag, a visual language model is constructed from 1000 images
annotated with the tag and the Flickr distance between the two tags
is computed using the Jensen-Shannon Divergence. Our work is
significantly different from this effort in two key aspects. First,
our research objective is to measure the visual-representativeness
of a single tag, not the relationship between tag pairs. Second, we
analyze the impact of tag frequency in its language modeling. In
contrast, a fixed number (i.e., 1000) of images for each tag were
sampled by Wu et al. for estimating its language model.

In [24], a probabilistic framework was proposed to resolve tag
ambiguity in Flickr by suggesting semantic-orthogonal tags from
those tags that co-occurred with the given set of tags. Although
tag ambiguity is highly related to our work, the problem targeted
in [24] is image-specific and the ambiguity is defined for a set of
tags. In their problem definition, an image is assumed to be anno-
tated by a set of tags T and T is ambiguous if there exist another
two tags ta and tb such that adding either one gives rise to very
different distributions over the remaining tags. Other than the sig-
nificant difference on problem definition to our work, the solution
proposed in [24] was purely based on tag co-occurrence without
considering the content of annotated images.

More germane to this work is the recent efforts in measuring tag
relevance to image content using neighbor voting [13, 12]. For
a given image and its annotated tags, the relevance between the
image and each tag is estimated through kernel density estimation
in [13]. In [11], for a given image, it’s k nearest neighbors are ob-
tained by computing visual similarity through low-level features.
Tags that frequently appear among the nearest neighbors (with re-
spect to the tags’ prior distribution among all images) are consid-
ered relevant to the given image. The visual relevance of a tag to an
image is therefore image-specific whereas in our case, the visual-
representativeness of a tag is a global measure and is independent
of any particular images. Consequently, the two approaches are not
directly comparable.

Our work is also related to [15] where the main focus is to search
for high-level concepts (e.g., sunset) with little semantic gaps with
respect to image representation in visual space. In [15], for a given
image, its confidence score is derived based on the coherence de-
gree of its nearest neighbors in both visual and textual spaces, as-
suming that each image is surrounded by textual descriptions. The
high-level concepts are then derived through clustering those im-
ages with high confidence scores. Similar approach was adopted
in [20]. In contrast, our approach of tag visual-representativeness
computation is based on the distances between the tagged images
and the collection in visual space only and not in textual space. It
does not involve computationally costly nearest neighbor search or
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Figure 2: Illustration of cohesion and separation distances,
where the circle in green denotes the set of images It annotated
by tag tv, and the rectangle denotes the image collection I .

clustering. Furthermore, the above approaches need to re-compute
from scratch when the underlying image collection is updated. In
our proposed technique, such expensive re-computation is not re-
quired as only the affected tags need to be recomputed.

3. TAG VISUAL-REPRESENTATIVENESS
In this section, we present our technique for quantifying visual-

representativeness of tags in a social image collection. We begin by
introducing two assumptions that we adopt for computing the tag
visual-representativeness. Table 1 lists the main symbols that we
use throughout the paper. We use upper case letters in calligraphic
fonts for sets (e.g., I ) and lower case letters for a tag or a visual
concept.

Given a user-tagged image collection I , let tv be a tag. With-
out loss of generality, we assume each tag tv may describe a visual
concept v by the semantic meaning of tv. Let It ⊂ I be the set of
images tagged by tv. Our main objective in this paper is to evaluate
the visual-representativeness of tv by using two distance measures
as shown in Figure 2. These two measures are analogous to cohe-
sion and separation measures in clustering evaluation [19].

• Cohesion distance, denoted by CoD(It ,It), is the distance
among images in It . This corresponds to intra-cluster cohe-
sion (or compactness) in clustering evaluation.

• Separation distance, denoted by SeD(It ,I ), is the distance
between images in It and I . This is similar to the inter-cluster
separation (or isolation) measure in clustering evaluation.

In the sequel, we shall justify the reasons for considering these
two measures and how they can be computed.

3.1 Assumptions
With the above notations in mind, we make the following as-

sumptions. We shall empirically justify these assumptions in Sec-
tion 4.

ASSUMPTION 1. (Tagged images)
If a tag tv well describes a visual concept v, then the probability
of observing v among images in It is larger than the probability of
observing v among all images in I .

Let Rv be the set of images containing visual concept v. Assump-
tion 1 states that |It∩Rv|

|It | >
|Rv|
|I | if tag tv well describes a visual con-

cept. This assumption is similar to the assumption made in [12]
where it is assumed that in a user-tagged dataset, the probability of
correct tagging is larger than the probability of incorrect tagging.
That is, it is assumed that users have done a reasonably good job in
image tagging. If a user’s tagging intention is to describe the visual
concept(s) in a given image, then we assume that the user often se-
lects relevant tags. Nevertheless, it is well understood that a user

Table 1: Symbols and semantics
Symbol Semantic
I a collection of user-tagged images
i i ∈ I is an image in the given collection
v a visual concept
tv a tag that might describe a visual concept v
It It ⊂ I , the set of images tagged by tag tv
Rv Rv ⊂ I , the set of images relevant to v

may tag an image from multiple aspects such as time and location
of the picture other than the visual content.

ASSUMPTION 2. (Low-level feature distance)
Distance derived from low-level feature representations of images
reflects image visual similarity. That is, low-level feature distance
among images sharing similar visual content is smaller than the
distance among images not sharing similar visual content.

In content-based image retrieval (CBIR), various low-level features
have been proposed for indexing images as well as measuring vi-
sual similarity between images [3, 5, 14]. These low-level features
include color, texture, shapes, and others. Consequently, based on
the significant research efforts in CBIR, it is reasonable to assume
that the commonly-used low-level features could effectively mea-
sure visual content similarity between images.

3.2 Distance Measures
With the above assumptions in mind, we now quantify visual-

representativeness of tags by revisiting the two distance measures
illustrated in Figure 2. We begin by justifying the reason for choos-
ing these two distance measures for tag visual-representativeness
computation.

For a given visual concept v, let Irand ⊂ I be a randomly drawn
subset from I such that |Irand |= |Rv|. Recall that all images in Rv
share the common visual concept v. Hence, images in Rv are more
visually similar to each other than those images in the randomly
drawn subset Irand . Based on Assumption 2 and distances com-
puted using low-level features of images, CoD(It ,It) ≤
CoD(Irand ,Irand). For the same reason, the set of images shar-
ing the same visual concept is expected to be more distinct from
the entire collection than a randomly sampled subset. That is,
SeD(Rv,I )≥ SeD(Irand ,I ).

In reality, Rv is usually unavailable due to lack of high-quality
annotations by experts. However, based on Assumption 1, It can be
a reasonably good approximation of Rv if the tag tv well describes
the visual concept v. In other words, if a tag tv describes visual con-
cept v well, then CoD(It ,It)≤CoD(Irand ,Irand) and SeD(It ,I )≥
SeD(Irand ,I ) both hold. In contrast, if a tag t does not describe a
specific visual concept, then It becomes an approximation of Irand
with respect to the visual content of images. For example, tags like
2009 and Asia are very unlikely to describe any specific visual con-
tent of images. In this case, CoD(It ,It) ≈ CoD(Irand ,Irand) and
SeD(It ,I ) ≈ SeD(Irand ,I ). We therefore utilize the two distances
to quantify the visual-representativeness of social tags.

3.2.1 Cohesion Distance Computation
We adopt the centroid (or prototype)-based and link-based cohe-

sion measures both commonly used in clustering evaluation [19] to
compute cohesion distance among images.

Centroid-based cohesion. Let Cent(It) be the centroid of It . Let
dist be a distance function for vector representations of images or



centroids. Then the expected distance between i and Cent(It), de-
noted by Φcent(It ,It), can be computed as follows.

Φcent(It ,It) =
1
|It | ∑

i∈It

dist(i,Cent(It)) (1)

In the above equation, depending on the types of low-level fea-
tures, different distance functions may be applied [22]. In our
study, we use cosine distance2 and Euclidian distance for local (i.e.,
bag of visual-words) and global feature representations (i.e., color,
edge, texture) of images, respectively. Note that the time complex-
ity of the centroid-based cohesion distance computation is O(N)
for a given set of N images.

Link-based cohesion. A common link-based cohesion measure is
to derive a value from the pairwise distances among data points in
a given dataset. However, the computational cost is O(N2) for a
given collection of N data points. In our work, we adopt the cohe-
sion measure proposed in [7] with certain modifications. The co-
hesion of a given set of data points is the proportion of “coherent"
pairs among all pairs in the set. The “coherent" pairs are deter-
mined by a binary function δ(i j, ik), shown in Equation 2, where τ
is a predetermined threshold.

δ(i j, ik) =
{

1 if dist(i j, ik)≤ τ
0 otherwise. (2)

A tag may be used to annotate a large number of images, and
pair-wise distance computation is computational costly. Therefore,
a fixed number of pairs (say M) are randomly sampled from all
pairs and the cohesion measure is the proportion of “coherent"
pairs among the M sampled pairs. Let i`j and i`k (k 6= j) be the
`-th (1 ≤ ` ≤ M) sampled pair from It . Then, the link-based co-
hesion distance, denoted by Φlink(It ,It), is given by the following
equation.

Φlink(It ,It) =
1
M ∑

i`j ,i
`
k∈It

δ(i`j, i
`
k) (3)

In our experiments, we set M = 10,000. In order to determine the
threshold τ, a larger number of pairs (20,000 in our experiments)
are randomly sampled from the collection I , and τ is set to τ =
µ− 2σ where µ and σ are the mean and standard deviation of the
sampled pairs, respectively. The computational cost is O(1) for all
tags for a given M.

3.2.2 Separation Distance Computation
We adopt the centroid-based and clarity-based measures to quan-

tify the separation distance between It and I .

Centroid-based separation. The separation distance, denoted by
Ψcent(It ,I ), is the distance between the centroids of It and I re-
spectively, given by the following equation.

Ψcent(It ,I ) = dist(Cent(It),Cent(I )) (4)

Note that the computational cost of the above equation is O(N)
for a given set of N images.

Clarity-based separation. With bag of visual-words representa-
tion, an image can be treated as a document except that visual
words in images are codewords rather than a unit of language.
The clarity-based separation distance between It and I is the KL-
divergence between tag language model P(w|It), and collection
2Cosine distance is derived by 1-cosine similarity.
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Figure 3: Tag language models for sunset and Asia derived from
500D bag of visual-words representation. The language model
for the visual-representative tag sunset is much divergent from
the collection language model. The language model for tag Asia,
however, is similar to the collection language model.

language model p(w|I ) [4], as given by Equation 5. This distance
is also known as the clarity score of tag tv in this paper as it is
defined similar to the query clarity score in [4] with certain modifi-
cations3.

Ψclar(It ,I ) = ∑
w

P(w|It) log2
P(w|It)
P(w|I )

(5)

In the above equation, P(w|I ) is estimated by the relative visual-
word frequency in the collection. Assume that every image in It has
equal chance of being observed4. That is, P(i|It) = 1/|It |. Then,
P(w|It) is estimated using Equation 6 where Pml(w|i) is the maxi-
mum likelihood of observing a visual-word w in image i.

Pml(w|It) =
1
|It | ∑

i∈It

Pml(w|i) (6)

The estimated tag language model is further smoothed using
Jelinek-Mercer smoothing in Equation 7 with λ = 0.99 in our ex-
periments5. Figure 3 plots the tag language models estimated for
tags sunset and Asia using the bag of visual-word features provided
in the NUS-WIDE dataset6 (see Section 4.1 for more details of the
dataset). Clearly, the language model of tag sunset is much more
divergent from the collection language model than the language
model of tag Asia.

P(w|It) = λPml(w|It)+(1−λ)P(w|I ) (7)

The time complexity of clarity-based separation is O(N) for a
tag used to annotate N images.

3In [4], query clarity score is computed through top-500 ranked documents returned
by a retrieval model. In our setting, the relevance between an image to a tag is unknown
and a boolean retrieval model is adopted (see Equation 6).
4In [17], the distance between an image to the centroid of It was considered in esti-
mating P(w|It ). However, in our experiments, we observed that very similar results
were obtained using the simple estimation P(i|It ) = 1/|It |. We hence adopt the latter
for more efficient computation.
5Observe that a relatively large λ is set in our experiments as we are more interested
in the difference (or separation) between the two probability distributions.
6http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm



3.3 Distance Normalization
In social tagging environment, it is well-known that some tags

are more frequently used than others. Let tag frequency refers to
the number of images annotated by a tag t, i.e., |It |. Figure 4 illus-
trates the tag frequency distribution in the NUS-WIDE dataset con-
taining 269,648 images from Flickr [3]. Observe that tag frequency
follows a power law distribution. With the above characteristics in
mind, is it necessary to normalize the two distance measures in or-
der to incorporate the effect of tag frequency distribution? In this
section, we address this issue.

Cohesion distance is not affected by tag frequency. In general,
more images tagged by tv means a more accurate estimation of
Φcent . For link-based cohesion, the same M number of pairs are
sampled and the same threshold τ is applied for all tags. Hence,
Φlink is independent of tag frequencies with the condition that for
every tag, M is smaller than the number of distinct pairs in It .

Now consider the separation distance. Both centroid- and clarity-
based measures are affected by tag frequency. Recall that a tag tv
is considered visually representative if SeD(It ,I ) ≥ SeD(Irand ,I )
where |Irand | = |It | and Irand is randomly sampled from I . For
random sampling, naturally, the larger the size of Irand , the smaller
is the distance SeD(Irand ,I ). Consider the extreme case, when the
size of Irand approaches the size of I , SeD(Irand ,I ) approaches to
0. Tags with different frequencies are therefore compared against
different SeD(Irand ,I )’s. In the sequel, we use clarity-based sepa-
ration to illustrate the impact of tag frequency.

Let td be a dummy tag assigned to every image in Irand . We
can then compute the clarity score of td using Equation 5. Fig-
ure 5 shows the average clarity scores and the standard deviations
derived from 500 dummy tags with respect to each tag frequency
on the x-axis. It demonstrates that the average clarity scores and
standard deviations of dummy tags decrease as expected with the
increase of tag frequency. Similar trend can also be observed for the
centroid-based separation measure, which is however not shown for
the interest of page limit.

Let Id be the set of images tagged by a dummy tag td . Let µ(td)
and σ(td) be the expected tag clarity score and standard deviation
derived from dummy tags having same tag frequency of a given
tag tv (i.e., |It | = |Id |). We applied zero-mean normalization to
derive Ψnorm(It ,I ) in Equation 8. The normalization is applied to
distances obtained from Equations 4 and 5 (denoted by Ψ below)
with µ(td) and σ(td) are derived using the corresponding distance
definitions.

Ψnorm(It ,I ) =
Ψ−µ(td)

σ(td)
(8)

To minimize the computation cost, instead of computing µ(td)
and σ(td) for every tag frequency, we binned the frequencies with
varying bin sizes. The first bin covers tag frequency from b0 =100
to b1 =110. Then bn+1 = (1+10%)×bn (n≥ 0) until the last bin
covers the tag with highest frequency in our dataset. For each bin
starting with bn, 500 dummy tags with tag frequencies randomly
sampled within [bn,bn+1) are used to derive the expected distance
and standard deviation. Based on this framework, each separation
distance Ψ(It ,I ) of a tag tv is normalized using dummy tags gen-
erated with frequencies within 10% of variation from its frequency
|It |.

4. EXPERIMENTS

4.1 Dataset
We used the NUS-WIDE dataset containing 269,648 images from

Flickr [3]. In total six types of low-level features are provided for
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Figure 4: Tag frequency in the NUS-WIDE dataset follows a
power-law distribution.
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Figure 5: Average clarity scores and the standard deviations
(stddev) derived from 500 dummy tags for each frequency on
the x-axis. Both clarity scores and stddev values decrease with
the increase of tag frequency.

images in the dataset including global features such as color, edge,
texture, and local feature of bag of visual-words. In particular, for
our experiments we evaluated the following global and local fea-
tures separately.

• Global features. We used three types of global features,
including 64-D color histogram, 73-D edge direction his-
togram, and 128-D wavelet texture features. More details
of these features are found in [3]. The three types of features
for each image were aggregated into a 265-D vector after
unit-length normalization on each type of features. We used
Euclidian distance to compute distances between images or
centroids.

• Local features. We used the 500-D bag of visual-words.
Images are processed very much like documents in this set-
ting and we adopted t f × id f word weighting scheme and
cosine similarity for distance computation. For clarity-based
measures, the language models were estimated on the 500
visual-words.

Observe that in our dataset more than 424K unique tags each
appears at least once (see Figure 4). On average, each image is
annotated with 18 tags. In our experiments, we mainly focus on the
frequently-used tags such that each tag has been used to tag at least
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Figure 6: For all the 81 visual concepts, the probabilities of ob-
serving the visual concepts among its tagged images PI are sig-
nificantly larger than the probabilities of observing the visual
concepts among all images in the dataset PR.

Table 2: The seven distance measures (methods).
Method Distance Dist Feature Equation
CCentL Cohesion Centroid local Eq. 1
CCentG Cohesion Centroid global Eq. 1
CLinkL Cohesion Link local Eq. 3
CLinkG Cohesion Link global Eq. 3
SCentL Separation Centroid local Eq. 4 and 8
SCentG Separation Centroid global Eq. 4 and 8
SClarL Separation Clarity local Eq. 5 and 8

0.1% (or 270) images in the dataset. There are 2568 such frequent
tags, which are also known as popular tags in this paper.

Besides the low-level features and tags, images in NUS-WIDE
dataset are manually assigned to a pre-defined list of 81 categories
including 31 categories for object and 33 for scene. Interestingly,
all the category labels also appear as tags. Note that the manual
annotations provide us with the ground-truth of images relevant to
each of the 81 visual concepts. That is, Rv is provided by the dataset
for each of the 81 visual concepts.

4.2 Verification of Assumptions
Recall from Section 3.1, our proposed technique is based on two

assumptions. We now empirically verify the first assumption here.
Note that it is not necessary to verify the second assumption as it is
based on a large body of literature in CBIR [5, 14].

The first assumption states that if a tag well describes a visual
concept, then the probability of observing the visual concept among
its tagged images is larger than the probability of observing it among
all images. Let PI = |It∩Rv|

|It | and PR = |Rv|
|I | denote the two probabil-

ities, respectively. As the images in the dataset were manually as-
signed to 81 categories and the 81 category labels also appeared as
tags, we have both It (tagged by users) and Rv (assigned by experts)
for these 81 tags.

Figure 6 plots the curves for PI and PR (all 81 tags). The figure
clearly states that PI À PR for all tags. On average, PI = 0.55 and
PR = 0.02. The three tags with the largest PI’s are all objects: 0.94
for animal, 0.93 for plants, and 0.92 for toy. The three tags with
smallest PI’s are map, earthquake, and book. Nevertheless, all the
latter three tags are relatively less popular in the dataset with tag
frequencies of 372, 566, and 766 respectively among more than
269K images. Hence, our first assumption holds in this dataset.
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Figure 7: Frequencies of positive and negative tags. Note that
the positive tags happen to be much more frequently-used than
negative tags, leading to a skewed frequency distribution.

4.3 Methods and Evaluation Metric
In this section, we evaluate the effectiveness of cohesion and sep-

aration distances of identifying visually representative tags. De-
pending on the type of distances (see Sections 3.2 and 3.3) and
the type of low-level features, we investigate seven distance mea-
sures (or methods) as listed in Table 2. For a given dataset, each of
the seven methods will return a list of tags ranked according to the
method-specific distance definition and feature space. For presenta-
tion clarity, we standardize all ranking lists such that the top-ranked
tags in each list are meant to be more visually representative than
bottom-ranked tags.

Average Precision and Precision@N. Given two ranking lists,
the evaluation of the effectiveness of the two measures is non-
trivial. First of all, it is hard to determine a ground truth rank-
ing. For example, among tags that are visually representative, it is
hard to determine their relative order purely based on their visual-
representativeness, e.g., sunset, zebra, and architecture. Therefore,
it is more reasonable to evaluate a partial order such that the vi-
sually representative tags (or positive tags) are ranked higher than
tags that are not visually representative (or negative tags). For this
purpose, we adopt two measures, namely, Average Precision (de-
noted by AvP) and Precision@N (denoted by P@N). P@N is the
precision obtained among the top-N ranked tags. We report multi-
ple P@N’s for different N’s depending on the number of tags in the
ranking. Average precision is the average of precisions obtained at
the point of each of the positive tags in the ranking.

Both AvP and P@N reflect how effectively a method rank visu-
ally representative tags higher than those that are not visually rep-
resentative. The two measures, however, may not give a complete
picture of each method.

Coverage@N. Consider a tag recommendation scenario where
only the visual content of images are available. Hence only visu-
ally representative tags may be recommended. The pool of tags to
be recommended are taken from the ranking by each of the seven
methods above. The method that ranks frequently-used visually
representative tags higher is more favorable, as these tags can ef-
fectively annotate more images. At the same time, a method that
mistakenly ranks a frequently-used but not visually representative
tag higher would potentially affect the performance of tag recom-
mendation adversely. For this reason, we propose a metric called
Coverage@N (denoted by C@N). Informally, C@N is a variant
of the widely adopted Normalized Discounted Cumulative Gain
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Figure 8: Performance on the 81 category labels as tags ((a) and (b)) and the popular tags ((c) and (d)). From the results, both
CCentG and SCentL achieve very good average precision and precision@N. However, all four cohesion-based methods perform
poorly on coverage measure as their top-ranked tags are relatively less popular. Overall SCentL is the most superior method w.r.t
both precision and coverage measures.

(NDCG) measure in Information Retrieval [9]. Given a tag ranking
[t1, t2, . . . , tm], C@N (1≤N ≤m) is given by the following equation
where r is the ranking position, ρ(tr) is the popularity of tag tr, and
υ(tr) is a weighting function.

C@N =
1
Z

N

∑
r=1

ρ(tr)×υ(tr)
log(r +1)

(9)

We set ρ(tr) to be its tag frequency; υ(tr) = 1 for a visually repre-
sentative tag and υ(tr) =−1 for a tag that is not visually represen-
tative. Note that similar to NDCG, Z is a normalization factor such
that a perfect ranking7 at N will give C@N of 1 (see [9] for more
details on Z).

4.4 Evaluation with Partial Ground-truth
Our first set of experiments is to evaluate the effectiveness of the

seven methods of identifying the visually representative tags, with
partial ground-truth. We first identify the positive and negative tags
following our discussion in Section 4.3.

Positive tags. Recall that images in the dataset were manually
assigned to 81 categories. Hence, for these 81 tags (also as cate-
gory labels), Rv is available for computing cohesion and separation
distances. These 81 tags are positive tags as images of the same cat-

7More frequently used positive tags shall be ranked higher than less frequently used
positive tags.

Table 3: Tag category labels and example tags in each category.
Label #tags Examples
o object 442 zebra, architecture, girl
s scene 281 sky, nature, sunset
a activity 45 travel, dancing, wedding
c color 28 red, blue, blackandwhite
u picture type 18 wideangle, macro, hdr
l location 273 asia, china, europe
r self-reference 217 deleteme, 10faves, selfportrait
n opinion 157 beautiful, colorful, supershot
m camera 89 canon, nikon, 400d
t time 26 2008, october, spring

egory share the same visual concept described by the corresponding
category label.

Negative tags. Tags related to time and location like county
names often have little relevance to visual concepts. Among the
2568 popular tags, we selected 17 time tags (e.g., year 2004 - 2008,
month January - December) and 61 location tags for continent and
country names (e.g., Europe, Japan). Note that, we do not use tags
for very specific locations (e.g., a small town or a park) as negative
tags. The reason is that many images tagged with a very specific
location may be about the landmarks of that location and hence the
tags become visually representative of those landmarks.



Table 4: The most (t1-15) and least (b1-15) visually representative tags identified by the seven methods. Tags that had been used as
visual concepts in eariler work are highlighted in bold and underlined.

Cohesion distance Separation distance
Rank CCentL CCentG CLinkL CLinkG SCentL SCentG SClarL
t1 o.bigcats o.motorsport s.thunderstorm o.whitetail s.sunset s.sky s.sunset
t2 o.wolves o.pandas s.lightning o.pandas s.sky c.blue s.fog
t3 o.bigcat s.seabaths o.leopard s.seabaths s.clouds s.water s.sky
t4 s.nationalzoo s.oceanbaths o.whitetail s.oceanbaths s.landscape u.hdr s.silhouette
t5 o.whitetail o.whitetail s.thunder o.motorsport s.night c.green s.sunrise
t6 o.pandas o.bigcat o.buck o.wolves s.sea o.architecture u.charts
t7 o.tiger c.bwdreams o.bigcats o.en.species s.sunrise s.sea o.sun
t8 s.thunderstorm o.cruiseship o.tiger n.bwdreams s.fog s.nature s.mist
t9 o.lions o.wolves o.zebra o.cruiseship u.hdr c.red s.sea
t10 o.buck s.lichen s.storms o.bigcat s.silhouette s.night s.clouds
t11 o.panda o.buck s.foggy s.lichen s.beach s.clouds s.lightning
t12 o.en.species r.theface s.fog o.buck o.sun s.landscape s.beach
t13 s.lightning a.carracing o.pinhole c.blackwhite c.blue n.anawesomeshot s.landscape
t14 o.cub u.sketches o.bigcat o.panda s.lake n.aplusphoto s.dunes
t15 o.lion n.masterphotos o.wolves c.blackandwhite m.longexposure s.sunset c.blue
b1 s.ceiling r.blog o.clothes l.seattle r.100views n.flickrexplore o.people
b2 o.curves l.mexico s.conf.room t.2007 t.sunday t.sunday c.brown
b3 u.charts n.cool o.bag o.toys t.february n.large l.asia
b4 o.circle m.photoshop o.computer o.sign r.pics r.pics l.japan
b5 n.symmetry c.colour s.gym o.baseball n.huge t.december l.france
b6 o.officebuilding r.photos a.work o.cellphones n.flickrexplore r.saveme3 l.washington
b7 n.creative l.wisconsin r.auto s.museum n.passion r.saveme6 t.2008
b8 o.curve l.texas s.kitchen l.taiwan n.pictureperfect n.romance l.china
b9 o.card l.maryland o.tattoo o.cables r.is r.saveme2 r.photograph
b10 o.architektur l.seattle r.individual n.cool r.picnik r.blogged t.july
b11 o.skyscraper l.florida s.diningroom o.pavilions r.photos r.childhood r.picture
b12 l.munich n.fabulous o.boots r.thecontinuum r.ruby.p s.down l.virginia
b13 o.glass r.showpixels o.cutout t.2006 n.ilovemypics r.deleteme9 l.india
b14 n.artlegacy r.the r.2 a.jump t.august r.saveme4 l.ohio
b15 o.cables r.geotagged o.computers r.3 r.3 r.save5 t.august
abbreviations: showpixels (showmeyourqualitypixels), en.species (endangeredspecies), conf.(conference),

ruby.p (rubyphotographer)

TagFreq as baseline. Recall from Section 2, the most relevant
work to our proposed approach that we can compare empirically
is [15]. Unfortunately, despite our best efforts (including contact-
ing the authors), due to legal restrictions we could not get the source
code of [15]. Hence, we compare our proposed approach with
TagFreq which has been adopted as the baseline in [10] for im-
age annotation. TagFreq ranks tags simply by their frequencies in
descending order. In this experiments, since positive tags happen
to be much more frequently-used than negative tags (see Figure 7),
a simple rank by frequency has the potential to achieve good pre-
cision and coverage as the top-ranked tags by frequency are more
likely to be positive tags.

Results. Figures 8(a) and 8(b) depict the results of our study.
Both CCentG and SCentL achieve surprisingly good AvP (higher
than 0.95) and TagFreq shows the worst results with AvP of 0.7. For
P@20–P@80, all seven methods follow similar trend, in consis-
tent with AvP. Figure 8(b) shows the coverage measure of all seven
methods. As illustrated, the three separation-based methods favor
frequently-used tags. Although the four cohesion-based methods
achieve fairly good precision, they perform poorly on coverage
because their top-ranked tags are relatively less popular. Lastly,
TagFreq shows good coverage due to skewed frequency distribu-
tion among positive and negative tags (see Figure 7).

4.5 Evaluation on Popular Tags
Popular tags. Among the 2568 popular tags identified in Sec-

tion 4.1, we manually labeled 1576 tags into 10 categories listed
in Table 3 where each labeled tag has a relatively clear semantic
meaning. Among the 10 categories, object, scene, location, self-
reference, and emotion have more number of tags which is con-
sistent with that reported in [1]. In general, tags fall into the top
5 categories in Table 3 are believed to be more descriptive of the
image contents than the tags in the bottom 5 categories. In this set
of experiments, we consider the 814 tags in the top 5 categories as
positive tags and the remaining 762 tags in the bottom 5 categories
as negative tags. To partially verify our labeling, we collected the
category labels/tags used as visual concepts in earlier work [3, 8,
12, 14] for image classification, annotation, and other tasks. We
found that among the 814 positive tags, 118 distinct tags had been
used in earlier work as visual concepts and none of the visual con-
cepts in earlier work match the 762 negative tags.

Precision and coverage. Figures 8(c) and 8(d) plot the pre-
cision and coverage of all the methods. As illustrated, CCentG
and SCentL demonstrate the best and second best precisions, re-
spectively. Such results are consistent with the results of the first
set of experiments. Also, as illustrated in Figure 8(d), the three
separation-based methods perform significantly better than the four



cohesion-based methods on coverage. Note that the TagFreq method
lose out significantly on both precision and coverage due to more
balanced frequency distribution between positive and negative tags
in this experiment. Overall, SCentL is the most superior method
w.r.t both precision and coverage.

Top and bottom ranked tags. Table 4 lists the top (t1-t15)
and bottom (b1-b15) ranked tags based on the seven methods. All
tags are prefixed with their label categories referencing Table 3.
Among the top-15 tags, it is interesting to observe that separation-
based methods favor tags of type scene, and cohesion-based meth-
ods favor object tags. More importantly, for cohesion-based meth-
ods, many top ranked object tags refer to very specific visual con-
cepts, such as wolves, bigcats, and panda. These tags, however, are
not very frequently used compared to others, which explains the
lower coverage by the four methods. In contrasts, separation-based
methods rank more scene tags at the top, and many of these tags
are extremely popular (e.g., sky, sunset, and sea). These popular
tags contribute to the high coverage of the three methods. Com-
paring global and local features, SCentG ranks more color tags
(e.g., blue, green, and red) on the top than SCentL and SClarL.
Among the bottom-ranked 15 tags, more tags under location, emo-
tion and self-reference categories are identified by separation-based
methods whereas more object tags are identified by cohesion-based
methods.

Recall that among the 814 positive tags, 118 tags had been used
as visual concepts in earlier work. Tags matching these 118 tags are
highlighted in bold in Table 4. Both SCentL and SCentG match 9
among the top 15 tags, followed by SClarL with 7 hits. As the 118
tags were all manually and carefully selected in earlier work, our
experimental results support our claim that the proposed technique
could serve as guideline on the selection of visual concepts.

In summary, separation-based methods are more effective in iden-
tifying frequently-used visually representative tags. In particular,
both sets of experiments demonstrate that SCentL is the most effec-
tive method.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel technique to quantify tag visual-

representativeness for social images. Tag visual-representativeness
reflects the consensus implicitly developed among users on im-
age annotation which may lead to better understanding of tag us-
age. Specifically, we bridge the two orthogonal areas of social
image tagging and query performance prediction in Web search,
to propose two simple and yet effective metrics, namely cohesion
and separation, to quantify tag visual-representativeness. Plugged
in with different distance definitions for the chosen image low-
level feature representations, our empirical study demonstrated that
separation-based metrics were the most effective in identifying frequently-
used tags that are representative of visual concepts. More impor-
tantly, all proposed measures are efficient to compute.

There are at least two interesting directions worth further explo-
ration. First, it is shown in our experiments, the cohesion and sepa-
ration measures favor different types of tags (e.g., scene and object)
with different popularity levels. This calls for an aggregated mea-
sure to take advantage of various cohesion and separation measures
for more accurate quantification of the visual-representativeness of
tags. Combining some of the proposed measures to achieve a more
accurate visual-representative measure naturally becomes part of
future work. Second, the proposed measures compute a visual-
representativeness score for a tag using all its annotated images.
Hence these measures fail to distinguish tags with more than one
visual concepts. For example, jaguar could be representative for
two distinct visual concepts, namely car and animal. As part of

future work, we wish to investigate techniques to identify tags rep-
resenting multiple visual concepts. Other than these two directions,
the evaluation of visual-representativeness is also an interesting re-
search topic.
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