
1

Structure-Preserving Subgraph Query Services
Zhe Fan, Byron Choi, Qian Chen, Jianliang Xu, Haibo Hu, Sourav S Bhowmick

Abstract —A fundamental problem of graph databases is subgraph isomorphism query (a.k.a subgraph query): given a query graph
Q and a graph database, it retrieves the graphs Gs from the database that contain Q. Due to the cost of managing massive data
coupled with the computational hardness of subgraph isomorphism testing, outsourcing the computations to a third-party provider is
an appealing alternative. However, confidentiality has been a critical attribute of Quality of Service (QoS) in query services. To the best
of our knowledge, subgraph query services with tunable preservation of privacy of structural information have never been addressed.
In this paper, we present the first work on structure-preserving subIso (SPsubIso). A crucial step of our work is to transform subIso —
the seminal subgraph isomorphism algorithm (the Ullmann’s algorithm) — into a series of matrix operations. We propose a novel cyclic
group based encryption (CGBE) method for private matrix operations. We propose a protocol that involves the query client and static
indexes to optimize SPsubIso. We prove that the structural information of both Q and G are preserved under CGBE and analyze the
privacy preservation in the presence of the optimizations. Our extensive experiments on both real and synthetic datasets verify that
SPsubIso is efficient and the optimizations are effective.

✦

1 INTRODUCTION

GRaphs are powerful tools for a wide range of real appli-
cations, from biological and chemical databases, social

networks, citation networks to information networks. Large
graph data repositories have been consistently found in recent
applications. For example, PubChem [27] is a real database of
chemical molecules, which can be freely accessed via its web
interface, for its clients to query chemical compounds. Another
example, namely Daylight [8], delivers chem-informatics tech-
nologies to life science companies and recently, it has provided
web services to allow clients to access its technologies via
a network. Further applications of graphs can be found in
literature such as [2], [5], [33].

Subgraph query (via subgraph isomorphism), which is a
fundamental and powerful query in various real graph ap-
plications, has actively been investigated for performance
enhancements [5], [7], [14], [16], [29], [31], [33], [36], [39]
recently. However, due to the high complexity of subgraph
query, hosting efficient subgraph query services has been a
technically challenging task, because theownersof graph data
may not always possess the IT expertise to offer such services
and hence mayoutsourceto query service providers(SP).
SPs are often equipped with high performance computing
utilities (e.g., a cloud) that offer better scalability, elasticity and
IT management [13]. Unfortunately, asSPs may not always
be trusted, security (such as the confidentiality of messages
exchanged) has been recognized as one of the critical attributes
of Quality of Services(QoS) [25]. This directly influences the
willingness of both data owners and query clients to useSP ’s
services. In the past decade, there is a bloom on the research

• Zhe Fan, Byron Choi, Qian Chen, Jianliang Xu and Haibo Hu are with the
Department of Computer Science, Hong Kong Baptist University, China.
E-mail: zfan, bchoi, qchen, xujl, haibo@comp.hkbu.edu.hk

• Sourav.S. Bhowmick is with School of Computer Engineering,Nanyang
Technological University, Singapore.
E-mail: assourav@ntu.edu.sg

Data owner Service provider

Client

Secure key

Gk = (V,MḠk
,Σ, L, SIk)

Qk = (V,MQk
,Σ, L, SIk)

Rk

Attacker

Fig. 1. Overview of the system model.

on query processing with privacy preservation1, for example,
in the context of relational databases [18], spatial databases
[19] and graph databases [2]. However, up to date, private
subgraph query has not yet been studied.

Motivating example: Consider a pharmaceutical company
with revenue that depends mostly on the invention of health
care products. The company may have discovered new com-
pounds for a new product. To save laboratory work, it may
query the compounds from proprietary biological pathway
networks to check whether it is possible for the ingredient
compounds to form other compounds via certain chemical
reactions (a structural pattern from the network). However, on
the one hand, the company is reluctant to expose the queries
(the ingredients) to theSP , as it may apply for patents for
the synthesis. On the other hand, the owner of the pathway
networks may not only lack the expertise to host query services
but may also be reluctant to release the networks to the public.
The owner is willing to release it to paid users only. Hence, it
is crucial to protectboth the queries and the network from the
SP. Such privacy concerns also arise from social networks
and biological networks, among many other applications.

In this paper, we investigate that the query client may prefer
not to expose the structure of query graphs to theSP , and
meanwhile, the data owner may not want theSP to be able
to infer the structure of their graph data. The fundamental
problem being studied is toevaluate subgraph query at the

1. In addition to privacy protection via legal means, this stream of research
has aimed to offer technological solutions for such protection.

2

SP with a preservation of the structures of both the query
graphs and graph data in the paradigm of the query services.
This paper, in particular, aims to protect the adjacency matrices
of the data graph and queries from theSP. To our knowledge,
such a problem has never been addressed before.

In our recent work [10], we have addressed the authenticity
of the answers of subgraph query, but not their confidentiality.
A host of related work is also on privacy-preserving graph
query [1], [2], [11], [17], [20], [22], [26], [34], [35]. However,
none of these studies can support subgraph query with the
structure preservation of the query and graph data. Another
category of related research is on the study of privacy-
preserving graph publication [3], [4], [24], [37], [38]. Asthe
published data are modified in a non-trivial manner (e.g.,
by sanitization), it is not clear how subgraph query can be
supported.

The intrinsic difficulty of this research is that theSP cannot
optimize query processing by directly using the structuresof
the graph, since such information cannot be exposed. However,
most of the existing subgraph isomorphism algorithms (e.g.,
VF2 [7], QuickSI [29] and Turboiso [14]) for the query
services musttraverse the graph, which by definition leaks
structural information. A näıve method is to transfer the entire
database to the client for query processing. However, it is
inefficient when the database is large.

Our techniques for astructure-preservingsubIso (denoted
asSPsubIso) are derived from the Ullmann’s algorithm [30],
a seminal algorithm for subgraph isomorphism. We revise the
Ullmann’s algorithm intothree stepsthat form the foundation
of our techniques. (1)Enum enumerates allpossible subgraph
isomorphism mappingsMis from query graphQ to data graph
G; (2) Match verifies if the mappingMi is valid or not;
and (3)Refine reduces the search space ofMis by degree
and neighborhood constraints. The benefits of adopting the
Ullmann’s algorithm are twofold: (1) the query evaluation
betweenQ and G is mostly a series of matrix operations
between their adjacency matricesMQ andMG. It does not
require traversals on structures; and (2) its query evaluation
requires simple structures. This makes the privacy analysis
simpler.

Specifically, to facilitate structure-preserving computation-
s, we first transformsubIso into a series of mathematical
computations, denoted asTsubIso. TsubIso comprises three
steps, corresponding tosubIso: (1) TEnum enumerates all
Mis; (2) TMatch verifies the validity ofMi by additions
and multiplicationsusing MQ and MḠ, whereMḠ is the
complement ofMG; and (3)TRefine reduces the search space
of Mis by inner products on our proposedstatic indexesSIQ
and SIG of Q andG, whereSIQ (SIG) is an ensemble ofh-
hop informationof each vertex ofQ (SIG) represented by a
bit vector.

The major benefit of these three steps ofTsubIso is that
only mathematical operations are involved, which allows an
adoption of private computations in encrypted domains. Based
on TsubIso, we present our novelstructure-preservingsubIso
(SPsubIso). In particular, we first propose a newprivate-
key encryption scheme, namelycyclic group based encryption
scheme(CGBE), to encrypt MQ and MḠ as MQk and

Datat Owner

G = (V,MG,Σ, L)

Transformation

Ḡ = (V,MḠ,Σ, L, SIG)

Ḡk = (V,MḠk
,Σ, L, SIGk

)

Encryption

Service Provider

Ḡk

Qk

SPRefine :

Mi

Client

Q

Qk = (V,MQk
,Σ, L, SIQk

)

Encryption MiMḠk
M

T
i

∑

∀j,k(MQk
(j, k)× C̄i(j, k))

SPEnum :

SPMatch :

.×Rk = ×

Secret Key

∀vj , vk, SIQk
[vj] · SIGk

[vk]M =

[]

1

1

· · ·

· · ·

[]

0

1

· · ·

· · ·

= M

· · ·

· · ·

Prune

· · · · · ·

· · ·

Ḡk

Rk

Encrypted
graph

Encrypted

results

(prune by enc. static index)

(search for mappings Mi)

(verify the validity of Mi)

1©

2©

3©

(*)

a©
b©

c©

Qk

Encrypted
query

Fig. 2. Overview of our techniques.

MḠk. Then, we proposeSPMatch involving the additions
and multiplications underCGBE to check the validity of
each mappingMi, with negligible false positives. Further, the
computation results underCGBE can beaggregatedto reduce
communication overheads between the client and theSP. We
prove thatCGBE is perfectly secure underchosen plaintext
attackand theSP cannot learn any structures fromSPMatch.

Next, we proposeSPEnum which optimizes the mapping
enumeration by introducing aprotocolthat involves the client’s
participation, who informs theSP useless enumerations. In
addition, to optimizeSPsubIso, we developSPRefine which
exploits private inner products on the static indexes to derive
a refinement that reduces the number of possible mappings.
The indexes of the graphs are computed and encrypted offline,
whereas those of the queries are computed once by the
clients online. We analyze the effects of these optimizations
on the probabilities that theSP may correctly determine
graph structures. Therefore, the clients may tune the trade-off
between performances and privacy requirements.

To summarize, the contributions of this paper are as follows:

• We transform the Ullmann’s algorithmsubIso asTsubIso.
It only involves a few mathematical computations, such
that its private version can be proposed and analyzed;

• We propose astructure-preservingsubIso (SPsubIso)
based onTsubIso, consisting ofSPMatch, SPEnum and
SPRefine. Specifically, we proposeCGBE for SPMatch,
which supports efficient encryption and decryption,par-
tial additions and multiplications, and aggregation of
computation results. We propose a protocol forSPEnum

that involves the client to eliminate useless mappings. We
proposeSPRefine that exploits private inner products of
static indexes to further optimization;

• We analyze the privacies ofSPMatch, SPEnum and
SPRefine; and

• We conduct detailed experiments to verify thatSPsubIso

is efficient and our optimizations are effective.

The remaining of this paper is organized as follows. We
first give the problem definition in Sec. 2. We then study the
preliminary of subgraph isomorphismsubIso in Sec. 3. Sec. 4
presents the transformed algorithmTsubIso. We propose the
SPsubIso in Sec. 5. We give the privacy analysis in Sec. 6.
We present the experimental results in Sec. 7. Sec. 8 discusses
related work, and we finally conclude this paper in Sec. 9.

3

2 PROBLEM FORMULATION

This section presents a formulation of the problem studied in
this paper. More specifically, we present the system model,
privacy target, attack model, and problem statement.
System model.We follow the system model that has been
well received in the literature of database outsourcing (shown
in Fig. 1), and known to be suitable for many applications. It
consists of three parties:

(1) Data owner: The owner owns and encrypts the graph
dataG. He/she then outsources the encrypted graph to
the service provider and delivers the secret keys to clients
for encryption of the query graphs and decryption of the
encrypted result;

(2) Service provider(SP): The SP may be equipped with
powerful computing utilities such as a cloud. TheSP
evaluates a client’s query over the encrypted data, on
behalf of the data owner, and returns the encrypted result
to the client; and

(3) Client: A client encrypts the query graphQ using the
secret keys, submits it to theSP , and decrypts the
returned encrypted result to obtain the final answer.

Attack model. We assume the dominating semi-honest ad-
versary model [1], [2], [19], [21] from literature, where the
attackers arehonest-but-curiousand theSP may also be
the attacker. For presentation simplicity, we oftenterm the
attackers as theSP . We assume that the attackers are the
eavesdroppersand adopt thechosen plaintext attack[21]. We
assume that theSP and clients are not allowed to collude.
Privacy target. To facilitate a technical discussion, we assume
that the privacy target is to protect thestructuresof a query
graphQ and a graph dataG from the SP under the attack
model defined above. Thestructural informationof Q and
G considered is the adjacency matrices ofQ andG, respec-
tively. More specifically, the probability that theSP correctly
determines the values of the adjacency matrix of the graph is
guaranteed to be lower than a threshold with reference to that
of random guess.
The problem statementof this paper can be stated as follows:
Given the above system and attack model, we seek an effi-
cient approach to facilitate the subgraph isomorphism query
services with preserving the above defined privacy target.

3 PRELIMINARIES

In this section, we first discuss the background for the sub-
graph query and revise the classical Ullmann’s algorithm.

3.1 Subgraph Query

This paper assumes a graph database is a large collection
of graphs of modest sizes. We considerundirected labeled
connected graphs. A graph is denoted asG = (V,E,Σ, L),
whereV (G), E(G), Σ(G) andL are the set of vertices, edges,
vertex labels and the function that maps a vertex to its label,
respectively. We useDeg(vi, G) to denote the degree of the
vertexvi in graphG. In this paper, we focus on the graph with
only vertex labels. Our proposed techniques can be extendedto
support the graph with edge labels with minor modifications.

Definition 3.1: Given two graphsG = (V,E,Σ, L) andG′ =
(V ′, E′,Σ′, L′), a subgraph isomorphism mappingfrom G to
G′ is an injective functionf : V (G) → V (G′) such that

• ∀u ∈ V (G), f(u) ∈ V (G′), L(u) = L′(f(u)); and
• ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′).
We say a graphG is a subgraph of another graphG′ if and

only if there exists a subgraph isomorphism mapping (in short
mapping) fromG to G′, denoted asG ⊆ G′ or subIso(G, G′)
= true. It is known that deciding whetherG is the subgraph
of G′ is NP-hard.Subgraph isomorphism queryor simply
subgraph querycan be described as follows.

Definition 3.2: Given a query graphQ and a graph database,
thesubgraph queryis to retrieve the graphs from the database
whereQ is a subgraph of the graphs.

3.2 Revised Ullmann’s Algorithm
Subgraph query has been a classical query and many algo-
rithms, e.g., [7], [14], [29], [30], have been proposed in the
literature. As motivated in Sec. 1, the Ullmann’s algorithm
[30] is simple for privacy preservation. In this subsection, we
revise the Ullmann’s algorithm into three interleaving steps,
namely enumeration, matching and refinement. These form a
foundation of our discussions, as we propose our structure
preservation techniques for them.

Prior to the algorithmic details, we present some notations
used in this paper. We usesubIso to refer to as the Ullmann’s
algorithm. We denote a query asQ = (V,MQ,Σ, L) and
graph asG = (V,MG,Σ, L), m = |V (Q)| andn = |V (G)|,
MQ and MG are the adjacency matrices ofQ and G,
respectively.MQ(j, k) is abinary value, whereMQ(j, k) = 1
if (vj , vk) ∈ E(Q), and otherwise 0. The values of the entries
of MG are defined, similarly. Both adjacency matricesMQ

andMG carry the most fundamentalstructural information,
i.e., the edge information. We use am × n binary matrix
M to represent thevertex label mappingbetweenQ andG.
Specifically, ∀j, k, M(j, k) = 1 if L(vj) = L(vk), where
vj ∈ V (Q) andvk ∈ V (G); and otherwise 0.

The revised Ullmann’s algorithm (subIso) is detailed in
Algo. 1. subIso takesQ andG as input and returns true ifQ
is the subgraph ofG. Initially, it determines the vertex label
mappingM (Lines 1-2). Then,subIso checks fromM if there
is a subgraph isomorphism mapping fromQ to G by using
three steps: (1)Enum; (2) Match; and (3)Refine. Next, we
highlight some details of each step.
Enumeration (Lines 8-17). Enum enumeratesall possible
subgraph isomorphism mappingsfrom Q to G by M. Each
possible mapping is denoted asMi. Each column ofMi

contains at most one 1and each row ofMi has only one
1 (Lines 12-13).Mi is enumerated fromM row by row (Line
14). When anMi is obtained (Line 8),Match checks ifMi

is a subgraph isomorphism mapping (Line 9). It is easy to see
that the number of possibleMis enumerated isO(nm).
Matching (Lines 18-21). For eachMi enumerated fromM,
if there exists a matrixCi, Ci = MiMGM

T
i , such that∃j, k,

MQ(j, k) = 1 ∧ Ci(j, k) = 0 (1)
then such anMi cannot be an subgraph isomorphism mapping
from Q to G. Note thatCi intuitively represents the adjacency

4

Algorithm 1 Revised Ullmann’s algorithmsubIso (Q, G)
Input: The query graphQ and the data graphG.
Output: True if Q is a subgraph ofG, Falseotherwise.
1: Initialize Mi := 0

2: GenerateM from (V,Σ, L) of Q andG
3: if !Refine(M, Q,G) /* Refinement */
4: return False
5: if !Enum(0, Mi, M, Q, G) /* Enumeration */
6: return False
7: return True
Procedure 1.1Enum (d, Mi, M, Q, G)
8: if d = m
9: return Match(Mi, Q, G) /* Matching */

10: if !Refine(M, Q,G) /* Refinement */
11: return False
12: for each c, wherec < n, M(d, c) = 1, and∀d′ < d Mi(d

′, c) = 0
13: Mi(d, c) := 1
14: if Enum(d + 1, Mi, M, Q, G)
15: return True
16: Mi(d, c) := 0
17: return False

Procedure 1.2Match(Mi, Q,G)
18: Ci = MiMGMT

i

/* violation */
19: if ∃j, k, MQ(j, k) = 1 ∧ Ci(j, k) = 0

20: return False
21: return True

Procedure 1.3Refine(M, Q,G)
22: do ∀j, k, M(j, k) = 1
23: if degree constraintor neighborhood constraintfails
24: M(j, k) := 0
25: while M is not changed
26: if ∃j, s.t., ∀k,M(j, k) = 0
27: return False
28: return True

matrix of a subgraph ofG, that Q may be isomorphic to
throughMi. Formula 1 states that there is an edge between
vertices j and k in Q but no corresponding edge in the
subgraph ofG, represented byCi. Such anMi is definitely
not a mapping. We term the case in Formula 1 as aviolation
of subgraph isomorphism(or simply violation). Mi without
violation is called avalid mapping. That is,Q is a subgraph
of G throughMi.
Refinement (Lines 22-28). The number of 1’s inM signifi-
cantly increases the number ofMi to be enumerated in worst
case. In the Ullmann’s algorithm, there are two optimizations,
calledrefinements, to reduce the number of 1’s inM. Intuitive-
ly, the first refinement exploits thedegree constraint, whereas
the second refinement relies on theneighborhood constraint:
∀j, k, M(j, k) = 1 ⇒

(1) Deg(vj , Q) ≤ Deg(vk, G); and
(2) ∀x,MQ(j, x) = 1 ⇒ ∃y,M(x, y)MG(k, y) = 1.

Refinement is performed when (1)M is determined (Line 3)
and (2)Mis are enumerated (Line 10). For any pair ofj and
k, M(j, k) = 1, if either one of the constraints is not satisfied,
the algorithm then flipsM(j, k), i.e., setsM(j, k) = 0 (Lines
22-24). If any row ofM contains only 0s, it reports there is
no valid mapping (Lines 26-27).

Example 3.1:Fig. 3 shows an example for Algo. 1. The LHS
shows the query graphQ and the data graphG and their
adjacency matrices (below the graphs). The RHS shows the
enumeration ofMis.C1 is computed byM1, which is a valid
mapping fromQ to G. Suppose we do not performRefine,
M2 will be enumerated.Match determines thatM2 contains
violations, as shown. However, whenRefine is performed,
M(1, 4) is flipped to 0 as v4 of G does not connect tov2
andDeg(v1, Q) > Deg(v4, G). M2 is not enumerated at all.

1 2

0

1 2

0

0

MQ =

[

1 1 1

1 1 0

1 0 1

]

MG =

1 1 1 0

1 1 1 1

1 1 1 0

0 1 0 1

M =

[

1 0 0 1

0 1 0 0

0 0 1 0

]

M1 =

[

1 0 0 0

0 1 0 0

0 0 1 0

]

M2 =

[

0 0 0 1

0 1 0 0

0 0 1 0

]

Q G

C1 =

[

1 1 1

1 1 1

1 1 1

]

C2 =

[

1 1 0

1 1 1

0 1 1

]

C1 = M1MGM
T
1

Adjancency matrix

violation of subIso

v1

w/o Refinev2 v3

v1

v2

v3

v4

enumerate all
possible mappings

Fig. 3. Adjacency matrices of Q and G; Two possible
mappings (M1 and M2) and a violation in C2 (Formula 1).

4 SUB ISO WITH MATRIX OPERATIONS

From subIso in Algo. 1, it can be noted that the violation
defined by Formula 1 inMatch (Line 19) is determined
by processing of the entries betweenMQ and Ci, and the
neighborhood constraint (Line 23) precisely exploits edge
information. Hence, as motivated in Sec. 1, we castsubIso into
an algorithm that uses a series of mathematical computations,
denoted asTsubIso. This enables us to derive private versions
of such operations in later sections.

Foremost, we extend the definition of the query and data
graph (Q and G), defined in Def. 4.1. Def. 4.1 only differs
from the one presented in Sec. 3 that the entries in the
adjacency matrixMG are flipped, i.e., 0s (resp. 1s) are set
to 1s (resp. 0s), for the transformedsubIso (to be detailed
soon). Moreover,Q and G are extended with precomputed
indexes, called static indexes (to be detailed in SubSec. 5.3),
to enhance performances. Since our subsequent discussions
always assume the extended queries/graphs, we omit the term
“extended” for brevity.

Definition 4.1: The extended data graphof G is denoted as
Ḡ = (V,MḠ,Σ, L, SIG) and thequery graphis extended as
Q = (V,MQ,Σ, L, SIQ), whereMḠ areflipped, i.e., ∀j, k,

MḠ(j, k) = ¬MG(j, k),

andSIG andSIQ (calledstatic indexes) are sets of bit vectors,
for optimization purposes.

Based on Def. 4.1, we rewritesubIso into transformed
subIso called TsubIso in Algo. 2. The inputs are the query
graphQ and data graph̄G. It returns0 if Q is a subgraph
of G, and non zero otherwise. The corresponding three main
steps of Algo. 1 in Algo. 2 are highlighted below.
Transformed enumeration. The main difference inTEnum is
thatRefine (Lines 10-11 of Algo. 1) is removed. The reason is
thatRefine exploits structural information, which is required to
keep private. Another difference is thatTEnum is invoked with
an input messageR thataggregatesthe subgraph isomorphism
information fromQ to G during the enumeration ofMis.
Transformed matching. In Match, the violation of Formula 1
(Line 19 of Algo 1) is checked by a condition defined on
each entry ofMQ andCi, which leaks structural information.
In comparison, with Def. 4.1, the presence of a violation
is detected from the product of the matricesMQ and C̄i

(Lines 14-15) inTMatch. Further, the violation due toMi is
preserved under aggregations,i.e., the result ofMi (denoted
asRi) is aggregated into one messageR (Lines 16-17).

5

Algorithm 2 TsubIso (Q, Ḡ)
Input: The query graphQ and the transformed data graphG.
Output: R = 0 if Q is a subgraph ofG, R = 1 otherwise.
1: Initialize R := 1, Mi := 0

2: GenerateM from (V,Σ, L) of Q andḠ
3: if !TRefine(M,Q, Ḡ) /* TRefinement */
4: return R
5: TEnum(0, Mi, M, Q, Ḡ, R) /* TEnumeration */
6: return R

Procedure 2.1TEnum(d,Mi,M, Q, Ḡ, R)
7: if d = m
8: TMatch(Mi, Q, Ḡ, R) /* TMatching */
9: for each c, wherec < n, M(d, c) = 1 and∀d′ < d Mi(d

′, c) = 0
10: Mi(d, c) := 1
11: TEnum(d + 1, Mi, M, Q, Ḡ, R)
12: Mi(d, c) := 0

Procedure 2.2TMatch(Mi, Q, Ḡ, R)
13: Initialize Ri := 0, MCi := 0

14: C̄i := MiMḠMT
i

15: ∀j, k,MCi(j, k) := MQ(j, k) × C̄i(j, k) /* Multiplication */
16: Ri :=

∑
∀j,k

MCi(j, k) /* Addition */

17: R ×= Ri /* Multiplication */

Procedure 2.3TRefine(M, Q,G)
18: for each j, k, M(j, k) = 1
19: if SIQ[vj] · SIQ[vj] 6= SIQ[vj] · SIG[vk]

20: M(j, k) = 0
21: if ∃j, s.t., ∀k,M(j, k) = 0
22: return False
23: return True

The detection of a violation inTMatch is illustrated with
Fig. 4. Similar toMatch, TMatch computes the “subgraph”
C̄i that Q may be isomorphic to. With the data graph,C̄i

is computed in Line 14. There are four possible cases of the
entries ofMQ and C̄i and Fig. 4 a) highlights the case of
the violation of Formula 1. That is,∃j, k, MQ(j, k) = 1 and
Ci(j, k) = 0 (thus,C̄i(j, k) = 1), then

MQ(j, k)C̄i(j, k) = 1, (2)

For the other three cases, the product is0. Therefore, by
Formula 2,TMatch detects the violation and aggregates the
results as follows:

1. Multiplication (Line 15). For each pair of(j, k), TMatch

computesMCi(j, k) = MQ(j, k)× C̄i(j, k);
2. Addition (Line 16). TMatch sums up the entries of the

productMCi, i.e., Ri =
∑

∀j,k MCi(j, k). Note thatRi

intuitively represents the validity of the mappingMi, i.e.,
if Mi is valid, no violation is found and the value ofRi

is 0, by Formula 2; and
3. Multiplication (Line 17).TMatch then aggregatesRi into

R by a multiplication,i.e., R = R × Ri. If there is at
least a validMi, the value ofR equals0, and non zero
otherwise.

It is worth highlighting that if there exists a subgraph iso-
morphism mappingMi from Q to G, thenMi contains no
violation, Ri = 0 andR = 0. Thus,R = 0 implies thatQ is
a subgraph ofG. Otherwise,R is non zero, which implies all
Ris are not zero and there must be some 1’s in the entries of
MCi, for all i. By Formula 2, there is a violation in eachMi

and thus,Q is not a subgraph ofG.

Example 4.1: We illustrateTMatch with the example shown
in Figs. 4 b) and c). The query and graph are those shown
in Fig. 3. Fig. 4 b) presentsMQ andMḠ. Fig. 4 c) reports
the intermediate results ofTMatch of two possible mappings
M1 andM2 (Fig. 3). M1 is a valid mapping asR1 computed

MḠ =

0 0 0 1

0 0 0 0

0 0 0 1

1 0 1 0

C̄1 =

[

0 0 0

0 0 0

0 0 0

]

C̄2 =

[

0 0 1

0 0 0

1 0 0

]

R1 = 0 R2 = 2

MQ =

[

1 1 1

1 1 0

1 0 1

] M

M1 M2

C̄1 = M1MḠM
T

1

enumerate all
MQ Ci C̄i

0

0

1

1

0

1

0

1

1

0

1

0

MQC̄i

1

0

0

0

violation of subIso

a) b) c)

w/o TRefine

violation of subIso

possible mappings

Fig. 4. (a) The truth table of MQC̄i; (b) Illustration of MQ

and MḠ; and (c) TMatch.

usingMQ and C̄1 (in Lines 15-16) is 0. In comparison,R2

computed usingMQ and C̄2 is 2. Hence,M2 is an invalid
mapping.R = R1 × R2 = 0 indicates that there is a valid
mapping and thusQ is a subgraph ofG.

Transformed refinement. As the neighborhood constraint of
Refine precisely exploits the edge information, it cannot be
directly adopted. We transformRefine asTRefine that inner
products (Line 19) between our proposedstatic index(SI, in
the form of bit vector) are used for refinements. The index is
called static as the indexes of the data graphs are precomputed
and those of query graphs are computed by the client prior to
TsubIso.

It is worth noting thatTsubIso is mainly a series of
mathematical operations,i.e., additions, multiplications and
inner products. This enables us to establish a connection to
private query processing.

5 STRUCTURE-PRESERVING SUB ISO

In this section, we propose structure-preservingsubIso, denot-
ed asSPsubIso. SPsubIso contains three steps: (1) structure-
preservingMatch (SPMatch) in SubSec. 5.1; (2) structure-
preservingEnum (SPEnum) in SubSec. 5.2; and (3) structure-
preservingRefine (SPRefine) in SubSec. 5.3.

Before presenting the details, we first give the definition of
the encryptedquery graphQk and the transformed graph̄Gk,
which are shared bySPMatch, SPEnum andSPRefine.

Definition 5.1: The encryptedQ and Ḡ are denoted asQk

and Ḡk, respectively, whereQk = (V,MQk,Σ, L, SIQk
) and

Ḡk = (V,MḠk,Σ, L, SIGk
). MQk (MḠk) andSIQk

(SIQ) are
the encryptedMQ (MḠ) andSIQ (SIG), respectively.

It is worth remarking that we only protectMQ (resp.MḠ)
andSIQ (resp.SIG) in Q (resp.Ḡ), by using encryption, since
(V,Σ, L) does not expose the structural information.

5.1 Structure-Preserving Matching

In this subsection, we adoptcyclic groupand propose a novel
private-key encryption schemeto encryptMQ andMḠ. We
then proposeSPMatch to compute the operations ofTMatch

in encrypted domain, where the mapping (Mi) has been
enumerated bySPEnum (to be discussed in SubSec. 5.2).

5.1.1 Cyclic Group Based Encryption
Recall thatTMatch involves both additions and multipli-
cations. Hence, the state-of-the-artpartially homomorphic
encryption schemes(e.g., Paillier and ElGamal) [21] cannot
be adopted to our problem. On the other hand, due to the

6

MQ C̄i

1

1

q

q

1

0

0

0

MQC̄i

1

q

1

q

violation of subIso

a)

MQk C̄i

rg
x

rqg
x

rqg
x

MQk
C̄i

rg
x

rqg
x

rg
x

rqg
x

b)

rg
x

rqg
2x

rq
2
g
2x

rg
2x

rqg
2x

R1 =
∑

∀j,k
MC1(j, k)

c)

Rk = R1 ×R2

= g2x(rq + · · ·+ rq2)

= g2x(rq + r+ · · ·+ rq2)

= g4x(rq + · · ·)(r+ · · ·)

(mod p)

R2 =
∑

∀j,k
MC2(j, k)

violation of subIso

Fig. 5. (a) The encoding of the truth table shown in
Fig. 4(a); (b) Encryption by CGBE; and (c) Illustration of
SPMatch with M1 and M2.

known performance concerns offully homomorphic encryption
scheme(FHE) [12], we may not directly adoptFHE either.

Therefore, we propose a private-key encryption scheme,
namelycyclic graph based encryption scheme(CGBE). CGBE
not only supports both partial additions and multiplications,
but also allows efficient encryption and decryption. Important-
ly, it is secure against CPA. However, the trade-off of using
CGBE in SPMatch is that (1) it introducesnegligible false
positives; and (2) it requires multiple encrypted messages for
aggregating a query result, which are sent to the client.

Before the detailed discussion, we first present the prelim-
inary about cyclic group [21]. LetG be a group.p = |G| is
denoted as theorder of G. In particular,∀g ∈ G, the order
of G is the smallest positive integerp such thatgp = 1. Let
〈g〉 = {gi : i ∈ Zp, g

i ∈ Zn} = {g0, g1, · · · , gp−1} denote the
set of group elements generated byg. The groupG is called
cyclic if there exists an elementg ∈ G such that〈g〉 = G.
In this case, theorder of G is p = |G| and g is called
a generatorof G. Next we propose the cyclic group based
encryption scheme as follows.

Definition 5.2: The cyclic group based encryptionscheme is
a private-keyencryption scheme, denoted asCGBE = (Gen,
Enc, Dec), where

• Gen is a key generation function, which generates a
secrete keyx ∈ [0, p − 1] uniformly at random, a cyclic
group 〈g〉 = {gi : i ∈ Zp, g

i ∈ Zn}. It outputs the
private keys as(x, g) and the valuep which is known to
the public.

• Enc is an encryption function, which takes as input a
messagem and the secrete key(x, g). It chooses a
random valuer, and outputs the ciphertext

c = mrgx (mod p)

• Dec is a decryption function, which takes as input a
ciphertextc, and the secrete key(x, g). It outputs

mr = cg−x (mod p)

Note that theDec function of CGBE only decrypts the
ciphertext c as the product of the messagem and random
valuer. This is becauseSPMatch does not require the exact
value ofm.

5.1.2 Encryption of MQ and MḠ

To encryptMQ and MḠ, we first present anencodingfor
each entry ofMQ andMḠ.

Definition 5.3: The encodingof the entries ofMQ andMḠ

are:∀j, k,

Algorithm 3 SPMatch (Mi, Qk, Ḡk, Rk)
1: C̄i := MiMḠk

MT
i

/* Multiplication */
2: ∀j, k,MCi(j, k) := MQk

(j, k) × C̄i(j, k) (mod p)
/* Addition */

3: Ri :=
∑

∀j,k
MCi(j, k) (mod p)

4: if i 6= 0, i modω 6= 0
/* Multiplication */

5: Rk ×= Ri (mod p)
6: elseSendRk to client,Rk := Ri

if MQ(j, k) = 0, setMQ(j, k) asq; and
if MḠ(j, k) = 0, setMḠ(j, k) asq,

whereq is a large prime number.

In relation to Def. 5.3, we have the following Formula 3
that similar to Formula 2 to detect the violation. We note that
only in case ofMQ(j, k) = 1 and C̄i(j, k) = 1,

MQ(j, k)× C̄i(j, k) = 1 (mod q), (3)

where C̄i = MiMḠM
T
i , the product will be 0 otherwise.

Fig. 5 a) shows the encoding of four possible combinations
between entries, we can see that only ifMQ(j, k) = 1 and
C̄i(j, k) = 1, the product becomes1. Otherwise it is0.

Under the encryption schemeCGBE in Def. 5.2 and the
encoding in Def. 5.3, we are ready to define the encryption
of the encoding ofMQ andMḠ (in short, the encryption of
MQ andMḠ) as follows.
Definition 5.4: The encryptionof MQ andMḠ are denoted
asMQk andMḠk, respectively, where∀j, k,

MQk(j, k) = Enc(MQ(j, k), x, g)
MḠk(j, k) = Enc(MḠ(j, k), x, g)

(4)

Example 5.1: We use Fig. 5 b) to illustrate an example of
the encryption ofMQ by CGBE. ∀j, k, if MQ(j, k) = 1,
MQk(j, k) = Enc(1, x, g) = rgx (mod)p; and ifMQ(j, k) =
q, MQk(j, k) = Enc(q, x, g) = qrgx (mod) p.

Finally, we remark that the large prime numberq for the
encoding (Def. 5.3) must be kept secret. SinceCGBE is a
symmetric encryption scheme, both theDO and the client
hold the same keys(x, g, p), whereasSP keepsp only.

5.1.3 SPMatching
Based on Def. 5.4, we propose acyclic group basedmatching
(in short,SPMatch) derived fromTMatch (in Algo. 2), shown
in Algo. 3. In particular, the input valueRk is the encrypted
message that aggregates the violation.SPMatch first generates
C̄i (Line 1), which is computed fromMi andMḠk. Then the
following three steps are invoked.

1. Multiplication (Line 2). For each pair of(j, k), SPMatch

computesMCi(j, k) = MQk(j, k)× C̄i(j, k) (mod p);
2. Addition (Line 3). SPMatch sums up the entries in the

product,i.e., Ri :=
∑

∀j,k MCi(j, k) (mod p). If Mi is
valid, i.e., no violation is found, the decryption of the
sum is exactly 0, by Formula 3; and

3. Multiplication (Lines 4-6).SPMatch then aggregatesRi

into Rk by multiplication (Line 5). If there is at least one
valid mapping fromQ toG, the decryption of aRk equals
0. Otherwise, the decryption value is non zero. We remark
thatCGBE leads toerrors if the number ofRis in Rk is
larger than a predetermined valueω. We thereby propose

7

a decomposition scheme(discussed later) that sends to
the client a sequence ofRks, where eachRk aggregates
ω Ri (Line 4).

Example 5.2:Fig. 5 b) shows an example to illustrate the mul-
tiplication of the four possible cases of combinations between
MQk andC̄i. We observe that only under the violation(shown
in grey shadow), the product ofMQk andC̄i doesnot contain
q. Fig. 5 c) illustrates an example ofSPMatch following Fig. 4
c). R1 andR2 are computed by the summations ofMC1 and
MC2, respectively. Note thatR2 contains violation asM2 is
not a valid mapping.Rk is produced.

Decryption at the client. After receiving all the encrypted
resultsRk, the client performs the decryption, which mainly
contains two steps as belows.

1. For each messageRk aggregated withω Ris, the
client computes the message encoded inRk as
R′

k = Dec(Rk, x, g)
2ω; and

2. For each encoded messageR′
k, the client computes the

final result byR = R′
k mod q.

If any of R equals to0, there is at least one valid isomorphic
mappingMi that contributes a 0 (Line 3) to the productRk

(Lines 4-5). ThussubIso(Q,G) = true.

Example 5.3: We show the decryption at client following
Fig. 5 c). The encrypted messageRk client receives aggre-
gates twoRis. The client first generates(g−x)2×2, computes
R′

k = Rk×g−4x (modp), and finally computesR = R′
k mod

q. The result is0 that indicatesQ is a subgraph ofG.

Decomposition scheme. Once the number ofRi aggregated
by Rk exceeds a predetermined value,SPMatch will result
in incorrect answer. The reason leading to this problem is
the multiplications when aggregatingRi into Rk in Line 5
of Algo. 3. Recall that in the decryption, the client needs to
compute the encoded messageR′

k after receivingRk, once
R′

k exceedsp, the client cannever recover the final result
R by modularq correctly. We can overcome this limitation
by determining the maximum number ofRis that can be
aggregated inRk, denoted asω. We have the following
formula:

Len(R′
i) = 2× (Len(q) + Len(r)) + log(m2)

Len(p) ≥ ω × Len(R′
i)

⇔ ω ≤ Len(p)
Len(R′

i
)

(5)

wherem = |V (Q)|, Len(x) is the size of the valuex, and
R′

i is the message encoded inRi, i.e., R′
i = Dec(Ri, x, g)

2.
In particular, with reference to Algo. 3,(Len(q) + Len(r))
is the largest size of the message encoded in each entry of
MQk andC̄i. The size of their product (Line 2) is 2(Len(q)+
Len(r)). There arem2 additions of such products (Line 3),
hence, Algo. 3 requires at mostlog(m2) carry bits. This gives
us the largest size of anR′

i. Then, the size ofω R′
i values

must be smaller than that ofp, and we obtain the inequality
in Formula 5. Having computedω, the SP decomposesRk

into a number of aggregated messages, each of which is a
product of at mostω Ris.
False positive. When performingSPMatch, we find that two
operations introduce false positive: (1) additions with comput-
ing Ri (Line 3); and (2) multiplications with computingRk in

each decomposition (Line 5). We prove that the probabilities
of the above two false positive are negligible. Next, we first
analyze the probability of false positive from the additions
with computingRi.

Proposition 5.1: The probability of false positive inRi is
negligible.

Proof: The probability of false positive inRi is

Pr(false positive inRi) = Pr(r1 + · · ·+ rm2 = 0(mod q))
= 1

q , (6)

wherem = V (Q), andq is a large prime number,e.g., 32bits.
Thus, the probability is negligible in practice.

Based on Prop. 5.1, we are able to analyze the probability of
false positive with computing theRk in each decomposition.

Proposition 5.2: The probability of false positive inRk is
negligible in each decomposition.

Proof: The probability of false positive in eachRk is

Pr(false positive inRk) = Pr(false positive in all itsRi)
= 1− (1− 1

q)
ω

≈ 1− e−
ω
q , (7)

whereω is the size of the decomposition. Sinceω ≪ q, the
probability is negligible in practice.

5.2 Structure-Preserving Enumeration

The mappings (Mis) processed bySPMatch are enumerated
by SPEnum. Since the worst case number of all possible
mappingsMis fromM (Lines 7-12, Algo. 2) isO(nm), it has
been a crucial task ofSPsubIso to prune the search ofuseless
Mis. For instance, we show a scenario ofuselessenumerations
by using the LHS of Fig. 6. There are four subgraphs ofG in
grey, which are disconnected from each other. In the example,
only 4 mappings out of46 are possible and the remaining
enumerated mappings are useless. However, since bothG and
Q are encrypted, theSP can only blindly enumerates those
mappings even they may appear “certainly” invalid.

Therefore, in this subsection, we proposeSPEnum that
consists of aprotocol between theSP and the client to prune
someuseless partialmappings. However, due to the pruned
enumerations, a little non-trivial structural information may
be leaked. Such information leakage can be well controlled
by determining how often the client informs the pruning (to
be analyzed in Sec. 6.2).

5.2.1 Mapping Enumeration as a Search Tree
To facilitate the discussions on pruning, we view the search
of possible subgraph isomorphic mappings fromQ to G (in
the LHS of Fig. 6) as a search tree, as in the literature of
optimizations. A sketch is shown in the RHS of Fig. 6. Each
internal node in thed-th level represents apartial mapping
Mi, denoted asM′

i, whose enumeration isonly up to the first
d rows of M. We denotedQ′ as theinduced subgraphof Q
from the firstd vertices ofQ andG′ as the subgraph thatQ′

maps to, underM′
i. In the example, the query size is 6, thus

the height of the search tree is6. The fanout of each internal
node ind-th level equals to the number of 1s in the(d+ 1)-
th row of M. Each leaf node of the search tree represents a

8

· · ·

· · · · · ·

· · ·

· · ·

· · ·

One batch

· · ·

6

Valid mapping

Prune

Q G

· · ·

· · ·

· · ·

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4
0

1

2

3

4

0

1

2

3

4

M =

1 1 1 1

1 1 1 1

1 1 1 1

· · ·

· · ·· · ·

· · ·

5

5

5

5

5

[]

1
1
1
1

M
i
=

[]

1
1
1
1

1
1

Mi
′, a partial Mi

Enumeration of Mi – Search Tree Repr.Useless mapping enumeration

n1

n2

n3

with size ω

n4

1st row

2st row

with 4 rows

Fig. 6. Illustration of mapping enumerations and SPEnum.

completeMi. Without pruning,TEnum enumerates all46 leaf
nodes.

5.2.2 SPEnumeration
We next presentSPEnum. It adoptsTEnum and SPMatch,
and determines if a partial mappingM′

i betweenQ′
k and Ḡ′

k

is a valid to be expanded or not. The inputs ofSPMatch are
(1) M′

i, which is the current partial mapping ind-th level; (2)
Q′

k and Ḡ′
k, which are the induced subgraph ofQk and Ḡk

with the firstd vertices, respectively; and (3)Rk, which is the
same as before. Then, anaiveprotocol involving the client is
described as follows:

1. SP enumerates anM′
i and performsSPMatch. Its result

Rk is transmitted to the client for decryptionimmediately.
2. The client decryptsRk. If it is 0, Q′

k is subgraph
isomorphic toḠ′

k andM′
i is valid. The client then notifies

theSP to repeat Step 1 to continue the enumeration from
M

′
i. Otherwise, the search subtree atM

′
i can be pruned.

3. SP terminatesSPEnum when a validMi is found or no
moreMis can be enumerated.

Protocol with aggregated messages.The naive protocol
introduces additional network communications between the
client and theSP. To control such communication overhead,
we adopt abreath first search(BFS) toTEnum and exploit
the aggregation supported byCGBE. Specifically, suppose
SPEnum is at thed-th level of the search tree, it conducts
two rounds of communications.

1. In the first round, for each internal nodesn with a valid
partial mapping at thed-th level (e.g., n1 andn4 at the
3rd level in Fig. 6), theSP processes its child nodes
of n in batchesof the sizeω. For each batch, theSP
performsSPMatch at each node and aggregatesω Ris
into Rk. Recall thatω is the number of messages that
CGBE correctly aggregates (see SubSec. 5.1). TheSP
sends all theRks to the client.
The client decrypts allRks. (i) If it is 0, there exists at
least one child noden′ of n such that its partial mapping
is valid (e.g., n1). (ii) Otherwise, there is no valid partial
mapping of then’s child nodes. The search subtree ofn
can be safely pruned (e.g., n4).

2. In the second round, theSP then sends allRis of the
child nodes of each batch that contains valid partial
mappings. to the client, and determines at which node(s)
the search proceeds (e.g., n2). Step 1 is then repeated at
the (d+ 1)-th level (e.g., at the4th level).

3. SP terminatesSPEnum as in the naive protocol.

Remarks. It is worth noting thatCGBE limits ω Ri to be
aggregated intoRk. If SPMatch utilizes other encryption
scheme, such a limitation may not be necessary. For example,
FHE does not limit the number of aggregated messages, but
its computation cost is significant. Moreover, the number
of communication rounds between theSP and the client
is O(2|V (Q)|). In practice, most of the partial mappings
of internal nodes are invalid, which result in the size of
messages for each round small,e.g., 16KB in worst case for
our experiments with default setting.
Vertex ordering. Finally, we remark that vertex ordering
(the row ordering ofM) significantly affects subgraph query
performance, consistent to the literature (e.g.,[14]). However,
SPEnum cannot exploit structural information to choose an
ordering by heuristics. We thereby order the rows ofM by
the number of 1s in ascending order. Suppose that partial
mappings are mostly useless, such an ordering prune useless
enumerations with fewer communications in practice.

5.3 Structure-Preserving Refinement

In order to further optimize the search,i.e., to reduce the
number of possible mappings, in this subsection, we propose
a static index SIQ (SIG) of a Q (G) that indexesh-hop
information. We modify Refine into inner products between
SIG andSIQ asTRefine. SPRefine achieves privacies by using
asymmetric scalar product preserving encryptionASPE [32].

5.3.1 Static Index SI

The classical refinement reduces the number of 1s inM (a.k.a
flips the 1s to 0s) to minimize the large search space of sub-
graph isomorphism mappings. Further to reducing the number
of 1s in M, SPRefine cannot expose structural information.
To address these, we propose to index vertices with theirh-
hop information. The design requirements of such index are
that they can be computed before a query is run and hence,
no knowledge is gained by executing the query algorithm.
Moreover, they should be efficiently computed, as the client
may not have powerful machines. Since the index flips the 1s
in M by information of the vertices that areh hop away. The
SP cannot precisely determine the cause of the flips. Next,
we define theh-hop vertices of a vertexv as follows.

Definition 5.5: The h-hop vertices ofv (h-Hop(v)) is the set
of vertices that are reachable fromv by exactlyh hops. The
h-hop ℓ-labeled verticesof v (h-Hopℓ(v)) is

{v′ | L(v′) = ℓ andv′ ∈ h-Hop(v) }.

Fig. 7 a) illustrates the notations ofh-hop vertices andh-
hop ℓ-labeled vertices ofv. We assume a canonical ordering
of possible labels and hence, present labels as integers. Given
a graph G, supposeh = 2, 2-Hop(v) = {v2, v3} and,
2-Hop0(v) = {v3}.

For illustration purposes, we choose four structural infor-
mation for indexing used inSPRefine. We can determine if
two vertices can be mapped or not from them. It is worth
remarking that one can further extend other information for
indexing. We define such information as an attribute of the set
h-Hopℓ(v) as follows:

9

• h-Hopℓ(v).MaxDeg is the maximum degree ofv′, v′ ∈
h-Hopℓ(v);

• h-Hopℓ(v).Occur is |h-Hopℓ(v)|;
• h-Hopℓ(v).PreLabel is a set of labels of the parents of

occurredh-Hopℓ(v); and
• h-Hopℓ(v).Sup is the number of different paths that can

reach fromv to v′, wherev′ ∈ h-Hopℓ(v).

Example 5.4:We continue to discuss the example in Fig. 7 a).
Supposeh = 2. Recall that2-Hop0(v) = {v3}. We list some
2-hop information as follows:(1) 2-Hop0(v).MaxDeg = 2,
sinceDeg(v3, G) = 2; (2) 2-Hop0(v).Occur = 1, since only
one label with0 in 2-Hop0(v); (3) 2-Hop0(v).PreLabel =
{0} as 0 is the only label of the parents of{v3}; and
(4) 2-Hop0(v).Sup = 1 because there is only one path that
can reach fromv to v3.

Encoding h-hop information in static index. Thestatic index
of G is denoted asSIG. For allv, h, andℓ, h ≤ maxH, maxH is
a user-specified maximum hop size,SIG[v][h][ℓ] is a bit vector.
In the fourh-hop information defined above, we identify two
types. They are encoded inSIG as follows.

(1) Label set (e.g., PreLabel): for each ℓ′ ∈
h-Hopℓ(v).PreLabel ⇒ SIG[v][h][ℓ].PreLabel[ℓ′] = 1,
otherwise0; and

(2) Numerical data (e.g. MaxDeg, Occur and Sup): We
present the encoding ofMaxDeg for illustration. Those of
Occur andSup are similar. We denote the maximum value
for MaxDeg asMaxDegmax. For eachi ≤ MaxDegmax

andi ≤ h-Hopℓ(v).MaxDeg ⇒ SIG[v][h][ℓ].MaxDeg[i] =
1, otherwise0.

The bit vectorSIG[v][h][ℓ] is then simply a concatenation of
SIG[v][h][ℓ].MaxDeg, SIG[v][h][ℓ].Occur, SIG[v][h][ℓ].PreLabel
and SIG[v][h][ℓ].Sup. The bit vectorSIG[v] is accordingly a
concatenation of allSIG[v][h][ℓ]s for all v, h ≤ maxH and ℓ.

Example 5.5: Fig. 7 a) shows a simple example of the
partial SIG[v][h][ℓ] for v in G, where h = 2, ℓ = 0. We
preset the default maximum value forMaxDeg, Occur and
Sup to 3. We assume that the possible labels are0 and
1. (1) For PreLabel, since2-Hop0(v).PreLabel = {0}, then
SIG[v][2][0].PreLabel[0] = 1, and SIG[v][2][0].PreLabel[1] =
0; and (2) For MaxDeg, as2-Hop0(v).MaxDeg = 2, thereby
SIG[v][2][0].MaxDeg[1] = SIG[v][2][0].MaxDeg[2] = 1.

The h-hop information abovementioned can be generated
by a simple depth first traversal starting at each vertex on the
data graph offline and on the query by the client on the fly.
Due to space restrictions, we omit the verbose algorithm.

5.3.2 Inner Products of Static Indexes

With the static indexSI, we establish the refinement of possible
subgraph isomorphism mappings by the following proposition:

Proposition 5.3: Given a user-specifiedmaxH, ∀ vj ∈ V (Q)
and vk ∈ V (G), M(j, k) = 1, iff the following of theh-hop
information ofvj andvk hold: ∀ℓ ∈ Σ(G), h ≤ maxH,

• h-Hopℓ(vj).MaxDeg ≤ h-Hopℓ(vk).MaxDeg;
• h-Hopℓ(vj).Occur ≤ h-Hopℓ(vk).Occur;
• h-Hopℓ(vj).PreLabel ⊆ h-Hopℓ(vk).PreLabel; and

0 0

0

1

0

0

0

1

0

0

b)

1 0

0

0

0 0
Q G

vj vk

G

v

2-Hop(v) = {v2, v3}

v1

v2 v3

v4 v5
2-Hop

0
(v) = {v3}

2-Hop
0
(v).MaxDeg = 2

2-Hop
0
(v).Occur = 1

2-Hop
0
(v).PreLabel = {0}

2-Hop
0
(v).Sup = 1

h = 2

a)

SIG[v][2][0] = · · · · · ·1

MaxDeg

1 0

Occur

1 0 0

PreLabel

1 0

Sup

1 0 0

3 0 13 3

SIQ[vj][2][0] = · · · 1 1 1 · · ·

SIG[vk][2][0] = · · · 1 1 0 · · ·

MaxDeg

Fig. 7. (a) Illustration of the h-hop vertices and static
index; and (b) an refinement by the index

• h-Hopℓ(vj).Sup ≤ h-Hopℓ(vk).Sup.

Prop. 5.3 can be obtained from a proof by contradiction.

Example 5.6: We use Fig. 7 b) to illustrate the underly-
ing idea of Prop. 5.3. For simplicity, we only show the
effect of MaxDeg. Before the refinement,M(j, k) = 1
since L(vj) = L(vk). Since 2-Hop0(v).MaxDeg of Q and
G are 3 and 2, respectively. Hence,2-Hop0(vj).MaxDeg 6≤
2-Hop0(vk).MaxDeg. By Prop. 5.3,vj cannot be mapped to
vk andM(j, k) is flipped to 0.

Therefore,TRefine further transforms Prop. 5.3 into the
inner product as follows.

Proposition 5.4: Given a user-specifiedmaxH, M(j, k) = 1,
vj ∈ V (Q) andvk ∈ V (G), iff the following of SI of vj and
vk hold: ∀ℓ ∈ Σ(G), h ≤ maxH,
SIQ[vj][h][ℓ] · SIQ[vj][h][ℓ] = SIQ[vj][h][ℓ] · SIG[vk][h][ℓ].

Example 5.7:We illustrate the Prop. 5.4 with the Example 5.6
in Fig. 7 b), the partialSI of bothQ andG are shown. Since
SIQ[vj][2][0] · SIQ[vj][2][0] 6= SIQ[vj][2][0] · SIG[vk][2][0], then
M(j, k) is flipped to 0.

Note that we can further simplify the inner produc-
t in Prop. 5.4 toSIQ[vj] · SIQ[vj] = SIQ[vj] · SIG[vk], where
SIQ[vj] is the concatenation for allSIQ[vj][h][ℓ]s. Therefore,
Line 19 of TRefine is mainly one inner product between
SIQ[vj] andSIG[vk], using Prop. 5.4 for pruning the 1s inM.

For SPRefine, we encrypt SIs as: ∀vj ∈ V (Q) and
∀vk ∈ V (G), SIQk

[vj] = ASPE(SIQ[vj]) and SIGk
[vk] =

ASPE(SIG[vk]). The secret keys held bySP and the client
are the same to that of [32]. Finally,SPRefine is TRefine

after replacing Line 19 with aprivate inner productbetween
encrypted bit vectors (SIQk

andSIG), supported byASPE.
We close this section with a remark thatSPEnum and

SPRefine may expose little non-trivial information in the sense
that the probability of guessing the structure of a graph is
not that of a random guess anymore. We shall analyze their
probabilities in Sec. 6.2.

6 PRIVACY ANALYSIS

In this section, we prove the privacy of the encryption method
and then the query algorithmSPsubIso. The attack model is
defined in Sec. 2 that we assume the attackers orSPs are
the eavesdroppers and can adopt the chosen plaintext attack
(CPA) [21].

10

6.1 Privacy of the Encryption Method

Two encryption methods are used in this paper. (1)CGBE

scheme is proposed to encryptMQ andMG, and (2)ASPE
[32] is adopted to encryptSIQ and SIG. We first state that
both theCGBE and ASPE schemes are secure against CPA
and then establishe that the structures of the query and the
graph are protected against our attack model. Denoteĝ to be
an arbitrary chosen fromG.

Lemma 6.1: [21] Let G be a finite group, and letm ∈ G be
arbitrary. Then, choosing randomg ∈ G and settingg′ = m ·g
gives the same distribution forg′ as choosing randomg′ ∈ G.
I.e., for any ĝ ∈ G

Pr[m · g = ĝ] = 1/|G|,
where the probability is taken over random choice ofg.

Lemma 6.2: Let G be a finite group, and letg ∈ G be
arbitrary. Then choosing randomr ∈ [0, |G|] and setting
g′ = gr gives the same distribution forg′ as choosingg′

from G. I.e., for any ĝ ∈ G

Pr[gr = ĝ] = 1/|G|,
where the probability is taken over random choice ofr.

Proof: We prove the lemma in a similar style of the proof
[21] of Lemma 6.1. Let̂g ∈ G be arbitrary. Then

Pr[gr = ĝ] = Pr[r = logg ĝ]

Sincer is chosen uniformly at random, the probability thatr
is equal to the fixed elementlogg ĝ is exactly1/|G|.

Lemma 6.3: CGBE is secure against CPA.

Proof: We prove that the proposedCGBE scheme has
indistinguishable encryptions in the presence of the eavesdrop-
pers, which is implied by the definition of CPA secure [21].

Specifically, choosing a random valuer, and lettingr′ ∈
G such thatgr

′

= r, we haveEnc(m, g, x) = mrgx =
mgx+r′ . First, by Lemma 6.2, Pr[gx+r′ = ĝ] = 1/|G|,
where ĝ is arbitrary chosen fromG. Then, by Lemma 6.1,
Pr[mgx+r′ = ĝ] = 1/|G|. Therefore, the ciphertext in the
CGBE scheme is auniformly distributedgroup element and,
in particular, is independent of the messagem being encrypted,
i.e., Pr[mrgx = ĝ] = 1/|G|. That means the entire ciphertext
contains no information aboutm. Given the above,CGBE is
secure against chosen plaintext attack.

SinceCGBE is a secure encryption scheme against CPA,
SP can never attack theMQk andMḠk without possessing
the secret key against our attack model.

Lemma 6.4:MQk andMḠk are preserved fromSP against
the attack model underCGBE.

Proof: The proof is a direct application of Lemma. 6.3.
SinceCGBE is secure against CPA,MQk andMḠk are secure
against the attack model underCGBE.

Next, we state thatSIQk
andSIGk

are preserved fromSP .

Lemma 6.5:SIQk
andSIGk

are preserved fromSP against the
attack model underASPE.

SIQ[vj] and SIG[vk] are encrypted byASPE, wherevj ∈
V (Q) and vk ∈ V (G). SinceASPE is secure against CPA
[32], it is immediate that Lemma 6.5 is true.

Theorem 6.1: The structure of bothQ andG are preserved
from SP against our attack model underCGBE andASPE.

Proof: The proof can be deduced from Lemmas 6.4
and 6.5. Recall thatQk = (V,MQk,Σ, L, SIQk

) and Ḡk =
(V,MḠk,Σ, L, SIGk

). By Lemmas 6.4 and 6.5, theSP cannot
breakQk and Ḡk since the structures ofQk and Ḡk (i.e.,
MQk, SIQk

, MḠk andSIGk
) are secure against CPA.

6.2 Privacy of SPsubIso

As presented in Sec 5,SPsubIso contains three main steps. We
analyze the privacy of each of these steps in this subsection.
Before we present the analysis, we clarify some notations.
GivenQ andG, m = |V (Q)| andn = |V (G)|. The function
P (n) returns the number of all possible graphs generated by
n vertices,i.e., P (n) = 2n

2

. The functionA(G) returns1 if
SP can determine the exact structure ofG, and0 otherwise.
The probability that theSP can determine the structure of the
graphG is denoted as Pr[A(G) = 1]. Given a graphG with
n vertices, the probability to determine the graph structureby
a random guessis Pr[A(G) = 1] = 1

P (n) .

Proposition 6.1: UnderSPMatch, Pr[A(Q)=1] = 1
P (m) , and

Pr[A(G) = 1] = 1
P (n) , which are equivalent to random guess.

Proof: (1) First we prove that theSP can never determine
any structural information from the computations in each step
of SPMatch. Recall that eachSPMatch comprises aconstant
number of mathematical operations in the encrypted domain
in Algo. 3:

• Line 2 invokes aconstantnumberm2 of multiplications
of MQk andCi;

• Line 3 requires aconstantnumberm2 of additions in
MCi; and

• Line 4 conductsonemultiplicationRi andRk.

Further, by Lemma 6.3, all the intermediate computation
results are securely protected against the attack model. Thus,
SP cannot learn any structural information from these steps.

(2) Next, given any twoSPMatchs, theSP only knows that
eachSPMatch aggregates itsRi intoRk by one multiplication.
Similarly, by Lemma 6.3, no other information can be learned
from theRi or Rk by theSP .

Putting the above together, theSP does not learn the struc-
tures ofQ or G by invokingSPMatchs and the probability of
determining a structure is equivalent to that of random guess.

Proposition 6.2: UnderSPEnum, the following holds:

• If Qd is subgraph isomorphic toGd, there is no informa-
tion leakage,i.e.,

Pr[A(Qd) = 1] = Pr[A(Gd) = 1] = 1
P (d) ; and

• Otherwise,

Pr[A(Qd) = 1] = Pr[A(Gd) = 1] = 1
(P (d)−P (d−1)) ,

whereQd (resp.,Gd) is the induced subgraph ofQ (resp.,G)
that contains the mappedd vertices specified by the partial
mappingM′

i enumerated up to the leveld.

11

Proof: Recall thatMQk and MḠk are preserved, by
Lemma 6.4 and Prop. 6.1. Hence, we only consider the infor-
mation that theSP can gain from the protocol inSPEnum.
Only Qd and Gd are analyzed as the remaining subgraphs
(Q − Qd andG − Gd) are not yet processed by theSP. By
the protocol ofSPEnum, the client informs theSP at thed-
th level of the search tree, theSP knows that the nodes at
the d-th level, sayvj and vk in Q andG, cause a violation
is detected or not. We thereby consider these two exhaustive
cases as follows:

Case 1: If Qd is subgraph isomorphic toGd, there is no
violation betweenQd andGd. Recall Formula 1, a violation
occurs whenvj is connected to some vertices (underMQ)
but vk does not have corresponding edges (underCi). When
there is no violation,vj may or may notbe connected to other
vertices inQd. The SP cannot distinguish this because the
edges ofvj (in MQk) is preserved. Similarly, theSP does
not learn any information about the edges ofvk of Gd neither.
Hence, there is no information leakage; and

Case 2: If Qd is not subgraph isomorphic toGd, there is a
violation betweenQd andGd. Hence, theSP knowsQd and
Gd do not falsify Formula 1. However, ifvj is isolated inQd,
the first predicate of Formula 1 isalways false; and ifvk is
connected to all other vertices inGd, the second predicate of
Formula 1 isalwaysfalse. Contrarily, other than the above two
scenarios, theSP cannot be certain the cause of the violation,
as bothMQk andMḠk are protected. The above scenarios
affect the probabilities as follows.

• vj is isolated in Qd, i.e., ∀v′j ∈ V (Qd), v′j 6= vj ,
(vj , v

′
j) 6∈ E(Qd). Then, the possible number ofQd with

isolatedvj is P (d−1). Thus, the probability that theSP
determinesQd is Pr[A(Qd) = 1] = 1

(P (d)−P (d−1)) ; and
• vk is connected to all other vertices inGd, i.e., ∀v′k ∈

V (Gd), v′k 6= vk, (vk, v′k) ∈ E(Gd). Then, the possible
number ofGd with vk connecting to all other vertices is
P (d− 1). Therefore, the probability thatSP determines
Gd is Pr[A(Gd) = 1] = 1

(P (d)−P (d−1)) .

Consider multipleSPEnum calls. Case 1does not leak infor-
mation, whereas the enumerations beyondCase 2are pruned.
In either case, anSPEnum call will not affect another.

Proposition 6.3: UnderSPRefine, the following holds:

• If M(j, k) is not flipped, there is no information leakage;
and

• Otherwise,

Pr[A(Q) = 1] = P (a+1)
P (m)(P (a+1)−1) ,and

Pr[A(G) = 1] = P (b+1)
P (n)(P (b+1)−1) ,

(8)

where a = |MaxDeg(Q)|maxH, b = |MaxDeg(G)|maxH,
andMaxDeg(G) is the maximum degree of the vertices
of G.

Proof: (Sketch)Due to space limitation, we present the
proof idea here and the detailed derivation in Appendix B. The
proof of Proposition 6.3 is again established by a case analysis.
The SI are protected by the encryption and its operations.
However, whenM(j, k) is flipped, theSP is certain that there

is a violation because ofvj and vk. Hence, the rest of the
analysis is similar to that ofCase 2of Proposition 6.2.

Finally, we remark that Props. 6.2 and 6.3 state that the
client may tune the privacy offered bySPsubIso by varying
the variablesmaxH andd of SPEnum andSPRefine. Further,
the values ofMaxDeg andmaxH (and thereforea and b) are
not known to theSP . We use these values in Prop. 6.2 to
simply quantify the privacy. In our experiment, we confirmed
thatSPEnum andSPRefine are effective optimizations and we
may set these variables to balance privacy and performances.

7 EXPERIMENTAL EVALUATION

In this section, we present a detailed experimental evaluation
to investigate the performance of our techniques on both real
world and synthetic datasets. Due to space restriction, we
elaborate our findings with real world datasets and report the
result from synthetic datasets in Appendix A.

7.1 Experimental Setup

The platform . We set up theSP as a server at Amazon EC2,
equipped with a 2.8GHz CPU and 16GB memory running
Ubuntu 14.04 OS. The client is a local machine with a 3.4GHz
CPU and 16GB memory running Win 7 OS. For ease of
exposition, we assume theDO has a machine with the same
setting, to encrypt data graphs. The client is connected to
an Ethernet. All techniques were implemented on the GMP
library (C++). By default, ourCGBE uses 2048 bits; the
sizes of the prime numberq and the random numberr are
both set to 32bits. The decomposition sizeω is 15. Our
ASPE implementation is set accordingly to [32]. We have
implemented aFHE-based solution. Its performance is always
at least one order of magnitude slower thanCGBE’s. Thus,
we do not report their numbers here.
Datasets. We used two real-world benchmark datasets namely
Aids (A) and PubChem (P) from [15], which are widely used
in [5], [14], [16], [23], [29], [33], [36], [39]. As our discussions
focused on vertex labels, without loss of generality, we remove
the edge labels.Aids consists of 10,000 graphs, which are
drawn from a real antiviral dataset [28]. On average, each
graph inAids has 25.42 vertices and 27.40 edges. The number
of distinct vertex labels is 51.PubChem consists of 1 million
graphs, which are drawn from a real chemical database [27].
Each graph inPubChem has 23.98 vertices and 25.76 edges,
on average. The number of distinct vertex labels is 81.
Query sets. For each of the aforementioned datasets, we used
its existing query setsQ4, Q8, Q12, Q16, Q20 and Q24,
which can be downloaded from [15]. EachQn contains 1,000
query graphs, wheren is the number of edges for each query.
Test runs. The queries were generated from random sampling
of the above datasets and their associated query sets. For each
dataset and query setQn, we randomly sampled 1,000 graphs
and 10 query graphs,i.e., for eachQn, we performed 10,000
subgraph isomorphism testings. In addition, the average den-
sities of the sample graphs and queries are the same as those
of the original data and query sets, respectively. We reportthe
average of the test runs by default. We use the abbreviation
AQT for average query time.
Default values of parameters. The parameters used in
SPRefine andSPEnum are set as follows. We set the default

12

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

A P A P A P A P A P A P

A
vg

. e
nc

ry
pt

io
n

tim
e

(m
s)

Query size

Generate SI
Encrypt M
Encrypt SI

Q24Q20Q16Q12Q8Q4

(a) Avg. encryption time ofQ

 0

 20

 40

 60

 80

 100

 120

 140

Q4 Q8 Q12 Q16 Q20 Q24

A
vg

. %
 o

f q
ue

rie
s

Query size

AIDS
PUBCHEM

(b) Avg. % of Qns pruned bySPRefine

 0

 20

 40

 60

 80

 100

 120

 140

Q4 Q8 Q12 Q16 Q20 Q24

A
vg

. q
ue

ry
 ti

m
e

(m
s)

Query size

AIDS
PUBCHEM

(c) AQT on Qns pruned bySPRefine

 0

 20

 40

 60

 80

 100

 120

 140

Q4 Q8 Q12 Q16 Q20 Q24
A

vg
. %

 M
i

Query size

AIDS
PUBCHEM

(d) Avg. % of Mis pruned bySPRefine

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

A P A P A P A P A P A P

A
vg

. q
ue

ry
 ti

m
e

(m
s)

Query size

SPRefine
SPMatch
SPEnum

Q24Q20Q16Q12Q8Q4

(e) AQT on non-prunedQns

 0

 2

 4

 6

 8

 10

Q4 Q8 Q12 Q16 Q20 Q24

A
vg

. d
ec

ry
pt

io
n

tim
e

(m
s)

Query size

AIDS
PUBCHEM

(f) Avg. decryption time

 0

 5

 10

 15

 20

 25

 30

 35

Q4 Q8 Q12 Q16 Q20 Q24

A
vg

. #
 o

f r
ou

nd
in

g

Query size

AIDS
PUBCHEM

(g) Avg. # of roundings

 0

 20

 40

 60

 80

 100

 120

 140

 160

Q4 Q8 Q12 Q16 Q20 Q24

A
vg

. m
es

sa
ge

 s
iz

e
(K

B
)

Query size

AIDS
PUBCHEM

(h) Avg. message size the client received

Fig. 8. Performance on varying query sizes.

maxH, and maximum values forMaxDeg, Occur, and Sup

to 6. We set the starting pruning depthd of the protocol of
SPEnum to 3.

7.2 Experiments on Real Datasets

7.2.1 Performance by Varying Query Sizes

We first show the performance of various query sizes in Fig. 8.
Encryption time by varying query sizes. We report the
average encryption times in Fig. 8(a). The encryption time
of a query Q involves (1) the time for generatingSIQ;
(2) the time of encryption ofMQ by CGBE; and (3) the
time of encryption ofSIQ by ASPE. We observe that the
average encryption times are around 100ms and 150ms for
Aids and PubChem, respectively. The encryption ofMQ by
our proposedCGBE is efficient, which only costs several
milliseconds on a commodity machine. Further, the query is
encryptedonly once.
Performance at the SP. There are two types of queries in
the processing ofSPsubIso. The first type of the queries are
thoseprunedby SPRefine. Fig. 8(b) reports the percentage of
such queries. In particular, we note that thePubChem queries
Q16-24 are completely pruned. Fig. 8(c) shows the average
query time of those pruned queries, which is largely occupied
by the private inner product. It is unsurprising that the time
increases with the query size. They are smaller than 65ms and
140ms onAids andPubChem, respectively.

The second type is thenon-pruned queries that pass
SPRefine. For these queries, we report the percentage of
pruned possible mappings in Fig. 8(d), which can be calculated
by the number of flipped 1s bySPRefine. The average query

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

A P A P A P

A
vg

. q
ue

ry
 ti

m
e

(m
s)

Starting pruning depth value d

SPRefine
SPMatch
SPEnum

543

(a) AQT on non-prunedQns

 0

 4

 8

 12

 16

 20

 24

 28

3 4 5

A
vg

. d
ec

ry
pt

io
n

tim
e

(m
s)

Starting pruning depth value d

AIDS
PUBCHEM

(b) Avg. decryption time

 0

 2

 4

 6

 8

 10

 12

 14

 16

3 4 5

A
vg

. #
 o

f r
ou

nd
in

g

Starting pruning depth value d

AIDS
PUBCHEM

(c) Avg. # of roundings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

3 4 5

A
vg

. m
es

sa
ge

 s
iz

e
(K

B
)

Starting pruning depth value d

AIDS
PUBCHEM

(d) Avg. message size the client received

Fig. 9. Effectiveness of the starting pruning depth d.

times are shown in Fig. 8(e). For most queries, the query times
are smaller than 1s. The query time ofQ8 is the longest but
it is still smaller than 1.4s.
Performance at the client side. We report the performance
at the client side in Fig. 8(f). The times required are tiny, for
instance, about 9ms fromQ8 of PubChem and clearly smaller
than 2ms for other queries. The average number of rounds
betweenSP and client is usually small (Fig. 8(g)). Since many
invalid partial mappings are pruned, the total message sizesent
to the client (Fig. 8(h)) is small (around 150KB in worst case).
In each round, at most 16KB of messages are sent.
Comparison with the näıve method. Assume that the whole
database was transferred to the client. We run one of the
most popular non-indexing subgraph isomorphism algorithms
VF2 [7]. The total AQT for all query sets onAids and
PubChem at the client side are up to 20ms and 30ms, respec-
tively. In comparison, after the encryption for each query,the
computation of our techniques at the client side requires only
a few milliseconds on average (Fig. 8(f)). That is, we save
most of the computations at the client.

7.2.2 Effectiveness of SPEnum

In Fig. 9, we verify the effectiveness ofSPEnum by varying
the starting pruning depthd to (3, 4, 5). The query set isQ8.
Performance at the SP. Fig. 9(a) shows the query time at
SP. It is obvious that as the valued increases, the search
space increases, the query time increases.
Performance at the client side. Fig. 9(b) shows the decryp-
tion time at the client side increases withd and its trend closely
follows that of the query times. The average number of rounds
betweenSP and client (Fig. 9(c)) decreases as the valued
increases because the protocol inSPEnum is a BFS. The
message size increases according tod, as shown in Fig. 9(d).
However, importantly, by Prop. 6.2, the probabilities thatSP
can determine the structures decrease withd increases.

7.2.3 Effectiveness of SPRefine

We verify the effectiveness ofSPRefine by varying SI. We
rangedmaxH, and the maximum values forMaxDeg, Occur
andSup from 4 to 8. In this experiment, the query set isQ8,
and the starting pruning depthd of SPEnum is 3.
Encryption time . Figs. 10 (a) and (b) show the encryption
times of G and Q, respectively. As the maximum values
increase, the encryption times of bothG andQ increase.

13

 0

 200

 400

 600

 800

 1000

 1200

A P A P A P

A
vg

. e
nc

ry
pt

io
n

tim
e

(m
s)

Max. value of para. in SI

Generate SI
Encrypt M
Encrypt SI

864

(a) Avg. encryption time ofG

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

A P A P A P

A
vg

. e
nc

ry
pt

io
n

tim
e

(m
s)

Max. value of para. in SI

Generate SI
Encrypt M
Encrypt SI

864

(b) Avg. encryption time ofQ

 0

 20

 40

 60

 80

 100

 120

 140

4 6 8

A
vg

. %
 o

f r
ef

in
em

en
t p

ru
ne

Max. value of para. in SI

AIDS
PUBCHEM

(c) Avg. % of Qns pruned bySPRefine

 1

 10

 100

4 6 8
A

vg
. q

ue
ry

 ti
m

e
(m

s)

Max. value of para. in SI

AIDS
PUBCHEM

(d) AQT on Qns pruned bySPRefine

 0

 400

 800

 1200

 1600

 2000

A P A P A P

A
vg

. q
ue

ry
 ti

m
e

(m
s)

Max. value of para. in SI

SPRefine
SPMatch
SPEnum

864

(e) AQT on non-prunedQns

 0

 2

 4

 6

 8

 10

 12

4 6 8

A
vg

. d
ec

ry
pt

io
n

tim
e

(m
s)

Max. value of para. in SI

AIDS
PUBCHEM

(f) Avg. decryption time

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 6 8

A
vg

. #
 o

f r
ou

nd
in

g

Max. value of para. in SI

AIDS
PUBCHEM

(g) Avg. # of roundings

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

4 6 8

A
vg

. m
es

sa
ge

 s
iz

e
(K

B
)

Max. value of para. in SI

AIDS
PUBCHEM

(h) Avg. message size the client received

Fig. 10. Effectiveness of SI.

Effectiveness ofSPRefine. Fig. 10(c) shows the average per-
centage of queries that are pruned bySPRefine with different
maximum values inSI. We note that the pruning effectiveness
on different maximum values are similar to each other, which
are almost 96% for queries on bothAids andPubChem. That
means for eachvj ∈ V (Q), vk ∈ V (G), h-Hopℓ(v) may differ
with each other within4 hops with very high probabilities
if M(j, k) is flipped to 0. However, theSP has no precise
knowledge about the encryptedSIs. Further, by Prop. 6.3, the
probability that theSP can determine the structures decreases
asmaxH increases.
Performance at theSP . Fig. 10(d) shows the average query
time of queries pruned bySPRefine, which mainly involves
the time for private inner products. As expected, the times are
small. Since the pruning ofSI is very similar under different
maximum values (by Fig. 10(c)), the query times for those
non-pruned queries (the queries passSPRefine) are similar,
shown in Fig. 10(e). The times are around 400ms and 1.4s for
Aids andPubChem, respectively.
Performance at the client side. Since the query times are
similar to different maximum values onSI, the decryption
times at the client side shown in Fig. 10(f) are also very
similar. The average number of rounds between theSP and
the client are shown in Fig. 10(g), which are around 8 and 11
for Aids andPubChem respectively. The size of the received
messages at client is shown in Fig. 10(h), which are around
17KB and 145KB, respectively.

8 RELATED WORK

Privacy-preserving graph query. Cao et al. [2] propose to
support subgraph query over an encrypted database with a

number of small graphs. Their work protects the privacy of
the query, index and data features. This work does not solve
the problem of the subgraph isomorphism testings of the
candidate graphs. Such testings are required to be performed
at the client side. Cao et al. [1] study tree pattern queries
over encrypted XML documents. The traversal order for each
query is predetermined. In the context of graphs, the order
cannot be predetermined. In our recent work [34], [35], we
propose privacy-preserving reachability query services over
encrypted index and data to preserve both of the query and
graph structure, under the same system model of this work.
He et al. [17] analyze the vertex reachability of the graph
data, with the preservation of edge privacy. Kundu et al.
[22] propose a series of methods to verify the authenticity
of a given portion of datawithout any leakage of extraneous
information about the data (tree/graph/forest). Gao et al.[11]
propose neighborhood-privacy protected shortest distance in
the paradigm of cloud computing. This method aims to p-
reserve all of the neighborhood connections and the shortest
distances between each two vertices in outsourced graph data.
However, it allows some connection and distance information
between vertices to be exposed. Mouratidis et al. [26] propose
the shortest path computation with no information leakage by
using the PIR [6] protocol. The high computational cost of
PIR is known to be a concern. Karwa et al. [20] present some
novel algorithms for releasingsubgraph countsof a graph by
satisfying the differential privacy of edges, which requires that
the presence or absence of a certain edge be hidden. Fan et al.
[10] propose efficient authenticated subgraph query services
under the same setting of data outsourcing. In [9], Fan et al.
propose an asymmetric structure-preserving subgraph query,
where the privacy of the data graphs has been relaxed.
Subgraph isomorphism query. Ullmann [30] is a seminal
algorithm for subgraph isomorphism. Its basic idea isthe
search with backtracking with respect to the matrix that
represents possible isomorphic relationships. In the recent
decade, several algorithms (e.g., VF2 [7], QuickSI [29] and
Turboiso [14]) have been proposed to enhance the Ullmann’s
algorithm. They all require totraversethe query on graph data.
For instance, VF2 [7] relies on a set of state transitions and
traversals on the graph and query. QuickSI [29] optimizes the
ordering in traversals of graphs. Turboiso [14] exploits neigh-
borhood information and local regions of vertices to further
optimize query performance. Turboiso involves determining an
optimal traversal in query processing. However, the traversals
themselves carry structural information, which makes privacy
preservation complicated if it is possible at all.

9 CONCLUSION

This paper presents the first work on query services
for structure-preserving subgraph isomorphism(SPsubIso).
SPsubIso comprises three major steps: (1)Structure-
preserving matching(SPMatch) involves a novelcyclic group
based encryption(CGBE) scheme to compute whether a
mapping betweenQ andG is valid, in an encrypted domain.
(2) Structure-preserving enumeration(SPEnum) comprises
a protocol that involves the client for further pruning. (3)
Structure-preserving refinement(SPRefine) exploits a static

14

index for pruning the search space of possible mappings. Our
analysis shows that the structural information is preserved
under SPMatch and presents the privacy preservation due
to optimizations. Our experiments on both real and synthetic
datasets confirm thatSPsubIso is efficient. In future work, we
will investigate relaxations of privacy requirements (e.g., [9]).

REFERENCES

[1] J. Cao, F.-Y. Rao, M. Kuzu, E. Bertino, and M. Kantarcioglu. Efficient
tree pattern queries on encrypted xml documents. InEDBT, 2013.

[2] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. Privacy-preserving
query over encrypted graph-structured data in cloud computing. In
ICDCS, 2011.

[3] R. Chen, B. Fung, P. Yu, and B. Desai. Correlated network data
publication via differential privacy.The VLDB Journal, in press.

[4] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: privacy preserving
network publication against structural attacks. InSIGMOD, 2010.

[5] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free
query processing on graph databases. InSIGMOD, 2007.

[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information
retrieval. J. ACM, 45:965–981, 1998.

[7] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomor-
phism algorithm for matching large graphs.PAMI, IEEE, 26(10):1367–
1372, 2004.

[8] Daylight Chemical Information Systems, Inc. Daylight web services
manual.http://www.daylight.com/dayhtml/doc/webservices/index.html, 2011.

[9] Z. Fan, B. Choi, J. Xu, and S. S. Bhowmick. Asymmetric structure-
preserving subgraph query for large graphs. InICDE, 2015.

[10] Z. Fan, Y. Peng, B. Choi, J. Xu, and S. S. Bhowmick. Towardsefficient
authenticated subgraph query service in outsourced graph databases.
IEEE Trans. on Services Computing, 7(4):696–713, 2014.

[11] J. Gao, J. X. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang. Neighborhood-
privacy protected shortest distance computing in cloud. InSIGMOD,
2011.

[12] C. Gentry. A fully homomorphic encryption scheme. 2009.
[13] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service.

In ICDE, 2002.
[14] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: towards ultrafast and robust

subgraph isomorphism search in large graph databases. InSIGMOD,
2013.

[15] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. igraph: a framework for
comparisons of disk-based graph indexing techniques. InPVLDB, 2010.

[16] H. He and A. K. Singh. Closure-tree: An index structure for graph
queries. InICDE, 2006.

[17] X. He, J. Vaidya, B. Shafiq, N. Adam, and X. Lin. Reachability analysis
in privacy-preserving perturbed graphs. InWI-IAT, 2010.

[18] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for
range queries. InVLDB, 2004.

[19] H. Hu, J. Xu, Q. Chen, and Z. Yang. Authenticating location-based
services without compromising location privacy. InSIGMOD, 2012.

[20] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private
analysis of graph structure. InVLDB, 2011.

[21] J. Katz and Y. Lindell.Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2007.

[22] A. Kundu, M. J. Atallah, and E. Bertino. Efficient leakage-free
authentication of trees, graphs and forests.IACR Cryptology ePrint
Archive, 2012:36, 2012.

[23] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth
comparison of subgraph isomorphism algorithms in graph databases.
In PVLDB, 2013.

[24] K. Liu and E. Terzi. Towards identity anonymization on graphs. In
SIGMOD, 2008.

[25] D. A. Menasće. Qos issues in web services.IEEE Internet Computing,
2002.

[26] K. Mouratidis and M. L. Yiu. Shortest path computation with no
information leakage. 2012.

[27] NCBI. PubChem.http://pubchem.ncbi.nlm.nih.gov/, 2014.
[28] NIC. AIDS. http://dtp.nci.nih.gov/docs/aids/aidsdata.html, 2004.
[29] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:

an efficient algo. for testing subgraph isomorphism. InPVLDB, 2008.
[30] J. R. Ullmann. An algorithm for subgraph isomorphism.J. ACM, 23:31–

42, 1976.

[31] H. Wang, J. Li, J. Luo, and H. Gao. Hash-base subgraph query
processing method for graph-structured xml documents. InPVLDB,
2008.

[32] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis. Secure knn
computation on encrypted databases. InSIGMOD, 2009.

[33] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based
approach. InSIGMOD, 2004.

[34] P. Yi, Z. Fan, and S. Yin. Privacy-preserving reachability query services
for sparse graph.ICDE GDM Workshop, 2014.

[35] S. Yin, Z. Fan, P. Yi, B. Choi, J. Xu, and S. Zhou. Privacy-preserving
reachability query services. InDASFAA, 2014.

[36] D. Yuan and P. Mitra. Lindex: a lattice-based index for graph databases.
The VLDB Journal, 22:229–252, 2012.

[37] B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. InICDE, 2008.

[38] L. Zou, L. Chen, and M. T.̈Ozsu. k-automorphism: a general framework
for privacy preserving network publication. InVLDB, 2009.

[39] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding in a large
graph database. InEDBT, 2008.

Zhe Fan is a PhD student in the Department of
Computer Science, Hong Kong Baptist Univer-
sity. He received his BEng degree in Computer
Science from Sourth China University of Tech-
nology in 2011. His research interests include
graph-structured databases. He is a member
of the Database Group at Hong Kong Baptist
University. (http://www.comp.hkbu.edu.hk/∼db/).

Byron Choi is an associate professor in the
Department of Computer Science at the Hong
Kong Baptist University. He received the bache-
lor of engineering degree in computer engineer-
ing from the Hong Kong University of Science
and Technology (HKUST) in 1999 and the MSE
and PhD degrees in computer and information
science from the University of Pennsylvania in
2002 and 2006, respectively.

Qian Chen is a PhD student in the Depart-
ment of Computer Science, Hong Kong Bap-
tist University. He received his BEng degree
in Computer Science from East China Normal
University in 2011. His research interests include
privacy-aware computing. He is a member of the
Database Group at Hong Kong Baptist Universi-
ty. (http://www.comp.hkbu.edu.hk/∼db/).

Jianliang Xu is a professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity. He received his BEng degree in computer
science and engineering from Zhejiang Univer-
sity, Hangzhou, China, in 1998 and his PhD
degree in computer science from Hong Kong
University of Science and Technology in 2002.
He held visiting positions at Pennsylvania State
University and Fudan University.

Haibo Hu is a research assistant professor in
the Department of Computer Science, Hong
Kong Baptist University. Prior to this, he held
several research and teaching posts at HKUST
and HKBU. He received his PhD degree in Com-
puter Science from the HKUST in 2005. His
research interests include mobile and wireless
data management, location-based services, and
privacy-aware computing.

Sourav S Bhowmick is an Associate Profes-
sor in the School of Computer Engineering,
Nanyang Technological University. He is a Vis-
iting Associate Professor at the Biological En-
gineering Division, Massachusetts Institute of
Technology. He held the position of Singapore-
MIT Alliance Fellow in Computation and Sys-
tems Biology program (05’-12’). He received his
Ph.D. in computer engineering in 2001.

15

 0

 200

 400

 600

 800

 1000

 1200

123 123 123 123 123 123

A
vg

. q
ue

ry
 ti

m
e

(m
s)

Query size

SPRefine
SPMatch
SPEnum

Q24Q20Q16Q12Q8Q4

(a) AQT on non-prunedQns

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

Q4 Q8 Q12 Q16 Q20 Q24

A
vg

. d
ec

ry
pt

io
n

tim
e

(m
s)

Query size

SYN-1
SYN-2
SYN-3

(b) Avg. decryption time

Fig. 11. Performance on synthetic dataset.

APPENDIX A
EXPERIMENTS ON SYNTHETIC DATASETS

In this appendix, we highlight the performance ofSPsubIso

on synthetic datasets. For the synthetic datasets, we selected
three synthetic datasets (denoted asSYN-1, SYN-2 andSYN-3)
from [15]. We note that the number of distinct vertex labels
significantly affects the performance. We varied the number
of distinct vertex labels of these three datasets to 20, 50, and
80, respectively. The average size and density of each graph
are 30 and 0.5 respectively.

We note that their experimental results are similar to those
of real datasets (presented in Sec 7). Hence, we only report
two major performance results, shown in Fig. 11. Fig. 11 (a)
reports the average query times on non-pruned queries. All of
them are no larger than 1s. Fig. 11 (b) shows the decryption
time at the client side. The decryption time onQ16 underSYN-
2 is the largest, which is only 5ms. In general, the average time
spent at the client side is very small.

APPENDIX B
THE PROOF OF PROPOSITION 6.3

Proposition 6.3 UnderSPRefine, the following holds:
• If M(j, k) is not flipped, there is no information leakage;

and
• Otherwise,

Pr[A(Q) = 1] = P (a+1)
P (m)(P (a+1)−1) ,and

Pr[A(G) = 1] = P (b+1)
P (n)(P (b+1)−1) ,

(9)

where a = |MaxDeg(Q)|maxH, b = |MaxDeg(G)|maxH,
andMaxDeg(G) is the maximum degree of the vertices
of G.
Proof: Recall that for anyvj ∈ V (Q), vk ∈ V (G),

SIQk
[vj] or SIGk

[vk] themselves do not leak any structural
information against CPA by Lemma. 6.5. Therefore, we on-
ly consider the private inner product betweenSIQk

[vj] and
SIGk

[vk]. For eachM(j, k) = 1, we divide it into two
exhaustive cases as follows:

Case1: If M(j, k) is not flipped,SIQ[vj] · SIG[vk] = SIQ[vj]
· SIQ[vj] by Prop. 5.4. By Lemma 6.5,SP cannot learn any
structural information fromSIQk

[vj] and SIGk
[vk]. The only

information theSP can deduce is that the (four) conditions
listed in Prop. 5.3 hold. Since all the values ofMaxDeg, Occur,
PreLabel andSup are encrypted, theSP does not learn any
structural information (i.e., Q and G) of vj and vk. Hence,
there is no information leakage; and

Case2: If M(j, k) is flipped, SIQ[vj] · SIG[vk] 6= SIQ[vj] ·
SIQ[vj]. Similar to Case1, theSP cannot deduce structural

information from this, due to the encrypted operations. How-
ever, the flip ofM(j, k) implies that there is a violation caused
by vj and vk between the subgraphsQa andGb, whereQa

(resp.,Gb) is the induced subgraph ofQ (resp.,G), containing
at mosta (resp.,b) vertices that are reachable fromvj (resp.,
vk) within maxH hops. This affects the probabilities similar
to that in the proof of Prop. 6.2 as follows:

• Vertices inV (Qa) are all isolated. The number of the
possible Q containing such aQa is 2m

2−(a+1)2 =
P (m)/P (a+ 1); and

• Vertices in V (Gb) are connected to all other vertices.
The number of the possibleG containing suchGb is
2n

2−(b+1)2 = P (n)/P (b+ 1).

We obtain the probabilities as follows (similar to the
derivations of Prop. 6.2’s proof): Pr[A(Q) = 1] =

1
P (m)−P (m)/P (a+1) = P (a+1)

P (m)(P (a+1)−1) , and Pr[A(G) = 1] =
1

P (n)−P (n)/P (b+1) = P (b+1)
P (n)(P (b+1)−1) , respectively.

Finally, each flip is independent because the subgraph of
Qa andGb of eachSPRefine can be arbitrarily different.

