
Detecting and Representing Relevant Web Deltas in Whoweda

Sourav S Bhowmick1 Sanjay Madria2 Wee Keong Ng1

College of Engineering1, Department of Computer Science2,
School of Computer Engineering, University of Missouri-Rolla,
Nanyang Technological University, Singapore 639798 Rolla, MO 65409
{assourav,awkng}@ntu.edu.sg madrias@umr.edu

Abstract

In this paper, we present a mechanism for detecting and representing changes given the old and

new versions of a set of interlinked Web documents, retrieved in response to a user’s query. In

particular, we show how to detect and represent web deltas, i.e., changes in the Web documents

that are relevant to a user’s query in the context of our web warehousing system called Whoweda

(W arehouse of Web Data). In Whoweda, Web information are materialized views stored in

web tables in the form of web tuples. These web tuples, represented as directed graphs, can be

manipulated using a set of web algebraic operators. In this paper, we present a mechanism to

detect relevant web deltas using web algebraic operators such as the web join and the outer web

join. Web join is used to detect identical documents residing in two web tables whereas outer web

join, a derivative of web join is used to identify dangling web tuples. We show how to represent

these changes using delta web tables. We develop formal algorithms for the generation of delta

web tables identifying web documents which have been added, deleted or modified since the last

query.

Keywords: web deltas, web warehouse, web join, outer web join, delta web tables, algorithm.

1 Introduction

The Web offers access to large amounts of heterogeneous information and allows this information

to change at any time and in any way. These rapid and often unpredictable changes to the infor-

mation create a new problem of detecting and representing changes. This is a challenging problem

because the information sources in the Web are autonomous and typical database approaches to

detect changes based on triggering mechanisms are not usable. Moreover, these sources typically

do not keep track of historical information in a format that is accessible to the outside user [10].

1

Recently, there has been increased research interest in detecting changes in structured and

semistructured data [13, 14, 15]. In this paper, we present a mechanism for detecting and repre-

senting changes in Web documents (henceforth referred to as web deltas) which are relevant to a

user’s query using two web algebraic operators, i.e. web join and outer web join, in the context of

our web warehousing system called Whoweda(W arehouse O f Web Data) [4, 7] 1. Such a mech-

anism for detection and representation of web deltas may be used by the following types of web

users: (1) Web site administrators: By scanning the changes, administrators will be sure whether

the changes are consistent with any policies for content or format without having to review the

entire set of pages at the same level of detail. (2) Customers of E-commerce Web sites: A user

may wish to monitor new products, services or auction on E-commerce Web sites. (3) Analysts for

gathering competitive intelligence: Companies can monitor evolution of their competitors’ Web

sites to discover their new directions or offerings over a period of time that may influence their

market positions. (4) Developers of web mining applications: By detecting and representing web

deltas over a broad vistas of time, our system can be used as the foundation for mining infor-

mation related to trends, patterns etc.. (5) Wireless users: The ability to download or highlight

only changes instead of a complete Web page can be a very desirable feature for wireless users

using handheld devices.

1.1 Motivating Example

We illustrate with an example some of the changes that may take place in the Web. We will use

this as a running example in the rest of this paper.

Assume that there is a Web site at http://www.panacea.gov/ which provides information

related to drugs used for various diseases. For instance, the structure of the site as on 15th January,

2001 is shown in Figure 1(a). We can see that the Web page at http://www.panacea.gov/

(denoted by a0) contains a list of diseases. From this list, each link of a particular disease

points to a Web page (denoted by b0, b1, b2 etc. for various drugs) containing a list of drugs

used for prevention of the disease. For example, the link labeled “AIDS” in the Web page at

http://www.panacea.gov/ points to a document (denoted by b0) containing the list of drugs

(i.e., “Indavir”, “Ritonavir” etc.) used against AIDS. From the hyperlinks associated with each

drug, one can probe further to find documents (denoted by u0, u1 etc.) containing a list of various

issues related to a particular drug, i.e., “description”, “manufacturers”, “clinical pharmacology”,

“uses”, “side-effects”, “warnings” etc.. From the hyperlinks associated with each issue, one can

retrieve details of these issues for a particular drug. Note that in Figure 1, we only show the links
1A shorter version of this paper appeared in [3].

2

AIDS

Cancer

Drug List

Indavir

Ritonavir

Side effects

Uses

Side effects

Uses

b0

u0

u1

k1

d1

k0

d0

a0

Side effects

uses
b1

d2

k2

Heart Disease

Hirudin

Niacin

Uses

Side-effects

uses

b2
u2

u3

d3

k3
uses

k4

Side-effects
b3

Diabetes

Vasomax

Caverject

Side effects

uses

Side effects
b4

u4 u5 u6

u7

d6

d5

Impotence

Uses k6

u8

Disease
Alzheimer’s

Side effects

uses
b5

k12

d12

k7

http://www.panacea.gov/
Uses

d4 k5

(a) Web site on 15th January, 2001.

AIDS

Cancer

Drug List

Indavir

Ritonavir

Side effects

Uses

Side effects

Uses

b0

u0

u1

d1

k0

d0

a0

Side effects

b1

d2

k2

uses
k1

Heart Disorder

Hirudin

Niacin

uses

Side-effects

uses

b2
u2

u3

d3

k3

Uses

k4

d7

side-effects

b5
Alzheimer’s Disease

Vasomax
Side effectsu9

d8

b4
uses

k8

u7
Side effects

d6

Caverject

Impotence

u12

Uses

k9

Side effects

d9

Viagra

k7
Uses

Tolcapone
u10 u11 d10

k10

Parkinson’s
 Disease

b6

http://www.panacea.gov/

(b) Web site on 15th February, 2001.

Figure 1: Web site at http://www.panacea.gov/.

related to “uses” and “side-effects” of drugs to simplify visualization.

Let us consider some modifications to this Web site on 15th February, 2001 as shown in Fig-

ure 1(b). The black boxes, the grey boxes and the boxes with thick boundaries in this figure (and

all the figures in this paper except Figure 4) depict addition of new documents, deletion of existing

documents and modification of existing documents respectively. Furthermore, the dashed dotted

arrows indicate addition, deletion or modification of hyperlinks. Observe that the modification of

the link structure of “Impotence”. Previously, the information related to “Vasomax”, a drug used

against “Impotence” was provided by the Web site at http://www.pfizer.com/ (Web pages u4,

u5, u6, d5 and k6 in Figure 1(a) belong to the Web site at http://www.pfizer.com/). That is,

the link labeled as “Vasomax” in b4 in Figure 1(a) was a global link. Now this information is

provided locally by http://www.panacea.gov/ and the structure of inter-linked documents are

modified as shown in Figure 1(b) (documents u9, d8 and k8).

Suppose on 15th January, 2001, a user wishes to find out periodically (say every 30 days)

information related to side effects and uses of drugs for various diseases and also changes to this

information compared to its previous version. This query requires access to previous states of the

Web site and a mechanism to detect these changes automatically, features that are not supported

by the Web or the existing search engines. Thus, we need a mechanism to compute and represent

3

changes in the context of Web data.

1.2 Overview

The work on change detection and representation reported in this paper has four key character-

istics:

• Relevant web deltas: We focus on detecting relevant web deltas. In particular, our goal

is to detect and represent web deltas that are relevant to a user’s query, not any arbitrary

web deltas.

• Changes in inter-linked Web documents: Our focus is on detecting and representing

relevant changes given old and new versions of a set of inter-linked Web documents. In

particular, we are interested in detecting those Web documents in a Web site which are

added to or deleted from the site, or those documents which are no longer considered relevant

to a user’s query. We also want to identify a set of documents which have undergone content

modification compared to their antecedent. Furthermore, we wish to determine how these

modified Web documents are related to one another and with other relevant Web documents

in the context of a user’s query.

• Web algebraic operators: We present a mechanism for detecting and representing rel-

evant web deltas using a set of web algebraic operators. These operators are applied on a

sequence of Web data snapshots to infer changes.

• Static Web pages: Web documents that do not provide the last modification date, such

as the output from Common Gateway Interface (CGI) scripts are not considered in this

paper for change detection.

Our goal is to detect and represent changes in Web data using a set of web algebraic operators

in the context of Whoweda, a data warehousing system for managing and manipulating relevant

data extracted from the Web [4]. Informally, our web warehouse is conceived of as a collection

of web tables. A set of web tuples and a set of web schemas [6] is called a web table. A web

tuple is a directed graph consisting of a set of nodes and a set of links and satisfies a web schema.

Nodes and links contain content, metadata and structural information associated with the Web

documents and hyperlinks among the Web documents. To facilitate manipulation of Web data

stored in the web tables, we have defined a set of web algebraic operators (i.e. global web coupling ,

web join, web select etc..) [3, 4, 7, 8, 22].

Specifically, a web join operator is used to combine identical data residing in two web tables.

In web join, the web tuples from two web tables (say W1 and W2) containing joinable nodes

4

(nodes participating in web join operation) are concatenated into a single joined web tuple that

can be materialized in a web table. A pair of nodes are joinable if they are identical in content.

We consider two nodes or Web documents identical when they have the same URL and last

modification date. Observe that based on this definition of identity of Web documents, same

documents stored in mirror sites having different URL are not considered identical. The web

tuples wa ∈ W1 and wb ∈ W2 are concatenated over the joinable nodes to create a joined web

tuple. The joined web table contains such a set of joined web tuples.

The web tuples in W1 and W2 that do not participate in the web join operation (dangling web

tuples) are absent from the joined web table. The outer web join operator, a derivative of web

join, identifies these dangling web tuples in W1 and W2. We define two flavors of outer web join,

i.e., left and right outer web join to identify the dangling web tuples from W1 and W2 respectively.

As Web data in our web warehouse are materialized views stored in the form of web tables, any

changes to the relevant Web data are also reflected in the corresponding web tables. Consequently,

in order to detect web deltas, we materialize the old and new versions of data in two web tables.

Next, we create a set of web tables by manipulating these input web tables using the web join and

outer web join operators. Finally, we create a set of delta web tables by further manipulating the

joined and outer joined web tables. Delta web tables encapsulate the changes that have occurred

in the Web such as addition, modification or deletion of a set of Web documents in the context

of a user’s query.

2 Related Work

In recent years, several tools have become available to address the problem of determining when

an HTML page has changed. URL-minder [1] runs as a service on the Web itself and sends

an email when a page changes. However, the need to send URLs explicitly through a form is

cumbersome and may not be a feasible option when there is a large number of URLs to track.

The AT & T Internet Difference Engine (AIDE) [16] is a system that finds and displays changes

to pages on the World Wide Web. A tool called HtmlDiff highlights changes between versions

of a page, and a graphical interface to view the relationship between pages over time. HtmlDiff

automatically compares two HTML pages and creates a “merged” page to show the differences

with special HTML markups. TopBlend [11] is an HTML differencing tool implemented in Java

and significantly outperforms the old HtmlDiff in the most time-consuming jobs.

AIDE also supports recursive tracking and differencing of a page and its descendants. When

recursion is specified, changes to the child pages are reported separately by default. A user may

5

specify a number of operations in AIDE which includes registering a URL including the degree of

recursion through links to other pages, view textual differences between a pair of versions, view a

graph showing the structure of a page etc.

WebGUIDE (Web Graphical User Interface to a Difference Engine) [17] is another tool that

supports recursive document comparison: users may explore the differences between the pages

with respect to two dates. Differences between pages are computed automatically and summarized

in a new HTML page, and the differences in link structure are shown via graphical representations.

WebGUIDE is a combination of two tools, Ciao [12] and the AIDE. With Ciao, the high level

structural differences are displayed as graphs that show the relationships between pages using

colored nodes to indicate which pages have been modified. Using AIDE, the low-level textual

differences are illustrated by marking changes between versions and modifying anchors to cause

documents reached from that page to be annotated. WebGUIDE allows a user to issue queries

for specific types of deltas.

The AIDE and WebGUIDE have certain limitations. First, we believe that specifying a set of

URLs to track changes may not be feasible when there is a large number of URLs. Second, the

recursion specification is restrictive. That is, it selects all the children of a specified document(s),

however, in reality, a user may often be interested in only some of those links. On top of that, the

user may wish to track changes of successive inter-linked documents satisfying some hyperlinked

structure. Such constraints cannot be specified in AIDE. Third, AIDE displays all the changes

in the documents. In reality we may not be interested in all the changes but only some of these

changes. Hence, it is necessary to be able to query these changes rather than browsing them to

find the relevant changes. This is extremely useful when the number of documents monitored is

large.

In [25], the authors define a change detection problem for ordered trees, using insertion,

deletion and label-update as the edit operations. In [14], the authors discuss a variant of change

detection problem for ordered trees using subtree moves as an edit operation in addition to

insertions, deletions and updates, and presented an efficient algorithm for solving it. They focus

on the problem of detecting changes given the old and new versions of hierarchically structured

data. Change detection problem for unordered trees is presented in [13]. The authors present

efficient algorithms to detect changes in operations that moves an entire sub-tree of nodes and

that copies an entire sub-tree. More recently in [10], a snapshot-delta approach has been used

for representing changes in semistructured data. The authors present a simple and general model

called DOEM for representing changes and also present a language called Chorel for querying

6

changes represented in DOEM . This model is founded on the OEM data model and the Lorel

query language [2]. It uses annotations on the nodes and arcs of an OEM graph to represent

changes. Intuitively, the set of annotations on a node or arc represents the history of that node

or arc. An important feature of this approach is that it represents and queries changes directly as

annotation on the affected area instead of representing them indirectly as the difference between

database states. Furthermore, they describe the design and implementation of an application

of change management called a Query Subscription Service(QSS). QSS can be used to notify

subscribers of relevant changes in semistructured information sources.

DOEM was not specifically developed for the Web, and the model does not distinguish between

graph edges that represent the connection between a document and one of its parts, and edges

that represent a hyperlink from one Web document to another. We take a different approach as

compared to [10, 14]. Our approach is specifically developed for finding changes to Web data.

Rather than finding changes to the internal structure and content of Web documents, in this

paper we focus on identifying changes to a set of hyperlinked Web documents relevant to a user’s

query. Our approach can easily be extended to detect and represent changes to internal structure

and content of Web documents.

WebCQ system [20] is a prototype system for Web information monitoring and delivery. It

provides a personalized notification of what and how Web pages of interest have been changed

and personalized summarization of Web page changes. Users’ update monitoring requests are

modelled as continual queries [21] on the Web. WebCQ has the same limitations as of AIDE

described earlier.

Recently, XML research community has recognized the importance of change management

problem and in [15], the authors have discussed change management in the context of XML data.

Their approach of change management is based on tree-comparison. However, they do not address

the problem of detecting changes to hyperlinked XML documents. Moreover, we only find changes

that affect user’s query responses. However, in their approach, they find changes between any

two given versions of XML data. Our approach can be extended for detecting and representing

changes in XML data.

Finally, our approach is different from graph matching and isomorphic graph problems. A

matching in a graph is a set of edges such that every vertex of the graph is on at most one edge

in the set. Two graphs are isomorphic if one can label both graphs with the same labels so that

every vertex has exactly the same neighbors in both graphs. Some of the related research on

graph matching problems are [24, 27, 28]. In our approach, two non-isomorphic graphs may also

7

a0
Diabetes

b3 d4 k5

Alburerol
Side -effects of Albuterol

a0
Vasomax

b4
Impotence

a0
AIDS

b0
Indavir

d0

Indavir
Side effects of

uses of
Indavirk0

Ibuprofen

a0

Alzheimer’s Disease

k12

uses of

Side effects of

Ibuprofen

u0

u1

Cancer

a0

b1

Side effects of
Beta Carotene

Beta Carotene
uses of

a0 Heart
Disease Hirudin

b2

d3

uses of
Hirudin

k3

Side effects of
Hirudin

d2

k2
d12b5

u4

Uses of Albuterol

u7

u8

u2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

a0
AIDS

b0
Ritonavir

Side effects of
Ritonavir

d1

uses of
Ritonavir

k1 Impotence Cavarject

a0

d6
Side effects of

Cavarject

b4

uses of
Cavarject

k7

http://www.panacea.gov/

http://www.panacea.gov/

u5

u6

Vasomax
uses of

k6

d5

Side effects of
Vasomax

Figure 2: Partial View of web table “Drugs”.

join if some of the nodes are identical. Thus, we focus more on the node content similarity rather

than the structure of the graph.

3 Preliminaries

In this section, we provide the framework for our subsequent discussion on change detection.

3.1 WHOM - The Data Model of Whoweda

The WareHouse Object Model (WHOM) [4] serves as the basic data model for our web warehousing

system. Informally, our web warehouse can be conceived of as a collection of web tables. A web

table is a 3-tuple W = 〈Z, S, T 〉 where Z is the web table name, S is a set of web schemas [6] and

T is a set of web tuples satisfying S. A web tuple is a directed graph consisting of sets of node and

link objects (hereafter, referred to as nodes and links respectively for brevity). Figures 2 and 3

are examples of web tuples in two web tables 2. Web schemas are used to bind a set of web tuples

in a web table and defines the structure of a set of data in the warehouse. The reader may refer

to [6] for details on web schemas.

Intuitively, a node represents the metadata associated with a Web document and the content

and structure of the document (excluding hyperlinks in the document). Specifically, it consists

of two components: different metadata associated with the document (such as URL, date and

size etc.) and a directed labeled tree to represent the content and structure of the document.

Similarly, a link consists of a set of link meta-attribute/value pairs (such as target URL, source

URL and link type[23]) and a link data tree. Link data tree is a directed labeled tree to represent
2Note that in all figures related to web tables, the web tuples are numbered for reference.

8

d0

a0
AIDS

b0
Indavir

Side effects of
Indavir

uses of
Indavir

a0
Heart

Disorder

b2

Niacin
d7

uses of
Niacin

Side effects of

u0

k0
u1

u2

u3

k7

Side effects of
Niacin

u9a0
Vasomax

b4
Impotence

Side effects of
Vasomax

uses of
Vasomax

Impotence Cavarject

a0

Cavarject

b4

uses of
Cavarject

a0 b4
Impotence Viagra Side effects of

d9
uses of
Viagra

Viagra

d8

k8

u7

k7

d6

u12

a0

Parkinson’s
Disease

Tolcapone
Side effects of

Tolcapone

uses of
Tolcapone

k10

b6 u10
k9

u11 d10

(1)

(4)

(5)

(7)

(8)

(9)

(6)

(3)

(2)

a0
Hirudin

b2

d3

Heart

Disorder

Side effects of
Hirudinuses of

Hirudin
k3

a0
AIDS

b0
Ritonavir

d1

Side effects of
Ritonavir

uses of
Ritonavir

k1

Cancer

a0

b1
Side effects of

Beta Carotene

d2uses of
Beta Carotenek2

http://www.panacea.gov/

Figure 3: Partial View of “New Drugs”.

the structure and content of an HTML or XML link 3. In Figures 2 and 3, the boxes represent

node objects and the arrow between two nodes represents the link object. The reader may refer

to [4] for complete discussion on Web data representation.

3.2 Global Web Coupling

Global web coupling [4, 8, 22] enables a user to retrieve a set of inter-linked documents satisfying

a web query , regardless of the locations of the documents in the Web. To initiate a global

web coupling, the user specifies a web query in the form of a coupling query [5]. The global web

coupling operator Γ takes in a coupling query G and returns a web table W = 〈Z, S, T 〉 containing

a set of web tuples T extracted from the WWW satisfying the query and a set of web schemas S

generated from G and T . That is, W = Γ(G). Each web tuple matches a portion of the WWW

satisfying the constraints described in G. These constraints are imposed on the metadata, content

and structure of Web documents and hyperlinks. We have omitted discussion on the coupling

query here for space constraints. We assume that the sets of inter-linked documents retrieved by

the given coupling query are materialized in the web tables Drugs and New Drugs respectively

as shown in Figures 2 and 3. Each web tuple in these tables contains information about side

effects and uses of a drug used for a particular disease. Observe that in Figure 1(a) information

related to the drug “Niacin” used for Heart diseases (documents u3 and k4) is not materialized

in Drugs as it does not satisfy the coupling query. However, it is materialized in New Drugs as

it satisfies the coupling query on 15th February due to the addition of a document related to the

side-effects of “Niacin” (d7) to the Web site at http://www.panacea.gov/. Notice that the web
3We only consider simple and extended XML links.

9

tuples related to Diabetes and Alzheimer’s disease are not materialized in New Drugs due to the

removal of documents b3, d4, k5, d12 and k12 from the Web site.

3.3 Storage of Web Objects

In this section, we briefly introduce various physical storage structures in Whoweda for storing

Web objects, i.e., nodes, links, Web documents, web tables etc. We introduce three types of

storage structures; warehouse node pool , warehouse document pool and web table pool for storing

Web objects. The warehouse node pool contains distinct nodes from all web tables in our web

warehouse. Each node represents a Web document stored in the warehouse document pool.

The links in each Web document are stored in this pool along with the corresponding node.

Furthermore, each node has an identifier called node id . Note that the node id of a node is

different from that of another node if their URLs are different. A node may have several versions.

In order to distinguish between several versions of a node, each version of a node is identified by

a unique version id . Note that each node id can have a set of version ids across different web

tables. A node in our web warehouse can be uniquely identified by the pair (node id, version id).

The web tables are stored in the web table pool . Each web table in this pool is stored in three

types of structures, i.e., the table node pool , the web tuple pool and the web schema pool . For

each distinct node and link object in a web table, we store the following attributes in the table

node pool: identifier that the node and the link represent in the web schema, node id and link id,

version id and URL of the node, target node id, label and link type of the link. Next, we store

the web tuples of a web table in the web tuple pool. For each tuple in this pool, we only store

the ids of all the nodes and links belonging to that tuple. Finally, we store the web schemas and

coupling query in the web schema pool. The reader may refer to [29, 30] for detailed exposition

on these storage structures.

4 Change Detection Problem

In this section, we first describe the change detection problem. Then, we identify the basic

change operations in Whoweda corresponding to the changes in the Web. Finally, we show how

to represent these changes in the context of our web warehouse.

4.1 Problem Definition

As changes in relevant Web data are reflected on the web tables, we can address the problem

of detecting and representing changes to Web data in the context of such web tables. We first

10

describe the problem informally using the example in Section 1.1. Recall from Section 1.1, a user

wishes to find a list of drugs for various diseases, their side effects and uses starting from the Web

site at http://www.panacea.gov/. The user specifies a polling coupling query with polling times

t1 = 15th January, 2001, t2 = 15th February, 2001. At polling time t1, the global web coupling

operation retrieves a set of inter-linked documents and materializes them in the form of a web

table called Drugs as depicted in Figure 2.

Before polling time t2, the Web site at http://www.panacea.gov/ is modified as depicted

in Section 1.1. Therefore, at t2, the result New Drugs (Figure 3) of the polling coupling query

contains the relevant changes that have occurred between time t1 and t2. Given two such web

tables Drugs and New Drugs containing the snapshots of two versions of relevant Web data, the

problem of change detection is to find the set of web tuples containing nodes which are inserted

into or deleted from Drugs or those nodes which are modified in Drugs to transform it into New

Drugs. Note that these web tuples will reflect the changes to the Web site that are relevant to the

user.

4.2 Types of Changes

Changes to the web tables are reflected on the individual web tuples in Whoweda. Consequently,

the different types of change operations in Whoweda can be defined in terms of the following:

• Insert Node: Intuitively, the operation Insert Node creates a set of nodes N in a web

tuple in the web table W . The nodes must be new, i.e., N must not occur in W before.

Note that N can be a new web tuple added to W or it can be a set of nodes inserted into

an existing web tuple in W .

• Delete Node: This operation is the inverse of the Insert Node operation. It removes a

set of nodes from W .

• Update Node: The operation Update Node modifies the contents of the nodes in a web

tuple. By content modification of a node, we mean the textual contents or structure of the

node may change or the attributes of the links embedded in the node may change.

• Insert Link: Intuitively, the operation Insert Link creates a set of links L in a web tuple

in the web table W . The links must be new, i.e., L must not occur in the web tuple before.

Observe that in a web table a new link can occur in two ways. First, a new link may connect

an existing node to a new node. In this case, the Insert Link results in a Insert Node

operation. Second, a new link may connect to existing nodes in a web tuple. In this case,

the Insert Link operation is equivalent to the Update Node operation as the source node

11

of the link has to be modified in order to incorporate the new link. So we can express the

Insert Link operation by the Insert Node or Update Node operation.

• Delete Link: It removes a set of links from W . Similar to Insert Link, in a web table

deletion of a link may occur based on two cases. First, removal of a link may remove the

only link to an existing node. In this case, it is equivalent to the Delete Node operation.

Second, a link may be deleted between two nodes which are connected by more than one

link. In this case, this operation is essentially the Update Node operation. Therefore, we

can express the Delete Link operation by the Delete Node or Update Node operation.

• Update Link: This operation involves modification of the anchor of a link. Hence, it is

essentially an Update Node operation.

4.3 Representing Changes

We define a structure called the delta web table for representing web deltas. Delta web tables

encapsulate the relevant changes that have occurred in the Web with respect to a user’s query.

We define the following three types of delta web tables to represent the above types of change

operations:

• ∆+-web table (denoted as W∆+): contains a set of tuples containing the new nodes inserted

into W1 for transforming it into W2. Note that this web table represents the Insert Node

operation.

• ∆−-web table (denoted as W∆−): contains a set of tuples containing nodes deleted from W1

as determined by the Delete Node operation which transforms W1 to W2. Note that the

web tuples in W∆− do not necessarily indicate that these sets of inter-linked Web documents

are deleted from the Web site. These documents may still exist in the Web, however they

may no longer be relevant to the user’s query due to modification of the content or inter-

linked structure of these pages.

• ∆M -web table (denoted as W∆M): contains a set of web tuples that represents the previous

and current sets of nodes modified by the Update Node operation.

Definition 1 [Delta Web Tables] Let W1 = 〈Z1, S1, T1〉 and W2 = 〈Z2, S2, T2〉 be two web

tables generated by a polling coupling query G at time t1 and t2. Let A, D and U be the sets of

nodes added to, deleted from and updated during t1 and t2 to transform W1 to W2. Then,

• W∆+ = 〈Z∆+ , S∆+ , T∆+〉 is called a ∆+-web table where S∆+ = S2, T∆+ ⊆ T2 and for

each web tuple wi ∈ T∆+, ∀ 0 < i ≤ |T∆+ | there exists a node n(wi) such that n(wi) /∈ T1

and n(wi) ∈ A.

12

• W∆− = 〈Z∆− , S∆− , T∆−〉 is called a ∆−-web table where S∆− = S1, T∆− ⊆ T1 and for

each web tuple wi ∈ T∆−, ∀ 0 < i ≤ |T∆− | there exists a node n(wi) such that n(wi) /∈ T2

and n(wi) ∈ D.

• W∆M = 〈Z∆M , S∆M , T∆M 〉 is called a ∆M -web table where S∆M is generated from S1 and

S2 and for each web tuple wi ∈ T∆M , ∀ 0 < i ≤ |T∆M | at least one of the following conditions

must be true:

1. If there exists a node n1(wi) such that n1(wi) ∈ U and n1(wi) /∈ (D ∪ A) then there

must exist a node n2(wi) such that url(n1(wi)) = url(n2(wi)) and date(n1(wi)) 6=
date(n2(wi)).

2. If there exists a node n3(wi) such that n3(wi) /∈ U then n3(wi) ∈ (D∪A) must be true.

In this case, there must not exist a node n4(wi) such that url(n3(wi)) = url(n4(wi)).

3. If there exists a node n4(wi) such that n4(wi) /∈ (D ∪A ∪U) then there must not exist

another node n5(wi) such that url(n4(wi)) = url(n5(wi)).

Typically, the delta web tables reflect the net effect of Web site modification, that is, they

contain only the net result of successive modification of a set of relevant documents in the Web.

Note that in most of the cases the size of these delta web tables will be much smaller than W1 or

W2. Representing changes in the form of a set of delta web tables enables us to view the history of

a web table as a combination of a single web table snapshot and a collection of delta web tables.

We can obtain various states of a web table by starting with a single web table and applying some

sequence of web deltas to it. Also, to minimize the storage cost we materialize only a single web

table and a set of delta web tables in lieu of the various states of the web table.

Observe that the representation of web deltas using delta web tables are comparable to delta

relations in the relational model. In a relational database, deltas usually are represented using

delta relations: For a relation R, delta relations inserted(R) and deleted(R) contain the tuples

inserted to and deleted from R, while delta relations old-updated(R) and new-updated(R) contain

the old and new values of updated tuples [26]. Similarly, we store the Web documents which are

added, deleted or modified in ∆+, ∆− and ∆M -web tables respectively.

4.4 Decomposition of Change Detection Problem

The problem of detecting and representing changes can now be decomposed into two parts:

1. Construction of the joined and outer joined web tables from W1 and W2. We discuss the

construction of these web tables in the next section.

13

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
������

���
���
���
���
���

	�	
	�	
	�	

�

�

�

���
���
���
���
���
��� �

�������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
���
���

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

���
���
���
���
���
���

u0
AIDS Indavir

b0 d0

a0

Side-effects of
Indavir

k0 Uses of
Indavir

a0
AIDS

AIDS

b0
a0

a0

Side-effects of
Indavir

d0

k0
Uses of
Indavir

IndavirAIDS

Uses of
Ritonavir

k1

Side-effects of
Ritonavir

d1

Ritonavir

AIDS

b0

a0
Ritonavir

u1
Side-effects of

Ritonavir

d1

Uses of
Ritonavir

k1

a0
AIDS

a0
Heart

Disorder

Heart Disease Hirudin
b2

a0

Niacin

Side-effects of
Hirudin

d3

Uses of
Hirudin

Niacin
Uses of

Niacin
Side-effects of

a0
Impotence

Caverject
Side-effects of

Caverject

b4

a0
Impotence

b4

u0

u1

u2

u3

d7

k4

k3

u2
b2

Caverject

u7

u7
u8

d6

k7

Uses of
Caverject

(1)

(2)

(3)

(4)

(5)

(6)

a0
Heart

Disorder

Heart Disease Hirudin

a0

Side-effects of
Hirudin

d3

k3
Uses of
Hirudin

Side-effects of
Hirudin

d3

Uses of
Hirudin

k3

Hirudin
u2

Figure 4: Partial view of joined web table.

2. Use the joined and outer joined web tables to generate a set of delta web tables, i.e., W∆+ ,

W∆− and W∆M , containing web deltas. We discuss this in Section 6.

5 Web Join and Outer Web Join

In this section, we briefly introduce the web join and outer web join operators. We first introduce

these operators and then discuss their algorithm. Note that in this paper we discuss the web

join and outer web join only to the extent it is necessary to understand the concept of change

detection and representation in Whoweda. The reader may refer to [4] for details.

5.1 Web Join

The web join operator is used to combine two web tables by joining a web tuple of one table with

a web tuple of other table whenever there exist joinable nodes. Let wa ∈ W1 and wb ∈ W2 be two

web tuples. Then these tuples are joinable if there exist at least one node in wa which is joinable

to a node in wb. The joined web tuple contains the nodes from both the input web tuples. We

materialize the joined web tuple in a separate web table. As one of the joinable node in each

joinable node pair is superfluous, we remove one of them from the joined web tuple.

To perform a web join operation on web tables W1 and W2, a pair of web tuples is selected, one

from each web table, and all the pairs of nodes are evaluated to determine if there exist joinable

nodes. The process is repeated for all |W1|×|W2| pairs of web tuples. If there exist joinable nodes

in a pair of web tuples then the web tables are joinable. Formally, two web tables W1 and W2 are

14

joinable if wa ∈ W1 and wb ∈ W2 are joinable where 0 < a ≤ |W1|, 0 < b ≤ |W2|. We express the

web join between W1 and W2 as W12 = W1 ./ W2.

Example 1 Consider the web tables Drugs and New Drugs. The joined web table of these two

web tables is shown in Figure 4. The nodes b0, u0, d0 and k0 in the first web tuple in Drugs are

identical to those in the first web tuple in New Drugs as these nodes remain unchanged during

the transition. The joined web tuple generated by concatenating these two web tuples over the

nodes b0, u0, d0 and k0 is shown in Figure 4 (the first web tuple). Similarly, the second joined

web tuple in Figure 4 is the result of joining the second web tuples in Drugs and New Drugs. The

third joined web tuple is generated by joining the first web tuple in Drugs to the second web tuple

in New Drugs over the node b0, and so on. Observe that the third, fourth, fifth and sixth web

tuples in Drugs do not participate in the web join process as the nodes in these web tuples are

not identical to any nodes in New Drugs.

5.2 Outer Web Join

The web tuples that do not participate in the web join operation (dangling web tuples) are absent

from the joined web table. In certain situations it is necessary to identify the dangling web tuples

from one or both of the input web tables. The outer web join operation enables us to identify

them. Depending on whether the outer-joined web table must contain the non-participant web

tuples from the first or second web tables, we define two kinds of outer web join: the left-outer web

join and the right-outer web join respectively. Formally, given two web tables W1 and W2, the

left-outer web join and right-outer web join on these two web tables are denoted by W1 =./ W2

and W1 ./= W2 respectively, where the symbols =./ and ./= corresponds to the different flavors

of outer web join. The resultant web table Wo for a left-outer web join or right-outer web join

will contain the dangling web tuples from W1 or W2 respectively.

Example 2 Consider the web tables Drugs and New Drugs in Figures 2 and 3 respectively. The

web tuples in Drugs and New Drugs, which are associated with the side effects and uses of “Beta

Carotene”, a drug used for cancer (third web tuple), do not participate in the web join process

as the content of all the nodes in the web tuple in New Drugs has changed with respect to

those in Drugs. The link structure of the web tuple related to “Vasomax” has been modified

after 15th January, 2001 and none of the nodes in this web tuple in Drugs are joinable to the

corresponding web tuple in New Drugs. The web tuple related to “Alzheimer’s Disease” in Drugs

is not materialized again in New Drugs as the new set of documents does not satisfy the coupling

query anymore. Similarly, the web tuple containing documents related to “Diabetes” in Drugs

15

Cancer

a0

b1

d2

Side effects of
Beta Carotene

uses of
Beta Carotene

k2

a0 uses of

k12

Ibuprofen

Alzheimer’s Disease

a0
Impotence

a0
Diabetes

b3 d4 k5

Alburerol
Side -effects of Albuterol

Uses of Albuterol

b5

(1)

(2)

http://www.panacea.gov/

b4 Vasomax u4

u5

u6
d5

Side effects of
Vasomax

d12

Side effects of
Ibuprofen

uses of
Vasomax

k6

(3)

(4)

(a) Left outer web join.

Cancer

a0

b1

d2

Side effects of
Beta Carotene

uses of
Beta Carotenek2

k8

a0
Vasomax

b4
Impotence

Side effects of
Vasomax

d8
uses of
Vasomax

a0

Parkinson’s
Disease

Tolcapone
Side effects of

Tolcapone
uses of

Tolcapone

k10

a0 b4
Impotence Viagra Side effects of

Viagra

d9
uses of
Viagra

u9

u12

k9u10 u11 d10b6

(1)

(2)

(3)

(4)

http://www.panacea.gov/

(b) Right outer web join.

Figure 5: Outer web join.

Input: Set of node ids N1 and N2 of W1 and W2.
Output: Joinable node id set J .

(1) U = N1 ∩N2;
(2) for (i = 1 to |U |) {
(3) v1(i) = GetVersionId(U(i),W1); /* returns the version id of a node having id U(i) in W1 */
(4) v2(i) = GetVersionId(U(i),W2);
(5) if (v1(i) = v2(i)) /* The nodes are joinable */
(6) Insert U(i) in joinable node id set J ;
(7) else
(8) The nodes are not joinable;
(9) }
(10) return J ;

Figure 6: Algorithm for computing joinable nodes.

has been removed from the Web site and is not materialized once again in New Drugs. These four

web tuples in Drugs are dangling web tuples. Performing a left outer join on these two web tables

enables us to identify these dangling web tuples (Figure 5(a)).

Now consider New Drugs. The last two web tuples dealing with “Viagra” and “Tolcapone”

did not exist in the previous version as these drugs were added to the Web site after 15th January,

2001. Moreover, all the nodes in the web tuples related to “Vasomax” and “Beta Carotene” are

modified. Thus, these tuples are dangling web tuples. Performing a right-outer web join on these

two web tables enables us to identify these dangling web tuples in New Drugs (Figure 5(b)).

Observe that although the web tuple related to “Niacin” in New Drugs does not appear in

Drugs, it is not a dangling web tuple as the node b2 in this tuple is joinable with the corresponding

node in the web tuple related to the drug “Hirudin” in Drugs.

16

5.3 Algorithms of Web Join and Outer Web Join

In this section, we describe the algorithms for web join and outer web join operations. We first

describe the algorithm for computing the joinable nodes in the web tables participating in web

join (Figure 6). The algorithms of web join and outer web join operators use this algorithm to

determine the joinable nodes.

The algorithm in Figure 6 takes as input the set of node ids in W1 and W2, denoted by N1 and

N2, and returns as output the set of joinable node ids in W1 and W2 (denoted by J). Comparing

the URLs and dates of each possible pair of Web pages represented by the nodes in N1 and N2 to

identify the joinable nodes can have significant impact on the total cost and the query response

time for large web tables to render web join impractical. A practical solution to this problem is to

first subdivide the set of nodes in each web table into a disjoint and smaller subset U containing

the ids of the nodes which occur in W1 as well as in W2. This is because a node can be potentially

joinable only if it occurs in both the input web tables. Recall that two nodes have identical

URLs if their ids are identical. Thus, each element in U is the identifier of a node that exists in

W1 and W2. However, as nodes with identical URLs in different web tables may not always be

identical in their contents, for each node id uk ∈ U the algorithm retrieves the version ids of uk

in W1 and W2 (denoted as vi(k) and vj(k) respectively). If the version ids are identical then the

nodes represented by uk in W1 and W2 are identical and are considered as joinable nodes. In that

case, the algorithm inserts uk in J . For example, consider the web tables Drugs and New Drugs.

Suppose we wish to find the joinable nodes in these two web tables. The algorithm will output

the set of joinable node ids in these two web tables, i.e., J = {b0, b2, u0, u1, d0, d6, d1, k0, k1, k7}.
The algorithms of web join and outer web join are given in Figures 7 and 8. Note that Step

(20) in Figure 7 creates the resultant web tuple pool of the joined web table by concatenating the

web tuples in temp1 and temp2 based on the joinable nodes J . Due to space constraints, we do

not discuss the issues related to the construction of joined web tuples in detail. The reader may

refer to [4] for details.

5.4 Complexity Analysis of Algorithms

In this section, we will analyze the time complexity of the algorithms in terms of the number of

steps required for the algorithms in Figures 6, 7 and 8. Note that the analysis we present is the

worst case analysis. We assume the following for the purpose of complexity analysis:

• The node-ids of a web table are stored in the web tuple pool in a B+-tree.

• The node-ids are also arranged in the node pool in a B+- tree. The version-ids are stored

17

Input: Web tables W1 = 〈Z1, S1, T1〉 and W2 = 〈Z2, S2, T2〉.
Output: Joined table W12.

(1) N1 = GetAllNodeIds(W1); /* returns a set of node ids in W1 */
(2) N2 = GetAllNodeIds(W2);
(3) J = ComputeJoinableNodeIds(N1, N2);/* Figure 6 */
(4) for (a = 1 to |W1|) { /* Select tuples containing joinable nodes */
(5) Get tuple wa;
(6) tupleNodeIdSet[a] = GetTupleNodeIds(wa); /* returns a set of node ids in wa ∈ W1 */
(7) if (tupleNodeIdSet[a] ∩ J 6= ∅)
(8) Store tuple wa in temporary tuple pool temp1; /* The tuple is a joinable web tuple* /
(9) else
(10) wa is not joinable;
(11) }
(12) for (b = 1 to |W2|) {
(13) Get tuple wb;
(14) tupleNodeIdSet[b] = GetTupleNodeIds(wb);
(15) if (tupleNodeIdSet[b] ∩ J 6= ∅)
(16) Store tuple wb in temporary tuple pool temp2;/* The tuple is a joinable web tuple */
(17) else
(18) wb is not joinable;
(19) }
(20) resultTuplePool = JoinTuples(J, temp1, temp2); /* returns a set of joined web tuples by

concatenating the tuples in temp1 and temp2 over the joinable nodes J */
(21) resultantNodeIdSet = GetAllNodeIds(resultTuplePool);
(22) for (k = 1 to |resultantNodeIdSet|) {
(23) Get node resultantNodeIdSet[k] from table node pool of W1 or W2;
(24) Store the node in resultant table node pool of W12;
(25) }
(26) Create schema of W12 from S1 and S2;
(27) return W12;

Figure 7: Algorithm of web join.

with corresponding node-ids in the node pool. Note that the look-up time for each node-id

is O(log N) if we have N nodes in a web table stored as a B+- tree.

• Let n1 be the number of nodes in web table W1 and n2 be the number of nodes in web table

W2. When n1 = n2, we say that both tables have the same number of nodes. That is, the

number of nodes deleted from W1 during transition is same as the number of nodes inserted

in W2.

• Let Wt1 and Wt2 be the average number of tuples in W1 and W2 respectively.

• Let Nw1 and Nw2 be the average number of nodes in each web tuple in W1 and W2 respec-

tively.

1. Note that n1 = Nw1 ×Wt1 and n2 = Nw2 ×Wt2

2. The size of an I/O block is B = 8192 bytes.

3. The size of a tuple in the tuple pool is smaller than the I/O block so that each I/O

access can obtain B/nt tuples, where nt is the average size of the tuple.

18

Input: Web tables W1 = 〈Z1, S1, T1〉 and W2 = 〈Z2, S2, T2〉.
Output: Left or right outer web joined table Wo.

(1) N1 = GetAllNodeIds(W1);
(2) N2 = GetAllNodeIds(W2);
(3) J =ComputeJoinableNodeIds(N1, N2); /* Figure 6 */
(4) if (left outer web join is to be performed) {
(5) So = S1; /* Web schema of the result web table */
(6) danglingNodeSet = N1 − J ; /* Ids of nodes that do not participate in web join */
(7) Let temporary web table Wt = W1;
(8) }
(9) else {
(10) So = S2;
(11) danglingNodeSet = N2 − J ;
(12) Let temporary web table Wt = W2;
(13) }
(14) for (r = 1 to |Wt|) {
(15) Get tuple wr;
(16) tupleNodeIdSet[r] = GetTupleNodeIds(wr);
(17) if (tupleNodeIdSet[r] ∩ danglingNodeSet = tupleNodeIdSet[r])/* dangling web tuple */ {
(18) for (d = 1 to |tupleNodeIdSet[r]|) {
(19) Insert tupleNodeIdSet[r][d] into resultantNodeIdSet;
(20) Store tuple wr in web tuple pool of Wo;
(21) }
(22) }
(23) else
(24) wr contains joinable nodes;
(25) }
(26) for (k = 1 to |resultantNodeIdSet|) {
(27) Retrieve the node having id resultantNodeIdSet[k] from table node pool of Wt;
(28) Store the node in resultant table node pool of Wo;
(29) }
(30) return Wo;

Figure 8: Algorithm of outer web join.

4. The size of a node in the node pool is smaller than the size of the I/O block so one

access can obtain B/ns nodes, where ns is the average size of the node in the node

pool.

To get the node-ids from the web tuple pool, we need to access the tuples from the web tuple

pool. Thus, the number of block accesses needed is (Wt1×Nw1×nt)/B and (Wt2×Nw2×nt)/B

for W1 and W2 respectively. For accessing the nodes from the node pool , nt will be replaced by

ns.

Analysis of the algorithm in Figure 6 to find joinable nodes: Step (1) of the algorithm

will need O(n1log n2) steps, as each look up operation induces a time complexity of O(log n2). For

simplicity, if we assume that the number of nodes in the two tables are same (that is, the number

of nodes deleted is equal to the number of nodes which have been inserted during the transition

19

of Web page), then the complexity is O(nlog n). For simplicity, let us assume that the number of

joinable nodes be n/2 where n is the number of nodes in W1 and W2. That is, half of the nodes

remain unchanged during the transition. Hence, Step (3) will be performed n/2 times. To get the

version-ids associated with each node-id of each node from the node pool will take log N steps

where N is the total number of nodes in the node pool (i.e., total nodes in the warehouse). Thus,

Steps (4) and (5) will induce complexity of n/2 × (O(log N) + O(log N)), which is O(nlog N).

Hence, the total complexity is O(nlog N)+O(nlog n), which is O(n(log N +log n)). Since n < N ,

the complexity will be O(nlog N). Note that the I/O cost involve here is negligible as only ids

have been accessed to determine the joinable nodes.

Analysis of the web join algorithm in Figure 7: For simplicity, here again we assume that

both the tables have n nodes. Steps (1) and (2) both together will induce time complexity of

O(2log n). Thus, the total complexity of the first three steps to find joinable nodes is (O(nlog N)+

O(nlog n)+O(2log n)), which is (O(nlog N)+O((n+2)log n)). Since n < N , it will be O(nlog N).

Step (4) will be executed Wt1 times. Step (5) will need (Nw1×nt)/B I/O accesses for each tuple.

Steps (6) and (7) will need O(nlog (Nw1)/2) steps where Nw1 is the average number of nodes in a

web tuple in W1 and we assumed that there are n/2 joinable nodes. Thus, the time complexity of

Steps (4) to (7) will be Wt1×(O(nlog (Nw1)/2)) plus the I/O cost of accessing (Wt1×Nw1×nt)/B

blocks of memory for all the web tuples of W1. Similarly, there will be Wt2 × (O(nlog (Nw2)/2))

steps to find the joinable tuples from W2 plus the I/O cost. Step (20) will take JN × (n/2) steps

where JN is the number of joinable tuples and n/2 is the average number of nodes in the two

web tables. Here, we assume that indexes are built in the storage structure on the joinable nodes

so that the cost of accessing them is O(1). The cost of Step (21) can be calculated as in Step

(1) or (2). Step (22) will take JN × NJN where NJN is the average number of nodes in each

joinable tuples. Step (23) will take log (n1 + n2)/2 steps in the worst case of searching a node

in both the table pools plus ns/B block accesses for fetching each node. Step (24) will take

log (JN × NJN) on the average to insert a node in the node pool tree plus ns/B I/O accesses

for each node. Note that we do not calculate the time complexity of Step (26) as the schema

generation process does not influence the web delta detection problem and hence it is beyond

the scope of the paper. For change detection problem, Step (26) may be ignored. The reader

may refer to [6] for discussion on the schema generation process. Thus, to sum up, the web

join process induces both the operational complexity and the I/O access cost. The accumulated

operational complexity after assuming that n1 = n2, (Wt1 = Wt2) = Wt, (Nw1 = Nw2) = Nw, is

(O(nlog N)+2×Wt×(O(nlog (Nw)/2))+JN×(n/2)+(JN×NJN×log(JN×NJN)(1+O(log n)).

20

By assuming the values of Wt, Nw, JN , NJN to be very small as compared to n and since n is

smaller than N , we get the operational complexity as C×O(nlog N), where C is a constant. The

total I/O cost is ((2/B)× ((n× nt) + (JN ×NJN)× ns)).

Analysis of the outer web join algorithm: The number of steps needed in the algorithm

in Figure 8 to find outer web join will be the same as that for finding the joinable web tuples.

This is because the number of dangling nodes (nodes which are not joinable) will be n/2 as we

assumed that the joinable node set is of size n/2. Thus, to find the web tuples in each left outer

and right out web join will need the same number of steps as in the case of the joinable web tuples

described above.

The complexity of all other algorithms in the next section can be calculated on similar lines

since they all use similar type of constructs and reasoning. Therefore, they are left for the readers

to verify.

6 Generating Delta Web Tables

This section initiates a discussion on the algorithm to detect and represent different types of

change operations using the web join and outer web join operations. We describe the Algorithm

Delta that generates a set of delta web tables to detect and represent web deltas. We first describe

the generation of delta tables informally and then provide the complete algorithm.

6.1 Outline of the Algorithm

The algorithm for delta web table generation can be best described by the following four phases:

the join tables generation phase, the delta node identification phase, the delta tuples identification

phase and the delta table generation phase. We discuss these phases one by one.

Phase 1: Join Tables Generation Phase: This phase takes as input two web tables, new

and old versions, and generates the joined, right outer joined and left outer joined web tables. For

instance, after this phase the web tables in Figures 4, 5(a) and 5(b) are generated from Drugs

and New Drugs.

The right outer join operation on W1 and W2 may create three categories of dangling web

tuples: (1) Web tuples which are added to W1 during the polling times t1 and t2. These tuples

may contain some new nodes and the contents of the remaining ones have been changed. (2)

Tuples in which all the nodes have undergone content modification. (3) Tuples in which some of

the nodes are new and the contents of the remaining ones have changed but these tuples existed

in W1. For example, consider the web table in Figure 5(b). The last two web tuples belong to

21

the first category. The first web tuple belongs to the second category and the second web tuple

is an example of third category.

The web join operation on W1 and W2 may contain the following three types of web tuples:

(1) Web tuples in which all the nodes are joinable nodes. These tuples are the results of joining

two versions of web tuples in W1 and W2 that have remained unchanged during t1 and t2. (2)

Web tuples in which some of the nodes are joinable nodes and remaining nodes are the result

of insertion, deletion or modification operations during the transition. (3) Some of the nodes

are joinable nodes and out of the remaining ones, some are the result of insertion, deletion or

modification and the remaining ones are not joinable in this web tuple but they have remained

unchanged during the transition. That is, these nodes may be joinable nodes in some other joined

web tuple(s). While generating delta web tables, the algorithm ignores the first category of web

tuples in the joined web table as it does not reflect any changes. For instance, in the joined web

table in Figure 4, all the web tuples are of second and third categories. Specifically, the first

two and the last three tuples contain nodes whose contents are modified. The fourth web tuple

contains nodes whose contents are modified as well as a node k4 which is inserted during t1 and

t2. Finally, the fifth tuple contains a node u8 which is deleted as well as a set of nodes which are

modified. Hence, these web tuples represent the second category. On the other hand, the third

web tuple represents the third category. This is because a0 represents a modified node and the

nodes u0, u1, d0, d1, k0 and k1 are not joinable in this web tuple but they are joinable nodes in

the first and second web tuples.

Similar to the right outer joined web table, the left outer joined table may contain the following

three categories of web tuples: (1) Web tuples which are deleted from W1. These tuples do not

occur in W2. (2) Tuples in which every node has undergone content modification. (3) Tuples in

which some nodes are deleted from W1 and remaining ones have been modified. The new and

old versions occur in both the tables in W1 and W2. For instance, the second and fourth web

tuples in Figure 5(a) belong to the first category. The first and the third web tuples belong to

the second and third categories respectively.

Phase 2: Delta Nodes Identification Phase: In this phase, the nodes which are added,

deleted or modified during t1 and t2 are identified. This phase takes as input the web tables W1

and W2 and the set of joinable nodes from the joined table and generates sets of nodes which are

added, deleted or modified during the time interval. Thus, nodes which exist in W2 but not in

W1 are the new nodes that are added to W1. Similarly, nodes which only exist in W1, but not

in W2 are the nodes that are removed from W1. Furthermore, the nodes which are not joinable

22

nodes, but they exist in W1 as well as W2 are essentially the nodes that have undergone content

modification during t1 and t2. For instance, {b3, u4, u5, u6, u8, d4, d5, d12, k5, k6, k12} are the ids of

nodes which appears in Drugs but not in New Drugs. Hence, these nodes were removed during

transition. Similarly, {k4, u9, k8, d8, d7, u3, u12, d9, k9, u10, u11, d10, k10} are the ids of nodes that

exist in New Drugs but not in Drugs. Hence, these nodes were added during t1 and t2. Finally,

the nodes with ids a0, b1, d2, k2, u2, d3, k3, b4 and u7 appear in both the web tables but are not

joinable. Hence, these nodes have undergone content modification.

Observe that at this point we have identified the nodes which are inserted, deleted or modified

during the transformation. Next, the algorithm proceeds to determine how these nodes are related

to one another and how they are associated with those nodes which have remained unchanged

during t1 and t2.

Phase 3: Delta Tuples Identification Phase: In the delta tuples identification phase we

are interested in identifying those web tuples which contain nodes which are added, deleted or

modified during the transition. It should be clear that we are not just simply identifying these

web tuples as it can be done by inspecting W1 and W2 without performing any web join or outer

web join operations. Our objectives are the following:

• In case of added or deleted nodes, we are not simply interested in identifying tuples con-

taining these nodes only but also how these nodes are linked to or related to the existing

nodes (nodes which prevailed during the transition). Moreover, we wish to determine how

the new or deleted nodes are related to one another.

• For nodes which have undergone content modification during the transition, we wish to

determine how these nodes are linked to one another and to those nodes which have remained

unchanged. We also wish to present the old and new versions of the nodes in a single tuple

so that a user can view them effectively. Finally, we wish to highlight the changes in the

overall hyperlink structure due to the content modification.

To achieve this, we scan the joined and outer joined web tables. The delta tuples identification

phase takes as input these web tables and the sets of nodes which are added, deleted or modi-

fied. It returns as output sets of tuples containing nodes which are added, deleted and modified

respectively. In the remaining portion of this paper, these sets are denoted as insertTupleSet,

deleteTupleSet and updateTupleSet respectively. Observe that the nodes which are added during

the transition can occur in the following tables:

• In the right outer joined table if the remaining nodes in a tuple containing the new nodes are

23

modified and hence, are not joinable. The second, third and fourth web tuples in Figure 5(b)

are examples of such tuples.

• In the joined web table if some of the nodes in the tuple containing new nodes have remained

unchanged during the transition and hence are joinable. For instance, the fourth web tuple

in Figure 4 is an example of such a web tuple where k4, u3 and d7 are the new nodes and

b2 has remained unchanged during the transition and therefore joinable.

Hence, we need to scan the joined and right outer joined tables to identify the tuples containing

nodes which are inserted during t1 and t2. Similarly, the nodes which are deleted during the

transition may occur in the following two web tables:

• In the left outer joined table if the remaining nodes in a tuple containing the deleted nodes

are modified and hence, are not joinable. The second, third and fourth web tuples in

Figure 5(a) are examples of such tuples.

• In the joined web table if some of the nodes in the tuple containing deleted nodes have

remained unchanged during the transition and hence are joinable. For instance, the seventh

web tuple in Figure 2 contains the node u8 which is deleted. As the nodes d6 and k7 have

remained unchanged during the transition, these nodes are joinable. The tuple containing

this deleted node can be detected from the joined web table in Figure 4 (third web tuple).

Thus, the algorithm scans the left outer joined and joined tables to retrieve the tuples containing

deleted nodes. Finally, the nodes which are modified during the transition can be identified by

inspecting all the three web tables:

• Tuples in the left and right outer joined tables which do not contain any new or deleted

node represent the old and new versions of these nodes respectively. These web tuples do

not occur in the joined table as all the nodes are modified. For instance, the first web tuples

in Figures 5(a) and (b) are examples of such tuples.

• Tuples in the left and right outer joined tables that contain modified nodes as well as inserted

or deleted nodes. Note that these modified nodes may not appear in the joined web table if

no other joinable web tuples contain these modified nodes.

• Tuples in the joined web tables whose some of the nodes represent the old and new versions

of these modified nodes. For instance, the first web tuple in Figure 4 contains the old and

new versions of a0.

Phase 4: Delta Web Tables Generation Phase: Finally, the three types of delta web

tables are generated in this phase. It takes as input the three sets of tuples, i.e., insertTupleSet,

24

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

u0
AIDS Indavir

b0 d0

a0

k0 Uses of
Indavir

a0
AIDS

b2

u2

a0
Heart

Disorder

Heart Disease Hirudin

a0

d3

k3
Uses of
Hirudin

Side-effects of
Hirudin

d3

Uses of
Hirudin

k3

Hirudin
u2

Side-effects of
Hirudin

Side-effects of
Indavir(1)

(2)

(3)

(4)

a0
Impotence

Caverject
Side-effects of

Caverject

a0
u7

u8

d6

k7

Uses of
Caverject

Impotence
b4 Caverject u7

Cancer
a0 b1 d2

Side-effects of
Beta Carotene

Uses of
Beta Carotene

k2

Cancer
a0 b1 d2

Side-effects of
Beta Carotene

Beta Carotene
Uses of

k2

Figure 9: ∆M -web table.

deleteTupleSet and updateTupleSet, generated in the previous phase and generates the delta web

tables from these sets. The procedure to generate these tables is straightforward. The tuples in

insertTupleSet are stored in ∆+-web table. The tuples in deleteTupleSet and updateTupleSet

are stored in ∆− and ∆M -web tables respectively.

Next, we illustrate the generation of delta web tables informally with an example given below.

Example 3 Consider the two web tables Drugs and New Drugs in Figures 2 and 3. We would

like to find the various change operations that transform Drugs into New Drugs. Changes may

include, inserting nodes, deleting nodes and updating nodes in Drugs. For each type of these

changes, we create the W∆+ , W∆− and W∆M tables. We discuss the generation of each delta web

tables in turn. Figure 9 depicts the ∆M -web table. The patterned boxes in this figure in each web

tuple are the old and new versions of the nodes. For example, the second web tuple in Figure 9

contains the old and new versions of the nodes a0, u2, d3 and k3, along with the joinable node u2

(content of u2 has remained unchanged during the transition). Each web tuple shows how the set

of modified nodes is related to one another and with the joinable nodes. Observe that the first

four web tuples are extracted from the joined web table in Figure 4. The last web tuple (enclosed

in a dotted box) is the result of the integration of two web tuples - one from the left outer joined

web table in Figure 5(a) and another from the right outer joined table in Figure 5(b).

Figure 10(a) illustrates the ∆+-web table. The black boxes in each web tuple are the new

nodes inserted into Drugs during 15th January, 2001 and 15th February, 2001. Similar to ∆M -web

table, each web tuple in ∆+-web table shows how the new nodes are related to other relevant

nodes in the web table. Note that the last three web tuples in Figure 10(a) are extracted from

the right outer joined web table in Figure 5(b). However, as the node b2 in the first web tuple

is a joinable node, the new nodes k4, u3 and d7 in this tuple are identified from the fourth web

25

k8

a0
Vasomax

b4
Impotence

Side effects of
Vasomax

d8
uses of
Vasomax

a0

Parkinson’s
Disease

Tolcapone
Side effects of

Tolcapone
uses of

Tolcapone

k10

a0 b4
Impotence Viagra Side effects of

Viagra

d9
uses of
Viagra

u9

u12

k9u10 u11 d10b6

a0
Heart Disorder Niacin

b2
Side effects of

Niacin

uses of
Niacin

d7

k7

u3

(1)

(2)

(3)

(4)

http://www.panacea.gov/

(a) ∆+-web table.

a0 uses of

Side effects of

k12

Ibuprofen

Ibuprofen

Alzheimer’s Disease

a0
Vasomax

b4
Impotence

d12

a0
Diabetes

b3 d4 k5

Alburerol
Side -effects of Albuterol

Uses of Albuterol

u4

b5

Impotence Caverject

Side effects of
Caverject

uses of
Caverject

a0 b4 d6

k7

u8

u7

(1)

(2)

(3)

(4)

http://www.panacea.gov/

u5

u6

uses of
Vasomax

k6

Side effects of
Vasomax

d5

(b) ∆−-web table.

Figure 10: ∆+ and ∆− web tables.

tuple of the joined web table in Figure 4.

Finally, Figure 10(b) depicts the ∆−-web table containing all the nodes that are deleted from

Drugs. The last three web tuples are extracted from the web table in Figure 5(a). However, the

tuple containing the deleted node u8 is extracted from the fifth web tuple in the joined web table

in Figure 4. Observe that we do not materialize the joined web tuples containing new or deleted

nodes in W∆+ and W∆− respectively. Instead, we extract the original web tuple containing these

nodes from the joined web tuple and materialize them in W∆+ and W∆− respectively.

6.2 Algorithm Delta

We now provide the formal algorithm for the four phases discussed in the previous section. We

describe how, given two web tables W1 and W2 created by a polling global coupling operation

at polling times t1 and t2, we compute a set of delta web tables corresponding to various types

of changes to transform W1 to W2. The pseudocode for this algorithm is given in Figure 11. It

takes as input two web tables W1 = 〈Z1, S1, T1〉 and W2 = 〈Z2, S2, T2〉 created by a coupling

query Q at polling times t1 and t2 respectively. It returns as output a set of delta web tables

W∆+ = 〈Z∆+ , S∆+ , T∆+〉, W∆− = 〈Z∆− , S∆− , T∆−〉 and W∆M = 〈Z∆M , S∆M , T∆M 〉. The steps to

generate these delta web tables are as follows.

6.2.1 Algorithm for Phases 1 and 2

Steps (1) to (4) implement the first phase of the algorithm and generates the joined, the right and

the left outer joined web tables from W1 and W2 (Line (4)). In the algorithm, these web tables

are denoted as Wj , Wro and W`o respectively. Steps (5) to (7) implement the second phase of the

26

Input: Web tables W1 = 〈Z1, S1, T1〉, W2 = 〈Z2, S2, T2〉.
Output: Delta web tables W∆+ = 〈Z∆+ , S∆+ , T∆+〉, W∆− = 〈Z∆− , S∆− , T∆−〉 and
W∆M = 〈Z∆M , S∆M , T∆M 〉.

(1) N1 = GetAllNodeIds(W1); /* Phase 1 */
(2) N2 = GetAllNodeIds(W2);
(3) J = ComputeJoinableNodeIds(N1, N2); /* Figure 6 */
(4) W12 = GenerateResultTables(N1, N2, W1, W2, J) where W12 = {Wro,Wlo, Wj};
(5) delNodeSet = N1 −N2; /* Ids of the nodes deleted from W1 */ /* Phase 2 */
(6) addNodeSet = N2 −N1; /* Ids of the nodes added to W1 */
(7) updateNodeSet = (N1 − J − delNodeSet) ∪ (N2 − J − addNodeSet);
(8) Nj = GetAllNodeIds(Wj); /* Phase 3 */
(9) Let K = updateNodeSet− (Nj − J);
(10) Let A = addNodeSet;
(11) Let D = delNodeSet;
(12) Let U = (Nj − J) ∩ updateNodeSet;
(13) insertTupleSet = DeltasFromRightOuter(A, K, Wro, temp1, temp2); /* Figure 12*/
(14) deleteTupleSet = DeltasFromLeftOuter(D, K, Wlo, temp1, temp2);
(15) if (|A| = 0 and |D| = 0) { /* checks if all the inserted and deleted nodes are identified */
(16) updateTupleSet = DeltasFromJoin(Wj,U , N1, N2); /* Figure 13 */
(17) else
(18) updateTupleSet = DeltasFromJoin(A, D, U , Wj, insertTupleSet, deleteTupleSet);

/* Figure 14 */
(19) if (|temp1| 6= 0)
(20) Insert into updateTupleSet web tuples from temp1;
(21) if (|temp2| 6= 0)
(22) Insert into updateTupleSet web tuples from temp2;

/* Phase 4 */
(23) W∆M = CreateDeltaM(updateTupleSet, W1, W2, S12, updateNodeSet);
(24) W∆+ = CreateDeltaPlus(insertTupleSet, W1, W2, addNodeSet);
(25) W∆− = CreateDeltaMinus(deleteTupleSet, W1, W2, delNodeSet);
(26) return W∆+ , W∆− and W∆M ;

Figure 11: Algorithm Delta.

algorithm and identify the node ids which are added to W1, node ids which are removed from W1

and ids of the nodes that have undergone content modification during t1 and t2.

6.2.2 Algorithm of Phase 3

We now discuss the algorithm for implementing the delta web tuples identification phase. To

determine the association of nodes (represented by the identifiers in addNodeSet, delNodeSet and

updateNodeSet) with each other and with other relevant nodes in W1, we identify the web tuples

in Wj , Wro and W`o containing these nodes and store them in the sets of web tuples denoted in

the algorithm as insertTupleSet, deleteTupleSet and updateTupleSet respectively. Each element

in insertTupleSet and deleteTupleSet are web tuples containing nodes that are inserted to or

deleted from W1 during t1 and t2. Each element in updateTupleSet is an integrated web tuple

containing old and new versions of the nodes which have undergone content modification. Note

27

that these sets of web tuples encapsulate the various change operations introduced in Section 4.

Steps (8) to (22) in Figure 11 present the pseudocode for the delta web tuples identification

phase. Step (9) computes those nodes which are updated during the transition but are not

captured by the joined web table. The set K contains ids of those updated nodes which do not

exist in Nj ; i.e., K represents those updated nodes which are not present in Wj but in Wro and

W`o. If n is a node in K, then n does not occur in Wj . That is, the tuple containing n is a

dangling web tuple and consequently is ignored by the web join operation. That is, if n represents

a node which has undergone update during t1 and t2 then the web tuples containing n in W1 and

W2 must be dangling web tuples. Otherwise, n must occur in the joined web table. As a result,

the tuples containing n in W1 and W2 must be captured by the left and right outer joined web

tables respectively (Wro and W`o). If K = ∅, then all updated nodes are captured by the joined

web table.

Next, (Steps (10) and (11)) the sets of node ids of new and deleted nodes are copied to the

sets A and D respectively. This is because subsequently A and D need to be updated every time

we identify new and deleted nodes while scanning the right and outer joined web tables. However,

we do not wish to modify the addNodeSet, delNodeSet and updateNodeSet since the algorithm

is going to use them again to generate the delta web tables in Steps (23) to (25). Finally, U

(Step (12)) represents those modified nodes which occur only in the joined web table Wj , i.e.,

U ∩K = ∅. Then, Steps (13) and (14) scan the right and left outer joined web tables to identify

the web tuples containing inserted, deleted and updated (if any) nodes. We elaborate on these

algorithms now.

Algorithm of DeltasFromRightOuter(A, K, Wro, temp1, temp2) (Step (13) in Figure 11)

This algorithm takes as input the set of node ids which are added during the transition, i.e., A, the

set K, the right outer joined web table Wro, and two empty sets temp1 and temp2 to store specific

web tuples. It returns as output a set of tuples containing the nodes which are inserted during

t1 and t2, denoted by insertTupleSet, modified A and K, and temp1 and temp2 (possibly non-

empty). Let us elaborate on the purpose of the tuple sets temp1 and temp2. temp1 stores those

web tuples in the right or left outer joined tables that do not contain any new or deleted nodes (

Category 2 web tuples as discussed in the previous section). That is, the tuples in temp1 represent

those web tuples in which all the nodes content are modified during the transition. For instance,

temp1 will store the first web tuples in Figures 5(a) and (b). Recall that in updateTupleSet, the

old and new versions of a web tuple are integrated and stored together. However, the right outer

28

Input: Right outer-joined table Wro, set of added and updated
node ids A and U respectively, temporary sets temp1 and temp2 to store tuples.
Output: Set of web tuples insertTupleSet containing new nodes.

(1) for (b = 1 to |Wro|) { /* Case 1: Detecting web deltas from Wro */
(2) Get tuple wb;
(3) tupleNodeIdSet[b] = GetTupleNodeIds(wb);
(4) if (tupleNodeIdSet[b] ∩A 6= ∅) {

/* wb contains node(s) which were inserted during the transition */
(5) Store wb in insertTupleSet;
(6) Insert (tupleNodeIdSet[b] ∩A) in tempAddSet; /* represents new nodes in wb */
(7) if (K 6= ∅) {

/* identify web tuples which contain modified nodes which are not present in the joined table */
(8) if (tupleNodeIdSet[b] ∩K 6= ∅)
(9) Insert wb in temp2;
(10) }
(11) }
(12) else
(13) Store wb in temp1; /* tupleNodeIdSet[b] ∩A = ∅ */
(14) }
(15) A = A− tempAddSet; /* New nodes which are already identified are now removed from A */
(16) return temp1, temp2, insertTupleSet, A, K;

Figure 12: Algorithm for DeltasFromRightOuter(A, K, Wro, temp1, temp2).

join operation only identifies the new version of the modified web tuple. The old version of the

tuple can be extracted from the result of the left outer join operation. Thus, the insertion of

the web tuples containing modified nodes into updateTupleSet is deferred to the execution of the

inspection of the left outer joined web table. Consequently, we store these tuples temporarily in

temp1.

On the other hand, temp2 contains those tuples from the left or right outer joined tables

which contain the updated nodes not captured by the joined web table. That is, temp2 contains

tuples from Wro and Wlo where each tuple contains at least one node that is an element of K and

some of the remaining nodes must be new or deleted nodes. Notice the differences between the

tuples in temp1 and temp2. In temp1, all the nodes in each web tuple have undergone content

modification. However, in temp2 each web tuple must contain at least one node which is added

or deleted during the transition and remaining nodes must have undergone content modification.

Also observe that temp1∩ temp2 = ∅. Note that the nodes in a tuple in temp1 may also occur in

K, However, it is not captured in temp2 because each web tuple in temp2 contains one or more

new or deleted nodes. Specifically, temp2 enables us to capture the web tuples containing modified

nodes that cannot be identified from the joined web tables. For similar reasons as explained in

the case of temp1, we defer the insertion of these tuples in the updateTupleSet. The pseudocode

of this algorithm is given in Figure 12.

29

Input:Joined table Wj , set of updated node ids U , N1 and N2.
Output: Modified updateTupleSet.

(1) for (a = 1 to |Wj |) {
(2) Get tuple wa;
(3) tupleNodeIdSet[a] = GetTupleNodeIds(wa);
(4) Let X = tupleNodeIdSet[a] ∩ U ;

/* Identify the relevant tuples in the input web tables which contain the updated nodes */
(5) Retrieve node set N1(wa) such that N1(wa) ⊆ X and N1(wa) ⊂ N1;
(6) Retrieve node set N2(wa) such that N2(wa) ⊆ X and N2(wa) ⊂ N2;
(7) if (X − (N1(wa) ∩N2(wa)) = ∅) {

/* tuple contains only both the old and new version of the updated nodes */
(8) Store wa in updateTupleSet;
(9) /* Category 2 type joined web tuple */
(10) }
(11) else
(12) wa is ignored;
(13) }
(14) }
(15) Return updateTupleSet;

Figure 13: Algorithm of DeltasFromJoin(Wj, U , N1, N2).

Algorithm of DeltasFromLeftOuter(D, K, Wlo, temp1, temp2) (Step (14) in Figure 11)

Next, the algorithm Delta inspects the left outer joined table W`o to identify the deleted or

modified nodes. The pseudocode for this algorithm will be similar to Figure 12 and hence, it is

omitted.

Algorithm of DeltasFromJoin(Wj , U , N1, N2) (Step (16) in Figure 11)

Finally, the Algorithm Delta in Figure 11 proceeds to inspect the joined web table Wj . If A =

D = ∅, then the joined web table will only contain the updated nodes. Consequently, Step (16) is

executed. Each joined web tuple in Wj is inspected to determine the existence of the old and new

versions of the modified nodes. It may seem that each tuple containing dangling node(s)(nodes

which are not joinable) may represent the old and new versions of the modified nodes. However,

such assumption is not true. Note that we are specifically interested in those joined web tuples

which contain only both the old and new versions of the updated nodes. Note that not all joined

web tuples may satisfy this condition. For example, consider the joined web table in Figure 4.

The fourth web tuple contains the dangling nodes u2, k3, d3 etc.. However, both the old and new

versions of these nodes are missing in this tuple. Specifically, it exists in the last joined web tuple.

Hence, the last web tuple is inserted in updateTupleSet but not the fourth web tuple. Observe

that this condition is checked in Step (7) of the algorithm in Figure 13. For instance, for the last

web tuple, N1(wa) = {a0, u2, d3, k3}, N2(wa) = {a0, u2, d3, k3} and X = {a0, u2, d3, k3}. Hence,

30

Input:Joined table Wj , set of added, deleted and updated node ids A, D and U respectively,
deleteTupleSet, insertTupleSet.
Output: Modified deletedTupleSet, insertTupleSet, updateTupleSet .

(1) for (a = 1 to |Wj |) {
(2) Get tuple wa;
(3) tupleNodeIdSet[a] = GetTupleNodeIds(wa);
(4) Let Y = tupleNodeIdSet[a]− (tupleNodeIdSet[a] ∩ J);
(5) if ((Y 6= ∅) or (Y ∩A 6= ∅) or (Y ∩D 6= ∅)){
(6) Retrieve node set N1(wa) such that N1(wa) ⊆ Y and N1(wa) ⊂ N1;
(7) Retrieve node set N2(wa) such that N2(wa) ⊆ Y and N2(wa) ⊂ N2;
(8) if (Y − (N1(wa) ∩N2(wa)) = ∅) {
(9) Store wa in updateTupleSet;
(10) }
(11) else {
(12) if ((Y − (N1(wa) ∩N2(wa))) ⊂ A ∪D) {

/* checks if the remaining dangling nodes are actually new or deleted nodes. */
(13) Extract w2 ∈ W2 from wa; /* Original web tuple in W2 which is in wa is extracted */
(14) Extract w1 ∈ W1 from wa;
(15) Insert wa in updateTupleSet;
(16) Insert w1 or w2 to deleteTupleSet or insertTupleSet;
(17) }
(18) else {
(19) if (A ∩ [Y − (N1(wa) ∩N2(wa))] 6= ∅)
(20) Insert w2 in insertTupleSet;
(21) if (D ∩ [Y − (N1(wa) ∩N2(wa))] 6= ∅)
(22) Insert w1 in deleteTupleSet;
(23) }
(24) A = A− (A ∩ [Y − (N1(wa) ∩N2(wa))]);
(25) D = D − (D ∩ [D − (N1(wa) ∩N2(wa))]);
(26) }
(27) }
(28) else
(29) wa is ignored;
(30) }
(31) Return insertTupleSet, deleteTupleSet, updateTupleSet;

Figure 14: Algorithm of DeltasFromJoin(A, D, U , Wj, insertTupleSet, deleteTupleSet).

{X − (N1(wa) ∩N2(wa))} = ∅ and the joined tuple is inserted in updateTupleSet. However, for

the fourth web tuple, N1(wa) = {a0, u3, k3, d3}, N2(wa) = {a0, u3, d7, k4} and X = {a0, u2, d3, k3}.
Hence, {X − (N1(wa) ∩N2(wa))} = {u2, k3, d3}. Consequently, the condition is not satisfied.

Algorithm of DeltasFromJoin(A, D, U , Wj , insertTupleSet, deleteTupleSet) (Step (18) in
Figure 11)

If all the new or deleted nodes are not identified after scanning Wro and W`o then |A| 6= 0 or

|D| 6= 0. Hence, in that case Step (18) in Figure 11 is executed. The pseudocode for the construct

DeltasFromJoin is given in Figure 14. Note that in this case the algorithm is not only looking

for the web tuples containing the updated nodes but also those web tuples which contain the new

31

or deleted nodes. We elaborate on these steps now. Note that Steps (2) to (10) are similar to

the previous steps. Steps (12) to (25) are executed if not all the dangling nodes in wa represent

the new and old versions of the node. We explain these steps with examples. Consider the

fifth web tuple in Figure 4. Here Y = {a0, b4, u7, u8}, N1(w5) = N2(w5) = {a0, b4, u7}. Hence,

Y − (N1(w5) ∩ N2(w5)) = {u8}. Hence, the condition in Step (8) is evaluated false. As u8

represents deleted node, i.e., u8 ∈ D. Consequently, the condition in Step (12) is evaluated true.

We insert the tuple in updateTupleSet and extract the seventh web tuple in Drugs. Observe that

the seventh web tuple in Drugs contains u8 which is deleted during transition. Finally, we insert

this tuple in the deleteTupleSet.

At this point the web tuple containing the new nodes k4, u3 and d7 in the joined web table

(fourth joined tuple) have not been identified yet. Note that for this web tuple Y = D−(N1(w4)∩
N2(w4)) = {u2, k3, d3, k4, u3, d7}. Also, Y ⊂ A or Y ⊂ D is not satisfied. Consequently, the

condition in Step (12) is evaluated false. In order to identify this node, Steps (18) to (23) are

executed. The condition in Step (19) is satisfied by Y as Y ∩ A = {k4, u3, d7}. Hence, Step (20)

is executed and the original web tuple (fifth web tuple in New Drugs) is retrieved and inserted in

insertTupleSet. If Y ∩ D 6= ∅, then Step (22) is executed and the original web tuple from W1

is retrieved and inserted in deleteTupleSet. Steps (24) and (25) update A and D by removing

those ids which are already used to identify the web tuples.

We have now identified all the web tuples containing the new or deleted nodes. We have

also identified some of the tuples containing the updated nodes. The remaining tuples containing

the updated nodes are identified from temp1 and temp2 (Steps (19) to (22) in Figure 11). The

web tuples in temp1 representing the old and new versions of the modified nodes are inserted

in updateTupleSet as a single web tuple. For instance, the first web tuples in Figures 5(a)

and (b) are contained in temp1. These two web tuples are combined together and inserted as

a single web tuple (represented by the fourth web tuple in Figure 9). Similarly, the new and

old versions of the web tuples in temp2 are determined and inserted in updateTupleSet. After

Step (22) in Figure 11, the algorithm generates three sets, insertTupleSet, deleteTupleSet and

updateTupleSet representing the web tuples that contains all the relevant nodes that are inserted,

deleted or updated.

6.2.3 Algorithm of Phase 4

Next, the algorithm proceeds to create the delta web tables, i.e., W∆+ , W∆− and W∆M from

insertTupleSet, deleteTupleSet and updateTupleSet (Steps (23) to (25) in Figure 11). We

32

describe the construction of ∆M -web table here. As the construction of the ∆+ and ∆−-web

tables is straightforward, we do not discuss this in detail in this paper.

The algorithm first materializes each web tuple in updateTupleSet in the web tuple pool of

W∆M . Then, it retrieves the node objects (old and new versions) from the table node pools of

W1 and W2 for each node id in updateNodeSet and materializes these nodes in the table node

pool of W∆M . Observe that in the table node pool of W∆M we only materialize nodes which have

undergone content modification. However, in web tuple pool of W∆M we materialize the node ids

of the joinable nodes in addition to the identifiers of the modified nodes. This is because each

tuple in the web tuple pool contains not only the old and new versions of the modified nodes but

also how these nodes are related to other nodes which have remained unchanged during t1 and

t2. Finally, the schema of the joined web table and the outer joined web table are manipulated to

generate the schema of W∆M . As mentioned earlier, we do not discuss it in this paper.

The creation of ∆+ and ∆− web tables are quite similar to that of ∆M -web table. The only

difference is that the tuples are created from insertTupleSet and deleteTupleSet respectively and

the schemas of W∆+ and W∆− are identical to the web schema of W1 or W2.

7 Conclusions and Future Work

In this paper, we have formally defined the change detection problem in the web warehouse

context. To solve this problem, we have presented algorithms that are based on representing two

versions of Web data as web tables and manipulating these web tables using a set of web algebraic

operators for detecting changes. We have represented the web deltas in the form of delta web

tables. We have implemented algorithms for computing and representing changes in Web data

relevant to a user’s query.

As ongoing work, we are addressing the following issues: (1) Analytical and empirical studies

of the algorithms for generating the delta web tables. We wish to perform experiments to evaluate

the performance of the algorithms. We are also investigating the scalability issues in this context.

(2) Currently, the delta web tables contain tuples where only some of the nodes represent the

insertion, deletion or update operation during the transition. This is because we wish to show

how these nodes are related to one another and to other nodes which have remained unchanged

during the transition. Therefore, we need a mechanism to distinguish between the modified, new

or deleted nodes in each delta web tables. We are currently building a data model over our

warehouse data model to allow annotation on the affected nodes to represent these changes. (3)

As we represent the web deltas in the form of web tables, these tables can be further manipulated

33

using existing set of web operators and queried. We are designing and implementing a powerful

query language for the change management system in the context of our web warehouse. (4) We

intend to implement a change notification mechanism in Whoweda similar to one proposed in

[10]. We intend to support various subscription services such as allowing changes to be detected,

queried, and reported whenever a user is interested. (5) Design an event-condition-action trigger

language for Whoweda based on the ideas from the change detection system.

References

[1] URL-minder Web site. http://www.netmind.com/URL-minder/URL-minder.html.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Weiner. The Lorel Query Language for
Semistructured Data. Journal of Digital Libraries, 1(1):68-88, April 1997.

[3] S. Bhowmick, S. K. Madria, W.-K. Ng, E.-P. Lim. Detecting and Representing Relevant Web
Deltas Using Web Join. Proceedings of the 20th International Conference on Distributed Computing
Systems (ICDCS’00) , Taiwan, 2000.

[4] S. S. Bhowmick. WHOM: A Data Model and Algebra for a Web Warehouse. PhD Dissertation,
School of Computer Engineering, Nanyang Technological University, Singapore, 2001. Available at
www.ntu.edu.sg/home/assourav/ .

[5] S. S. Bhowmick, W.-K. Ng, S. Madria. Anatomy of a Coupling Query in a Web Warehouse. To
appear in International Journal of Software and Information Technology , Elsevier Science, 2002.

[6] S. S. Bhowmick, W.-K. Ng, S. K. Madria . Schemas for Web Data: A Reverse Engineering
Approach. Data and Knowledge Engineering Journal (DKE), 39(2), pp. 105 – 142, Elsevier Science,
2001.

[7] S. Bhowmick, S. K. Madria, W.-K. Ng, E.-P. Lim. Web Warehousing: Design and Issues.
Proceedings of International Workshop on Data Warehousing and Data Mining (DWDM’98) (in con-
junction with ER’98), Singapore, 1998.

[8] S. Bhowmick, W.-K. Ng, E.-P. Lim. Information Coupling in Web Databases. Proceedings of the
17th International Conference on Conceptual Modeling (ER’98), Singapore, 1998.

[9] T. Bray, J. Paoli, C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. February
1998. W3C Recommendation available at http://www.w3.org/TR/1998/REC-xml-19980210.

[10] S. Chawathe, S. Abiteboul, J. Widom. Representing and Querying Changes in Semistructured
Data. Proceedings of ICDE 98 , Orlando, Florida, February 1998.

[11] Y-F. Chen, F. Douglis, Huale Huang, K. Vo TopBlend: An Efficient Implementa-
tion of HtmlDiff in Java. AT & T Labs - Research Technical Report , 00.5.1, Available at
http://www.research.att.com/~ chen/topblend/, January, 2000.

[12] Yih-Farn Chen, Glenn S. Fowler, Eleftherios Koutsofios, Ryan S. Wallach. Ciao: A
Graphical Navigator for Software and Document Repositories. In Proceedings of International Con-
ference on Software Maintenance, pp. 66-75, 1995.

[13] S. Chawathe, Hector-Garcia Molina. Meaningful Change Detection in Structured Data. Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,Tuscon, Arizona
1997.

34

[14] S. Chawathe, A. Rajaraman et al. Change Detection in Hierarchically Structured Information.
Proceedings of the ACM SIGMOD International Conference on Management of Data, Canada, June
1996.

[15] G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in XML Documents. Proceedings of
the 18th International Conference on Data Engineering (ICDE’ 2002), San Jose, California, 2002.

[16] F. Douglis, T. Ball, Y-F Chen, E. Koutsofios The AT & T Internet Difference Engine: Track-
ing and Viewing Changes on the Web. World Wide Web Journal , 1(1), pp. 27–44, January 1998.

[17] F. Douglis, T. Ball, Y-F Chen, E. Koutsofios WebGUIDE: Querying and Navigating Changes
in Web Repositories. Proceedings of Fifth International World Wide Web Conference, Paris, May,
1996.

[18] D. S. Hirschberg. Algorithms for the Longest Common Sequence Problem. Journal of the ACM ,
24(4):664-675, October 1977.

[19] G. Jacobson, Kiem-Phong Vo. Heaviest Increasing/Common Subsequence Problems. Proceedings
of the 3rd Annual Symp. of Combinatorial Pattern Matching , Vol. 64, Springer-Verlag, pp. 52-65,
1992.

[20] L. Liu, C. Pu, W. Tang. WebCQ - Detecting and Delivering Information Changes on the Web.
Proceedings of the International Conference on Information and Knowledge Management (CIKM’00),
Washington DC, USA, November, 2000.

[21] L. Liu, C. Pu, W. Tang. Continual Queries for Internet-scale Event-driven Information Delivery.
Special Issues on Web Technology . IEEE Transactions on Knowledge and Data Engineering (TKDE),
March 1999.

[22] A. K. Luah, W.-K. Ng, E.-P. Lim. Locating Web Information Using Web Checkpoints. Proceedings
of the International Workshop on Internet Data Management (IDM’99), Florence, Italy, August 30-
September 3, 1999.

[23] A. O. Mendelzon, G. A. Mihaila, T. Milo. Querying the World Wide Web. Proceedings of
the International Conference on Parallel and Distributed Information Systems (PDIS’96), Miami,
Florida,

[24] I. Mani, E. Bloedorn. Multi-document Summarization by Graph Search and Matching. Available
at http://www.mitre.org/support/papers/abstracts/multi summariz.shtml.

[25] D. Sasha, K. Zhang. Fast Algorithms for the Unit Cost Editing Distance Between Trees. Journal
of Algorithms, 11:581-621, 1990.

[26] J. Widom, S. Ceri. Active Database Systems: Triggers and Rules for Advanced Database Process-
ing.Morgan Kaufmann, San Fransisco, California, 1995.

[27] J. Tsong-Li Wang, K. Zhang, G. Chirn. Algorithms for Approximate Graph Matching. Infor-
mation Sciences, 82(102):45–74, 1995.

[28] J. Tsong-Li Wang, B. Shapiro, D. Shasha, K. Zhang, K. Currey. An Algorithm for Finding
the Largest Approximately Common Substructructures of Two Trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 20, No. 8, pp. 889–895, August 1998.

[29] C. Yinyan, E. P. Lim, W. K. Ng. Storage Management of a Historical Web Warehousing Sys-
tem Proceedings of the 11th International Conference on Database and Expert System Applications
(DEXA’00), London, pp. 457–466, September, 2000.

[30] C. Yinyan. Querying Historical Web Information. Master’s Dissertation, School of Computer Engi-
neering, Nanyang Technological University, 2000.

35

Sourav S Bhowmick received his Ph.D. in Computer Engineering from Nanyang Technological

University, Singapore in 2001. He is an Assistant Professor of the School of Computer Engineering

at the Nanyang Technological University. He has published more than 40 journal and conference

papers in the areas of web data management, bioinformatics and mobile data management. He

is serving as PC member of various database conferences and workshops and reviewer for various

database journals. He is a member of the ACM and IEEE Computer Society.

Sanjay Kumar Madria received his Ph.D. in Computer Science from Indian Institute of Tech-

nology, Delhi, India in 1995. He is an Assistant Professor of the Department of Computer Science

at the University of Missouri-Rolla, USA. Earlier he was Visiting Assistant Professor in the De-

partment of Computer Science, Purdue University, West Lafayette, USA. He has published more

than 70 Journal and conference papers in the areas of web warehousing, mobile databases, data

warehousing, nested transaction management and performance issues. He has chaired interna-

tional conferences and workshops, organized tutorials, and has actively served in the program

committees of numerous international conferences and has been reviewer for many journals. He

participated as panelist in National Science Foundation and Swedish Research Council. He is an

IEEE senior member and ACM member.

Wee Keong Ng is an Assistant Professor of the School of Computer Engineering at the Nanyang

Technological University, Singapore. He obtained his M.Sc. and Ph.D. degrees from the University

of Michigan, Ann Arbor in 1994 and 1996 respectively. He works and publishes widely in the

areas of Web warehousing, information extraction, electronic commerce and data mining. He has

organized and chaired international workshops, including tutorials, and has actively served in the

program committees of numerous international conferences. He is a member of the ACM and

IEEE Computer Society.

36

