
GBLENDER: Visual Subgraph Query Formulation Meets
Query Processing

Changjiu Jin§ Sourav S Bhowmick§,¶ Xiaokui Xiao§

Byron Choi† Shuigeng Zhou‡

§School of Computer Engineering, Nanyang Technological University, Singapore
¶Singapore-MIT Alliance, Nanyang Technological University, Singapore

†Department of Computer Science, Hong Kong Baptist University, Hong Kong
‡Fudan University, China

cjjin|assourav|xkxiao@ntu.edu.sg, choi@hkbu.edu.hk, sgzhou@fudan.edu.cn

ABSTRACT
Due to the complexity of graph query languages, the need for visual
query interfaces that can reduce the burden of query formulation
is fundamental to the spreading of graph data management tools
to wider community. We present a novel HCI (human-computer
interaction)-aware graph query processing paradigm, where instead
of processing a query graph after its construction, it interleaves vi-
sual query construction and processing to improve system response
time. We demonstrate a system called GBLENDER that exploits GUI
latency to prune false results and prefetch candidate data graphs by
employing a novel action-aware indexing scheme and a data struc-
ture called spindle-shaped graphs (SPIG). We demonstrate various
innovative features of GBLENDER and its promising performance
in evaluating subgraph containment and similarity queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

General Terms
Algorithms, Experimentation, Performance

Keywords
Graph Databases, Graph Indexing, Visual Query Formulation, Fre-
quent Subgraphs, Infrequent Subgraphs, Prefetching

1. INTRODUCTION
Querying graph databases has emerged as an important research

problem due to explosive growth of graph-structured data in recent
years. A wide variety of graph queries in many applications in-
volve the core substructure search problem (also called subgraph
containment query). In this problem, given a graph database D and
a query graph q, the aim is to find all data graphs in D in which q is
a subgraph. Note that q is a subgraph of a data graph g ∈ D if there
exist a subgraph isomorphism from q to g. A common problem for
this type of query is that in many occasions there may not exists
any g ∈ D that matches the query. In this case, it is often useful to
find out data graphs that “nearly" contain the query graph, which
is called the substructure similarity search problem [5] (also called
subgraph similarity query).

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

A number of graph query languages (e.g., SPARQL) have been
proposed that can be used to formulate subgraph queries. Unfor-
tunately, in many real life domains it is unrealistic to assume that
users are proficient in expressing graph queries using these lan-
guages. The traditional approach to address this query formulation
challenge is to build a user-friendly visual framework on top of
a state-of-the-art graph query processing technique (e.g., [5]). In
this traditional visual query processing paradigm, although the final
query that a user intends to pose is revealed gradually in a step-by-
step manner during query construction, it is not exploited by the
query processor prior to clicking of the Run icon to execute the
query. That is, query processing is initiated only after the user has
finished drawing the query. This often results in slower system re-
sponse time (SRT)1 as the query processor remains idle during the
entire query formulation process [2, 3].

In this demonstration, we present GBLENDER (Graph blender) [2,
3] - a novel HCI-aware visual subgraph querying system that chal-
lenges the aforementioned traditional paradigm of visual querying
by blending the two orthogonal areas of visual graph query for-
mulation and query processing. The key benefits of this novel
query evaluation paradigm are two-fold. First, it ensures that the
query processor does not remain idle during visual query formula-
tion. Second, it significantly improves the SRT [2, 3]. In traditional
paradigm, SRT is identical to the time taken to evaluate the entire
query. In contrast, in this new paradigm SRT is the time taken to
process a part of the query that is yet to be evaluated (if any).

At each visual query formulation step taken by the user,
GBLENDER employs a novel action-aware indexing scheme and
a data structure called SPIG (spindle-shaped graphs) to efficiently
compute candidate data graphs that contain (approximately if nec-
essary) the current query fragment by exploiting the GUI latency.
It also supports modifications to a query gracefully as a user may
change her mind or commit mistakes during query construction.
In this demonstration, we shall demonstrate various interactive and
innovative features of GBLENDER that are necessary to realize the
proposed visual query processing paradigm.

2. SYSTEM OVERVIEW
Figure 2 shows the system architecture of GBLENDER and mainly

consists of the following modules. The reader may refer to [2, 3]
for details related to these modules.
The GUI module: Figure 1(a) depicts the screenshot of the visual
interface of GBLENDER. A user begins formulating a query by

1Duration between the time a user presses the Run icon to the time when the user gets
the query results.

1

5

6

4

3

2

8

7

Panel 2

Panel 1

Panel 3

Panel 4

(a) Visual interface. (b) The Interaction Viewer module. (c) The Modification Handler module.
Figure 1: The GBLENDER system (The identifiers on the edges represent the sequence of visual steps for query formulation).

Query

Matching

GBLENDER GUI

Actions

Graph

Database

Query Fragment

Verifier

Candidates

Verification-

free

candidates

User

Frequent Fragment

Extractor

Index

Constructor

Results

Visualizer

Action-Aware

Indices

Results

SPIG

Generator

Interaction

Viewer

Modification

Handler

Figure 2: Architecture of GBLENDER.

choosing a database as the query target and creating a new query
canvas using Panel 1. The left panel (Panel 2) displays the unique
labels of nodes that appear in the dataset in lexicographic order. In
the query formulation process, the user chooses labels from Panel
2 for creating the nodes in the query graph. Panel 3 depicts the
area for formulating graph queries. A user drags a node that is part
of the query from Panel 2 and drops it in Panel 3. Next, she adds
another node in the same way. Then, she creates an edge between
the added nodes by left and right clicking on them. Additional
nodes and edges are added to the query graph by repeating these
steps. Finally, the user can execute the query by clicking on the
Run icon in Panel 1. Panel 4 displays the query results.
The Frequent Fragment Extractor module: This module mines
the frequent fragments from the graph database D using an ex-
isting frequent graph mining technique (the current version uses
gSpan [6]). Informally, we use the term fragment (resp. query
fragment) to refer to a small subgraph existing in graph databases
(resp. query graphs). Given a fragment g which is a subgraph of
G (denoted as g ⊆ G) and G ∈ D, we refer to G as the fragment
support graph (FSG) of g. Since each data graph in D is denoted
by an unique identifier, fsgIds(g) denotes the set of identifiers of
FSGs of g. A fragment g is frequent in D if its support is no less
than α|D| where 0 < α < 1 is the minimum support threshold.
Otherwise, g is an infrequent fragment.
The Action-Aware Index Constructor module: The action-aware
frequent index (A2F) is a graph-structured index having a memory-
resident and a disk-resident components. We refer to them as
memory-based frequent index (MF-index) and disk-based frequent
index (DF-index), respectively. Specifically, small-sized frequent
fragments (frequently utilized) are stored in MF-index whereas larger
frequent fragments (less frequently utilized) reside in DF-index.

The DF-index is an array of fragment clusters. A fragment clus-
ter is a directed graph C = (VC , EC) where each node v ∈ VC is a
frequent fragment f where the size of f (denoted as |f |) is greater
than the fragment size threshold β (i.e., |f | > β). There is an edge
(v′, v) ∈ EC iff f ′ is a proper subgraph of f (denoted as f ′ ⊂ f)
and |f | = |f ′| + 1. We denote the root node (node with no in-

coming edge) of C as root(C). Each fragment f of v is represented
by its CAM code. Each node with fragment f in C points to a set
of FSG identifiers of f (fsgIds(f)). Note that given the frequent
fragments f and f ′, if f ′ ⊂ f then fsgIds(f) ∩ fsgIds(f ′) =
fsgIds(f). Consequently, GBLENDER store only a subset of
fsgIds(f) at each node.

MF-index indexes all frequent fragments having size less than
or equal to β. Similar to a fragment cluster, it is a directed graph
GM = (VM , EM) where the nodes and edges have same semantics
as C. In addition, nodes representing frequent fragments of size β
are leaf nodes in GM and do not have any child fragments. Each
leaf node v ∈ VM (representing f) is additionally associated with
a fragment cluster list L where each entry Li points to a fragment
cluster Cj in the DF-index such that f ⊂ root(Cj).

The action-aware infrequent index (A2 I-index) indexes infrequent
fragments to prune the candidate space for infrequent queries. In
order to ensure that the index is space-efficient, we index only the
discriminative infrequent fragments (DIFs), which are infrequent
fragments whose subgraphs are all frequent. Intuitively, it consists
of an array of DIFs arranged in ascending order of their sizes. Each
entry in the index stores the CAM code of a DIF g and fsgIds(g).
The SPIG Generator module: For each new edge eℓ created by
the user, this module create a spindle-shaped graph (SPIG) using
the action-aware indexes. Each edge is assigned a unique identifier
according to their formulation sequence. That is, the ℓ-th edge con-
structed by a user is denoted as eℓ where ℓ is its label. The edge
with the largest ℓ is referred to as new edge (most recently added).

A SPIG is a directed graph Sℓ = (Vℓ, Eℓ) where each node
v ∈ Vℓ represents a subgraph g of the query fragment contain-
ing eℓ. There is a directed edge from node v′ to node v if g′ ⊂ g
and |g| = |g′| + 1. Each v is associated with the CAM code of the
corresponding g, a list of labels of edges of g, and a list of identi-
fier set called Fragment List of g. The Fragment List contains four
attributes, namely frequent id, DIF id, frequent subgraph id set, and
DIF subgraph id set. If g is in A2F-index or A2 I-index, then the
corresponding identifier of the node in the index is stored in fre-
quent id or DIF id attribute, respectively. However, if g is neither
in A2F-index nor in A2 I-index, then the frequent subgraph id set
stores the frequent ids of all largest proper subgraphs of g that are
in A2F-index. Note that size of these subgraphs is |g| − 1. Lastly,
the DIF subgraph id set of g contains the DIF ids of all subgraphs
of g that are indexed by A2 I-index.

The source vertex (no incoming edge) in the first level of Sℓ,
represents eℓ and the target vertex (no outgoing edge) in the last
level, represents the entire query fragment at a specific step.
The Query Matching module: This module implements an in-
novative SPIG-based query matching algorithm that utilizes the la-
tency offered by the GUI actions to retrieve partial candidate data
graphs. When a user draws a new edge eℓ on the query canvas,
this module retrieves identifiers of data graphs containing the query

fragment q (denoted by Rq) and monitors its status. If Rq is non-
empty at a specific step then subgraph containment search is in-
voked as q has exact matches in the database. If q is a frequent
fragment, then it retrieves FSG identifiers of g by probing A2F-
index. Otherwise, if g represents a DIF, then it retrieves the FSG
identifiers from A2 I-index. If g is neither a DIF nor a frequent frag-
ment then for each identifier in the frequent subgraph id set and DIF
subgraph id set of g in the SPIG, it retrieves the corresponding FSG
identifiers from A2F-index and A2 I-index, respectively, and then in-
tersect them with Rq to generate the candidate set.

If Rq becomes empty (e.g., in Figure 1(a), the query fragment af-
ter Step 6 does not have any match) then it exploits the SPIG set to
efficiently support the following two steps. (a) If the user chooses to
modify q then it invokes the Modification Handler module (see be-
low) to handle the modification process. (b) Otherwise, it invokes
substructure similarity search to retrieve approximate matches to
q. Similar to [5], we adopt the maximum connected common sub-
graphs (MCCS) for computing similarity between a pair of graphs.
Given the subgraph distance threshold σ, this module exploits the
SPIG set to identify the relevant subgraphs of q that need to be
matched for retrieving approximate candidate sets. Specifically,
these subgraphs are query fragments represented by the nodes at
levels |q| − 1 to |q| −σ in the SPIG set. The candidate set are sepa-
rated into two parts, namely Rfree and Rver , storing the identifiers
of verification-free candidate graphs and data graphs that need ver-
ification, respectively. For each node in the i-th level, if it is a
frequent fragment or DIF, then the candidates satisfying the node is
retrieved using the aforementioned exact substructure search pro-
cedure and combine them with existing Rfree. Otherwise, it is
neither a frequent fragment nor a DIF. Consequently, the candidate
data graphs are once again computed using frequent subgraph id
set and DIF subgraph id set (see above) and combined with exist-
ing Rver . Lastly, candidates that exist in both Rfree and Rver are
removed from Rver .
The Verifier module: If the final query is a frequent subgraph con-
tainment query or a DIF, then the results are directly computed
without subgraph isomorphism test. If it is a non-DIF infrequent
subgraph containment query, when the Run icon is clicked, this
module returns the exact results by filtering the false candidates
using Ullman’s algorithm for subgraph isomorphism test. Other-
wise, if the final query has evolved to a subgraph similarity query
then firstly the candidates in Rfree are added to result set with-
out any verification test. Next, it generates the result set from the
candidates in Rver by extending VF2 [1] to handle MCCS-based
similarity verification.
The Interaction Viewer module: This module provides a real-
time graphical view of the working of the proposed visual query
evaluation paradigm. Specifically, it depicts the effect of each vi-
sual query formulation step on the state (exact or approximate) of
query graph, the size of candidate data graphs as well as time taken
by GBLENDER to compute them. Consider the construction of the
query in Figure 1(a). The query evaluation process at every step
is depicted in Figure 1(b). The bottom part of the screen displays
the sizes of candidate data graphs at different steps. Observe that
it also depicts the transition of the query fragment from exact sub-
structure search (Steps 1-5, color coded in blue) to substructure
similarity search (Steps 6-8, color coded in green). The top part of
the display plots the time taken by the query matching algorithm to
compute and maintain the candidate data graphs at every step.
The Modification Handler module: This module assists the user
to modify the formulated query appropriately so that non-empty
results set. It exploits the SPIGs to recommend the edge (by color
coding the edge in the GUI) whose deletion would maximize the

size of the candidate graph set of the modified query fragment. For
example, reconsider the query in Figure 1(a) at Step 6. If the user
chooses to modify the query then this module recommends the edge
(N,Cl) for deletion (depicted by red colored edge in Figure 1(c)).
Note that the user may ignore this suggestion and is free to delete
any edge (at any time during query formulation) that has been pre-
viously constructed by her. After modification by the user, it up-
dates the SPIG set by removing irrelevant nodes from the SPIGs.
The Results Visualizer module: Upon successful execution of a
subgraph query, this module displays the results in graphical format
(Panel 4) using the ZGRViewer [4]. The result graphs are ordered
according to increasing value of their similarity distance.

3. DEMONSTRATION OBJECTIVES
GBLENDER is implemented in Java JDK 1.6. Our demonstration

will be loaded with synthetic datasets and a few real datasets (e.g.,
AIDS Antiviral dataset containing 43K graphs) with different sizes.
Example query graphs will be presented. Users can also write their
own ad-hoc queries through our GUI.
Interactive experience of the novel query evaluation paradigm.
One of the key objectives of the demonstration is to enable the au-
dience to interactively experience the proposed query processing
paradigm in real-time. During the visual construction of a sub-
graph query, the Interaction Viewer module (Figure 1(b)) shall be
enabled to assist users in gaining such experience. Through this
module, one will be able to view the generation of candidate data
graphs at each visual step, evolution of a containment query to a
similarity query (if necessary) and their effect on the size of can-
didate set (bottom part of Figure 1(b)). Additionally, the user will
be able to experience the time taken by GBLENDER at each visual
step for fetching candidate data graphs (top part of Figure 1(b)) and
appreciate the fact that the latency offered by the GUI at each step
is sufficient to finish this prefetching task. Furthermore, she will
be able to visualize in real-time the effect of the type of subgraph
query fragment (containment or similarity) on the prefetching time.
Robustness to query modification. We shall interactively show
the following two features of GBLENDER to highlight its robust-
ness to query modification. First, we shall show the automatic
edge recommendation process for deletion (Figure 1(c)). Second,
we shall demonstrate in real-time (using the Interface Viewer) how
GBLENDER efficiently handle query modification in response to
deletion of any edge by a user during query formulation.
Superior performance of GBLENDER. We shall demonstrate that
the proposed paradigm significantly improves SRT compared to tra-
ditional graph query evaluation systems.

Acknowledgement: Shuigeng Zhou was supported by NSFC
under grant No. 60873070.

4. REFERENCES
[1] L.P. CORDELLA, ET AL. An improved algorithm for matching large

graphs. Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-based Representations in Pattern Recognition, 2001.

[2] C. JIN, ET AL. GBLENDER: Towards Blending Visual Query
Formulation and Query Processing in Graph Databases. In ACM
SIGMOD, 2010.

[3] C. JIN, ET AL. A Practical Framework for Blending Visual
Subgraph Query Formulation and Query Processing. In Technical
Report, Available at http://www.cais.ntu.edu.sg/
~assourav/TechReports/GBlender-TR.pdf, 2010.

[4] E. PIETRIGA. A Toolkit for Addressing HCI Issues in Visual
Language Environments.In IEEE Symp. on Vis. Lang. and
Human-Centric Comp., 2005.

[5] H. SHANG, ET AL. Connected Substructure Similarity Search. In
SIGMOD, 2010.

[6] X. YAN, ET AL. gSpan: Graph-based Substructure Pattern Mining.
In ICDM, 2002.

