
Data-driven VisualQuery Interfaces for Graphs: Past, Present,
and (Near) Future

Sourav S Bhowmick
Nanyang Technological University

Singapore
assourav@ntu.edu.sg

Byron Choi
Hong Kong Baptist University

Hongkong SAR, China
bchoi@comp.hkbu.edu.hk

ABSTRACT

Visual graph query interfaces (VQI) widen the reach of graph query-
ing frameworks across a variety of end users by enabling non-
programmers to use them. Several industrial and academic frame-
works for querying graphs expose such visual interfaces. In this
tutorial, we survey recent developments in the emerging area of
data-driven visual query interface that is grounded on the principles
of human-computer interaction (HCI) and cognitive psychology to
enhance usability of graph querying frameworks. A data-driven
VQI has many benefits such as reducing the cost in constructing
and maintaining an interface, superior support for query formu-
lation, and increased portability of the interface. We discuss the
notion of making VQIs data-driven and compare it with its classical
manual counterpart, and review techniques for automatic construc-
tion and maintenance of these interfaces. In addition, the tutorial
suggests open problems and new research directions. In summary,
in this tutorial, we review and summarize the research thus far
into data-driven visual graph query interface management, giving
researchers a snapshot of the current state of the art in this topic,
and future research directions.

CCS CONCEPTS

• Information systems → Query languages for non-relational
engines.

KEYWORDS

Visual query interface, graph search, data-driven, cognitive load
ACM Reference Format:

Sourav S Bhowmick and Byron Choi. 2022. Data-driven Visual Query In-
terfaces for Graphs: Past, Present, and (Near) Future. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22), June
12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3514221.3522562

1 INTRODUCTION

“If the user can’t use it, it doesn’t work.”
Susan Dray

Dray & Associates, Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3522562

Graphs are ubiquitous nowadays in many application domains
(e.g., biology, social sciences, chemistry, finance). The global graph
database market size is expected to grow from USD 1.9 billion in
2021 to USD 5.1 billion by 2026 [5]. However, according to a re-
cent Markets and Markets report [5], a potential bottleneck for this
growth is that “developers have to write their queries using Java as
there is no Standard Query Language (SQL) to retrieve data from
graph databases, which means employing expensive programmers or
developers have to use SPARQL or one of the other query languages
that have been developed to support graph databases, however, it
would mean learning a new skill. This results in the lack of standard-
ization and programming ease for graph database systems.”. This
is also echoed by a recent survey [41] which revealed that graph
query languages and usability are considered as some of the top
challenges for graph processing. Although considerable efforts have
been invested toward efficient and scalable processing of graph-
s [15, 43], the above issues have received relatively lesser attention
from the data management community for decades.

Fortunately, graphs are more intuitive to draw than to compose
them in textual format. Hence, a common starting point for address-
ing these challenges is the deployment of a visual query interface
(VQI) that can enable an end user to draw a graph query inter-
actively instead of formulating it textually using a graph query
language. Indeed, several industrial graph querying frameworks in
a variety of domains provide such interfaces [2–4, 6]. These VQIs
typically utilize direct-manipulation interfaces that are appealing
to “novices as they can learn basic functionality quickly, are easy to
remember for intermittent users by retaining operational concepts,
and can be rapid for frequent users” [42]. Interestingly, majority
of these VQIs do not expose interfaces to formulate queries us-
ing a graph query language, highlighting the reluctance of many
domain-specific end users to use such programming languages.
Given that query formulation precedes query processing, VQIs nat-
urally facilitate democratization of graph querying frameworks
by empowering end users with no programming background to
formulate subgraph queries and thereby exploit powerful graph
query processing engines for their tasks. Indeed, a powerful query
processor has no practical usage to an end user if he/she fails to
formulate subgraph queries to express his/her search goals!

The construction of existing VQIs is typically performed by pro-
grammers manually coding various interface features based on
domain knowledge that may be provided by domain experts. Such
endeavour, however, is labour-intensive and may demand a com-
prehensive knowledge of different topological structures in the
underlying graph data for superior VQI design [24, 48]. Further-
more, these VQIs lack of portability across different graph data
sources and applications as several components of a VQI need to be

https://doi.org/10.1145/3514221.3522562
https://doi.org/10.1145/3514221.3522562

Table 1: Tutorial overview.

Topic Approx. time (min) Representative papers Demo Code
Introduction 5 - No -
Usability of manual VQI 15 [2–4, 6, 16, 20, 21, 26, 38, 47] Yes ([6, 26]) -
The concept of data-driven VQI 10 [7, 10] No -
Data-driven construction of VQIs 30 [12, 24, 45, 48, 51] Yes ([12, 49, 51]) https://github.com/MIDAS2020/CATAPULT
Data-driven maintenance of VQIs 10 [25] Yes ([12]) https://github.com/MIDAS2020/Midas
Future research direction 15 - No -

reconstructed due to their data dependency [10]. The maintenance
of these components as the underlying data source evolves becomes
challenging as well [25]. Given that industrial and academic entities
will continue to generate disparate graph data sources for different
applications, a data-driven approach to VQI generation and mainte-
nance is paramount. Such a data-driven paradigm gives end users
the freedom to easily and quickly construct and maintain a VQI
for any data sources without resorting to coding. This has recently
paved the way for research in data-driven construction and main-
tenance of visual graph query interfaces [10, 12, 24, 25, 45, 48, 51].

This tutorial gives a comprehensive introduction to the topic of
data-driven visual graph query interface management. A hallmark
of this tutorial is to emphasize research efforts that aim to bridge
three traditionally orthogonal topics or fields, namely, graph query-
ing, human computer interaction (HCI), and cognitive psychology.
Specifically, a key component we cover is the review of techniques
and strategies that make data-driven visual graph query interface
construction and maintenance grounded on the principles of HCI
and cognitive psychology to augment usability of graph querying
frameworks. An overview of the scope of the tutorial is as follows.

• Usability of manual VQI:We begin by reviewing different
features of existing manually-constructed VQIs and analyze
their usability. Specifically, we emphasize them from three
dimensions that influence usability criteria, namely search
paradigm, maintainability, and aesthetics.

• Data-driven VQI: We give an overview of the notion of
data-driven VQI and compare it with its manual counter-
part based on the aforementioned features, highlighting its
strengths w.r.t usability and portability. Then we articulate
the challenges to realize it.

• Data-driven construction of a VQI: In this part, we re-
view HCI- and cognitive psychology-aware techniques for
constructing a VQI automatically from a given data source.
Specifically, we present techniques that are designed to han-
dle a large collection of small- or medium-sized data graphs
(e.g., chemical compounds) and large networks (e.g., biologi-
cal networks, social networks).

• Data-driven maintenance of a VQI: We review a tech-
nique proposed in the literature to automatically maintain
the relevant components of a data-driven VQI as the under-
lying data graphs evolve. Specifically, we highlight efforts to
make such maintenance cognitive psychology-conscious.

• Future research directions: Finally, we discuss open prob-
lems on the topic of data-driven VQI management. We dis-
cuss how the data-driven paradigm on graphs paves the
way for similar research endeavour on other data types (e.g.,

time series). Lastly, we highlight the usefulness of the tech-
niques presented here in addressing problems beyond VQI
construction (e.g., graph summarization).

Table 1 shows the approximate duration of each of the above
topics for a 90-min tutorial. A detailed treatment of these topics
appear in [7].

2 TUTORIAL OUTLINE

Our presentation follows a top-down approach, starting from the
usability of existing manual visual graph query interfaces (VQIs),
proceeding to the introduction of the notion of data-driven VQI and
its potential to enhance usability, construction and maintenance of
a data-driven VQI, and concluding with future research directions
in this arena. Table 1 shows the key papers we discuss. Additionally,
a key feature of our tutorial is the live demonstrations of various
academic and industrial VQIs related to the aforementioned topics
as highlighted in the fourth column. We also make the codebase
available for selected data-driven VQI frameworks.

2.1 Usability of Manual Visual Query Interfaces

Visual query interfaces for graph-structured data (VQI) have been
used in academia and industry for more than a decade [2–4, 6, 16, 20,
21, 26, 27, 30, 38, 39, 47]. The key components in majority of these
VQIs are the Attribute Panel, Query Panel, Pattern Panel, and Results
Panel. The Attribute and Pattern panels are optional components
containing attributes of nodes or edges and small connected graphs,
respectively. The Query Panel is used by a user to draw a query and
the Results Panel is for visualizing the query results. The details of
visual design and the contents of some of these components are
created manually by “hard coding” them during implementation of
a VQI. We refer to these VQIs collectively as manual VQIs. These
interfaces enable an end user to visually formulate a variety of graph
queries (e.g., subgraph matching, subgraph similarity, subgraph
enumeration). A common thread across all these different query
types is the visual construction of a graph topology.

We begin our tutorial by analyzing manual VQIs w.r.t their us-
ability. Usability is a quality attribute that assesses how easy user
interfaces are to use [8]. Specifically, it refers to the “quality of the
interaction in terms of parameters such as time taken to perform tasks,
number of errors made, and the time taken to become a competent
user’’ [8]. To this end, we first compare these VQIs w.r.t search
paradigm, maintainability, and aesthetics as they influence various
criteria of usability. We elaborate on them in turn.

Search paradigms. Typically, an end user follows a top-down or
bottom-up visual search paradigm for formulating queries. The for-
mer refers to searching graph data based on a user’s intuition of

https://github.com/MIDAS2020/CATAPULT
https://github.com/MIDAS2020/Midas

how the desired query should look like in theory (i.e., translating a
graph topology “in-the-head” to a visual query). One is expected
to possess a precise knowledge about the attributes in the underly-
ing graph repository as well as topologies-of-interest to formulate
meaningful queries. The latter refers to search when a user does not
have an upfront knowledge of the complete query structure. That
is, she may have some concepts or keywords in-the-head but is
unaware of how they form a connected query graph structure that
may result in a meaningful query. Hence, she may get acquainted
to the key substructures that exist in the dataset through represen-
tative objects to galvanize query formulation. Clearly, any superior
VQI should facilitate both these search paradigms. In particular,
support for bottom-up search is paramount as a large network looks
like a “hairball” on a visual interface and hence it is cognitively
challenging to browse it to figure out which topological patterns
one can use to trigger a query formulation task. Even for a database
of small- or medium-sized data graphs, it is tedious to manually
browse thousands of data graphs to seek for topologies of interest
to kick-start a search. Although all existing manual VQIs support
top-down search, very few [3, 4, 6, 26] provide functionalities to
support effective bottom-up search. Particularly, a Pattern Panel
containing patterns is exposed to an end user as representative
objects to kick-start query formulation. Intuitively, a pattern is a
small connected subgraph (e.g., benzene ring, triangle, rectangle)
occurring in the underlying data graphs that one can utilize to
visually construct a query graph in pattern-at-a-time mode.

Maintainability of a VQI. A majority of real-world graphs are
dynamic in nature. For example, a study [52] reported that approx-
imately 4,000 new structures were added daily to the SCI finder
database (www.cas.org/products/scifinder). New compounds are al-
so added to PubChem (pubchemdocs.ncbi.nlm.nih.gov/submissions-
getting-started) and Drugbank (dev.drugbank.com/guides/faqs) dai-
ly. Similarly, large networks such as coauthorship networks (e.g.,
DBLP) and social networks (e.g., Twitter) evolve with time. We
observe that all existing manual VQIs exhibit poor and inefficient
maintainability with the evolution of underlying data graphs. Con-
sequently, contents of various components of a VQI (e.g., Pattern
Panel) may grow stale quickly over time, adversely impacting visual
query formulation [25].

Aesthetics. Lastly, people prefer attractive interfaces [18]. The
visual appearance of a VQI (i.e., aesthetics) impacts its usability as
it influences the way users interact with it (i.e., aesthetic-usability
effect [1]. Specifically, the characteristics (e.g., size, color) of vari-
ous panels in a VQI influence its complexity. A visual pattern can
be considered complex if its components are difficult to identi-
fy and separate from each other [37]. Several studies in HCI and
psychology have found a strong relationship between aesthetic
preferences and visual complexity [9, 40]. According to Berlyne’s
aesthetic theory [9], the relationship between them follows an in-
verted U-shaped curve where stimuli of a moderate degree of visual
complexity is considered pleasant but both less and more complex
stimuli are considered unpleasant. We report that several existing
VQIs (e.g., [6]) suffer from poor aesthetics. In particular, we ob-
serve that supporting the aforementioned search paradigms and
query formulation-friendly functionalities may adversely impact
aesthetics and visual complexity if VQIs are not designed carefully.

Usability criteria. The aforementioned three features impact sev-
eral of the following criteria for usability [19]:

• Learnability: By which new users can interact effectively and
achieve maximal performance;

• Flexibility: Multiple ways a user and the system exchange
information;

• Robustness: The level of support provided to a user in deter-
mining successful achievement and assessment of goals;

• Efficiency: Once a user learns about a system, the speed with
which he/she can perform tasks;

• Memorability: How easily a user will remember a system’s
functions, after not using it for a period;

• Errors: It is about the number of errors made by users, their
severity, and whether they can recover from them easily;

• Satisfaction: How enjoyable and pleasant is it to work with
the system?

Specifically, search paradigms influence flexibility, robustness, ef-
ficiency, errors, and satisfaction. Maintainability impacts efficiency
and robustness whereas aesthetics contributes to satisfaction. For
instance, exposing patterns in a Pattern Panel and maintaining them
enable end users to formulate queries efficiently in multiple ways
(pattern-at-a-time as well as edge-at-a-time modes) [24, 25, 48] and
may reduce errors compared to visual formulation without the
aid of such patterns. Furthermore, facilitating both top-down and
bottom-up search by exploiting the Pattern and Attribute Panels
potentially increase user satisfaction. In particular, HCI research
shows that users may become frustrated if a large number of small
atomic actions (e.g., repeated edge construction) is necessary to ac-
complish a higher-level task (e.g., subgraph query formulation) [42].
Naturally, patterns may ease such frustration.

A key point of our discussion is the emphasis on the fact that de-
spite decades of research by theHCI community related to usability
and human factors, many of the manual VQIs for graph querying
are oblivious to these results.

2.2 Data-driven Visual Query Interfaces

The aforementioned manual VQIs adversely impact various usabili-
ty criteria such as flexibility, robustness, efficiency, and satisfaction.
Specifically, they do not provide sufficient features to aid flexible and
efficient visual query formulation, and are static in nature when the
underlying graph repository evolves [10]. Furthermore, the manual
construction of a VQI limits its portability across different domains
and sources as one has to reimplement and customize the VQI for
each one of them [10]. Next, we introduce the notion of data-driven
VQI [10, 12, 51] that is recently proposed to alleviate these lim-
itations, highlight its features and advantages in comparison to
manual VQIs, and challenges to realize it.

A data-driven VQI takes a fundamentally different approach in
VQI construction. Given a graph repository 𝐷 and a certain budget,
it automatically populates and maintains various panels of a VQI
from 𝐷 consistent with the budget. Observe that in a VQI the con-
tents of the Query and Result Panels are dependent on users and
user-specified queries, respectively. On the other hand, contents
of the Attribute and Pattern Panels hinge on 𝐷 . Hence, data-driven
VQIs automatically populate the contents of these two panels from
𝐷 to aid visual query formulation. These contents influence several

www.cas.org/products/scifinder
pubchemdocs.ncbi.nlm.nih.gov/submissions-getting-started
pubchemdocs.ncbi.nlm.nih.gov/submissions-getting-started
dev.drugbank.com/guides/faqs

usability criteria (e.g., efficiency, flexibility, satisfaction). Conse-
quently, such a data-driven paradigm brings in several benefits
such as superior support for visual subgraph query construction,
significant reduction in the cost of constructing and maintaining
a VQI, and portability of a VQI across diverse graph data source
and querying applications [24, 25, 45, 48]. We believe that as the
number of graph data sources grows with time, data-driven VQIs
will offer sufficient benefits to developers and end users of graph
repositories by making generation of usable VQIs effortless.

2.3 Construction of Data-driven VQIs

Next, we focus on frameworks for constructing data-driven VQIs
from graph repositories [24, 45, 48, 51]. Observe that attributes and
patterns are the building blocks of a VQI. Hence, we review auto-
matic content generation techniques for the Attribute and Pattern
Panels. Although the set of labels of nodes/edges for populating an
Attribute Panel can be easily generated by traversing the underlying
graph repository, automatically generating the patterns of a Pattern
Panel is an NP-hard problem [24]. Hence, in the sequel, we focus
on this. We begin by classifying the patterns into two categories,
basic and canned. Next, we summarize the desirable characteristics
of canned patterns [24, 48]. Then, we group the review of data-
driven selection of canned patterns into two categories. Finally,
we summarize the usability evaluation reported in the literature
that highlights the superiority of data-driven VQIs to manual VQIs
primarily due to the exposition of diverse canned patterns by the
former.

Basic and canned patterns. Intuitively, we can classify the pat-
terns in a Pattern Panel into two types, basic and canned. A basic
(a.k.a default) pattern is a small-size pattern with size at most 𝑧
(typically, 𝑧 ≤ 3) such as edge, 2-edge, and triangle. End users are
typically aware of these generic topologies as they are either build-
ing blocks of any graph-structured data or they are well-known in a
specific domain. On the other hand, a canned pattern is a subgraph
of size larger than 𝑧. These larger size patterns are highly desirable
as they often reveal structures that are unique to the underlying
graph data source, thereby furnishing representative objects to end
users to trigger efficient visual graph query formulation even when
they may not have a specific pattern-in-their-head. Hence, in the
sequel we focus on canned patterns.

Cognitive psychology-aware canned patterns. Typically, a VQI
has limited space for displaying patterns. Furthermore, a long list
of patterns may increase browsing time of end users for pattern
selection during visual query formulation. Indeed, several industrial
VQIs [3, 4, 6] only display a handful of patterns. In particular, recent
research [24, 25, 48] proposed that any canned pattern set for a VQI
should satisfy the following characteristics in order to assist end
users in visual query formulation.

High coverage. A canned pattern 𝑝 covers a graph 𝐺 if 𝐺 con-
tains a subgraph 𝑠 that is isomorphic to 𝑝 . Since 𝑝 may have many
embeddings in 𝐺 , the canned pattern set in a Pattern Panel should
ideally cover as large portion of𝐺 as possible. Then a large number
of subgraph queries on the underlying graph repository can be
constructed by utilizing the pattern set.

High diversity. High coverage of canned patterns is insufficient
to facilitate efficient visual query formulations [24]. In order to

make efficient use of the limited display space in a VQI, the patterns
in a Pattern Panel should be structurally diverse to serve a variety
of queries. This also facilitates bottom-up search where a user gets
a bird’s-eye view of the diverse substructures in the underlying
graph repository. For instance, the canned patterns in [3] have low
diversity and hence not a superior enabler of bottom-up search.

Low cognitive load. In cognitive psychology, cognitive load refers
to the used amount of working memory resources (i.e., memory
demand) [44]. In particular, intrinsic cognitive load is the effort asso-
ciated with a specific topic (e.g., selecting patterns) and extraneous
cognitive load refers to the way information or tasks are presented
to a learner (e.g., presentation of patterns in a VQI) [44]. In the
context of visual query formulation, cognitive load on a user is
associated with browsing a pattern set and visually interpreting a
displayed pattern’s edge relationships to determine if it is useful for
a query. In particular, large graphs overload the human perception
and cognitive systems, resulting in poor performance of tasks such
as identifying edge relationships [23, 50]. Consequently, a topo-
logically complex pattern may demand substantial cognitive effort
(i.e., increase intrinsic cognitive load) from an end user to decide
if it can assist in her query formulation [24]. While basic patterns
impose low cognitive load due to their small size, it is desirable
for canned patterns to be of low cognitive load as well to facilitate
cognitively-efficient browsing and selection of relevant patterns
during query formulation.

We review measures proposed in the literature [24, 48] to quan-
tify coverage, diversity, and cognitive load of canned patterns and
summarize their properties.

Canned pattern selection for a set of small- or medium-sized

data graphs. Recent work [24, 45] have proposed novel framework-
s for selecting canned patterns for a graph database containing a
large collection of small- or medium-sized graphs (e.g., chemical
compounds, protein structures). We review them in this section.

The Catapult framework [24] comprises of the following three
steps. First, it partitions a collection of data graphs into a set of
clusters. Then, it summarizes each cluster into a cluster summary
graph (CSG) by performing graph closure iteratively on pairs of
data graphs in the cluster. A closure graph [22] integrates graphs
of varying sizes into a single graph by inserting dummy vertices
or edges with a special label such that every vertex and edge is
represented in it. Finally, it follows a greedy iterative approach
based on weighted random walks for selecting the canned patterns
fromCSGs based on the aforementioned characteristics. Specifically,
it exploits a pattern score that incorporates coverage, diversity, and
cognitive load to associate a score to each candidate pattern. The
candidate pattern with the largest pattern score and is within a
user-specified size range (i.e., budget) is greedily selected as the
best pattern to be added to the canned pattern set of a Pattern Panel.
The selection process continues until either the required number (a
user-defined value in the budget) of canned patterns are discovered
or when no new pattern can be found.

Tzanikos et al. [45] propose a novel modular architecture to
address this problem by dividing it into independent tasks that can
be optimized and adapted as needed. For a given graph database,
first the similarity score between the graphs is computed. Then this
score is used to partition the graphs into clusters, which are then

merged into one continuous graph. Finally, the continuous graph is
used to extract the canned patterns. The architectural innovation
here is that each of these modules can utilize customized solutions
and current state-of-art techniques for superior performance.

These frameworks are query log-oblivious primarily due to the
lack of publicly-available log data for graph databases.

Canned pattern selection for large networks. The aforemen-
tioned techniques for selecting canned patterns from a collection
of small- or medium-sized data graphs cannot be utilized for large
networks as the clustering-based approach is prohibitively expen-
sive [48]. Herewe review a framework called tattoo [48] to address
this problem for large networks. Given a large network 𝐺 and a
user-specified budget 𝑏 on the number of canned patterns to display
and their minimum and maximum permissible sizes, the goal is
to automatically select canned patterns for the Pattern Panel from
𝐺 that satisfy 𝑏. It exploits a recent analysis of real-world query
logs [14] to classify topologies of canned patterns into categories
that are consistent with the topologies of real-world queries (e.g.,
star, chain, petals, flower). Such classification enables it to bypass
the stumbling block of the lack of availability of query logs but yet
exploit topological characteristics of real-world queries to guide the
selection process. Since real-world query logs contain triangle-like
and non-triangle-like substructures, it first decomposes the input
network into a dense truss-infested region (𝐺𝑇) and a sparse truss-
oblivious region (𝐺𝑂) by leveraging the notion of 𝑘-truss [46]. Then
candidate patterns from 𝐺𝑇 and 𝐺𝑂 are discovered based on the
classified topologies to identify potentially useful patterns. Lastly,
canned patterns are selected from these candidates for display on a
VQI based on a novel pattern set score that is sensitive to coverage,
diversity, and cognitive load of patterns. Specifically, the selection
algorithm guarantees 1

𝑒 -approximation.

Usability results. Lastly, we summarize usability evaluations of
data-driven VQIs w.r.t its manual counterparts. We discuss it from t-
wo dimensions, performance measures and preference measures. The
former types are quantifiable measures (i.e., can be communicated
with numbers) whereas the latter ones give an indication of a “user’s
opinion about the interface which is not directly observable” [32]
(through questionnaires and interviews). Data-driven VQIs are re-
ported [24, 48] to be more efficient (lesser query formulation time
and number of steps) compared to several industrial-strength man-
ual VQIs. It is also reported to provide a superior experience (pref-
erence measures). Hence, they typically outperform manual VQIs
in several usability criteria such as efficiency, errors, satisfaction,
and flexibility (Section 2.1). Note that these usability evaluations in
existing literature are conducted on a small number of end users.

2.4 Data-driven Maintenance of VQIs

Given that the maintenance of node/edge labels in an Attribute
Panel is straightforward, recent work have focused on maintaining
the canned patterns in a Pattern Panel as the underlying graph
repository 𝐷 evolves in order to continuously support efficient
visual query formulation. In this part, we review a framework to
address the canned pattern maintenance problem [25] for a large
collection of small- or medium-sized data graphs.

The straightforward approach of selecting canned patterns re-
peatedly using aforementioned frameworks as 𝐷 evolves to main-
tain the pattern set can be extremely inefficient [25]. Midas [25]
addresses this limitation with an effective and efficient canned pat-
tern maintenance technique that is built on top of Catapult [24].
Specifically, it seeks to update the existing canned patterns in a VQI
such that the updated set continues to have high coverage, high
diversity, and low cognitive load. In particular,Midas guarantees
that the quality of the updated pattern set is at least the same or
better than the original canned patterns.

Midas [25] maintains the canned patterns based on batch up-
dates instead of unit updates. This is because (a) unit update involves
a single data graph and is unlikely to impact the set of canned pat-
terns in a VQI and (b) several real-world databases of small- or
medium-sized data graphs are updated periodically (e.g., daily). In
particular, it exploits the degree of changes to graphlet frequency
distribution in 𝐷 to selectively maintain the pattern set. It also re-
places frequent subtrees with frequent closed trees (FCT) [13] as
feature vectors for clustering in Catapult. As FCT displays closure
property, it paves the way for efficient maintenance of the clusters.

First, Midas assigns all newly added graphs to existing clusters
of 𝐷 and removes all graphs marked for deletion. Then, it calculates
graphlet frequency distributions for 𝐷 and the updated version
of 𝐷 . Next, it performs FCT maintenance by first retrieving the
existing FCTs and changes to 𝐷 and then maintaining them due
to these changes. The modified clusters and CSGs are maintained
after that. Midas computes the Euclidean distance between the
graphlet distributions of 𝐷 and updated 𝐷 to determine the type of
modification and corresponding action. For major modification, it
generates candidates patterns from CSGs of newly-generated and
modified clusters. The existing canned patterns are then updated
using a multi-scan swapping strategy that guarantees progressive
gain of coverage without sacrificing diversity and cognitive load. To
this end, it leverages on a coverage-based pruning strategy and two
indices to facilitate pruning of unpromising candidate patterns for
selecting new canned patterns. In the case of minor modification,
no pattern maintenance is required. Only the underlying clusters
and CSGs are maintained to ensure that they are consistent with
the updated 𝐷 .

Usability results. We review the usability study reported in [25].
Specifically, Midas can reduce the number of formulation steps
and query formulation time compared to manual VQIs, thereby
positively impacting several aforementioned usability criteria.

2.5 Future Directions

While good progress has already been made, the research on data-
driven visual query interfaces has just begun, and there are many
opportunities for continued research. The final part of the tutorial
presents open problems (non-exhaustive list) in this area. Some
of these topics were introduced by a vision paper [10]. Our grand
vision is a pervasive desire to continue stimulating our shift in
our traditional thinking by shifting the generation of visual query
interfaces from manual to data-driven mode.

Data-driven VQI maintenance for large networks. The research
on maintenance of canned pattern set with the evolution of under-
lying graph repository is still in its nascent stage. Efficient mainte-
nance of VQIs for large networks is still an open problem. Note that
a solution to this needs a rethink as the evolution characteristics
of large networks differ fundamentally from a collection of data
graphs. In the latter case, the repositories are typically updated
periodically whereas large networks often evolve continuously.

Data-driven VQIs for massive networks. All research related to
data-driven visual query interface construction and maintenance
have focused either on a large set of small or medium-sized data
graphs or on networks with millions of nodes. Both these types
of data are assumed to reside in a single commodity machine. A
natural extension to this paradigm is to support similar problems
on massive graphs which demands a distributed framework and
novel construction and maintenance algorithms built on top of it.

Towards aesthetics-aware data-driven VQIs. An issue that is
paramount to an end user but widely ignored by the data man-
agement community is the aesthetics of a VQI layout. In fact, as
mentioned in Section 2.1, it is one of the usability criteria. Many
HCI studies have asserted a strong link between visual complexity
and aesthetics [9, 34] and have attempted to measure aesthetics
automatically [31, 35, 40]. The work in [33, 35] proposed an array
of aesthetic metrics to quantify visual complexity such as visual
clutter, color variability, contour congestion, and layout quality.
Note that visual complexity impacts cognitive load on end users.

The key components that influence visual complexity in a VQI
are the Attribute, Pattern, and Results Panels. Manual VQIs work
out all the aesthetic issues associated with these panels manually
resulting in designs that may not always be aesthetically pleas-
ing (e.g., [6]). Although cognitive load has been considered for
canned pattern selection and maintenance in existing work on data-
driven VQIs, it is only exploited at selecting individual patterns. The
cognitive load imposed by the layout choices of canned patterns
and node/edge attribute labels in a VQI has not been explored yet.
Furthermore, aesthetically-pleasing and cognitive load-aware pre-
sentation of query results in a Results Panel is largely unexplored.
If a result subgraph containing matches to a user query looks like a
hairball in a Results Panel then it is hard for an end user to explore
it and gain insights from it. In summary, the layouts of existing
visual query interfaces are not automatically generated by consid-
ering various aesthetic metrics and their impact on cognitive load
of end users. Hence, how can we extend data-driven VQI construction
techniques to be aesthetics-aware? Note that the data-driven visual
layout design problem can be reformulated as an optimization prob-
lem where the goal is to find an “optimal” layout that minimizes
query formulation task complexity and visual complexity/cognitive
load (measured using aesthetics metrics) of the interface.

BeyondGraphs.While this tutorial focuses on data-driven VQIs for
graphs, it is easy to see that this paradigm is potentially relevant for
other data types where visual querying is prevalent. For example,
there are several efforts toward sketch-based querying of time series
(i.e., data series) data [17, 29, 36]. Finding patterns of interest in a
large collection of such time series data during query formulation
can be time-consuming. Hence, a data-driven sketch-based query

interface construction framework may potentially mitigate this
challenge.

Beyond VQIs. Lastly, the canned pattern selection and maintenance
algorithms reviewed in this tutorial have potential use cases be-
yond data-driven VQIs. For example, given that these patterns have
high coverage and diversity, and low cognitive load, they can be
potentially useful for efficiently generating graph summaries that
are visualization-friendly [28]. Due to cognitive load-conciousness
of these patterns in contrast to topological summaries generated
by classical graph summarization techniques, they are potentially
more palatable to end users.

3 HISTORY OF THE TUTORIAL

To the best of our knowledge, this tutorial has not been presented
in any major database or HCI conference. In particular, the tutorial
on graph data management and HCI in [11] primarily focuses on
visual graph query processing and results exploration. That is, it
assumes a VQI (manual or data-driven) is available for subgraph
query formulation. Our tutorial is orthogonal to this effort as we
focus on a comprehensive review of the data-driven paradigm of
VQI construction and maintenance.

4 BIOGRAPHIES

Sourav S. Bhowmick is an Associate Professor at the School of
Computer Science and Engineering (SCSE), Nanyang Technolog-
ical University, Singapore. His core research expertise is in data
management, human-data interaction, and data analytics. He is a
co-recipient of Best Paper Awards in ACM CIKM 2004, ACM BCB
2011, and VLDB 2021 for work on mining structural evolution of
tree-structured data, generating functional summaries, and scalable
attributed network embedding, respectively. Sourav is serving as a
member of the SIGMOD Executive Committee, a regular member
of the PVLDB advisory board, and a co-lead in the committee for
Diversity and Inclusion in Database Conference Venues. He is a
co-recipient of the VLDB Service Award in 2018 from the VLDB
Endowment. He was inducted into Distinguished Members of the
ACM in 2020.

ByronChoi is the Associate Head and an Associate Professor at the
Department of Computer Science, Hong Kong Baptist University
(HKBU). His research interests include graph-structured databases,
database usability, database security, and time series analysis. By-
ron’s publications have appeared in premium venues such as TKDE,
VLDBJ, SIGMOD, PVLDB/VLDB, and ICDE. He was awarded a dis-
tinguished program committee (PC) member from ACM SIGMOD
2021 and a best reviewer award from ACM CIKM 2021. He received
the distinguished reviewer award from PVLDB 2019. He has served
as the director of a Croucher Foundation Advanced Study Institute
(ASI), titled “Frontiers in Big Data Graph Research”, in 2015. He
was a recipient of the HKBU President’s Award for Outstanding
Young Researcher in 2016.
Acknowledgements. Sourav S Bhowmick is supported by the AcRF Tier-
2 Grant MOE2015-T2-1-040. Byron Choi is supported by HKRGC GRF
12201119 and 12201518, and IRCMS/19-20/H01. We would also like to ac-
knowledge Huey-Eng Chua (NTU), Kai Huang (NTU & Fudan University),
Zifeng Yuan (NTU & Fudan University), and Zekun Ye (NTU & Fudan
University) for their contributions to the research of data-driven VQIs.

REFERENCES

[1] The Aesthetic-usability effect. Nielsen Norman Group. https://www.nngroup.
com/articles/aesthetic-usability-effect/.

[2] Bloom VQI. https://neo4j.com/bloom.
[3] Drugbank VQI. https://www.drugbank.ca/structures/search/small_molecule_

drugs/structure.
[4] eMolecules VQI. https://www.emolecules.com/.
[5] Graph Database Market. MarketsandMarkets. https://www.

marketsandmarkets.com/Market-Reports/graph-database-market-
126230231.html?gclid=Cj0KCQiAxc6PBhCEARIsAH8Hff1pUb5PI2peZmHQa-
AvoPd2MRWXyPwGfEKYFu6I86Z-SgGyQ2a8G88aAmgmEALw_wcB, Last
accessed 15th March, 2022.

[6] PubChem VQI. https://pubchem.ncbi.nlm.nih.gov/edit3/index.html.
[7] S. S. Bhowmick, B. Choi. Plug-and-Play Visual Query Interfaces for Graphs. To

Appear in Synthesis Lectures on Data Management, Morgan & Claypool Publishers,
2022.

[8] D. Benyon, P. Turner. Designing Interactive Systems: A Comprehensive Guide to
HCI and Interaction Design. 2nd edn. Pearson Education Ltd., Edinburgh, 2005.

[9] D. Berlyne. Studies in the new Experimental Aesthetics. Washington D.C., Hemi-
sphere Pub. Corp., 1974.

[10] S. S. Bhowmick, B. Choi, C. E. Dyreson. Data-driven Visual Graph Query Interface
Construction andMaintenance: Challenges and Opportunities. PVLDB 9(12), 2016.

[11] S. S. Bhowmick, B. Choi, C. Li. Graph Querying Meets HCI: State of the Art and
Future Directions. In SIGMOD, 2017.

[12] Sourav S. Bhowmick, Kai Huang, Huey Eng Chua, Zifeng Yuan, Byron Choi
and Shuigeng Zhou. AURORA: Data-driven construction of visual graph query
interfaces for graph databases. In ACM SIGMOD, 2020.

[13] A. Bifet, R. Gavald𝑎. Mining Frequent Closed Trees in Evolving Data Streams.
Intell. Data Anal., 15(1):29-48, 2011.

[14] A. Bonifati, W. Martens, T. Timm. An Analytical Study of Large SPARQL Query
Logs. PVLDB, 11(2), 2017.

[15] A. Bonifati, G. H. L. Fletcher, H. Voigt, N. Yakovets. Querying Graphs. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers, 2018.

[16] D.H. Chau, C. Faloutsos, H. Tong, et al. GRAPHITE: A Visual Query System for
Large Graphs. In ICDM Workshop, 2008.

[17] M. Correl, M. Gleicher. The Semantics of Sketch: Flexibility in Visual Query
Systems for Time Series Data. In 2016 IEEE Conference on Visual Analytics Science
and Technology (VAST), 2016.

[18] A. De Angeli, A. Sutcliffe, J. Hartmann. Interaction, Usability and Aesthetics:
What Influences Users’ Preferences? In Proc. of Conference on Designing Interactive
Systems, 2006.

[19] A. Dix, J. Finlay, G. Abowd, R. Beale. Human-computer Interaction, 2nd edn,
Pearson Education Ltd, Harlow, 1998.

[20] D. Erdös, Z. Fekete, A. Lukács. Visualized Subgraph Search. IEEE VAST, 2009.
[21] F. Haag, S. Lohmann, S. Bold, T. Ertl. Visual SPARQL Querying based on Extended

Filter/flow Graphs. In AVI, 2014.
[22] H. He, A.K. Singh. Closure-tree: An Index Structure for Graph Queries. In ICDE,

2006.
[23] W. Huang, P. Eades, S.-H. Hong. Measuring Effectiveness of Graph Visualizations:

A Cognitive Load Perspective. Information Visualization 8(3), 2009.
[24] K. Huang, H.-E. Chua, S. S. Bhowmick, B. Choi, S. Zhou. CATAPULT: Data-driven

Selection of Canned Patterns for Efficient Visual Graph Query Formulation. In
SIGMOD, 2019.

[25] K. Huang, H.-E. Chua, S. S. Bhowmick, B. Choi, S. Zhou. MIDAS: Towards Efficient
and Effective Maintenance of Canned Patterns in Visual Graph Query Interfaces.
In SIGMOD, 2021.

[26] K. Huang, S. S. Bhowmick, S. Zhou, B. Choi. PICASSO: Exploratory Search of
Connected Subgraph Substructures in Graph Databases. PVLDB, 10(12), 2017.

[27] N. Jayaram, S. Goyal, C. Li. VIIQ: Auto-Suggestion Enabled Visual Interface for
Interactive Graph Query Formulation. In PVLDB, 8(12), 2015.

[28] A. Khan, Sourav S. Bhowmick, F. Bonchi. Summarizing Static and Dynamic Big
Graphs. PVLDB 10(12): 1981-1984, 2017.

[29] D.J.L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, A.G. Parameswaran. You Can’t
Always Sketch What you Want: Understanding Sensemaking in Visual Query
Systems. IEEE Trans. Vis. Comput. Graph., 26(1): 1267-1277, 2020.

[30] S. Liu, J. P. Cedeno, K. Selçuk Candan, M. L. Sapino, S. Huang, X. Li. R2DB: A
System for Querying and Visualizing Weighted RDF Graphs. In ICDE, 2012.

[31] P. Mbenza, N. Burny. Computing Aesthetics of Concrete User Interfaces. In EICS,
2020.

[32] D. D. McCracken, R. J. Wolfe. User-Centered Website Development: A Human-
computer Interaction Approach. Pearson Education Inc., New Jersey, 2004.

[33] A. Miniukovich, A. De Angeli. Quantification of Interface Visual Complexity. In
Working Conference on Advanced Visual Interfaces, 2014.

[34] A. Miniukovich, M. Marchese. Relationship Between Visual Complexity and
Aesthetics of Webpages. In CHI, 2020.

[35] A. Miniukovich, A. De Angeli. Computation of Interface Aesthetics. In SIGCHI,
2015.

[36] M. Mannino, A. Abouzied. Expressive Time Series Querying with Hand-drawn
Scale-free Sketches. In CHI, 2018.

[37] A. Oliva, M. L. Mack, M. Shrestha, A. Peeper. Identifying the Perceptual Dimen-
sions of Visual Complexity of Scenes. In Proc. of the 26th Annual Meeting of the
Cognitive Sc. Society, 2004.

[38] R. Pienta, A. Tamersoy, A. Endert, et al. VISAGE: Interactive Visual Graph Query-
ing. In AVI, 2016.

[39] R. Pienta, F. Hohman, et al. Visual Graph Query Construction and Refinement.
In SIGMOD, 2017.

[40] K. Reinecke, T. Yeh, et al. Predicting Users’ First Impressions ofWebsite Aesthetics
with a Quantification of Perceived Visual Complexity and Colorfulness. In SIGCHI,
2013.

[41] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, M. T. Özsu. The Ubiquity of Large Graphs
and Surprising Challenges of Graph Processing. PVLDB, 11(4), 2017.

[42] B. Shneiderman, C. Plaisant. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. 5th Ed., Addison-Wesley, 2010.

[43] S. Sun, Q. Luo. In-memory Subgraph Matching: An In-depth Study. In SIGMOD,
2020.

[44] J. Sweller, J. van Merrienboer, F. Paas. Cognitive Architecture and Instructional
Design. Educational Psychology Review. 10 (3): 251–296, 1998.

[45] M. Tzanikos, M. Krommyda, V. Kantere. A Highly Modular Architecture for
Canned Pattern Selection Problem. In DEXA, 2021.

[46] J. Wang, J. Cheng. Truss Decomposition in Massive Networks. PVLDB 5(9), 2012.
[47] S. Yang, Y. Xie, Y. Wu, T. Wu, H. Sun, J. Wu, X. Yan. SLQ: A User-friendly Graph

Querying System. In SIGMOD, 2014.
[48] Z. Yuan, H.-E. Chua, S. S. Bhowmick, Z. Ye, W.-S. Han, B. Choi. Towards Plug-

and-play Visual Graph Query Interfaces: Data-driven Canned Pattern Selection
for Large Networks. PVLDB, 14(11), 2021.

[49] Z. Yuan, H.-E. Chua, S. S. Bhowmick, Z. Ye, B. Choi, W.-S. Han. PLAYPEN: Plug-
and-play Visual Graph Query Interfaces for Top-down and Bottom-up Search on
Large Networks. In SIGMOD, 2022.

[50] V. Yoghourdjian, D. Archambault, S. Diehl, T. Dwyer, K. Klein, H. C. Purchase,
and H.-Y Wu. Exploring the Limits of Complexity: A Survey of Empirical Studies
on Graph Visualization. Visual Informatics 2(4), 2018.

[51] J. Zhang, S. S. Bhowmick, H. H. Nguyen, B. Choi, F. Zhu. DAVINCI: Data-driven
Visual Interface Construction for Subgraph Search in Graph Databases. In IEEE
ICDE, 2015.

[52] L. Zou, L. Chen, J.X. Yu, Y. Lu. A Novel Spectral Coding in a Large Graph Database.
In EDBT, 181-192, 2008.

https://www.nngroup.com/articles/aesthetic-usability-effect/
https://www.nngroup.com/articles/aesthetic-usability-effect/
https://neo4j.com/bloom
https://www.drugbank.ca/structures/search/small_molecule_drugs/structure
https://www.drugbank.ca/structures/search/small_molecule_drugs/structure
https://www.emolecules.com/
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html?gclid=Cj0KCQiAxc6PBhCEARIsAH8Hff1pUb5PI2peZmHQa-AvoPd2MRWXyPwGfEKYFu6I86Z-SgGyQ2a8G88aAmgmEALw_wcB
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html?gclid=Cj0KCQiAxc6PBhCEARIsAH8Hff1pUb5PI2peZmHQa-AvoPd2MRWXyPwGfEKYFu6I86Z-SgGyQ2a8G88aAmgmEALw_wcB
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html?gclid=Cj0KCQiAxc6PBhCEARIsAH8Hff1pUb5PI2peZmHQa-AvoPd2MRWXyPwGfEKYFu6I86Z-SgGyQ2a8G88aAmgmEALw_wcB
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html?gclid=Cj0KCQiAxc6PBhCEARIsAH8Hff1pUb5PI2peZmHQa-AvoPd2MRWXyPwGfEKYFu6I86Z-SgGyQ2a8G88aAmgmEALw_wcB
https://pubchem.ncbi.nlm.nih.gov/edit3/index.html

	Abstract
	1 Introduction
	2 Tutorial Outline
	2.1 Usability of Manual Visual Query Interfaces
	2.2 Data-driven Visual Query Interfaces
	2.3 Construction of Data-driven VQIs
	2.4 Data-driven Maintenance of VQIs
	2.5 Future Directions

	3 History of the Tutorial
	4 Biographies
	References

