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ABSTRACT

Visual graph query interfaces (VQI) facilitate non-programmers to
query graph data effortlessly. The construction of these interfaces
for large networks is typically not data-driven. That is, they do not
exploit the underlying networks to automatically generate the con-
tents of various panels of a VQI. Such data-driven construction has
several benefits such as facilitating efficient top-down and bottom-up
query formulation and portability of an interface across different
application domains and sources. In this demonstration, we present
a novel plug-and-play visual subgraph query interface construction
engine called playpen that can be plugged on any large network 𝐺
with a plug specification 𝑏 to automatically generate the VQI for 𝐺
that satisfies 𝑏 by populating various components of the interface.

CCS CONCEPTS

• Information systems → Query languages for non-relational
engines.

KEYWORDS

Visual query interface, graph search, data-driven, plug-and-play,
cognitive load
ACM Reference Format:

Zifeng Yuan, Huey-Eng Chua, Sourav S Bhowmick, Zekun Ye, Byron Choi,
and Wook-Shin Han. 2022. PLAYPEN: Plug-and-Play Visual Graph Query
Interfaces for Top-down and Bottom-Up Search on Large Networks. In
Proceedings of the 2022 International Conference on Management of Data
(SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3514221.3520157

1 INTRODUCTION

A recent survey [9] reported that graph query languages and usabil-
ity are some of the top challenges for graph processing. Although
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considerable efforts have been invested toward efficient and scalable
processing of graphs, these issues have received relatively lesser at-
tention from the data management community. Fortunately, graphs
are more intuitive to draw than to compose them in textual format.
Hence, a common starting point for addressing these challenges is
the deployment of a direct manipulation-based visual query inter-
face (VQI) to enable an end user to draw graph queries interactively
instead of formulating them textually using a graph query language.
Indeed, several industrial graph querying systems in a variety of do-
mains provide such interfaces [1, 2]. Given that query formulation
precedes query processing, VQIs naturally facilitate democratization
of graph querying frameworks by empowering end users with no
programming background to formulate queries and thereby exploit
powerful graph processing techniques for their tasks.

Typically, end users follow a top-down or bottom-up search para-
digm for formulating subgraph queries either textually or visually.
The former refers to searching graph data based on the user’s intu-
ition of what the desired pattern (i.e., query) should look like (i.e.,
translating a pattern “in-the-head” to a query). The latter refers to
search when a user does not have upfront knowledge of what her
query graph should look like. She learns the key patterns that exist
in the dataset through representative subgraphs to galvanise query
formulation. Hence, any superior VQI should facilitate both these
search paradigms. In particular, support for bottom-up search is
paramount as a large network looks like a “hairball” visually and
hence it is cognitively challenging to browse it to figure out which
topological patterns one can use to trigger query formulation.

A useful component in a VQI that can facilitate both these search
paradigms is a panel containing a set of patterns (i.e., small sub-
graphs) representing the underlying network. Specifically, a pattern
enables a user to construct multiple nodes and edges in a subgraph
query by performing a single click-and-drag action (i.e., pattern-at-
a-time mode) in lieu of iterative construction of edges (i.e., edge-at-
a-time mode). Hence, these patterns potentially decrease the time
taken to finish a visual query formulation task by reducing the
number of formulation steps (steps for brevity) [3, 7, 11]. Impor-
tantly, an end user may use these patterns as representative objects
to trigger query formulation in bottom-up mode.

The selection of appropriate patterns to be displayed on a VQI
is typically performed manually based on domain knowledge [3].
Unfortunately, such manual selection is very challenging as it de-
mands a comprehensive knowledge of different topologies in the
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underlying network data. As a result, the selected patterns may not
be diverse enough to expedite the formulation of a wide range of
subgraph queries especially in bottom-up mode [7, 11]. Naturally,
such manual selection also limits the portability of VQIs across
different domains and graph data sources [3].

In this demonstration, we present a novel data-driven visual sub-
graph query interface construction system called playpen (PLug-
And-plaY subgraPh quEry iNterface). Given a large graph or net-
work𝐺 , playpen automatically populates various panels (e.g., node
labels, patterns) of the VQI from 𝐺 . Although the set of labels of
nodes/edges for populating the Attribute panel can be easily gener-
ated by traversing the underlying graph, automatically selecting
useful patterns is an NP-hard problem [7, 11]. To this end, playpen
selects patterns [11] that have high coverage of 𝐺 and are highly
diverse and useful for query formulation. Furthermore, it preferen-
tially selects patterns that have potentially low cognitive load on
end users as patterns with a high load may adversely impact the
visual search time [6].

Data-driven selection of VQI components paves the way for plug-
and-play VQIs [11], which are like a plug-and-play device that can
be plugged into any kind of socket (i.e., graph data) and used. A plug-
and-play VQI is dynamically built from a high-level specification of
pattern properties known as the plug [11]. Consequently, playpen
is highly portable as it can automatically construct a VQI for any ap-
plication (e.g., social networks, road networks, biological networks)
centered around large networks. Note that playpen focuses on the
interface for query formulation and not for visualization of query
results.

It is worth noting that playpen goes against the traditional
mantra of VQI construction. VQIs for graphs are traditionally man-
ually constructed for each data source or domain. We argue that as
more and more graph data sources become prevalent in a wide va-
riety of domains, the plug-and-play approach minimizes the cost of
development andmaintenance of VQIs. playpen paves the way for a
single framework to automatically construct the query formulation
interface for any domain or source involving large networks.

2 DESIGN PHILOSOPHY

Construction of existing VQIs for large networks is typically per-
formed by developers coding various features of a VQI. In playpen,
we take a fundamentally different approach. It is designed to give
end users the freedom to easily and quickly construct a VQI for any
network data without resorting to coding by simply “plugging” it
on the data. Its design is based on the following four principles.

(1) Work with independent data sources. Our data-driven
approach should be able to work with any data source or application
domain involving large graphs. playpenwill offer sufficient benefits
to developers and end users by making VQI generation effortless
with the growing number of sources.

(2) Useful pattern selection. In theory, there are numerous
patterns with different topologies that can be selected from a given
network. However, many of these patterns may not be useful to
end users in supporting top-down and bottom-up search effectively.
Hence, it is paramount to select patterns that are potentially “useful”
for subgraph query formulation.

(3) Cognitive load-aware pattern selection. A key issue in ex-
posing patterns to support query formulation is that a user should

Figure 1: Architecture of playpen.

be able to visually interpret a pattern (i.e., edge relationships) quick-
ly so that she can determine if it is useful for her query. Such
efficient interpretation naturally reduces the overall query formu-
lation time [11]. Hence, the playpen framework needs to select
subgraphs that are not only potentially useful but also impose a
low cognitive load on users.

(4) Independence from query logs. Although query logs can
provide rich information of the topology of past queries posed on
a specific data source, in practice such information is often not
publicly available [11]. Hence, playpen should be able to generate
patterns from a specific source without demanding its query logs
as input. In the case query logs are available, it should be easily
extensible to incorporate them.

These principles enable playpen to be easily integrated into any
network data source. One may plug it on the data to generate a VQI
and then install it on top of the query engine.

3 SYSTEM OVERVIEW

Figure 1 depicts the architecture of playpen. It consists of the
following components. The reader may refer to [11] for details.

TheGUImodule. Figure 2(a) depicts a screenshot of the playpen
visual interface. Panel 1 enables a user to select a network data
source, specify a plug [11] for it, and load previously generated
patterns. Note that the plug enables her to customize the inter-
face according to her need by specifying the number and sizes of
patterns she needs. Different users may specify different plugs for
the same or different graph data (socket). Panel 2 contains a list of
distinct vertex labels in the selected dataset. Panel 3 tracks statistics
related to a subgraph query formulation activity. Panel 4 is used
for query formulation. playpen supports two types of patterns,
default and canned. The former are small-sized patterns that are
basic building blocks of networks [8] (e.g., an edge, 2-path, triangle,
rectangle) and the latter are those of larger size (i.e., size greater
than 3) [11]. Panels 5 and 6 display the default and canned patterns,
respectively.

Observe that the contents of Panels 1 and 4 are provided by a
user and the contents of Panel 3 depend on users’ actions in Panel 4.
On the other hand, the contents of Panels 2, 5, and 6 depend on the
graph data. Hence, the goal of playpen is to populate Panels 2, 5,
and 6. In particular, since the default patterns (Panel 5) occur in any
large graph, they are invariant for all data sources. The contents
of Panels 2 and 6 vary with data sources and hence are generated
from the data.

Label generatormodule. This module traverses the underlying
network to generate the set of unique node/edge labels in𝐺 , which
are then displayed on Panel 2.

Graph decomposermodule.A recent analysis of large volumes
of sparql query logs reveals that the topology of many real-world
subgraph queries maps to chains, trees, stars, cycles, petals, and



Figure 2: Visual interface constructed by playpen.
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Figure 3: 𝑘-chord and composite chord patterns.

flowers [5]. These topologies can be broadly represented by triangle-
like and non-triangle-like substructures [11]. Hence, this module
breaks down a large network 𝐺 into dense (containing trusses) and
sparse (containing non-trusses) regions by leveraging 𝑘-trusses [10].
The former region is referred to as truss-infested region (tir graph)
and the latter as truss-oblivious region (tor graph), and are denoted
by𝐺𝑇 and𝐺𝑂 , respectively. Note that triangle-like structures (e.g.,
petals, flowers) can be visually formulated from canned patterns
extracted from𝐺𝑇 whereas non-triangle-like structures (e.g., chains,
stars, cycles) can be efficiently constructed by using canned pat-
terns generated from 𝐺𝑂 [11]. Furthermore, the canned pattern
generation from 𝐺𝑇 and 𝐺𝑂 instead of 𝐺 leads to a more efficient
generation process as well as superior quality of patterns [11].

tir-based candidate pattern generatormodule. This module
is responsible for generating candidate canned patterns from a
tir graph. Specifically, playpen extracts substructures that are
more “relaxed” than 𝑘-trusses so that they can be efficiently used
to formulate queries containing triangle-like structures (e.g., flower,
petal) with minimal modifications [11].

playpen extracts two types of 𝑘-truss-based structures as can-
didate patterns from tir, namely, k-chord patterns (𝑘-cp) and com-
posite chord patterns (ccp). Intuitively, a 𝑘-cp is a connected graph
containing a truss edge 𝑒 (i.e., edge belonging to a 𝑘-truss) and 𝑘-
2 triangles of 𝑒 . A 𝑘-cp can be considered as a building block of
𝑘-trusses since it is found with respect to each edge in a given
𝑘-truss. Examples of 𝑘-cps (4-cp and 5-cp) are illustrated in Figure 3.
In order to facilitate the selection of larger canned patterns with
greater structural diversity, playpen combines 𝑘-cps to yield ccps
that occur in𝐺𝑇 . In particular, it generates a ccp by merging a single
edge of two 𝑘-cps as it reduces the complexity of ccp generation.
Consider the flower topology of a query in Figure 4 (middle). The
edge-at-a-time construction mode requires 15 steps. In contrast,
the pattern-at-a-time mode using a ccp and deleting three edges

Figure 4: Formulation of flower topology.

(highlighted in red) from it takes 4 steps. Hence, it may take a sig-
nificantly lesser number of steps if truss-like structures such as
ccps are utilized.

tor-based candidate pattern generator module. This mod-
ule extracts stars, paths, cycles, and small connected subgraphs
of unique topology from a tor graph [11]. First, it extracts k-star
and asterism patterns using a breadth-first search. A k-star is a
connected subgraph containing a vertex 𝑟 (center vertex) where the
remaining vertices are connected only to 𝑟 and 𝑘 ≥ 𝜖 . Asterism
patterns are formed by merging 𝑘-stars on a pair of edges. Figure 5
depicts a combination of a 4-star with a 5-star by merging them
on the bold edges. Next, it extracts all 𝑘-paths (𝑘 > 2) and 𝑘-cycles
(𝑘 > 4), leaving small connected components in the resultant graph,
which are then harvested.

In summary, queries containing trees and forests can be easily
formulated by combining 𝑘-paths, 𝑘-stars, and asterism patterns
and by growing them using one or more edges (i.e., default patterns)
when required. Similarly, chain queries can be formulated using
𝑘-paths. Petal and flower structures can be efficiently formulated
using 𝑘-cp/ccp or a set of 𝑘-paths.

Canned pattern selector module. Given a user-specified plug
𝑏 = (𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥 , 𝛾) where 𝜂𝑚𝑖𝑛 (resp. 𝜂𝑚𝑎𝑥 ) is the minimum (resp.
maximum) size of a canned pattern and 𝛾 is the number of patterns
to be displayed on Panel 6, the aim of this module is to select a
set of canned patterns P satisfying 𝑏 from the set of candidate
patterns. Note that it selects patterns with 𝜂𝑚𝑖𝑛 > 3. To this end, it
implements a selection algorithm that guarantees 1

𝑒 -approximation
and exploits a novel pattern set score that is sensitive to coverage,
diversity, and cognitive load (i.e., memory demand or mental effort
required to perform pattern selection visually) of patterns. Par-
ticularly, it is selected by maximizing coverage and diversity and
minimizing the cognitive load of P. Although coverage of P is
intuitive, the need for structurally diverse patterns is to make effi-
cient use of the limited display space on a VQI. For example, the
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Figure 5: Star and asterism patterns.

4-star and 5-star patterns in Figures 5 are structurally very similar
and hence both should not be selected for display. Note that a user
views the canned patterns in Panel 6 during query formulation and
determines the ones that are relevant. Hence, given two candidate
patterns 𝑝1 and 𝑝2, playpen prefers 𝑝1 to 𝑝2 if 𝑝1 has a lower cog-
nitive load than 𝑝2. The computation of coverage, diversity, and
cognitive load is detailed in [11].

Pattern visualizer module. This module facilitates visualiza-
tion of patterns on the VQI. All patterns are displayed using the
force-directed layout. A user may select different options (group-
by-size, single-page, 𝑥-per-page) to display the canned patterns.

Query tracker module. Finally, this module tracks various
information related to subgraph query formulation activities (e.g.,
number of steps taken, query formulation time).

4 RELATED SYSTEMS

Classical visual subgraph querying systems [1, 2] do not construct
a VQI in a data-driven manner. The work most germane to playpen
are efforts in [4, 7, 12] that focus on the data-driven construction of
VQIs on a large collection of small- or medium-sized data graphs
(e.g., chemical compounds). playpen focuses on large networks
and differs from them both externally and internally. Under the
hood, the strategy of clustering data graphs and then summarizing
each cluster as realized in [4, 7, 12] is ineffective and inefficient for
large graphs [11]. Furthermore, labelled patterns are used in [4, 12]
whereas unlabelled patterns are more useful in large networks as
nodes/edges in a network may have many attribute-value pairs [11].
Hence, the key modules related to the core engine of playpen do
not exist in [4, 7, 12].

Externally, the user experience with playpen is different from [4,
7, 12]. First, the canned patterns exposed to users in playpen are
topologically different as topologies of small data graphs (e.g., chem-
ical compounds) are often very different from large networks. Sec-
ond, the cognitive load inflicted by large networks during bottom-
up search plays a substantially more significant role compared to a
small- or medium-sized data graph containing only a few (10-200)
nodes. The large size of a network makes it prohibitive to undertake
bottom-up search effectively without the aid of canned patterns.

5 DEMONSTRATION OVERVIEW

playpen is implemented in Java JDK 1.8 and Javascript 1.6. Our
demonstration will be loaded with a few real networks (e.g., A-
mazon, RoadNet-TX ) with millions of nodes and edges. Example
query graphs that can be constructed using patterns will be pre-
sented for formulation. Users can also draw ad hoc visual queries.
A video to illustrate the main features using example use cases is
available at https://youtu.be/nS_nFQQN_Ck. The key objectives of
the demonstration are the followings.

Data-driven construction of VQIs. Through playpen’s visual
interface (Figure 2(a)), the audience will be able to select a graph
data source and plug using Panel 1 to automatically construct the
contents of the panels within a few minutes due to the realization

of an efficient canned pattern selection strategy [11]. One will also
be able to interactively select different graph repositories as well as
plugs (through Panel 1) to appreciate the portable and data-driven
nature of playpen. For example, Figures 2(b) and 2(c) depict some
of the patterns selected from Amazon and RoadNet-TX, respectively.
Specifically, we generate 30 canned patterns of sizes between 4 and
15 from each dataset. In particular, patterns encapsulated by blue
ellipses (solid lines) in Figures 2(b) and (c) are examples of some
that are derived from 𝐺𝑇 . Observe that the patterns are different
(topologically) for different datasets. Specifically, the patterns in
red rectangle boxes in Figures 2(b) are not found in Figures 2(c)
and vice versa. This emphasizes the fact that different datasets
may expose different collections of canned patterns. Second, the
audience can experience a low cognitive load associated with the
displayed patterns, enabling them to easily recognize a topology
with a quick glance during query formulation.

Efficient top-down and bottom-up subgraph search. After
generating the VQI for the chosen network data, the audience can
experience the benefits of playpen for top-down and bottom-up
search. In particular, we shall request them to first formulate a query
without using any canned pattern. As remarked earlier, this may
be challenging to them, especially for bottom-up search as without
a clear “pattern-in-head” beyond default patterns (e.g., triangle,
wedge, rectangle), it is hard to initiate a meaningful search. After
appreciating the difficulty of subgraph query formulation without
the aid of canned patterns, we shall ask them to use Panels 2, 5, and
6 to formulate queries that they may be interested in. For instance,
suppose one is interested in making a new movie involving Ben
Affleck and Matt Damon. She would like to identify other actors
that have prior working experiences with them in the Amazon
dataset. She may be unsure of the topology of her query for finding
some valid results. Hence, she may undertake a bottom-up search
and browse Panel 6 to select a 𝑘-chord pattern (highlighted by a
green ellipse with a broken line in Figure 2(b)) to initiate her query
formulation. She may then construct the query in Figure 2(d) by
utilizing it and an edge. Specifically, the query formulation takes 8
steps (∼ 20𝑠), which includes steps for vertex label assignment. In
comparison, the edge-at-a-time mode requires 20 steps (∼ 39𝑠).
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