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ABSTRACT

The database systems course is offered as part of an undergraduate
computer science degree program in many major universities. A
key learning goal of learners taking such a course is to understand
how sql queries are processed in a rdbms in practice. Since a query
execution plan (qep) describes the execution steps of a query, learn-
ers can acquire the understanding by perusing the qeps generated
by a rdbms. Unfortunately, in practice, it is often daunting for a
learner to comprehend these qeps containing vendor-specific im-
plementation details, hindering her learning process. In this paper,
we present a novel, end-to-end, generic system called lantern that
generates a natural language description of a qep to facilitate un-
derstanding of the query execution steps. It takes as input an sql
query and its qep, and generates a natural language description of
the execution strategy deployed by the underlying rdbms. Specifi-
cally, it deploys a declarative framework called pool that enables
subject matter experts to efficiently create and maintain natural
language descriptions of physical operators used in qeps. A rule-

based framework called rule-lantern is proposed that exploits
pool to generate natural language descriptions of qeps. Despite
the high accuracy of rule-lantern, our engagement with learners
reveal that, consistent with existing psychology theories, perus-
ing such rule-based descriptions lead to boredom due to repetitive
statements across different qeps. To address this issue, we present
a novel deep learning-based language generation framework called
neural-lantern that infuses language variability in the gener-
ated description by exploiting a set of paraphrasing tools and word

embedding. Our experimental study with real learners shows the
effectiveness of lantern in facilitating comprehension of qeps.
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1 INTRODUCTION

There is continuous demand for database-literate professionals in
today’s market due to the widespread usage of relational database
management system (rdbms) in the commercial world. Such com-
mercial demand has played a pivotal role in the offering of database
systems course as part of an undergraduate computer science (cs)
degree program in major universities around the world. Further-
more, not all working adults dealing with rdbms have taken an
undergraduate database course. Hence, they often need to undergo
on-the-job training or attend relevant courses in higher institutes
of learning to acquire database literacy.

A key learning goal of learners taking a database course is to
understand how sql queries are processed in a rdbms in practice.
A relational query engine produces a query execution plan (qep),
which represents an execution strategy of an sql query. Hence,
such understanding can be gained by learners by perusing the qeps
of queries. Major database textbooks introduce general (i.e., not tied
to any specific rdbms software) theories and principles behind the
generation of qeps using natural language-based narratives and vi-
sual examples. This allows a learner to gain a general understanding
of sql query execution strategies.

Most database courses complement text book-learning with
hands-on interaction with an off-the-shelf commercial rdbms (e.g.,
PostgreSQL) to infuse knowledge about database techniques used in
practice. A learner will typically implement a database application,
pose queries over it, and peruse the associated qeps to compre-
hend how they are processed by a commercial-grade query engine.
Most commercial rdbms expose the qep of an sql query using
visual or textual (e.g., unstructured text, json, xml) format. Un-
fortunately, comprehending these textual formats to understand
query execution strategies of sql queries in practice is daunting
for learners. In contrast to natural language-based narrations in
database textbooks, they are not user-friendly and assume deep
knowledge of vendor-specific implementation details. On the other
hand, the visual format is relatively more user-friendly but hides
important details. Consequently, it is challenging for learners to un-
derstand query execution strategies in a specific rdbms from these
qep formats. We advocate that in order to promote palatable learn-
ing experiences for diverse individuals in full recognition of the
complexity of qeps in practice, user-friendly tools are paramount.
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Figure 1: A qep in PostgreSQL.
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Figure 2: Visual tree representation of the qep.

Example 1.1. Alice is an undergraduate cs student who is cur-
rently enrolled in a database course. She wishes to understand the
execution steps of an sql query in PostgreSQL on a tpc-h bench-
mark dataset [12] by perusing the corresponding qep in Figure 1
(partial view). Unfortunately, Alice finds it difficult to mentally con-
struct a narrative of the overall execution steps by simply perusing
it. This problem is further aggravated in more complex sql queries.
Hence, she switches to the visual tree representation of the qep as
shown in Figure 2. Although relatively succinct, it simply depicts
the sequence of operators used for processing the query, hiding
additional details about the query execution (e.g., sequential scan,
join conditions). In fact, Alice needs to manually delve into details
associated with each node in the tree for further information.

We advocate that an intuitive natural language-based descrip-
tion of a qep can greatly facilitate learners to comprehend how
an sql query is executed by a rdbms. To support this hypothesis,
we surveyed 62 unpaid volunteers taking the database course in
an undergraduate cs degree program. We use the tpc-h v2.17.3
benchmark and a rule-based natural language generation tool for
qeps [34] to generate natural language (nl) descriptions of qeps
for sql queries formulated by the volunteers. The volunteers were
asked to select their most preferred qep format (i.e., json text, visual
tree, and nl description) that aide in understanding the execution
steps of these queries. Figure 3 depicts the results. Observe that nl
description is the most preferred format. On the other hand, very
few voted for the json format supported by PostgreSQL. Also, the
visual tree representation of a qep has healthy support. Hence, we
believe that an nl-based interface can effectively complement visual
qeps to augment learning experiences of learners. Specifically, a
learner may use the visual qep to get a quick overview and then
peruse the nl description to acquire detailed understanding.

The majority of natural-language interfaces for rdbms [31–33,
45], however, have focused either on translating natural language
sentences to sql queries or narrating sql queries in a natural lan-
guage. Scant attention has been paid for generating natural lan-
guage descriptions of qeps. Natural language generation for qeps
is challenging from several fronts. First, although deep learning
techniques, which can learn task-specific representation of input
data, are particularly effective for natural language processing, it
has a major upfront cost. These techniques need massive training
sets of labeled examples to learn from. Such training sets in our
context are prohibitively expensive to create as they demand data-
base experts to translate thousands of qeps of a wide variety of
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Figure 3: Survey of qep formats.

sql queries. Even labeling using crowdsourcing is challenging as
accurate natural language descriptions demand experts who un-
derstand qeps. Note that accuracy is critical here as low quality
translation may adversely impact individuals’ learning. Second,
ideally we would like to generate natural language descriptions
of qeps using one application-specific dataset (e.g., movies) and
then use it for other applications (e.g., hospital). That is, the natural
language generation framework should be generalizable. This will
significantly reduce the cost of its deployment in different learning
institutes and environments where different application-specific
examples may be used to teach database systems.

In this paper, we present a novel end-to-end system called lantern
(naturaL lANguage descripTion of quERy plaNs) to generate natural-
language descriptions of qeps. Given an sql query and its qep, it
automatically generates a natural language description of the key
steps undertaken by the underlying rdbms to execute the query.
To this end, instead of mapping an entire qep to its nl description,
we focus on mapping the set of physical operators in a rdbms to
corresponding nl descriptions and then stitch them together to
generate the description of a specific qep. The rationale behind this
strategy is as follows. Any rdbms implements a small number of
physical operators to execute any sql query. Hence, although there
can be numerous qeps, they are all built from a small set of physical
operators. Consequently, it is more manageable to label these oper-
ators and generate a nl description of any qep from them. This also
allows us to generalize lantern to handle any application-specific
database as the relations, attributes, and predicates can simply be
used as placeholders in describing a physical operator. Lastly, it
makes our framework orthogonal to the complexities of sql queries
as they are all executed by a small set of physical operators.

We present a flexible declarative framework called pool for suc-
cinctly specifying nl descriptions of physical operators in an rdbms.
We then develop a rule-based framework called rule-lantern to
generate a natural language description of a qep by leveraging
the specified descriptions of physical operators. We observe from
our engagements with learners that although rule-based approach
have high accuracy, it makes the descriptions of qeps monotonous
leading to boredom. In fact, this is consistent with psychology
theories that repetition of messages can lead to annoyance and
boredom [19] (detailed in Section 6.1). To address this issue, we
develop a novel deep learning-based language generation frame-
work called neural-lantern that infuses language variability in
the generated description by exploiting a group of paraphrasing
tools [8–10] and pretrained word embeddings [22, 36, 42, 43]. Im-
portantly, it addresses the challenge of training data generation by
first generating a large number of random queries based on schema
information and actual values in the database and then utilize rule-
lantern and the paraphrasing tools to generate a large number
of nl descriptions of the physical operators. We built lantern on



top of PostgreSQL and SQL Server. Our exhaustive experimental
study with real learners demonstrates the superiority of lantern
to existing qep formats of commercial rdbms.

In summary, this paper makes the following contributions: (a)We
present a novel end-to-end system called lantern for generating
natural language descriptions of qeps. It takes a concrete step to-
wards the vision of natural language interaction with the relational
query optimizer. (b) We present a declarative framework called
pool to enable subject matter experts (smes) to label physical opera-
tors in an intuitive way (Section 4). (c) Based on the specifications
using pool, in Section 5 we present a rule-based approach called
rule-lantern to generate a natural language description of a qep.
(d) We present a novel psychology-inspired neural framework for
natural language generation called neural-lantern in Section 6
that addresses limitations of rule-lantern. (e) In Section 7, we
undertake an exhaustive performance study using synthetic and
real-world datasets to demonstrate the effectiveness of lantern.

2 RELATEDWORK

Natural language interfaces to relational databases have been stud-
ied for several decades. Given a logically complex English language
sentence as query input, the goal of majority of these work is to
translate it to sql [15–17, 29, 45, 53, 56–60]. Recently, deep learn-
ing techniques have been utilized to translate natural language
queries to sql [17, 49, 56–60]. On the other hand, frameworks such
as Logos [31] explain sql queries to users using natural language.
lantern compliments these efforts by providing a natural language
description of a qep.

Most germane to this work is the demonstration of a system
called neuron in [34], which generates natural language descrip-
tions of qeps using a rule-based technique. It also supports a natural
language question answering system that allows a user to seek an-
swers to a variety of concepts and features associated with a qep.
In contrast, we focus on generating a natural language description
of a qep and give detailed methodology to address this problem.
We also introduce a declarative framework for label specification
and a deep learning-based solution that are omitted in [34]. Finally,
user studies and experiments demonstrating the effectiveness of
the proposed frameworks are presented in this work.

3 PRELIMINARIES

In this section, we present basic concepts that are necessary to
comprehend this paper.

Physical Operator Tree. The relational query execution engine
implements a set of physical operators [21]. An operator takes as
input one or more data streams and produces an output data stream.
Some examples of physical operators are sequential scan, index scan,
and hash join. These physical operators are the building blocks for
the execution of sql queries. An abstract representation of such
an execution is a physical operator tree (operator tree for brevity),
denoted as T = (N ,E), where N is a set of nodes representing the
operators and E is a set of edges representing data flow among
the physical operators. The physical operator tree is the abstract
representation of a query execution plan (qep) and we use these
terms interchangeably. The query execution engine is responsible
for the execution of the qep to generate results of a sql query.

Unique

Aggregate

Sort

Hash Join

Hash SeqScan 
(inproceedings)

SeqScan 
(publication)

Figure 4: A physical operator tree (i.e., qep).

Example 3.1. Consider the following sql query.
SELECT DISTINCT(I.proceeding_key)
FROM inproceedings I, publication P
WHERE (I.proceeding_key = P.pub_key AND

P.title like '%July%')
GROUP BY I.proceeding_key
HAVING COUNT (*) > 200;

The qep (i.e., physical operator tree) of the query generated by
PostgreSQL is depicted in Figure 4.

Intuitively, we classify the nodes in an operator tree of a qep
into two categories, namely critical and auxiliary operators (nodes).
The former type of nodes corresponds to important operations (e.g.,
HASH JOIN, SEQSCAN) in a qep. On the other hand, the latter
type is located near a critical node (e.g., parent, child) and supports
the execution of the operator represented by a critical node. For
instance, HASH JOIN and HASH in Figure 4 are examples of critical
and auxiliary nodes/operators in PostgreSQL, respectively .

Seq2SeqModel. The Seq2Seqmodel has revolutionized the process
of machine translation using the deep learning framework [48].
The Seq2Seq model puts two neural networks together, one as an
encoder and the other as a decoder. It takes as input a sequence of
words and generates an output sequence of words. Given a source
(input) sequence of words, the encoder-decoder framework works
as follows. The encoder deep neural network converts the input
words to their corresponding hidden vectors, where each vector
gives a contextual representation of the corresponding word. The
decoder deep neural network is a language model that takes as
input the hidden vector generated by the encoder, its own hidden
(previous) states and the current word to produce the next hidden
vector and to finally predict the next word.

The encoder and the decoder can use a recurrent neural net-
work (rnn) architecture [48] with carefully designed cells like lstm
or gru, convolutional [23, 55] or recently proposed transformer
architecture [50]. It is also common to employ an attention mecha-
nism [18, 38] so that the decoder can selectively focus on relevant
encoder states while generating a token.

4 A DECLARATIVE FRAMEWORK

Ideally, we would like to have access to large volumes of labels
that associate qeps to their corresponding natural language descrip-
tions. Then, in principle, we can use such labels as training data to
build a deep learning-based model to generate a natural language
description of any qep. Unfortunately, to the best of our knowledge,
no publicly-available data source exists for qeps. Note that natural
language translation techniques for sql queries cannot be adopted



here as sql queries are declarative and specified using logical oper-
ators. To further aggravate this issue, the natural language labeling
of qeps needs to be performed by trained subject matter experts

(sme) in order to ensure accuracy of the annotations. Given that
there can be numerous qeps in practice, it is prohibitively expensive
to deploy such experts for labeling qeps. On the other hand, crowd-
sourcing for cheaper sources of labeling is not a viable option as
non-smes may not have sufficient background on query processing
to annotate qeps with high degree of accuracy.

To address these challenges, we deploy smes to provide natural
language descriptions for physical operators in a commercial rdbms
in lieu of qeps. All qeps are essentially constructed from this set of
operators, which is orders of magnitude smaller than a training set
containing qeps, making nl descriptions (i.e., labels) economical
to obtain from smes. In order to expedite the labeling process, we
propose a declarative framework where a sme can create and manip-
ulate the labels using a declarative language called pool (Physical
Operator Object Language). In this section, we elaborate on this
framework. Note that we focus on features that are necessary to
understand our rule-lantern framework.

4.1 Requirements

Investigation of physical operators in commercial rdbms as well
as our engagement with learners identified several crucial require-
ments for pool. First, an abstract data type for physical operators is
necessary so that smes may treat such data at a level independent
from a specific rdbms.

Second, smes must be able to select objects to be labeled and spec-
ify corresponding natural language labels. In particular, they must
be able to label physical operators in three dimensions, namely,
create meaningful alias of a physical operator, natural language
definition of an operator, and natural language descriptions of the
operation performed by an operator. In particular, aliases are impor-
tant as names of certain operators can be ambiguous to a learner.
For instance, DB2 uses HSJOIN as the name of hash join operator.
Hence, an alias of HASH JOIN is more intuitive to a learner. Simi-
larly, a learner may encounter unfamiliar operators (e.g., zigzag join
(ZZJOIN in DB2)) in her course. Hence, natural language definitions
of such operators will be useful to her while perusing qeps.

Third, it may be necessary to declaratively combine labels of
a pair of operators in order to generate a succinct nl description
of a qep. For instance, in PostgreSQL labels of HASH JOIN and
HASH operators need to be combined to generate description of
the former operator. An example of such a description can be “hash
$R1$ and perform hash join on $R2$ and $R1$ on condition $cond$”
where “hash $R1$” is the label associated with the HASH operator.

Fourth, smes should be able to transfer the description of one
operator to another to make specification of natural language de-
scriptions of operators more efficient. For instance, hash join and
nested-loop join are both join operators. Consequently, their de-
scriptions may be very similar, i.e., the description of nested-loop
join operator does not have the “hash $R1$” segment. Hence, pool
should be able to reuse and modify the existing description of hash
join operator when specifying the description of nested-loop join
operator. Similarly, one should be able to transfer the description
or definition of hash join across different rdbms (e.g., PostgreSQL
to DB2) without specifying it from scratch.

4.2 Features of POOL

DataModel.The datamodel underlying pool is called poem (Physical
Operator ObjEct Model). poem is a simple and flexible graph model
where all entities are objects. Each object represents a physical
operator of a relational query engine. Each object has a unique
object identifier (oid) from the type oid. Objects are either atomic
or complex. Atomic objects do not have any outgoing edges. All
objects have a set of attribute-value pairs. Specifically, each object
is associated with the following attributes: source, name, alias, defn,
desc, type, cond, and target. The source refers to the specific rela-
tional engine that an operator belongs to. The name refers to the
name of a physical operator in the source and the type captures
whether it is an unary or binary operator. Alias is an optional alter-
native name for an operator. The defn attribute stores the definition
of an operator. The desc attribute stores a natural language descrip-
tion of the operation performed by an operator. The cond attribute
takes a Boolean value to indicate whether a specified condition
(e.g., join condition) should be appended to the natural language
description of an operator. Values of all attributes are taken from
the atomic type string (possibly empty). As an example, consider
theHASHJOIN operator in PostgreSQL. In poem, it is an object with
the following attributes: source = ‘postgresql’, name = ‘hashjoin’,
alias = ‘ ’, type = ‘binary’, defn = ‘a type of join algorithm that uses
hashing to create subsets of tuples’, desc = ‘perform hash join’, and
cond = ‘true’. Note that the source serves as an entry point to the
database. The set of objects is referred to as poem store.

There is a directed edge between an object pair (pa , pc ) iff pa
is an auxiliary operator and pc is a critical operator (recall from
Section 3) in a qep in source. It is captured by the target attribute
of pa . For example, (phash, phashjoin) of PostgreSQL has a directed
link. Hence, the target attribute value of phash is ‘hashjoin’.

Data Definition. The data definition in pool allows one to
declaratively create physical operator objects associated with a spe-
cific rdbms. The general format of the statement is as follows: CRE-
ATE POPERATOR <name> FOR <source> (<attribute-value pairs>).
An example is as follows.

CREATE POPERATOR hashjoin FOR pg
(ALIAS = null,
TYPE = 'binary',
DEFN = null,
DESC = 'perform hash join',
COND = 'true',
TARGET = null)

Note that name must exists in the set of physical operators sup-
ported by the specified rdbms engine (i.e., source). For instance,
hashjoin is a physical operator in PostgreSQL (i.e., pg). The optional
ALIAS attribute specifies an alternative name of the operator. In
the case an alias is unspecified, it can be either set to null or simply
omitted from the definition. The TYPE is a mandatory attribute
that can take either ‘unary’ or ‘binary’ value. The DESC attribute
is mandatory, which allows one to specify a natural language de-
scription of the operation performed by the operator. Note that
pool does not prevent one from describing several descriptions for
a single operator. For instance, DESC = ‘execute hash join’ can be
added to the above definition. Observe that no relation or condition
is specified in DESC. This is because these are added automatically



to DESC by exploiting TYPE and COND attributes of an operator.
For instance, since TYPE = ‘binary’ in the above definition, two
variables representing join relations will be added automatically to
the description of hashjoin. Lastly, the TARGET attribute allows one
to specify auxiliary-critical operator pair. If its value is non-empty,
it must be an existing name in the source.

Data Manipulation. The key goals of the data manipulation
component of pool are to provide syntactical means to support (a)
retrieval of specific properties (i.e., attributes) of physical operators,
(b) generation of the template for natural language description of
an operator that can be subsequently used in a qep, and (c) update
properties of physical operator objects. We elaborate on the syntax
for performing tasks (a) and (b) in pool using examples. Details for
(c) are given in [51].

Retrieval of specific properties of physical operators follows sql-
like SELECT-FROM-WHERE syntax. The SELECT-FROM clauses
are mandatory for any retrieval task. Predicates in the WHERE
clause are formulated upon attributes of poem objects. Every query
result is a set of poem objects with specific attributes specified
in the SELECT clause and satisfies the conditions in the WHERE
clause. The following example shows the retrieval of the HASH
JOIN operator object with defn attribute.

SELECT defn FROM pg WHERE name = 'hash join'

Our framework also supports join queries especially between
physical objects from multiple dbms.

pool supports a COMPOSE clause to specify generation of a
natural language description template of an operator. Specifically,
the COMPOSE clause uses the desc, type, and cond attributes
of operators to generate the template. For example, the template
generation for the HASH operator can be specified as follows.

COMPOSE hash FROM pg

The above state will return the template “hash $R1$”, which
can be subsequently used by our framework to generate specific
description of theHASH operator in a qep. Note that theCOMPOSE
operator returns a value of type string instead of a poem object.
Also, observe that R1 is appended based on the type attribute of the
hash object.

As mentioned above, pool allows composing a pair of critical
and auxiliary operators (e.g., hash and hash join) to generate the
natural language description template for the critical operator.

COMPOSE hash, hashjoin FROM pg
USING hashjoin.desc = 'perform hash join'

The above statement generates the following template: “hash $R1$
and perform hash join on $R2$ and $R1$ on condition $cond$”. Since
an operator object may have multiple desc attributes, the optional
USING clause allows one to specify which one to use to generate
the template. In the case it is unspecified, a desc will be chosen
randomly for each operator in the COMPOSE clause to create the
template. Hence, the form of a COMPOSE statement is: COMPOSE
<list of object names> FROM <source> USING <condition on desc>.
Note that in the case the list of object names contains more than
one operators, it must be an (auxiliary, critical) operator pair, which
generates the template for the critical operator.

Implementation. pool is implemented on top of a standard
relational database. poem objects are stored in two relations with the

following schema: POperators(oid, source, name, alias, type, defn,
cond, targetid) and PDesc(oid, desc) as an object may have multiple
descriptions. We use Python script to translate pool statements
to corresponding sql statements on these relations. A wrapper
is implemented that takes the results of sql queries as input and
returns poem objects or strings as output.

5 THE FRAMEWORK OF RULE-LANTERN

Our rule-based framework, rule-lantern, leverages the narration
(descriptions by smes) of various operators defined using pool to
generate a natural language description of the qep of an sql query.
In this section, we describe it in detail. We begin with the model
of the framework for generating natural language descriptions of
qeps. Next, we highlight the key issues for designing rule-lantern.
Finally, we present the algorithm for realizing rule-lantern.

5.1 Model For Narration of QEPs

Narration is the use of techniques to convey a story to an audi-
ence [7]. In our context, the story is the description of a query
execution plan and the audience consists of learners. Chatman [20]
defines narrative as a story (content of the narrative) and discourse

(expression of it). In a nutshell, the story can be viewed as the logical
form of the narrative, while the discourse prunes out unimportant
content and focuses on presenting components deemed interesting
in a particular order.

Inspired by this classical model of narration, El Outa et al. [40]
recently proposed a four-layered model for data narration that
we adopt for qeps. In our context, the factual layer models qeps
(i.e., data) using language-annotated operator trees that allow for
manipulation of qeps for narration generation. The intentional

layer models the substance of a story by identifying the content
(description of various operators) based on the desired goal (i.e.,
comprehension of a qep by learners). The structural layer models the
structure of a narrative by organizing its plot (i.e., the arrangement
of messages in a way easily understandable by the audience). In
our framework, we organize the plot as a sequence of steps. Finally,
the presentation layer models the presentation of a narrative. That
is, how a story is presented to the audience. Specifically, our rule-
lantern addresses the first three layers. We utilize the presentation
approach of [34] for the presentation layer.

5.2 Design Issues

At first glance, we may simply perform a post-order traversal of
an operator tree and exploit the nl description templates specified
using pool to transform the information contained in each node
“independently” to its nl description and simply aggregate them to
generate the description of a qep. This method, however, may pro-
duce a verbose description containing redundant information. This
is because a node in an operator tree may only convey a segment of
information related to a specific physical operator. For instance, in
PostgreSQL, the node representing HASH JOIN have a child called
HASH. The latter node conveys the hashed relation and can be
considered as a part of the main narrative of performing hash join
between two relations. Hence, it is important to consider the roles
played by different nodes for generating concise nl descriptions.

A consequence of the above issue is that the nl description of
an execution step related to a specific operation may need to be



generated by composing descriptions of multiple nodes. For example,
consider the TBSCAN operator (i.e., table scan operator in DB2). In
one qep, we may simply perform a table scan on a relation without
any filtering condition. On the other hand, in another qep, we
may perform a table scan on a relation based on certain filtering
condition using the FILTER operator. Hence, in the former plan, the
natural language description is simply based on the TBSCAN node
whereas in the latter plan, concise description demands composition

of desc attributes of TBSCAN and FILTER nodes. Hence, rule-
lantern should support such composition.

5.3 Language-annotated Operator Tree

Observe that an operator tree does not contain any information
related to nl descriptions of the operators. Hence, we extend it to
annotate the nodes with their nl descriptions as specified using
pool. We refer to such extension as language-annotated operator
tree (lot), denoted asTL = (N ,E). Formally, each node n ∈ N inTL
is associated with a name, denoted as n.name , and a label, denoted
as n.label . The former is set to the alias value of the correspond-
ing object in poem. In the case the alias is unspecified, it is set to
the object’s name. The latter contains a natural language descrip-
tion of n generated from the natural language template created
by executing COMPOSE statement of pool on n. For example,
reconsider the operator tree in Figure 4. For the node representing
hash join, n.name = HASH JOIN. A nl description of this node
can be n.label = “perform hash join on $R1$ and $R2$ on condition

$C$” where R1 (resp. R2) andC are place holders for input relations
and join condition(s), respectively. Note that this template is re-
turned by the following pool query: COMPOSE hashjoin FROM
pg. Also, specific relation/attribute names and conditions to replace
the placeholders are added in subsequent steps.

5.4 Composition of Node Labels

To tackle the issues described in Sec. 5.2, we logically refine a lot by
clustering the auxiliary nodes with the corresponding critical ones.
Recall that these two types of nodes are specified by an sme using
pool. For example, in PostgreSQL, HASH JOIN node and its child
HASH, MERGE JOIN node and its child SORT are two examples of
auxiliary-critical node pairs that can be specified using pool.

Given a lotTN = (N ,E), cluster (TN ) returns a set pairs of nodes
in TN , {(na ,nc )|(na ,nc ) ∈ E ∧ na , nc }, where nc and na denote
critical and auxiliary nodes, respectively. Each pair of critical and
auxiliary nodes in a cluster is translated into a single natural lan-
guage description template using the COMPOSE statement as an
auxiliary node contributes to a segment in the description. For ex-
ample, consider the HASH JOIN and its child HASH in a lot. A
natural language description template of this pair of nodes can be as
follows: “hash $R1$ and perform hash join on $R2$ and $R1$ on con-

dition $cond$”. Observe that the segment “hash $R1$” is generated
from the HASH node.

Under the hood, the COMPOSE statement on a pair of nodes
is realized using a composition operator, denoted by ◦. Given a
pair of critical and auxiliary nodes (na ,nc ) such that (na ,nc ) ∈ E,
na ◦nc = na .label∧nc .label where∧ represents “and’’. In the above
example, na .label = “hash $R1$” and nc .label = “perform hash join

on $R2$ and $R1$ on condition $cond$”. The composition operator is
neither associative nor commutative. The left operand must be an

Algorithm 1 rule-lantern Algorithm
Input: An operator tree T = (N , E), poem store P ;
Output: Natural language translation r esult ;

1: TL ← GenerateLOT(T , P )
2: C ← Cluster(TL , P )
3: for all node ∈ TL do

4: step ← ∅
5: if (node .child, node) ∈ C then

6: step ← Translate(node .child, node, step)
7: else

8: step ← Translate(node .label, step)
9: end if

10: if node .parent ! = ∅ and node .identif ier ! = ∅ then
11: step ← AppendIntermediate(step , node .identif ier )
12: else if node .parent = ∅ then
13: step ← AppendFinal(step , “to get the final results.’’ )
14: end if

15: r esult ← Add(r esult , step)
16: end for

17: return r esult

auxiliary node. This is intuitive as the natural language description
is unclear if “hash $R1$” appears after the label of HASH JOIN.

5.5 Algorithm

Algorithm 1 outlines the procedure for generating a natural lan-
guage description of a qep in rule-lantern. It first extends the
operator tree T to a lot TL (Line 1). Observe that in a graphical
representation of a qep (e.g., Figure 2), hierarchical relations be-
tween operators and data flow are clearly indicated by edges in
the tree. In contrast, a natural language description is inherently
sequential as a reader reads it top-down like a document. Particu-
larly, a parent of an operator may not be translated immediately
as the next step during natural language generation as other chil-
dren need to be translated first (e.g., auxiliary nodes). Therefore, in
order to ensure clarity of data flow, this step also assigns a unique
identifier to the output of each operator (i.e., intermediate results)
so that it can be appropriately referred to in the translation of its
parent (denoted by node .identi f ier ). For example, in Figure 4, the
intermediate results of the SEQSCAN operation on the Publication
relation is assigned an identifier T1. This identifier is subsequently
used in the nl description of its parent HASH node.

Next, it retrieves the cluster C in TL containing a set of critical
and auxiliary node pairs by leveraging the poem store (Line 2).
Since the structural layer of our model consists of a sequence of
steps to describe the qep, it traverses TL in post-order manner to
generate these steps. If a node and its child are an element in C
then it uses the label of the critical node to generate corresponding
nl description by replacing the place holders with corresponding
values (Lines 5-6). On the other hand, if a node is not in C , then
the corresponding step is generated by utilizing its label. Finally,
the intermediate relation information is appended to step in Lines
10-11. In the case, the node represents the final operation in an
operator tree, “to get the final results." is appended to step (Line
13). Observe that contents of these nodes represent the intentional
layer of our model. The time complexity of generating a natural
language description is O(N ).

Example 5.1. Consider the operator tree in Example 3.1. The
rule-lantern algorithm generates the description of the qep as
the following sequence of steps. (1) Visit SEQ SCAN for table inpro-
ceedings and generate “perform sequential scan on inproceedings."
(Line 8). Note that the identi f ier of intermediate results associated
with this node is set to null as there is no filtering condition (i.e.,
intermediate relation is identical to the base relation). (2) Visit SEQ



SCAN for table publication and generate “perform sequential scan

on publication and filtering on (title containing ’July’) to get the inter-
mediate relationT1." (Lines 8, 11). (3) Visit HASH JOIN and generate
“hash tableT1 and perform hash join on inproceedings andT1 on condi-
tion ((i.proceeding_key)= (p.pub_key)) to get the intermediate relation

T2." (Lines 6, 11). (4) Visit AGGREGATE and generate “sort T2 and
perform aggregate on T2 with grouping on attribute i.proceeding_key
and filtering on (count(all) > 200) to get the intermediate relation T3."
(Lines 6, 11). (5) Visit UNIQUE and generate “perform duplicate

removal on T3 to get the final results." (Lines 8, 13).
Remark.Note that Algorithm 1 is generic and can be realized on

any commercial rdbms. Although the operator names are different
in different rdbms, the rule-lantern framework operates on TL
and C , which are generated using the poem store.

6 NEURAL-LANTERN FRAMEWORK

Although rule-lantern can generate accurate nl descriptions of
qeps, our engagement with learners revealed an intriguing prob-
lem of this approach. Since the nl description of an operation is
generated from sme-specified descriptions in the poem store, the
descriptions in qeps can be repetitive and lack variability. For exam-
ple, the description in Step 3 of Example 5.1 will be repeated for all
qeps containing a hash join operator although the input relations
or join conditions may differ. Note that even though pool allows
an sme to specify multiple descriptions of an operator, in practice
she may only specify one. Consequently, some learners felt bored
after reading the descriptions for several queries due to the usage
of the same language to describe the operations. They reported that
they started skipping several sentences in the descriptions. In fact,
this is consistent with research in psychology that have found that
repetition of text messages can lead to annoyance and boredom [19]
resulting in purposeful avoidance [26], content blindness [27], and
even lower motivation [46]. To mitigate this problem, we propose
a novel neural network-based framework called neural-lantern
that is inspired by theories from psychology.

6.1 Habituation and Boredom

In psychology theory, habituation is a decrease in response to a stim-
ulus after repeated presentations [4]. The advantage of habituation
is that it enables individuals to tune out unimportant information
to be more productive or efficient. However, it also creates bore-
dom that makes an individual disinterested in the information.
Specifically, many studies in psychology such as [39] reported that
habituation of cortical arousal in response to repetitive stimulation
contribute to the likelihood that boredom1 is experienced. In fact,
subjectively monotonous activities could lead to a high degree of
frustration and boredom [28]. Simple and homogeneous stimulus
(e.g., same or similar messages) as well as high exposure, accelerate
the appearance of boredom [25].

Diverse messaging has been studied to mitigate the problems
germinated from repeated exposure. In controlled experiments,
diversification was shown to reduce tedium from repeated expo-
sure [25, 46]. However, the messages were manually developed in
these studies. Recall that pool also allows specifying such manual

1Mikulas and Vodanovich [37] defined boredom as “a state of relatively low arousal and dissatis-
faction, which is attributed to an inadequately stimulating situation”. Watt and Vodanovich [52]
describe boredom as a dislike of repetition or of routine.

description using multiple desc attribute values. However, such
manual generation creates a major barrier for diversifying descrip-
tions of operators in qeps. Hence, systematic and automated tech-
nique is necessary for mitigating the negative effects of repeated
exposure of similar descriptions.

6.2 Training Data Generation

If we regard a qep as an input language while the natural language
description as the output, interpreting qep into natural language
can be viewed as amachine translation task, which can be addressed
by a deep learning-based framework. However, as remarked earlier,
it brings in two key challenges. First, it is prohibitively expensive
to get large volumes of training data for this task. Second, the
description generated as output should mitigate the appearance of
boredom among learners when they peruse the natural language
descriptions of qeps. We address these challenges by presenting
a neural network-based framework called neural-lantern. We
begin with the training data generation process in this framework.

The training sample of a translation task consists of two parts,
the sentence in the original (resp., input) language to be translated,
i.e., the input operator tree, as well as the ground-truth translation
in the output language, i.e., the natural language description of the
corresponding qep. We shall now discuss these parts in turn.

Input. Given a relational database, we need a large number of
sql statements in order to generate a large number of correspond-
ing qeps for translation. Hence, we adopt the approach in [30] to
generate a set of sql queries given a particular schema and database
instance. This enables us to generate thousands of queries given a
relational database instance.

Next, we acquire a collection of qeps corresponding to these
queries. Each qep is decomposed into a set of acts (denoted as
actCol ), each of which corresponds to a set of operators over some
relations. For instance, in Figure 4, SEQUENTIAL SCAN and (HASH
JOIN,HASH) are two acts. Specifically, each act is a single node (i.e.,
operator) or a cluster (recall from Section 5.4) in an operator tree.
Each of such act, in the form of some operators and corresponding
relations/conditions, is employed as an input training sample, and
its corresponding nl description is used as output sequence in the
translation model. Specifically, for each act, we employ the strategy
in rule-lantern to generate the corresponding lot in order to
generate its corresponding nl description. Observe that our input
is at the act-level (i.e., a subtree of an operator tree) instead of the
entire operator tree. This enables us to not only generate numerous
training data at specific operator-level but also, as we shall see in the
next subsection, facilitates injecting diversity in the nl description
of each act, which in turn improves the neural model generalization.

Output. For each training act, we have to obtain its natural lan-
guage translation as the output sequence. We apply rule-lantern
to generate the natural language description for each input. No-
tably, we need to pay attention to the schema-dependent variables,
e.g., relation/column names and filtering conditions, which do not
contribute to the training of a translation model. We mark them
with special symbols in the output labels for each input operation.
For example, an INDEX SCAN node is translated by rule-lantern
into the followings: “perform index scan on $R1$ and filtering on $C$
to get the intermediate relation $R2$”. We replace it with “perform



Table 1: List of special tags used in the output.

Tag Description Example

<I> indexed column name
<F> filtering condition c_mktseдment = ’BUILDING’
<C> join condition c_custkey = o_custkey
<T> an existing temporary table name
<TN> new temporary table name
<A> column name for sort order by revenue desc ...
<G> column name for groupby group by l_orderkey ...

index scan on <T> and filtering on <F> to get the intermediate re-

lation <TN>” in the output label. Herein, special tags are adopted
in the output to replace specific relations or predicates. The set of
special tags we use is shown in Table 1. This leads us to a set of
training samples, each of which consists of an operation (i.e., act)
as input and a corresponding nl description as output.

6.3 Diversifying Translation

Observe that the output labels for the training samples are all
generated by rule-lantern. Consequently, it does not address two
key challenges discussed earlier. First, the translation generated
by rule-lantern can be repetitive leading to possible boredom
among learners while reading the natural language descriptions of
qeps. Second, the amount of training data generated is still limited
since rule-lantern imposes a one-to-one mapping between an
act and its corresponding natural language description.

To address these challenges, we employ three popular state-of-
the-art synonymous sentence generation tools [8–10] to expand
the training samples as well as inject diversity in the translated text.
For the same sql statement, these models can generate a variety of
natural language descriptions that add diversity to the narrative. In
particular, for each of the rule-lantern results, we apply all the
three tools and acquire a set of synonymous sentences. Notably, we
remove duplicates (if any) and manually eliminate invalid sentences
generated by these tools. As a result, we enlarge the number of
training samples in our datasets by approximately 3 times.

Table 2 shows an example of three synonymous sentences gen-
erated by these tools from a rule-lantern-generated text. An
interesting observation is that these tools may not always choose
correct words in the generated sentences. For example, in sentences
1 and 2, the word “separating” is generated instead of “selecting”.
At first glance, it may seem that this may hinder a learner’s compre-
hension. However, surprisingly, our empirical study shows that this
is not the case. Instead, it may even arouse interest among learners
as they encounter novel unexpected words.

6.4 Translation Model

Taskdefinition.To finish our translation task, we present aQEP2Seq
model following the Seq2Seq structure. For a qep, the acts collection
actCol is composed of a series of acts L1,L2, . . . ,Ln , each of which
is derived from the qep. Specifically, each act Li constitutes an
input to the neural Seq2Seq model, and the corresponding output
is the generated description Si containingm tokens o1,o2, . . . ,om ,
with ot being the word at position t . Our goal is to train a model
parameterized by θ that can be used to infer the most likely natural
language description Si for any given input Li as follows:

Ŝi = argmax
y1:m

m∏
t=1

Pθ (yt = ot |y0:t−1,Li ) (1)

Table 2: Examples of synonymous sentence generation.

Approach Description

rule-lantern perform sequential scan on user and filtering on age > 10 to get the
final results.

synonymous sentence
1

perform sequential scan on user and separating on age > 10 to get the
conclusive outcome.

synonymous sentence
2

execute sequential scan on user and separating on age > 10 to get the
conclusive outcome.

synonymous sentence
3

execute sequential scan output on user and get user which age > 10
and to get the conclusive outcome.

The explanation for the entire qep containing acts L1,L2, . . . ,Ln is
then constructed by concatenating the Ŝi ’s for i = 1 . . .n.

6.4.1 Model Architecture. As shown in Figure 5, our QEP2Seq
model consists of an Encoder and a Decoder. The decoder employs
an attention mechanism so that it can focus on the relevant portion
of the input when generating a target word. Besides, we also use
pre-trained word vectors in the Decoder (see Embedding in Figure 5).

Pre-trainedword vectors. Static and contextualized pre-trained
word representations like GloVe [42], Word2Vec [36] and BERT [22]
have attracted a great amount of attention recently in nlp. The vec-
tor representations of words learned by these models have been
shown to carry semantic information that can help the model to
generalize well for different nlp tasks.

In this work, we adopt both static (Word2Vec and GloVe) and
contextual word embeddings (ELMo [2] and BERT). While static
word embeddings are easy to use, using contextual embeddings
effectively can be non-trivial. For ELMo, we take the embeddings
from its two bi-lstm layers (each of size 4096) and take a linear com-
bination of the vectors as the pre-trained representation of a word.
For BERT, we take the representation from its last layer. We use
the BERT-based model, which has 12 layers with 768 hidden units
and 12 heads. Empirical study in the next section demonstrates that
using pre-trained word embeddings can accelerate the convergence
of our QEP2Seq model and alleviate overfitting problem.

Encoder. The Encoder rnn encodes each word wt in Li into
the corresponding hidden state ht using an lstm layer. The lstm
maintains a vector of memory cells ct ∈ Rd (a.k.a. cell state) to
store long term memory, and uses (soft) gates to control how much
information to update with, to retrieve, or to remember for the next
token. At each time step t , the lstm hidden layer receives previous
hidden state ht−1 and the current input xt , i.e., the word embed-
ding for token wt (randomly initialized). The LSTMEnc(ht−1, xt )
architecture used here is given by the following equations [24]:

it = sigmoid(Uihlt−1 +Vixt ) [input gate] (2)

ft = sigmoid(Uf hlt−1 +Vf xt ) [forget gate] (3)

ot = sigmoid(Uohlt−1 +Voxt ) [output gate] (4)

ct = it ⊙ tanh(Uchlt−1 +Vcxt ) + ft ⊙ ct−1 [cell state] (5)
ht = ot ⊙ tanh(ct ) [output] (6)

where U · and V· are the corresponding weight matrices and ⊙
denotes element-wise product.

Decoder with attention. To generate the natural language de-
scription (Si ) for the input sequence (Li ), we use an lstm decoder
with an attention mechanism [38]. The attention is an elegant way
to let the decoder focus on the relevant portion of the encoder while
generating a token (Figure 5). Similar to the Encoder rnn, at each
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Figure 5: The QEP2Seq Model.

time step t , the decoder rnn receives two inputs – the previous hid-
den state st−1 and the word embedding xt (e.g., Word2Vec, BERT).
The lstm layer then constructs st following Equations 2 - 6 (using
a different set of weight matrices).

st = LSTMDec(st−1, xt ) (7)
The decoder hidden state st is then used to compute a relevance

score (attention weight) with respect to each of the encoder states
ht for t = 1 . . .N with N being the number of tokens in Li (Eq. 8).

α ti =
exp(д(st , hi ))∑N
j=1 exp(д(st , hj ))

(8)

In particular, д(st , hi ) is a relevant score between the hidden
state st of the Decoder and the hidden state hi of the Encoder. There
are several ways to compute the relevant scores. In our work, we
use the additive attention [18] to measure the relevance score:

д(st , hi ) = VT
a tanh(Ws st +Whht ) (9)

where Va ,Ws , and Wh are learnable parameters. The attention
weights are then used to compute a context vector at as a weighted
sum of encoder hidden states (Eq. 10).

at =
N∑
i=1

α ti hi (10)

We concatenate the lstm state ht and the context vector at and
use the concatenated vector to compute the generation probability
over the vocabulary items o ∈ O (Eq. 11).

Pθ (yt = o |y0:t−1,Li ) =
exp(wT

o [st ; at ])∑
o′∈O exp(wT

o′[st ; at ])
(11)

where wo is the weight vector corresponding to the output word o.

6.4.2 Model Training. We minimize the cross entropy loss and use
Teacher Forcing [54] to train the Seq2Seq model. Teacher forcing,
where current step’s target token is passed as the next input to the
decoder rather than the predicted token, is a common way to train
neural text generation models for faster convergence. The loss for
one input-output pair (Li , Si ) can be written as:

L(θ ) = −
m∑
t=1

∑
o∈O

1(yt = o) log Pθ (yt = o |y0:t−1,Li ) (12)

where 1(yt = o) is an indicator function that returns 1 if yt = o
otherwise 0. Our LSTM layer has 256 cells at each layer, with an
input vocabulary of 36 and an output vocabulary of 62. The statistics
about the word embeddings and the resulting LSTM parameters
are listed in Table 3. The complete training details are given below:

Table 3: Statistics about our LSTM layer.

Method Dimension

of embed-

ding

#parameters (total) #pure recurrent connec-

tions (Encoder, Decoder)

QEP2Seq+Word2Vec 128 920,393 837,632 (279,552, 558,080)
QEP2Seq+GloVe 100 993,901 907,264 (279,552, 627,712)
QEP2Seq+BERT 768 1,716,009 1,591,296 (279,552, 1,311,744)
QEP2Seq+ELMo 1024 1,992,745 1,853,440 (279,552, 1,573,888)

Table 4: Diversity among the training samples.

Method Self-BLEU #Samples per group

Without paraphrasing 1.0 1
paraphrasing with [10] 0.309 2
paraphrasing with [9] 0.603 2
paraphrasing with [8] 0.502 2
paraphrasing with [8–10] 0.482 4

• We initialized all of the lstm’s parameters with the uniform
distribution between -0.1 and 0.1
• We used stochastic gradient descent (sgd) without momen-
tum, with a fixed learning rate of 0.001. We trained our mod-
els for a total of 50 epochs.
• We used minibatches of 4 sequences.
• The dimension of the word embedding in the Encoder is 16,
and at the Decoder is 32 when no pre-trained word vector is
employed (i.e., for random initialization).
• We select our model based on the validation loss.

6.4.3 Natural Language Generation. After the QEP2Seq model is
trained, the most likely description can be inferred (or decoded) by:

Ŝi = argmax
y1:m

m∏
t=1

Pθ (yt |y0:t−1,Li ) (13)

In the above equation, θ denotes the trained QEP2Seq model, and∏m
t=1 Pθ (yt |y0:t−1,Li ) is the probability that the model assigns to

sequence y1:m for an input sequence Li . In practice, the argmax

procedure is intractable for large output vocabulary. To overcome
that, we employ a Beam Search algorithm, which maintains a beam
of K partial hypothesis starting with the start symbol <BOS> (as
shown in Figure 5). At each step, the beam is extended by one addi-
tional character and only the top K hypotheses are kept. Decoding
continues until the stop symbol <END> is emitted, at which point
the hypothesis is added to the set of completed hypotheses.

Finally, we replace the special tags (e.g., < I >, < C >, . . .) listed
in Table 1 in the generated natural language using the correspond-
ing identifiers.

Remark. The neural-lantern framework is novel in the fol-
lowing ways. First, this is a seminal effort to model the qep to
natural language description as a machine translation task. Second,
our training data generation process is designed to address the psy-
chological impact of repeated text on learners. Third, we propose a
novel QEP2Seq scheme. As a qep cannot be regarded as an input
sequence, we present a model to interpret qeps into a set of acts,
each of which is viewed as an input for the translation model.

7 EXPERIMENTAL STUDY

lantern is implemented in Python. In this section, we report the
key performance results of lantern. Additional results are reported
in [51]. All experiments are performed on a server running Ubuntu
16.04.6 LTS with 2*Intel Xeon CPU E5-2680 v2 @ 2.80GHz, 256GB
RAM, and 2*NVIDIA RTX 2080 Ti graphical card with 11GBGDDR6.



7.1 Experimental Setup

Datasets. By default, we use PostgreSQL v10.12.2 as the underly-
ing rdbms. Two smes used pool to generate the descriptions of
all physical operators to create the poem store. We use the tpc-h
benchmark [12], sdss [11], and imdb [5] datasets as representa-
tives of application domains. In particular, a recent benchmarking
study [29] reported that existing nl2sql techniques perform poorly
on tpc-h dataset containing complex and diverse sql queries.

We train our QEP2Seq model in neural-lantern using the
workloads in tpc-h and sdss. For instance, given the 22 queries
in tpc-h, we obtain their corresponding qeps. The qeps are then
decomposed into 544 acts. For each of them, we generate a series
of natural language descriptions following the procedure described
in Section 6.2, resulting in 1632 samples. On the other hand, we
generate 608 samples from the 71 predefined workload (http://
skyserver.sdss.org/dr16/en/help/docs/realquery.aspx) in sdss. The
neural network is implemented using Keras 2.2.4 and TensorFlow
1.13.2. We use Word2Vec [13], GloVe [3], ELMo [2], and BERT [1] as
pre-trained word vectors in the Decoder.

Note that sdss is tailored for SQL Server. Hence, we implement
rule-lantern (neural-lantern relies on QEP2Seq and is orthog-
onal to the underlying rdbms) on SQL Server (v15.0) as follows.
First, qeps of SQL Server are in xml format. Hence, we implement
a parser to transform a qep to the corresponding operator tree.
Second, all physical operators of SQL Server are created using pool
and stored in the poem store. In summary, we can extend lantern
to any rdbms easily by writing a parser to create operator trees and
updating the poem store with rdbms-specific physical operators.

Finally, from all the samples, 80% of them are randomly selected
to train the model, while the remaining 20% are selected as the
validation set. Note that the performance of QEP2Seq is affected by
the average number of training samples for each operator. In our
experiments, there are on average 100 samples for each operator.

The trained model is applied to imdb for testing to demonstrate
the portability of lantern across different domains. Specifically,
we generate 1000 sql queries using the approach in [30]. The cor-
responding qeps for these queries are then decomposed into 5232
acts, each of which is viewed as a test sample.

Algorithms. We compare lantern with neuron [34], a rule-
based approach for generating natural language descriptions of
qeps. We also compare it with the textual and visual tree-based
descriptions of qeps in PostgreSQL/SQL Server.

7.2 Experimental Results

Exp 1: Effect of diversifying text. First, we report the benefits
brought by paraphrasing in neural-lantern. Table 4 reports the
diversity of nl descriptions measured using Self-BLEU [47] (nor-
malized to 0 ∼ 1, a lower value indicates a higher diversity), which
is widely adopted in machine translation tasks to measure diversity
of the generated text in a language. Given the 1152 samples (544
from tpc-h, 608 from sdss) generated by rule-lantern, we apply
the paraphrasing tools over each sample. As a result, each original
sample (from rule-lantern) as well as its variations (generated by
paraphrasing) form a group. We compute the diversity of each group
and report the average over all 1152 groups. Notably, #Samples per

group column refers to the number of samples in each group. Recall
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Figure 7: Impact of pre-trained vectors.

that we eliminate invalid or duplicate paraphrasing results. Hence,
a few groups may have fewer samples than the theoretical values
listed in the column. Clearly, paraphrasing is beneficial w.r.t diver-
sity of nl descriptions. Next, we use the diversified samples (i.e.,
paraphrasing with [8–10]) for training and evaluate the validation
loss (i.e., cross entropy loss in Eq. 12). Figure 6(a) plots the results.
Observe that paraphrasing reduces the loss significantly.

Exp 2: Length of output.Although paraphrasing enablesneural-
lantern to generate descriptions with high diversity and low vali-
dation loss, does it make the descriptions verbose? We now report
lengths of the nl descriptions generated by rule-lantern and
neural-lantern to answer this. Figure 8(a) plots the lengths of
the original sql statements in tpc-h as well as outputs of these
two techniques. We observe that the length of a natural language
description is, in fact, affected by the complexity and the number of
relations in a sql statement, but not by the length of the statement.
Importantly, neural-lantern injects variability without adversely
impacting the length significantly compared to rule-lantern.

Exp 3: Effect of pre-trained word embeddings. Next, we
compare the changes to the loss function by employingWord2Vec or
otherwise. Figure 6(b) depicts the results. Observe that the adoption
of pre-trained word vector can speed up training and significantly
reduce the validation loss. We also notice that during training, the
training set loss first decreases and then slowly increases (over
35 epochs). Hence we apply an early stopping strategy to prevent
overfitting. Specifically, we terminate training when the training
set loss fluctuation range is less than a threshold (e.g., 0.001).

Exp 4: Varying the pre-trained word vectors. We conduct a
set of experiments to test the performance of neural-lantern by
varying the pre-trained word vectors. In particular, we compare the
following five approaches:QEP2Seq (with randomly initialized word
embeddings), QEP2Seq+GloVe, QEP2Seq+Word2Vec, QEP2Seq+BERT,
and QEP2Seq+ELMo. Figure 7(a) depicts the results in terms of

http://skyserver.sdss.org/dr16/en/help/docs/realquery.aspx
http://skyserver.sdss.org/dr16/en/help/docs/realquery.aspx
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Figure 8: (a) Length of output; (b)-(d) Responses to Question 1-3.

Steps Training

(over tpc-h
and sdss
samples)

Training for
each epoch

SQL gener-
ation (1000
queries in
imdb)

neural-
lantern avg.
response time

rule-
lantern
avg. response
time

Time 825.60 16.51 [18.22] 0.77 0.216 0.015

Table 5: Efficiency (in sec).

sparse_categorical_accuracy [6] averaged over all output sequences.
For each output sequence withm tokens, it can be calculated as
Acc = 1

m
∑m
t=1 1(yt = o). Observe that the training process is

faster and the accuracy on the development set is higher when
pre-trained vectors are adopted. As expected, the performance for
the contextual embeddings (ELMo, BERT ) are the best. In addition,
using existing pre-trained word vectors, which are trained on large
corpus such as Wikipedia, show superior results to our self-trained
word vectors (referred to as self-trained in the figure), which are
pre-trained on our rule-lantern output. This is expected as the
dataset size is limited for the latter.

We also compare the impact of sharing and not sharing the
weights between the Encoder and Decoder. The performances are
comparable for models with pretrained embedding [51]. Lastly,
in line with existing Seq2Seq models, we adopt a measure that is
widely used in machine translation task, i.e., BLEU [41]. For each
specific approach of neural-lantern, we compute the BLEU score
of its output with respect to the ground-truth and report the average
over all samples. The results are presented in Figure 7(b). Clearly,
QEP2Seq+BERT demonstrates the most similar results with respect
to the ground-truth.

Exp 5: Errors in neural-lantern. Observe that neither
accuracy nor BLEU can justify the correctness (i.e., whether the
translation make sense for human understanding) of the output of
neural-lantern. Hence, we employ two smes to manually check
the correctness of the nl descriptions. We uniformly sample 100 test
samples randomly, and test whether the translated descriptions are
correct. We find that 83 are correctly translated; another 13 has one
wrong token; the remaining four contains 6-9 wrong tokens. In the
next section, we shall investigate the impact of these descriptions
on facilitating understanding of qeps among learners.

Exp 6: Efficiency. Table 5 reports the time cost. Firstly, the
average training time for each epoch is 16.51 (resp. 18.22) sec for
QEP2Seq + GloVe (resp. QEP2Seq + ELMo), which has the least
(resp. largest) number of dimensions. Secondly, the average time
taken to generate a nl description is less than a second.

7.3 User Study

We conducted a user study among cs undergraduate students who
are taking the database course in an institution. 43 unpaid volun-
teers participating in the study. We utilized the gui of neuron [34]

for presenting the input queries and output translations of lantern.
Rest of the features (e.g., question answering module) of neuron
are orthogonal to this work and hence were disabled. We presented
a 10-min scripted tutorial of the gui describing how to use it. We
then allowed the subjects to play with the tool for 15 min.

US 1: Survey. Each of the subjects was given the qeps corre-
sponding to the queries in tpc-h/sdss and their natural language
descriptions generated by rule-lantern and neural-lantern.
The subjects were not informed on which description was gener-
ated by which technique. They were also given the correspond-
ing json/xml and visual tree formats of qeps generated by Post-
greSQL/SQL Server. The queries as well as outputs of different
approaches were given in random order. They were allowed to take
their own time to peruse the plans. After the completion of the task,
the subjects were asked to fill up a survey form, which consists of
a series of questions to understand the impact of various modes of
qep on their understanding of how sql queries are executed. They
were instructed that the outcomes of the survey have no bearing
on their course grades. We now elaborate on the key results from
the survey on tpc-h (results on sdss are qualitatively similar).

Q1: How easy it is to understand the query plan presented using

each approach? Figure 8(b) shows the statistics with respect to the
number of responses for this question. Each subject gave a rating
in the Likert scale of 1-5. Observe that the lantern approach
is the easiest format to understand. In particular, for both rule-
lantern and neural-lantern, 58.1% of ratings are above 3 for
both solutions. In comparison, there are 27.9% and 48.8% ratings
above 3 for json and visual tree, respectively. Note that majority of
the volunteers (41 out of 43) did not raise any issue with the length
of the nl descriptions generated by lantern.

Q2: How well does lantern describe the query plans? Figure 8(c)
reports the results. 86% (resp., 81.4%) of the respondents agree that
the rule-lantern (resp., neural-lantern) does a good job in
describing the query plans to facilitate understanding of query exe-
cution steps. Slightly higher agreement for the former is expected
as hand-written rule-based technique is expected to be more accu-
rate than the neural-based approach. We also observe that there is
no significant impact of different pre-training models employed in
neural-lantern due to the constrained nature of the problem [51].

Q3: Which query plan format do you prefer the most? Figure 8(d)
reports the results. Both solutions of lantern are preferred the
most. In particular, rule-lantern and neural-lantern receive
similar preferences. On the other hand, very few, i.e., 11.63%, par-
ticipants chose the textual format as the most preferred choice.

US 2: Impact of paraphrasing.Wenow conduct a user study to
test the impact of incorporating paraphrasing in neural-lantern.



Method

Boredom index

(not boring→ extremely boring)
1 2 3 4 5

rule-lantern 2 7 19 10 5
neural-lantern 6 11 22 3 1

neuron 2 8 16 11 6
lantern 6 12 21 2 2

Table 6: Impact on boredom.

The participants answerQ2 again but now they study the outputs of
neural-lanternwith (w) andwithout (w/o) usage of paraphrasing.
The results are shown in Figure 9(a). The user experience of neural-
lantern w/o paraphrasing is worse than with paraphrasing. In
fact, when we eliminate the samples generated by paraphrasing,
the results of neural-lantern contain many error tokens (e.g.,
missing filtering conditions) due to limited number of training
samples and overfitting problem.

US 3: Impact of habituation and boredom. The diversified
translation of neural-lantern aims to mitigate the potential bore-
dom suffered by subjects in using rule-lantern. To validate this
issue, we presented a set of output generated by each approach in
random order and asked the subjects to rate the degree of boredom
(i.e., boredom index) they felt perusing these plans to understand
qeps using the Likert scale of 1-5 (1 refers to no boredom and 5
refers to the highest degree of boredom). Note that boredom litera-
ture relies heavily on subjective self-report measures [35]. Table 6
reports the results (first two rows). 15 (gave scores above 3) out of
43 volunteers felt that the output of rule-lantern makes them
bored and prone to skipping text due to repeated exposure of the
same descriptions over multiple workloads. In comparison, only 4
volunteers (i.e., 9.3%) felt results of neural-lantern are boring.

In the above settings, the subjects perused the outputs of rule-
lantern and neural-lantern separately in random order. In
this experiment, we randomly mix the results of the two. In par-
ticular, we adopt 50 sql statements generated by [30] over imdb,
each of which contains Hash Join and Aggregate operators. We
use neural-lantern to generate every 4 + f () output, where f ()
is a pseudorandom function with uniform probability to output
{−1, 0, 1}. Others are generated using rule-lantern. As a result,
the volunteers are given 14 nl descriptions from neural-lantern,
mixed with 36 output generated by rule-lantern. They are un-
aware of which output is generated by which technique. They were
asked to mark outputs that make them feel bored to peruse and
those which arouse their interests without compromising on under-
standing the qeps. We observe that not all descriptions are marked
w.r.t boredom. Particularly, 21 (resp. 14) descriptions generated by
rule-lantern (resp. neural-lantern) are marked. Out of them
2 (resp. 8) descriptions of rule-lantern (resp. neural-lantern)
aroused interest. In summary, our proposed neural approach indeed
alleviates the impact of boredom on learners.

US 4: Impact of incorrect token on comprehension. Recall
that the neural-lantern may produce some wrong tokens in the
test samples. Hence, we ask the volunteers to evaluate whether the
existence of wrong tokens affect their understanding of qeps or
mislead their understanding for the corresponding operators. Our
study revealed that only 2 out of 43 think that the incorrect tokens
are problematic for their understanding (gave a rating below 3).

US 5: Comparison with neuron [34]. Lastly, we compare
lantern with neuron [34]. In order to compare the full features
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Figure 9: User study (contd.)

of lantern, we integrate rule-lantern and neural-lantern
into a single framework for generating nl descriptions. Specifically,
we track (qep, nl description) pairs viewed by each participants.
By default, the nl description of each physical operator is gener-
ated using rule-lantern. Whenever an operator appeared more
than a pre-defined frequency threshold (i.e., 5) in total in different
qeps associated with a participant, neural-lantern is invoked to
generate the description for the operator.

Firstly, we ask the volunteers how well these two frameworks
describe the query execution steps for tpc-h and sdss workloads.
Figure 9(b) reports the results. sdss on SQLServer is not supported
by neuron as it is tightly integrated with PostgreSQL and does not
expose a declarative framework like pool. The translation rules
for various operators of PostgreSQL are hardcoded in neuron.
Consequently, even if we allow neuron to use lantern’s parser
for SQL Server to extract the operator tree from a given qep, none
of the workloads of sdss is successfully translated as majority
of operators of SQL Server have different names from those in
PostgreSQL. Consequently, 41 out of 43 volunteers gave a score
lower than 3 for neuron. Secondly, we compare the boredom index
of neuron and lantern for tpc-h on PostgreSQL. As shown in
the last two rows of Table 6, the volunteers found the output of
rule-based neuron more boring than lantern. Thirdly, neuron
(resp. lantern) takes on avg.0.015 sec (resp. 0.172 sec) to generate
a nl description. The avg. length of the descriptions is 188.136 (resp.
188.318) tokens.

8 CONCLUSIONS

This paper presents a domain-oblivious framework called lantern
that generates natural language descriptions of qeps to aide learn-
ers taking a database systems course. lantern provides a new
paradigm of efficiently specifying nl descriptions of physical oper-
ators through a declarative interface, a rule-based technique that
utilizes such specifications to translate a qep to its nl description,
and a psychology-inspired deep learning-based framework that
adds diversity to the nl description in order to alleviate boredom
among learners. We believe that lantern-generated description of
a qep complements its visual tree-based counterpart prevalent in
commercial rdbms. Our user study indeed demonstrates the effec-
tiveness of lantern in facilitating comprehension of qeps among
learners.
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