
G-CARE: A Framework for Performance
Benchmarking of Cardinality Estimation Techniques

for Subgraph Matching

Yeonsu Park† Seongyun Ko† Sourav S Bhowmick‡

Kyoungmin Kim† Kijae Hong† Wook-Shin Han†§
POSTECH, Korea†, NTU, Singapore‡

{yspark, syko, kmkim, kjhong, wshan}@dblab.postech.ac.kr†, assourav@ntu.edu.sg‡

ABSTRACT

Despite the crucial role of cardinality estimation in query
optimization, there has been no systematic and in-depth
study of the existing cardinality estimation techniques for
subgraph matching queries. In this paper, for the first time,
we present a comprehensive study of the existing cardinality
estimation techniques for subgraph matching queries, scal-
ing far beyond the original experiments. We first introduce a
novel framework called g-care that enables us to realize all
existing techniques on top of it and that provides insights on
their performance. By using g-care, we then reimplement
representative cardinality estimation techniques for graph
databases as well as relational databases. We next evaluate
these techniques w.r.t accuracy on rdf and non-rdf graphs
from different domains with subgraph matching queries of
various topologies so far considered. Surprisingly, our results
reveal that all existing techniques have serious problems in
accuracy for various scenarios and datasets. Intriguingly, a
simple sampling method based on an online aggregation tech-
nique designed for relational data, consistently outperforms
all existing techniques.

ACM Reference Format:

Yeonsu Park, Seongyun Ko, Sourav S Bhowmick, Kyoungmin
Kim, Kijae Hong, and Wook-Shin Han. 2020. G-CARE: A Frame-
work for Performance Benchmarking of Cardinality Estimation
Techniques for Subgraph Matching. In Proceedings of the 2020 ACM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389702

SIGMOD International Conference on Management of Data (SIG-

MOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3318464.3389702

1 INTRODUCTION

Subgraph matching based on subgraph isomorphism or graph
homomorphism is an important class of query primitive for
querying data graphs. Given a query graph Q and a data
graph G, subgraph matching finds all (isomorphic or homo-
morphic) embeddings of Q in G. A recent survey revealed
that subgraph matching is among the top-5 most popular
graph computation problem among researchers and practi-
tioners [34]. It is also a fundamental building block of several
graph query languages such as SPARQL [17], Cypher, and
more recently G-CORE [4].

Estimating the cardinality (i.e., the number of embeddings)
of subgraph matching queries is paramount to determine the
accurate execution cost of a query plan [28] since the cardi-
nality of (intermediate) results and input graphs are used as
inputs to the query optimizer cost models. In fact, cost-based
query optimizers are used by major graph database systems
including Neo4j, Oracle PGX, Amazon Neptune, Virtuoso,
RDF-3X, and Apache Jena.
Cardinality estimation has been studied extensively in

the context of relational databases for several decades and
has been deployed widely in commercial dbms. However, a
similar effort for graph data is relatively scant. The major-
ity of these efforts are studied in the context of rdf data.
For instance, Neumann et al. proposed the RDF-3X system,
which has a histogram-based component for cardinality es-
timation [31]. Subsequently, they extended this technique
by exploiting the statistical information of Characteris-
ticSets [30] (characterizes subjects as a set of properties)
to estimate cardinality. Chen et al. [9] proposed a random
walk-based method called Impr to estimate the cardinality of
graphlets, which can be utilized to estimate the cardinality

§Corresponding author

https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1145/3318464.3389702

of a subgraph matching query. Most recently, Stefanoni et al.
proposed SumRDF [38], which exploits graph summarization
to address the cardinality estimation problem.

Despite a decade of research on cardinality estimation for
subgraph matching queries, we do not have a thorough un-
derstanding of how good existing techniques really are. Some
limitations observed in experiments of the existing literature
are as follows: 1) Since they are not described under a com-
mon framework, it is hard to compare each technique. 2) The
reported comparisons of existing literature are incompre-
hensive. Thus, it is unclear whether later works outperform
earlier work. 3) Although topologies, sizes, and cardinalities
of queries are addressed as important query features [21, 26],
existing literature overlooks in experiments. Except for Impr,
the other two techniques do not consider query topologies in
depth. CharacteristicSets reports experimental results us-
ing only star-shaped queries. SumRDF classifies queries into
only four topology groups (linear, star, joined star, complex).
In addition, none of them analyze the results of experiments
for each range of cardinalities of queries.
Motivated by these problems, we propose a new guide-

line to evaluate the performance of cardinality estimation
techniques for graph databases. In this paper, we present: (a)
A common framework for implementing all existing tech-
niques. (b) Thorough performance evaluation of these tech-
niques using real-world and synthetic datasets, focusing on
major query features that are relevant to the cardinality es-
timation problem. Specifically, this paper aims to address
the following open-ended questions that are not adequately
addressed in the existing literature:
• How accurate are existing cardinality estimation tech-
niques for subgraph matching queries across different real-
world and synthetic graph datasets?
• How do these techniques perform for queries with differ-
ent size and topology (e.g., chain, cycle, flower, etc.)?
• Howwell do these techniques perform across a wide range
of cardinality of queries?
• How scalable are these techniques?

We present a comprehensive study on the cardinality esti-
mation problem for subgraph matching queries. We present
g-care (Graph CARdinality Estimation), the first framework

to benchmark cardinality estimation techniques for subgraph
matching queries. Our framework will facilitate benchmark-
ing techniques studied in this paper against future cardinality
estimation techniques for subgraph matching queries.

Since the topological constraints of a subgraph matching
query can be expressed using sql join conditions, we ob-
serve that cardinality estimation techniques for relational
queries essentially solve the same problem. This motivates
us to expand our study to explore whether the cardinal-
ity estimation problem for subgraph matching queries can

be addressed by existing techniques not designed specifi-
cally for graph-structured data. To this end, we select two
state-of-the-art cardinality estimation techniques for rela-
tional queries [41, 44] supporting arbitrary join queries and
one basic technique as a baseline. Furthermore, we consider
a promising online aggregation technique calledWander-
Join [23] for join cardinality estimation. With simple modi-
fications toWanderJoin (i.e., introducing a sampling ratio
and using COUNT aggregation), we can use it in our study.
Although there have been a large number of works on

benchmarks or experimental studies for graph data [3, 5, 13,
15, 20, 21, 24, 32, 33, 42], none of them has focused on the
cardinality estimation problem. [21] conducted experimental
studies on subgraph isomorphism algorithms. [15, 33, 36]
presented a benchmark for rdf query processing. [5, 13] pro-
vided a benchmark for query processing over social graphs.
[24] proposed a benchmark for graph processing with var-
ious classes of operations and different tests. [32, 42] con-
ducted experimental studies on graph partitioning strategies.
[3] performed an experimental study on distributed graph
analytics systems. [20] conducted an experimental study on
graph indexing techniques. To the best of our knowledge, we
present the first work dedicated to the cardinality estimation
problem for subgraph matching.
Our study on seven representative cardinality estima-

tion techniques unveils intriguing and unexpected findings.
Although several techniques in the context of relational
databases are not convincingly superior to existing cardinal-
ity estimation techniques for subgraphmatching queries, sur-
prisingly,WanderJoin [23], a technique designed for online
aggregation consistently outperforms the other state-of-the-
art techniques across a wide variety of measures! That is, a
technique not designed to address the cardinality estimation
problem for graph data is, in fact, superior to those designed
specifically for graph data. In addition, several results of our
study contradict the results reported in the original papers.
The rest of the paper is organized as follows. Section 2

introduces the background information necessary for un-
derstanding this paper. We implement the state-of-the-art
techniques for cardinality estimation for subgraph match-
ing queries in the common framework g-care in Section 3
and highlight their salient features. In Section 4, we expand
our research scope by implementing cardinality estimation
techniques designed for relational data in g-care. Section 5
presents the experimental setup and datasets for the evalu-
ation of the cardinality estimation techniques. We conduct
an exhaustive evaluation of these techniques in Section 6. In
Section 7, we conclude this paper.

2 BACKGROUND

We denote a directed labeled graph as G = (VG ,EG ,LG),
where VG is a set of vertices, EG is a set of directed edges,

LG is a mapping function ofG for labels of vertices or edges.
That is, LG (v) and LG (u,v) are the labels of vertex v ∈ VG
and edge (u,v) ∈ EG , respectively. We support various types
of graph datasets in g-care, such as directed labeled graphs,
undirected graphs, unlabeled graphs, and Resource Descrip-
tion Framework (rdf). We represent all types of graphs as
directed labeled graphs. To this end, for undirected graphs,
we represent each undirected edge as two directed edges. For
unlabeled graphs, all edges in a data graph are considered
to have label zero. Since rdf data consists of a list of triples
(subject ,predicate,object), we can express it as a directed la-
beled graph bymapping from subjects andobjects to vertices,
and mapping predicates to edges with corresponding labels.
We denote LG to be a list of labels in a graph G. The size of
a graph G is defined as |G | = |EG |. The indegree, deдin(v),
and outdegree, deдout (v) of v in G is |{v ′ |(v ′,v) ∈ EG }| and
|{v ′ |(v,v ′) ∈ EG }|, respectively.
Given a query graph Q = (VQ ,EQ ,LQ), and a data graph

G = (VG ,EG ,LG), a graph homomorphism is a functionMG :
VQ → VG , such that, ∀ u ∈ VQ , LQ (u) ⊆ LG (M(u)) and ∀
(ui ,uj) ∈ EQ , (M(ui),M(uj)) ∈ EG and L(ui ,uj) = LG (M(ui),
M(uj)). A graphG = (VG ,EG) is a subgraph of another graph
G ′ = (V ′G ,E ′G) if there exists a graph homomorphism fromG
toG ′, denoted byG ⊆ G ′. Wemay simply say thatG ′ contains
G. If a query vertex u is unlabeled, LQ (u) = �, where u can
match any data vertices.
If Q is graph homomorphic to G, we call M an embed-

ding of Q . Note that there may exist multiple embeddings
of Q in G, and we use E = {M1

G (Q),M2
G , . . . ,M

n
G } to denote

the set of embeddings of Q in G. For example, in Figure 1,
there are three graph homomorphic embeddings of Q in
G: M1

G (Q) = {(u0,v0), (u1,v2), (u2,v4)}, M2
G (Q) = {(u0,v1),

(u1,v3), (u2,v5)}, andM3
G (Q) = {(u0,v0), (u1,v1), (u2,v0)}.

Subgraph matching in property graphs is similar to that in
the rdf graphs since a property graph can be represented as
an rdf graph [11]. Hence, one can apply the techniques de-
veloped for rdf graphs to property graphs. However, query
languages for property graph databases such as Cypher sup-
port more complex querying features [12] including regular
path queries. It would be an interesting future work to es-
timate cardinalities of such complex queries. Handling the
predicates on the properties is related to the cardinality es-
timation for the selection predicates, which is beyond the
scope of this work. We focus on subgraph pattern matching,
which is related to join queries in relational databases.

3 CARDINALITY ESTIMATION

TECHNIQUES FOR GRAPH DATA

We select three state-of-the-art techniques for our study,
namely,CharacteristicSets [30], Impr [9], and SumRDF [38].
We classify the cardinality estimation techniques into two
categories: sampling-based techniques and summary-based

A

_ _

a c

b
!"

!#

!$

AA
!"

_

B
!#

B
!$

_
!%

C
!&

C
!'

!(!)a a

d

e

b b

c c

c a

b

(a) A query graph Q . (b) A data graph G.

Figure 1: An example of a query and data graph.

techniques. Impr is a sampling-based technique, while Char-
acteristicSets and SumRDF are summary-based techniques.
Except for Impr, all these techniques are designed to estimate
the cardinality of graph queries over rdf data. Hence, by
transforming each triple in rdf data into a directed labeled
edge, we represent the data as a directed labeled graph in
our study. Note that we do not consider early efforts such
as [19, 31, 39] as they are outperformed by [9, 30, 38].

We begin by introducing a generic cardinality estimation
framework for graph data called g-care to implement these
techniques. We reimplemented all techniques in g-care us-
ing C++. Specifically, we made the best efforts to implement
CharacteristicSets based on the reference paper. We refer
to published codes of Impr and SumRDF implemented in C++
and Java, respectively.

3.1 The G-CARE Framework

Since we must consider both sampling-based techniques and
summary-based techniques in a common framework, we
introduce a new notion of target substructure as follows. If
we use a sampling-based technique, a sampling unit with its
probability is a target substructure. Otherwise, i.e., if we use a
summary-based technique, a matched substructure of a sum-
mary is a target substructure. For example, a random walk is
a typical target substructure in sampling-based techniques.
Suppose thatG is summarized into a summary graph S [38].
Then, an embedding of Q in S can be a target substructure.

The g-care framework (Algorithm 1) returns an estimated
cardinality of Q in G by taking as input a query graph Q ,
a data graph G, and a sampling ratio p for sampling-based
techniques. Note that additional parameters may be required
for a specific estimation strategy. g-care comprises two
key steps, preparation for summary structures (Line 1) and
estimation using target substructures (Line 2-11). In the case
of sampling-based techniques, we do not construct summary
structures. In estimation, we 1) decomposeQ into (q1, ...,qm)
(Line 2), 2) obtain a series of target substructures for qj and
estimate the cardinality of qj for each target substructure
using EstCard, 3) store the estimated cardinality into a
vector called cardVec , 4) estimate the cardinality of qj by
aggregating over cardVec using aggregation operators such
as SUM and AVG (Line 10), and 5) compute the cardinality

of Q by multiplying the cardinalities of subqueries by the
selectivity for subqueries. (Line 11). Note that p determines
the number of iterations (the number of target substructures).

Algorithm 1: g-care framework
Input: A query graph Q , a data graph G, a sampling ratio p
Output: Cardinality estimate

1 S ← PrepareSummaryStructure(G, ...);
2 (q1, ...,qm) ← DecomposeQuery(Q);
3 subqueryCard ← �;
4 for j ← 1 tom do

5 i ← 0;
6 cardVec ←�;
7 while (si ← GetSubstructure(G, S , qj , p)) , � do

8 cardVec[i] ← EstCard(qj , si);
9 i ← i + 1;

10 subqueryCard[j] ← AggCard(cardVec);

11 return

∏m
j=1 subqueryCard[j]· sel(q1, ...,qm);

We derive the g-care framework after exhaustively sur-
veying the existing literature on cardinality estimation. We
view the cardinality estimation for subgraph matching as
query execution on target substructures instead of the entire
data. The target substructures are obtained from sampling or
summary structures. g-care supports a divide-and-conquer
style query execution over the target structures and aggre-
gation of their results, which is general enough to accommo-
date the existing cardinality estimation techniques. Although
the goal of g-care is to compare existing techniques fairly
in a common framework, users can also enjoy the reduced
programming efforts for implementing various cardinality
estimation techniques. g-care supports various target sub-
structures, storage structures, and a set of basic operations
such as pattern matching and random walks.

3.2 Characteristic Sets (C-SET)

CharacteristicSets [30] is a summary-based technique
using the summary structures called characteristic sets. Each
characteristic set counts a specific type of star-shaped struc-
tures in a data graph. For cardinality estimation, Charac-
teristicSets decomposes a query into the star-shaped sub-
queries and estimates the cardinalities of the subqueries
using characteristic sets. Finally, it estimates the cardinality
of the whole query by an aggregation based on the indepen-
dence assumption between subqueries.
PrepareSummaryStructure: A characteristic set cs ∈ S
is represented by a set of vertex labels VL and a (possibly
empty) set of outgoing (or incoming) edge labels EL. Here, cs
stores the number of occurrences of star-shaped structures
in the data graph such that each structure has a center vertex
with labels VL, and has at least one adjacent outgoing (or
incoming) edge with label el for all el ∈ EL. For example, the

first column of the first table in Figure 2 shows that the cs
represented by vertex labelA and outgoing edge labels a and
c , appears once (with a center vertex v0) in the data graph in
Figure 1(b). The second and third columns represent the total
numbers of occurrences of edges with labels a and c incident
to center vertices, respectively. cs .count denotes the number
in the first column, while cs . f req(el) denotes the number
for edge labels el ∈ EL among the rest of the columns.

𝑉𝐿: 𝐴 ,𝐸𝐿: {𝑎, 𝑐}

A a c
1 2 1

𝑉𝐿: 𝐴 ,𝐸𝐿: {𝑎, 𝑏, 𝑑} 𝑉𝐿: 𝐶 ,𝐸𝐿: 𝑐

C c
2 2

A a b d
1 1 1 1

…

Figure 2: An example of characteristic sets for G.

DecomposeQuery: We decomposeQ into subqueries (q1, ...,
qm)where each subquery corresponds to a star-shaped struc-
ture (with a center vertex) or an edge between two unlabeled
vertices. For the example query in Figure 1(a), we can de-
compose it into one star and two edges as in Figure 3. The
left star is represented byVL = {A} and EL = {a} where the
center vertex is u0. The middle and the right ones are edge
queries between unlabeled vertices.
GetSubstructure: For each star-shaped subquery qj (with
vertex labels VLj and edge labels ELj) from the decomposi-
tion, we find a set of characteristic sets {(VL,EL)} such that
VLj ⊆ VL and ELj ⊆ EL. Each characteristic set found is
returned as si . For example, when j = 1 (the left subquery
in Figure 3), VLj = {A}, ELj = {a}, and the first and second
characteristic sets in Figure 2 are returned as s1 and s2. If qj
is an edge query between two unlabeled vertices and has an
edge label l , we return a summary (i.e., count) about edges
with label l .
EstCard: If si is a characteristic set, we estimate its car-
dinality, i.e., how many star-shaped structures in the data
graph correspond to si , as follows. cardVec[i] = si .count ·∏

el ∈ELj (si . f req(el)/si .count). Otherwise if si is a count of
edges with a specific label, cardVec[i] = si .
AggCard: AggCard uses SUM for aggregation.

We have subqueryCard[j] for each subqueryqj (j=1, ...,m).
Finally, sel(q1, ...,qm) is approximated as the product of pair-
wise selectivities, i.e.,

∏
x,y sel(qx ,qy). Here, the selectivity

between the two subqueries qx and qy , sel(qx ,qy), is approxi-
mated as the product of pairwise selectivities of two incident
edges ex ∈ Eqx and ey ∈ Eqy , i.e.,

∏
ex ∈Eqx ,ey ∈Eqy ,ex∩ey,�

sel(ex , ey), where sel(ex , ey) is approximated using the basic
join selectivity estimation [30].

3.3 SumRDF

SumRDF [38] introduces the typed summary graph as a sum-
mary where the vertices with the same vertex labels and sim-
ilar incident edge label distributions are grouped together.

A

_

a

𝑢"

𝑢#
_

_

c

𝑢"

𝑢#

_ _
b

𝑢$ 𝑢#

Figure 3: The subqueries decomposed from Q .

Based on the possible world semantics, it estimates the car-
dinality as the expected cardinality over all possible data
graphs summarized into the same summary graph.
PrepareSummaryStructure:We define the summary graph
S of G as follows. Let µ be a many-to-one mapping from a
data vertex v to a summary vertex b (called a bucket). Here,
each data vertex v has a type that consists of the labels of v
and the label distribution of its incident edges. If two data
vertices have similar types (i.e., same vertex labels and sim-
ilar edge label distributions), they are mapped to the same
bucket. The similarity of the label distribution can be con-
trolled by a user, and interested readers can refer to [38].
As the number of distinct vertex and edge labels increases,
we observe that a summary graph can become very large,
leading to significantly slow estimation time. Therefore, we
extend the summarization algorithm, so that types with dif-
ferent vertex labels can be merged as well, when the size of
the summary graph is larger than a user-defined threshold
(i.e., 3% of the data graph size).

A summary vertex (or edge) maintains the weight as
the number of data vertices (or edges) that are mapped to
the same summary vertex (or edge). Formally, w(b) = |{v |
µ(v) = b}|, and w(b,b ′, l) = |{(v,v ′) | µ(v) = b, µ(v ′) = b ′, l
= LG (b,b ′)}|. Figure 4 shows a summary graph of the data
graph in Figure 1(b). v0 and v1 are mapped to the same
bucket b0, and v2 and v3 are mapped to b1. Thus,w(b0) = 2,
w(b1) = 2, andw(b0,b1,a) = 2; two edges (v0,v2) and (v1,v3)
with label a are grouped into (b0,b1).

Edges Weights

𝑏", 𝑏"
𝑤 𝑏", 𝑏", 𝑎 = 1
𝑤 𝑏", 𝑏", 𝑏 = 1
𝑤 𝑏", 𝑏", 𝑐 = 1

𝑏", 𝑏) 𝑤 𝑏", 𝑏), 𝑎 = 2

𝑏", 𝑏+ 𝑤 𝑏", 𝑏+, 𝑑 = 1

𝑏), 𝑏- 𝑤 𝑏), 𝑏-, 𝑏 = 2

𝑏), 𝑏+ 𝑤 𝑏), 𝑏+, 𝑒 = 1

𝑏-, 𝑏" 𝑤 𝑏-, 𝑏", 𝑐 = 2

A

B

C

_a,b,c

c
a

b

d

e

𝑏-

𝑏)

𝑏"

𝑏+

Vertices Weights

𝑏" 𝑤 𝑏" = 2

𝑏) 𝑤 𝑏) = 2

𝑏- 𝑤 𝑏- = 2

𝑏+ 𝑤 𝑏+ = 2

Figure 4: A summary graph in SumRDF.

GetSubstructure:We return an embedding ofQ in S (rather
than G) as the target substructure si by using graph homo-
morphism. In Figure 4(a), we can find two embeddings of Q
in Figure 1(a): s0={u0→b0, u1→b1, u2→b2} and s1={ u0→b0,
u1→b0, u2→b0}.
EstCard: We estimate the cardinality of Q (in G) using si .
Since multiple data vertices can be mapped to the same

bucket in si , we can expand si into multiple embeddings
(from query vertices to data vertices). For example, s0 in
our running example can be expanded into w(b0) · w(b1) ·
w(b2) = 8 embeddings. Letm be any of these eight embed-
dings (e.g., {u0→v0, u1→v3, u2→v4}). Using the possible
world semantics, we can calculate P(m), the probability that
a graph contains the embedding m is selected among all
graphs that are summarized into s0. In our running exam-
ple, there are

(w (b0)w (b1)
w (b0,b1,a)

)
·
(w (b1)w (b2)
w (b1,b2,b)

)
·
(w (b2)w (b0)
w (b2,b0,c)

)
=

(4
2
)3

= 216 possible worlds. Among the 216 worlds,
(w (b0)w (b1)−1
w (b0,b1,a)−1

)
·(w (b1)w (b2)−1

w (b1,b2,b)−1
)
·
(w (b2)w (b0)−1
w (b2,b0,c)−1

)
=

(3
1
)3
= 27 worlds contain m.

Therefore, P(m) = 27/216. Considering that there are eight
embeddings, the expected cardinality of Q is 8 · 27/216 = 1.
This is returned as cardVec[0].
AggCard: AggCard uses SUM for aggregation.

3.4 IMPR

Impr [9] is a sampling-based technique designed to estimate
the cardinality of k-node graphlets for k ∈ {3, 4, 5}. We ex-
tend Impr to count the number of embeddings instead of the
number of subgraphs. For example, given a triangle query
Q and a subgraph of the same shape G, Impr finds one sub-
graph in G, but we modify it to find three embeddings of Q
in G based on the graph homomorphism.
Impr performs random walks on a data graph and gener-

ates visible subgraphs (which we define in EstCard) from
the walked vertices and their neighbors. It counts the num-
ber of embeddings in these subgraphs that match Q . The
weighted sum of the counts is returned as an estimate.
GetSubstructure: The first vertex in the walk is chosen
from the stationary probability d(v)/2|EG | where d(v) de-
notes the degree of v [16]. After selecting the first vertex,
our version of Impr follows random walks considering edge
labels in the query. The original algorithm does not consider
query label information, where the transition probability
from a vertex v to one of its neighbors v ′ is 1/d(v). Each
random walk of k − 1 consecutive vertices is returned as si .
EstCard: Let Vsi and Esi be the set of vertices and edges
that appear in si , respectively. EstCard generates a visible
subgraph дsi = (V ,E,L) of G where V consists of vertices
in Vsi and their neighbors Nsi , and E consists of edges in
Esi and edges between Vsi and Nsi . L is the same as LG .
Then, it computes f (si), the number of embeddings that
match Q where each embedding consists of all vertices in
Vsi and a vertex in Nsi . Consider Figure 1. k = 3 since
Q has three vertices. If si = ⟨v0,v1⟩, V = VG \ {v7} and
E = EG \ {(v2,v4), (v3,v5), (v3,v7)}. Therefore, we find one
embedding {(u0,v0), (u1,v1), (u2,v0)} that matchesQ . Hence,
f (si) = 1.
cardVec[i] is then computed asW (si)f (si);W (si) is cho-

sen so that the estimation is unbiased. Specifically,W (si) =

1
β (Q) ·

|A(si) |
Σs∈A(si)π (s)

, where A(si) is the set of possible random
walks that can visit the same vertices as si (with different
orders of vertices in si), and π (s) is the stationary probability
of performing a random walk s [16]. β(Q) is a normalization
factor, equal to the number of possible walks consisting of
|VQ | − 1 vertices in Q .
AggCard: AggCard uses AVG for aggregation.

4 CARDINALITY ESTIMATION

TECHNIQUES FOR RELATIONAL DATA

Since subgraph queries can be expressed as join queries in
relational databases, the problem of estimating their car-
dinality can be addressed by estimating the cardinality of
corresponding join queries in relational databases. Specifi-
cally, an edge in a data graph can be represented by a pair of
a source vertex and destination vertex (or a vertex) which
can be stored as a tuple in a table constructed for the cor-
responding edge label (or vertex label) [1]. Consequently,
a subgraph query can be posed as a join query on the un-
derlying database. For example, in Figure 1(b), a data graph
G is stored in 8 relations: RA(v),RB (v),RC (v) for vertex la-
bels, and Ra(src,dst), Rb (src,dst), Rc (src,dst), Rd (src, dst),
Re (src,dst) for edge labels. In Figure 1(a), Q can be posed as
a join query on the underlying database.

We select three state-of-the-art cardinality estimation tech-
niques for relational queries and one online aggregation tech-
nique [8, 23, 41, 44]. We describe how these techniques are
implemented in the g-care framework for evaluation. Note
that we do not consider the relational-based estimation tech-
niques [10, 29] in our study because their strategies cannot
be applied to arbitrary join queries.

4.1 Correlated Sampling (CS)

CorrelatedSampling [41] is a sampling-based technique.
Different from the independent sampling (i.e., Bernoulli Sam-
pling), CorrelatedSampling samples tuples considering
the correlation between relations by hashing.
GetSubstructure: Suppose that Q involves n relations (R1,
..., Rn), and the sampling ratio is p. We create a sample s0 as a
list of relations ⟨S1, ...,Sn⟩, where Si contains the sampled
tuples from Ri .
For each join attribute a of Q , we define an independent,

uniform hash function ha that maps the values for a into
the range [0, 1]. Let ARi denote the set of join attributes
of the relation Ri . Then, we sample p |Ri | tuples from Ri as
follows. For each tuple t in Ri , we sample t iff ha(t[a]) <
p1/ |ARi | , ∀a ∈ ARi . The probability of sampling t would be
p1/ |ARi |×...×p1/ |ARi | (|ARi | times)= p since all hash functions
used are independent.
EstCard: It calculates cardVec[0] as |S1 ▷◁ S2 ▷◁ ... ▷◁
Sn |/P(s0) where P(s0) denotes the probability that a joined
tuple t in R1 ▷◁ ... ▷◁ Rn is in S1 ▷◁ ... ▷◁ Sn . Let ti denote

𝑅"

𝑅# 𝑅$

𝑅%
𝑹𝒂 𝑹𝒃 𝑹𝒄𝑹𝑨
⟨𝑣(,𝑣*⟩

⟨𝑣(⟩

⟨𝑣(,𝑣,⟩

⟨𝑣*,𝑣-⟩

⟨𝑣,,𝑣.⟩

⟨𝑣-,𝑣/⟩

⟨𝑣*,𝑣(⟩

⟨𝑣(,𝑣(⟩

⟨𝑣.,𝑣(⟩

⟨𝑣/,𝑣*⟩

⟨𝑣*⟩

(a) A join query graph. (b) A join data graph.

Figure 5: A join query graph Q ′ for Q and join data

graph G ′ for the join order ⟨RA,Ra ,Rb ,Rc ⟩.

the tuple from Ri ∈ t . P(s0) is then the probability of sam-
pling ti from Ri for all i . Using the join attributes {a}, P(s0)
can be expressed as P(∧a

∧
ARi ∋a ha(ti [a]) < p1/ |ARi |) =

P(∧a ha(ti [a]) < minARi ∋a p
1/ |ARi |)=∏

a minARi ∋a p
1/ |ARi |

since all has are independent.

4.2 Wander Join (WJ)

WanderJoin [23] is a random walk-based approach origi-
nally designed for online aggregation. In online aggregation,
the estimates for aggregation results are updated over time
until a certain stop condition is met. We extend it for cardi-
nality estimation by introducing a sampling ratio as the stop
condition and using COUNT aggregation.

WanderJoin performs random walks such that the walks
contributing to the cardinality are more likely to be sampled.
Here, a sample is a list of tuples ⟨t1, ..., tn⟩ and contributes
to the cardinality iff t1 ▷◁ ... ▷◁ tn matches Q .

WanderJoin represents the queryQ as a join query graph
denoted by Q ′ where each relation is represented as a ver-
tex, and each join condition between a pair of relations is
represented as an edge (Figure 5(a)). WanderJoin performs
random walks over a join data graph G ′ where each tuple
is regarded as a vertex and each join condition is regarded
as an edge. Thus, WanderJoin can be directly implemented
by performing random walks over a data graph. Figure 5(b)
shows an example join data graph G ′.
GetSubstructure: It returns a sample si as a list of tuples
and its probability P(si). A walk order ⟨R1, ...,Rn⟩ is a join
order defined over a spanning tree of Q ′, where only the
edges in the spanning tree are walked. Here, the random
walk consists of "walk" or "jump." For example, in Figure 5(a),
while ⟨RA,Ra ,Rb ,Rc ⟩ consists of only walks, ⟨Rc ,Ra ,RA,Rb ⟩
includes a jump from RA to Rb .
Before we explain how to choose the walk order, we ex-

plain the sampling process given an order ⟨R1, ...,Rn⟩. We
sample a tuple ti from Ri , where t1 is randomly sampled from
R1, and each subsequent ti (i > 1) is randomly sampled from
tp(i) ▷◁ Ri . Here, tp(i) is the tuple sampled from Rp(i) where
Rp(i) is the relation joinable with Ri and appears before Ri
(i.e., p(i) < i). Since the order is defined over a spanning
tree, there is only one such Rp(i). After sampling ti for every
i = 1, ...,n, we check whether the join conditions ofQ ′ are all

met by the sampled tuples, i.e., whether t1 ▷◁ ... ▷◁ tn matches
the join queryQ ′. If this holds, the sample ⟨t1, ..., tn⟩ is valid.
If it does not hold or it becomes impossible to sample ti for
some i ≤ n (when tp(i) ▷◁ Ri = �), the sample is invalid.
Now we explain how we choose the walk order. We first

enumerate all possible walk orders and select each order in
a round-robin fashion. Using each order, we sample s and
check if s is valid. If valid,WanderJoin increases the counter
of the current order. When the counter of an order reaches
the threshold τ (100 by default), we choose the walk order
with the smallest variance (of the estimates from the sam-
ples) among the orders with the counter ≥ τ/2.WanderJoin
expects that this heuristic can generate more valid samples
and low-variance estimates than others. Finally, GetSub-
structure returns a sample si , generated at the initial stage
of choosing the walk order or after the walk order is chosen.
EstCard: It estimates the cardinality of Q using Horvitz-

Thompson estimator [18] which is an unbiased estimator
with inverse probability weighting. If si is valid, cardVec[i]
becomes the inverse probability of sampling si , i.e., 1/P(s).
Here, P(s) = P(⟨t1, ..., tn⟩) is calculated as 1

|R1 |
∏n

i=2
1

|tp(i)▷◁Ri | .
If si is invalid, cardVec[i] = 0.
AggCard: AggCard uses AVG for aggregation.
4.3 Join Sampling with Upper Bounds

(JSUB)

Zhao et al. [44] have proposed a framework for random
sampling over joins which can be combined with join car-
dinality estimation techniques. Their objective is to obtain
uniform independent samples efficiently for machine learn-
ing, which is not our target. However, similar to BoundS-
ketch [8], they internally use upper bounds for intermediate
result sizes which can be adopted for cardinality estimation.
We exploit their framework and generate a sampling-

based method for cardinality estimation over joins, namely
JSUB. It estimates an upper bound of the cardinality of a
join queryQ . It first extracts an maximal acyclic subquery q1
from Q . Then, it estimates |q1 |, the cardinality of q1 using a
sampling method similar to that of WanderJoin. Note that
when Q is cyclic, |q1 | becomes larger than the cardinality
of Q . Finally, JSUB multiplies the estimated |q1 | by M(q1)
to estimate an upper bound of the cardinality of the whole
query Q . Here, M(q1) is the maximum number of the join
results between a tuple that matches q1 and the residual re-
lations. We refer to the remaining relations of Q not in q1
as residuals, e.g., Rc is a residual if o = ⟨RA,Ra ,Rb ⟩. In our
context, we trivially setM(q1) = 1, as in [44].
DecomposeQuery: We choose q1 as follows. For each possi-
ble q1 and its join order o, we useWanderJoin to estimate
|q1 |. Let e(q1,o) denote the estimate. We choose q1 and o
such that argminq1,o e(q1,o). This is a slight modification
over [44] which uses a predefined join order. If we fail to

obtain a valid sample after trying every possible q1 and o,
we return 0 as the estimate.
GetSubstructure: Let o = ⟨R1,R2, ...,Rn⟩ denote the join
order. Then, JSUB samples a tuple t from the first relation
R1, and returns t and P(t) as si , where P(t) is the probability
of sampling t from R1.
EstCard: It returns W (t)/P(t), where W (t) is an upper
bound of w(t), which is the cardinality of the join result
of t with the rest of the relations (i.e., w(t) = |t ▷◁ R2 ▷◁
... ▷◁ Rn |). Since we useW (t)/P(t) as an estimate of |q1 | and
W (t) ≥ w(t), we can over-estimate |q1 | ifW (t) > w(t), and
onlyW (t) = w(t) gives an unbiased estimate of |q1 | [18].
Therefore, we useW (t) = w(t) in the same way as the sam-
pling method, Exact Weight (EW), in [44]. To reduce the
computation time, JSUB uses dynamic programming, as in
[44], and computesW (t) only if t is sampled.

SinceW (t) = w(t),AggCard returns an unbiased estimate
of |q1 |. Thus, if Q is cyclic and Q , q1, AggCard estimates
an upper bound of the cardinality of Q . One might modify
W (t) in EstCard to capture the exact intermediate result
sizes considering the residual relations; however, it inevitably
includes the overhead of subgraph matching which can be
costly. Here, we choose a more efficient way by considering
the trade-off of accuracy versus efficiency.
AggCard: AggCard uses AVG for aggregation.
4.4 Bound Sketch (BS)

BoundSketch [8] is a summary-based technique which es-
timates an upper bound . It utilizes the bounding formulas
in [2], where each relation R in Q may appear in a bounding
formula as a count term (cR = |R |) or a maximum degree term
(daR for some attribute a in R). To define daR , we first define
the degree daR (v) as the frequency of a valuev on an attribute
a of a relation R, i.e., daR (v) = |{t ∈ R | t[a] = v}|. Then, the
maximum degree daR becomes maxv daR (v).
The constraint for the bounding formulas is that every

attribute ofQ must be covered by an appearing relation. Here,
if R appears as a count term cR , all attributes of R are covered,
and if R appears as a maximum degree term daR , all attributes
of R except a are covered, assuming that a is already covered
by another relation. For our example query Q(u0,u1,u2) =
RA(u0) ▷◁ Ra(u0,u1) ▷◁ Rb (u1,u2) ▷◁ Rc (u2,u0) in Figure 1(a),
a bounding formula can be cRAd

u0
Ra
du1Rb . Appearing relations

are RA, Ra , and Rb , and u0 is covered by RA, u1 by Ra , and u2
by Rb . cRAcRb is another possible bounding formula, where
u0 is covered by RA, and u1 and u2 are covered by Rb .
PrepareSummaryStructure: In a bounding formula, a count
term cR represents the Cartesian product over all tuples in
R. A maximum degree term daR represents the maximum
number of tuples that can be joined in R using the join at-
tribute a. Therefore, multiplying all these terms can lead to
an extremely loose upper bound as the number of relations

increases. Instead, BoundSketch partitions each relation
and uses counts and maximum degrees defined on the parti-
tioned relations in order to get a tighter upper bound.
In order to build a summary S , we hash each attribute

value in Q to the range [1...M] using a hash function H . Let
AQ and AR be the set of attributes of Q and a relation R, re-
spectively. We usem ∈ [1...M] |AQ | as an index for partitions.
That is, R(m) represents a partition of R that contains tuples
whose hash values arem. Formally, R(m) = {t ∈ R |H (t[a]) =
m[a],∀a ∈ AQ ∩AR }. For each partition R(m), we calculate
the count and maximum degree as we did for the whole
relation R. Therefore, for each relation R, we obtainM |AQ |

counts and M |AQ | × |AQ | maximum degrees. This takes a
single pass over R, and the summary S consists of the counts
and maximum degrees over all relations.

BoundSketch choosesM based on a budget; larger budget
increasesM and thus tightens the upper bound with a trade-
off of summarization time. In our evaluation, we use 4096
for the default number of budget.
Although sketches can be built on-demand during cardi-

nality estimation, we observe that their build time is signifi-
cantly larger than the query processing time. Therefore, we
populate the sketches of all relations before the query pro-
cessing and use them at run-time for experiments. Regarding
queries with selection predicates, we do not build sketches
on-demand and use the pre-built ones without the selection
predicates, since the on-demand build time takes up to 79.6
times longer than the query processing time of RDF-3X for
the LUBM benchmark in our experimemts.
GetSubstructure: It returns a bounding formula b fi and
all counts and maximum degrees that are related to b fi . For
example, if b fi = cRAd

u0
Ra
du1Rb , related counts are cRmA , and re-

lated maximum degrees aredu0Rma anddu1Rmb
form ∈ [1...M] |AQ | .

EstCard: It returns the summation of b fi instantiated with
counts and maximum degrees of partitions in si . For example,
ifb fi = cRAd

u0
Ra
du1Rb , cardVec[i] =

∑
m∈[1...M]|AQ | cRmA d

u0
Rma

du1Rmb
.

Each term inside the summation represents an upper bound
of the cardinality of Q (m), the join result of Q over the parti-
tions R(m). Since R(m)s are disjoint, Q (m) is a partition of the
join result of Q which is also disjoint. Thus, the summation
of the upper bounds of the cardinality of Q (m) becomes an
upper bound of the cardinality of Q .
AggCard:AggCard uses MIN for aggregation, selecting the
smallest upper bound among the possible b fi .

5 EXPERIMENTAL SETUP

We describe the setup for evaluating the cardinality estima-
tion techniques for subgraph matching queries. In order to
select the relevant features for evaluation, we have reviewed
54 papers on cardinality estimation. All papers consider a
couple of features from the following four: dataset, query

topology, query size, and query result size (or query selec-
tivity). We conduct experiments varying all of the features.
Table 1 gives an overview. For experiments, we use a ma-
chine with 2.10GHz Intel Xeon E7-8870 v4 processors and
1.5TB memory.

Our g-care framework is publicly available as an open-
source test suite with codes, data, and queries and is easily
extensible for new cardinality estimation techniques for sub-
graph matching queries∗.

Table 1: Parameters used in the experiments.

Dataset rdf: LUBM, YAGO, DBpedia
Non-rdf: AIDS, Human

Query Topology Chain, Star, Tree, Cycle,
Clique, Petal, Flower, Graph

Query Result Size (0, 10], (10, 102], (102, 103],
(103, 104], (104, 105], (105, 106]

Query Size 3, 6, 9, 12
Sampling Ratio 3, 1, 0.3, 0.1, 0.03, 0.01 [%]

5.1 Evaluation Measure

We measure the accuracy and efficiency of the cardinality es-
timation techniques. For accuracy, we use q-error [28] which
is widely used to measure accuracy of cardinality estimation
techniques. The q-error quantifies the ratio between the esti-
mated cardinality, ĉ , and the true cardinality, c , and computed
as q-error =max(max(1, c)/max(1, ĉ),max(1, ĉ)/max(1, c)).
We run each query 30 times. We report the average and

standard deviation for LUBM and the 5%, 25%, 50%, 75%,
and 95% percentiles of the q-errors for other datasets. Note
that since the q-error alone does not differentiate the under-
/overestimation, we represent it explicitly on the y-axis of
the result figures. For efficiency, we report the elapsed times
of the off-line preprocessing for building summary structures
and the on-line per-query processing for estimation.

5.2 Datasets

We use five synthetic and real-world datasets for evaluation:
LUBM [15], YAGO [40], DBpedia [6], AIDS (used in [37]),
and Human (used in [43]). Note that these datasets are used
by several existing cardinality estimation techniques for sub-
graph matching queries. Specifically, LUBM is a standard
rdf benchmark which can be used to generate synthetic
rdf data. We populate the LUBM graph data with a scaling
factor of 80. YAGO and DBpedia are real-world rdf datasets.
The AIDS dataset consists of 10,000 small- or medium-sized
real graphs. Since it contains multiple data graphs, we aggre-
gate the number of embeddings from all graphs as estimates.
Lastly, the Human dataset contains a graph representing
the protein-protein interaction network of humans. Table 2
shows the summary of the statistical information of these
datasets.
∗https://github.com/yspark-dblab/gcare

https://github.com/yspark-dblab/gcare

Table 2: Statistics of datasets.

LUBM YAGO DBpedia AIDS Human
of graphs 1 1 1 10K 1
of vertices 2.6M 12.8M 66.9M 254K 4.7K
of edges 12.3M 15.8M 225M 548K 86K
Avg. degree 9.35 2.47 6.75 4.31 36.92
Max. degree 0.9M 0.25M 7.3M 22 771
of distinct v. labels 35 188K 244 50 89
of distinct e. labels 35 91 39.6K 4 0
Max triples per pred. 2.3M 8.3K 98.7M 270K -
Min triples per pred. 1 2 1 2.6K -

5.3 Generation of Test Queries

To the best of our knowledge, there is no publicly-available
benchmark queryset for the cardinality estimation problem
for graph data. For LUBM, among the 14 queries, we use 6
queries (Q2, Q4, Q7, Q8, Q9, and Q12). We exclude the simple
queries with at most two triple patterns in their SPARQL
statements due to space constraints.
For the remaining datasets, we generate test queries by

varying query topology, query size, and the result size. Based
on the frequently used query topology in real-world graph
queries [7], we generate 8 classes of queries: chain, star, tree,
cycle, clique, petal, flower, and graph. A chain is a sequence of
vertices ⟨u0,u1, . . . ,un⟩ such that ui−1 and ui are connected
for i ∈ [1,n]. A star is a sequence of vertices ⟨u0,u1, . . . ,un⟩
such that ui is connected to a source vertex u0 for i ∈ [1,n].
Tree queries are arbitrary queries not containing any cycle.
Cycle, clique, flower, petal, and graphs are cyclic queries. A
cycle is a sequence of vertices ⟨u0,u1, . . . ,un⟩ whereui−1 and
ui are connected for i ∈ [1,n] and un is connected to u0. A
clique is a complete graph. A petal consists of a source vertex,
a destination vertex and a set of at least two vertex-disjoint
paths between them. A flower consists of a source vertex
with three types of attachments: chains, trees, and petals. A
graph query includes arbitrary cyclic and acyclic queries.
Table 1 shows the parameters used in the experiments.

Given a query topology, query size, and result size, we gen-
erate queries by traversing the schema graph randomly for
each data graphmatching a target topology. For YAGO, AIDS,
and Human datasets, we generate 1366, 780, and 49 queries,
respectively. For each dataset, we report the results by group-
ing them by the query result size, query size, and query
topology, respectively. For sampling-based techniques, we
use the sample ratio of 3% as the default. We also conduct
experiments varying the sample ratio as in [41]: {0.01, 0.03,
0.1, 0.3, 1, 3%}. The timeout is set to 5 minutes.
6 PERFORMANCE COMPARISON

6.1 Accuracy on RDF Graphs

6.1.1 EvaluationUsing the LUBMBenchmark. Figure 6
(a) shows the accuracy test results with LUBM. Surprisingly,

WanderJoin outperforms all other techniques with its q-
error values close to 1 although it is designed for online
aggregation for the relational data.
We compare WanderJoin against the sampling-based

techniques. CorrelatedSampling suffers from the underes-
timation problem for Q2. This is because it fails to sample
the tuples which actually contribute to the join results. Impr
underestimates the cardinalities for Q7, Q8, and Q12. Its sam-
pling method fails to find the random walks satisfying the
join conditions. For example, it finds no single random walk
satisfying the join conditions in Q7, Q8, and Q12. Impr can-
not process Q4 due to its restriction on the query topology.
JSUB tends to overestimate the cardinalities for Q2, Q8, and
Q9. This is expected because it estimates an upper bound
of the cardinality. However, for Q4, Q7, and Q12, it shows
significant underestimation due to the sampling failure at
DecomposeQuery.WanderJoin avoids the underestimation
problem by sampling tuples which are more likely to satisfy
the join conditions. It does not suffer from the overestimation
problem because it does not use the upper bounds.
We compare WanderJoin against the summary-based

techniques. Among the summary-based techniques, Sum-
RDF shows the highest accuracy. However, compared to
WanderJoin, it underestimates the cardinality for Q9. The
main cause is the uniformity assumption used for computing
the expected number of embeddings. For Q9, we observe that
the number of possible worlds, |{дS }|, is orders of magnitude
larger than that for the other queries. CharacteristicSets
shows a more severe underestimation problem than Sum-
RDF except for Q7. We observe large errors in its estimation
of the query selectivity due to the independence assump-
tion between the decomposed queries, which does not hold.
BoundSketch consistently overestimates because it com-
putes the upper bounds of cardinality using the bounding for-
mulas with the sketches. For the summary-based techniques,
we observe that the loss of information due to summariza-
tion is unavoidable, and the assumptions made to estimate
the cardinality lead to large errors. WanderJoin does not
create a summary structure in advance but computes the
probabilistic statistics via sampled tuples satisfying the join
conditions in a query.
6.1.2 Varying Query Result Size. We test using YAGO.
Figure 6(b) shows the accuracy test results. Surprisingly,
WanderJoin outperforms all other tested techniques. It pro-
vides accurate estimation results for both the small and large
number of query results. As the query result size increases,
most of the tested techniques yield larger q-errors show-
ing the underestimation problem. In many of such cases,
the estimated cardinality values are close to 0, which leads
to larger q-error values for queries with larger result sizes.
CharacteristicSets suffers from the underestimation prob-
lem due to the independence assumption as we observed in

CSSumRDFIMPRC-SET WJ JSUB BS

104

102

100

102

104

Q2 Q4 Q7 Q8 Q9 Q12

un
de

re
st

.←
q-

er
ro

r→
ov

er
es

t.

Query #

105

100

105

1010

(0, 101] (101, 102] (102, 103] (103, 104] (104, 105] (105, 106]

Query Result Size

(a) Varying query with LUBM. (b) Varying query result size with YAGO.

105

100

105

1010

Chain Star Tree Cycle Clique Petal Flower Graphun
de

re
st

.←
[q

-e
rr

or
]→

ov
er

es
t.

Topologies of Queries

105

100

105

1010

1015

3 6 9 12
Query Size

(c) Varying query topology with YAGO. (d) Varying query size with YAGO.

Figure 6: The accuracy tests for rdf datasets.

105

100

105

(0, 101] (101, 102] (102, 103] (103, 104] (104, 105] (105, 106]

un
de

re
st

.←
[q

-e
rr

or
]→

ov
er

es
t.

Query Result Size

104

102

100

102

104

106

(0, 101] (101, 102] (102, 103] (103, 104]

Query Result Size

(a) AIDS. (b) Human.

Figure 7: Varying query result size with Non-rdf datasets.

105

100

105

1010

Chain Star Tree Cycle Petal Flower Graphun
de

re
st

.←
[q

-e
rr

or
]→

ov
er

es
t.

Topologies of Queries

104

102

100

102

104

106

Chain Star Tree Graph
Topologies of Queries

(a) AIDS. (b) Human.

Figure 8: Varying query topology with Non-rdf datasets.

Section 6.1.1. While CharacteristicSets was evaluated us-
ing only star-shaped queries in the original work, we use
queries of various shapes. Impr and CorrelatedSampling
underestimate the cardinality because of the sampling fail-
ure, as we already observed. Overall, JSUB outputs accurate
estimation results for the 50% percentile. However, it shows
a high variance on the q-errors and underestimation problem
due to the sampling failure. BoundSketch does not show
clear correlations on its accuracy with the result size.

6.1.3 VaryingQuery Topology. Note that the minimum
query size is six for clique, petal, and flower. Impr cannot pro-
cess such queries because it can process 3,4,5-node queries
only. Figure 6(c) reports the accuracy test results. Overall,
WanderJoin outperforms all other tested techniques. It pro-
vides accurate estimation results on various query topologies.
However, it exhibits large errors especially on chain, tree,
petal, and flower due to the sampling failure. We measure
the sampling failure rates for queries of sizes larger than 10.

CSSumRDFIMPRC-SET WJ JSUB BS

105

100

105

1010

3 6 9 12un
de

re
st

.←
[q

-e
rr

or
]→

ov
er

es
t.

Query Size

Figure 9: Varying query size with AIDS.

While the successful sampling rates for star and cycle queries
are 27.7% and 16.8%, respectively, those for chain, tree, and
petal queries are only 0.16%, 8.6%, and 0.04%, respectively.
Despite that, WanderJoin outperforms all techniques.
6.1.4 Varying Query Size. Figure 6(d) shows the accu-
racy results. WanderJoin outperforms all other tested tech-
niques. It provides much more accurate estimation results on
both small and large query sizes than the other techniques.
CharacteristicSets, Impr, and CorrelatedSampling suf-
fer from the underestimation problem due to the reasons
previously explained in Section 6.1.1. BoundSketch shows
clear trends of increasing errors for larger queries. This is
because the upper bound computation involves the product
of counts or degrees of relations in a query. There are more
summation terms in computing cardVec for larger queries.

6.2 Accuracy on Non-RDF Graphs

We test using non-rdf graphs such as AIDS and Human
datasets. We use 780 and 49 generated queries for AIDS and
Human, respectively. Note that the schema graphs of AIDS
and Human are much smaller compared to that of YAGO.
As a result, we are only able to generate a restricted set of
queries. We highlight the key observations compared to the
results with rdf graphs. An important difference between
rdf and non-rdf graphs is distributions of labels. For ex-
ample, YAGO has 91 distinct edge labels, while Human and
AIDS have 0 and 4 distinct edge labels, respectively.
6.2.1 Varying Query Result Size. Figures 7(a) and (b)
show the accuracy test results for AIDS and Human, respec-
tively. WanderJoin outperforms all other tested techniques
on non-rdf graphs as well. The q-error values of 95%, 75%,
50%, and 25% percentiles are close to 1. Characteristic-
Sets tends to underestimate as the result size increases due
to the independence assumption. SumRDF overestimates for
Human compared to AIDS. This is because the number of
distinct edge labels of Human is 0, therefore, when merging
two summary vertices, the edge weights between them are
all aggregated leading to the overestimation.

6.2.2 VaryingQuery Topology. Figures 8(a) and (b) show
the accuracy test results for AIDS and Human, respectively.
WanderJoin outperforms all other tested techniques. Impr
provides more accurate estimation at AIDS and Human than

at YAGO. This is because AIDS andHuman have fewer labels;
random walks of Impr can generate more visible graphs
that contain embeddings of a query, resulting less sampling
failure. JSUB overestimates for the cycle, petal, and flower
queries, since an acyclic query q1 is extracted from each such
query, and the upper bound of the cardinality of the query
is estimated as |q1|. No cyclic query is generated for Human.
6.2.3 VaryingQuery Size. Figure 9 shows the accuracies
for AIDS. Note that, in Human, we cannot generate a suf-
ficient number of queries with the different number of em-
beddings for sizes 6, 9, and 12 due to its restriction of labels.
Hence, we omit its results in our study.

Again,WanderJoin is the best performing one among all.
Impr cannot process queries whose sizes are greater than five.
SumRDF fails to process queries with 12 edges due to the
timeout. CharacteristicSets and CorrelatedSampling
underestimate for larger queries due to the independence as-
sumption and sampling failure, respectively. BoundSketch
shows the clear trends of increasing errors for larger queries.
6.3 Varying Sampling Ratio

The performance of the sampling-based techniques is af-
fected by the sampling ratio. We conduct a sensitivity analy-
sis by varying the sampling ratio in {0.01, 0.03, 0.1, 0.3, 1, 3}%
for the sampling-based techniques with YAGO and AIDS. We
omit the result figures due to space constraints.

Overall, WanderJoin is the best performing technique. It
shows its robust performance even with very small sampling
ratios such as 0.01% compared to others. For all tested sam-
pling ratios, CorrelatedSampling and Impr consistently
underestimate the cardinalities, and JSUB shows significantly
large variance on its q-errors.
6.4 Efficiency

We evaluate the efficiency with LUBM and AIDS using a
small capacity server machine (Intel Xeon E5-2450 CPU
and 64 GB RAM) which is sufficient for loading the entire
graph and summary structure in memory. We report both
the elapsed times for the off-line preprocessing and on-line
per-query processing.
For the off-line preprocessing, we measure the elapsed

time for constructing the summary structure in memory
once the input graph data is loaded. For LUBM, Character-
isticSets, SumRDF, and BoundSketch spend 0.96, 12.26,
and 160.8 seconds, respectively. For AIDS, Characteristic-
Sets, SumRDF, and BoundSketch spend 0.07, 0.64, and 3.93
seconds, respectively.

Figure 10 shows the efficiency test results for the on-line
per-query processing. We highlight the key observations.
Among the summary-based techniques, SumRDF is the slow-
est one. This is because SumRDF spends most of the time
on GetSubstructure and EstCard procedures. It searches
for embeddings in a summary graph S by checking whether

CSSumRDFIMPRC-SET WJ JSUB BS

100

101

102

103

Q2 Q4 Q7 Q8 Q9 Q12

E
la

ps
ed

ti
m

e
(m

s)

Query #

100

101

102

103

104

105

Chain Star Tree Cycle Petal Flower Graph
Topologies of Queries

(a) Varying query with LUBM. (b) Varying query topology with AIDS.

100

101

102

103

104

105

(0, 101] (101, 102] (102, 103] (103, 104] (104, 105] (105, 106]

E
la

ps
ed

ti
m

e
(m

s)

Query Result Size

100

101

102

103

104

105

3 6 9 12
Query Size

(c) Varying query result size with AIDS. (d) Varying query size with AIDS.

Figure 10: The efficiency tests for LUBM and AIDS datasets.

each edge in Q can be matched with edges in S , which takes
O(|ES | |EQ |) time. Its processing time increases drastically
for larger result sizes and larger queries as shown in Fig-
ure 10(c) and (d). Among the sampling-based techniques,
CorrelatedSampling is the overall slowest one because it
has to process the join query Q over the samples. Therefore,
its cost increases as the result size increases as shown in
Figure 10(c). The other sampling techniques are based on
the random-walks which consume mostly linear time with
regard to the number of edges in Q as shown in Figure 10(d).

6.5 Impact on Plan Quality

An interesting research question is “Given the same set of

queries and various estimators, do the different estimates im-

pact the query plans significantly?” There is an excellent
paper [22] about this issue in the context of relational query
optimization. The following experiments confirm the same
conclusions as in [22]: 1) different cardinalities could impact
query plans significantly; 2) a plan based on the true car-
dinality could be marginally worse than a plan based on a
bad estimate due to inaccuracy of the cost model; 3) accurate
cardinality estimation should be the first priority to research.
We chose RDF-3X, a popular open-source rdf database

management system, which uses merge join as much as
possible. First, we made the following changes in the original
code. 1) g-care feeds cardinality estimates to RDF-3X so that
it generates plans based on those cardinalities. 2) The cost
model of RDF-3X has coefficient numbers to accommodate
CPU and disk costs in a single model. We perform calibration
experiments to gather accurate coefficient numbers [14], 3)
In RDF-3X, when both inputs are sorted, it always uses merge

join. Otherwise, it always uses hash join. This often leads to
suboptimal plans, especially when one input is sorted, but
the other input is unsorted. In this case, if the unsorted input
is small, adding a sort operator on top of the unsorted input
can lead to merge join instead of hash join. This is a standard
plan generation strategy in commercial relational DBMSs.
We implemented this strategy in RDF-3X.

Note that using the q-error is important since it is a theo-
retical upper bound for the plan quality [22, 28]. In practice,
in order to understand the relationship between cardinality
estimates and plan quality, we use the concept of validity
range [27]. Consider a join plan P having two child nodes.
The validity range for a child node is a range on the number
of rows flowing through, such that if the range is not violated
at runtime, we can guarantee that P is optimal with respect
to the cost model. Thus, suppose that we have a plan P with
true cardinalities. Depending on the query graph and data
graph, P has different validity ranges for its intermediate
results. If a validity range is wide, a significantly inaccurate
estimate could be within this range so we can guarantee that
this bad estimate still generates the same plan as P . If a valid-
ity range is narrow, a slightly inaccurate estimate can lead to
a different suboptimal plan. Therefore, if we have accurate
estimates, the optimizer is likely to generate the best plan
with true cardinality. A query optimizer requires estimates
for the subqueries of an input query. In order to analyze
the relationship with q-error and plan quality, we need to
analyze the q-errors for all subqueries of Q . However, since
the q-error for the query itself typically contains propagated
errors from the subqueries ofQ , we can analyze plan quality
using the q-error for Q .

CSSumRDFIMPRC-SET WJ JSUB BS True Cardinality

100

101

102

103

104

Q2 Q4 Q7 Q8 Q9 Q12

E
la

ps
ed

ti
m

e
(m

s)

Query #

100

101

102

103

104

105

106

P1 P2 P3 P4 P5 P6

E
la

ps
ed

ti
m

e
(m

s)

Query #

(a) LUBM. (b) DBpedia.

Figure 11: Query processing time in RDF-3X. TC represents the elapsed times of plans with true cardinality.

We executed two sets of queries: LUBM queries andDBpe-
dia queries. Here, theDBpedia queries are real ones extracted
from query logs of various endpoints [35]. We present six
representative queries due to space limitations, since the
other extracted queries have similar performance trends.

Figure 11(a) shows the elapsed times for the LUBM queries.
For Q2, underestimates/overestimates lead to performance
degradation. One exception is BoundSketch. BoundSketch
shows accurate estimates of subgraphs of size two, although
it shows overestimation for Q2 itself. CharacteristicSets,
Impr, CorrelatedSampling, and JSUB show significantly
inaccurate estimates for the subgraphs of size two or three,
and thus, their execution times are slow. Q4 is a star-shaped
query and thus, the optimizer in RDF-3X generates a robust
query plan. That is, the validity ranges for the optimal plan
for Q4 are wide. For Q7 and Q8, underestimates/overesti-
mates lead to performance degradation. For Q7, overestima-
tion by BoundSketch makes RDF-3X choose hash join over
sort-merge join which requires sorting. However, the actual
cardinality of intermediate results to sort is very small and,
thus, the generated plan with hash join is slower than the
plan with sort-merge join. For Q8, although Character-
isticSets shows underestimates, the optimizer generates
a good plan using merge join with a sort operator at the
root of the plan. In terms of cost, this plan is worse than
the optimal plan. However, the merge join does not scan all
inputs if one input is completely consumed. Thus, the exe-
cution time of CharacteristicSets is similar to that of the
optimal plan. ForQ9, CharacteristicSets shows the worst
query performance since the q-errors for the subgraphs of
Q9 are very large. For Q12, although plans generated by all
estimators are different, their query processing times are all
small. Overall,WanderJoin and SumRDF perform the best
in terms of execution time.
Figure 11(b) shows the elapsed times for the DBpedia

queries. P1 and P2 are star-shaped queries. Thus, RDF-3X
generates a robust query plan regardless of cardinalities. We
already observed the same phenomenon for Q4 in LUBM. If
we consider more diverse plans, such as nested loop join, bad

estimates can easily lead to suboptimal plans. P3 and P4 are
graph-shaped. In this case, WanderJoin outperforms JSUB
by 31% in terms of query execution time. P5 is tree-shaped.
Impr performs worse than the other estimators except for
CorrelatedSampling since it consistently generates large
q-errors for the subqueries. In CorrelatedSampling, the
q-errors for the subqueries fluctuate around one. This signifi-
cant variance generates the worst plan. For P6, in terms of q-
error,WanderJoin, Impr, JSUB, and CorrelatedSampling
generate the optimal plan. Note that the other estimators in-
cluding SumRDF are about 105 times slower. BoundSketch
overestimates and generates a worse plan, which we have
already observed for Q7 in LUBM. Although Character-
isticSets achieves good accuracy in terms of q-error, the
validity ranges for the optimal plan are very narrow. Char-
acteristicSets generates a significantly worse plan. This
indicates that accurate cardinality estimation should play a
pivotal role in subgraph query optimization.

6.6 Summary

We make the following observations. First, in the original pa-
per, the high accuracy of CharacteristicSets was demon-
strated using only star-shaped queries. However, our analysis
revealed that it suffers from significant underestimation due
to the independence assumption. Second, Impr is originally
designed for unlabeled graphs. Hence, it cannot be general-
ized to process directed, labeled graphs (such as rdf graphs)
due to the underestimation problem. Third, the original pa-
per of SumRDF shows high accuracy on LUBM, which is
consistent with our study. However, it shows inaccurate es-
timation results for other datasets. Furthermore, it fails to
handle large queries due to prohibitive computation cost.
Our experimental study is the first work which evalu-

ates and analyzes the state-of-the-art cardinality estimation
techniques for graph and relational data. Our investigation
reveals unexpected results. We observe that for both rdf and
non-rdf datasets,WanderJoin, which is designed for online
aggregation, consistently outperforms state-of-the-art cardi-
nality estimation techniques for subgraph matching queries
in terms of accuracy across a variety of parameters.

Table 3: A summarized comparison of graph- and relational-based techniques (: accurate, : inaccurate).

Technique

Key Results

LUBM
Queryset

Query Features of Test Queries
of Embeddings Size Topology
∼ 103 103 ∼ 3 ∼ 6 9 ∼ 12 Tree Graph

Graph-
based

CSet
Impr

SumRDF

Relational-
based

CS
WJ
JSUB
BS

Why does WanderJoin perform well? The key task for
estimating cardinality for subgraph matching is to obtain
high quality of samples. WanderJoin selects the best join
order and samples tuples which satisfy the join conditions.
By randomly selecting the start vertex for random walks
for every sampling, it obtains si from the entire data graph.
Different from the summary-based techniques,WanderJoin
does not rely on the summarywhich inherently has some loss
of information. Instead, it obtains the necessary probabilistic
statistics based on sampling after the query is given.

It is worth noting that not all cardinality estimation tech-
niques for relational data perform well for graph cardinality
estimation. CorrelatedSampling has difficulty in finding
embeddings as the number of joins increases. This is due to
the low quality of samples, which does not consider correla-
tions between sets of attributes to be joined. JSUB does not
perform well as far as accuracy is concerned. It shows high
variance on the q-errors and the underestimation problem.

In terms of efficiency, WanderJoin and Characteristic-
Sets are much faster than the other methods. We believe
there is still room to improve efficiency, which is an inter-
esting future work. We also confirm that different estimates
could impact plan quality significantly. However, depending
on the validity ranges, bad estimates could generate good
plans. Nevertheless, accurate cardinality estimation should
play a pivotal role in subgraph query optimization.

7 CONCLUSIONS

We present g-care to facilitate an in-depth and systematic
experimental evaluation of state-of-the-art cardinality esti-
mation techniques for graph data. We conducted exhaustive
experiments on three graph-based, three relational-based,
and one online aggregation techniques with a variety of
features of queries on both rdf and non-rdf graphs.
Table 3 summarizes the observed performance in our ex-

periments. In contrast to the results reported in the original
papers, we conclude that none of the three cardinality esti-
mation techniques for subgraph matching queries is clearly
the best for all datasets and all scenarios.

In contrast to the graph-based techniques, the relational-
based techniques are able to process almost all test queries
successfully across datasets. However,CorrelatedSampling
is inaccurate for all scenarios except on LUBM dataset. JSUB
is inaccurate in almost all cases. Surprisingly, WanderJoin,
which is designed for the online aggregation problem, shows
superior performance consistently in terms of accuracy and
outperforms graph-based techniques. Given that all existing
efforts on cardinality estimation for graph data do not com-
pare the approaches with cardinality estimation techniques
for relational data, we believe that the results of our study
are insightful to the graph data management community.
The superiority of WanderJoin w.r.t graph-based tech-

niques opens up the issue of whether rdbms techniques
can be leveraged to address the cardinality estimation prob-
lem for graph data. Note that a recent survey [34] revealed
the prevalence of relational-based databases among practi-
tioners for managing and processing graph data. However,
recent studies have shown that native graph systems are
superior to relational-based systems for graph traversal and
querying [25], which leads us to two interesting avenues of
research: (a) Is it possible to design cardinality estimation
techniques for subgraph matching queries which integrate
the benefits of WanderJoin with native graph-based tech-
niques? (b) Is a hybrid system which leverages native graph
stores for query processing but utilizes a relational frame-
work for cardinality estimation a viable strategy? Our g-care
framework can be utilized to benchmark performances of
the future cardinality estimation techniques for subgraph
matching queries.

ACKNOWLEDGMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. NRF-2017R1A2B3007116) and Institute of
Information communications Technology Planning Evalua-
tion(IITP) grant funded by the Korea government(MSIT) (No.
2018-0-01398, Development of a Conversational, Self-tuning
DBMS).

REFERENCES

[1] Daniel J Abadi, Adam Marcus, Samuel R Madden, et al. 2007. Scalable
semantic web data management using vertical partitioning. In Pro-

ceedings of the 33rd international conference on Very large data bases.
411–422.

[2] Mahmoud Abo Khamis, Hung Q Ngo, and Dan Suciu. 2017. What
do Shannon-type Inequalities, Submodular Width, and Disjunctive
Datalog have to do with one another?. In Proceedings of the 36th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
429–444.

[3] Khaled Ammar and M Tamer Özsu. 2018. Experimental analysis of
distributed graph systems. Proceedings of the VLDB Endowment 11, 10
(2018), 1151–1164.

[4] Renzo Angles, Marcelo Arenas, Pablo Barceló, et al. 2018. G-CORE:
A core for future graph query languages. In Proceedings of the 2018

International Conference on Management of Data. 1421–1432.
[5] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, et al.

2013. LinkBench: a database benchmark based on the Facebook social
graph. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data. 1185–1196.
[6] Sören Auer, Christian Bizer, Georgi Kobilarov, et al. 2007. Dbpedia:

A nucleus for a web of open data. In The semantic web. Springer,
722–735.

[7] Angela Bonifati, WimMartens, and Thomas Timm. 2017. An analytical
study of large SPARQL query logs. Proceedings of the VLDB Endowment

11, 2 (2017), 149–161.
[8] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic

cardinality estimation: Tighter upper bounds for intermediate join
cardinalities. In Proceedings of the 2019 International Conference on

Management of Data. 18–35.
[9] Xiaowei Chen and John CS Lui. 2016. Mining Graphlet Counts in

Online Social Networks. In 2016 IEEE 16th International Conference on

Data Mining (ICDM). IEEE, 71–80.
[10] Yu Chen and Ke Yi. 2017. Two-level sampling for join size estimation.

In Proceedings of the 2017 ACM International Conference onManagement

of Data. 759–774.
[11] Souripriya Das, Jagannathan Srinivasan, Matthew Perry, et al. 2014.

A Tale of Two Graphs: Property Graphs as RDF in Oracle.. In EDBT.
762–773.

[12] Alin Deutsch and Yannis Papakonstantinou. 2018. Graph data models,
query languages and programming paradigms. Proceedings of the VLDB
Endowment 11, 12 (2018), 2106–2109.

[13] Orri Erling, Alex Averbuch, Josep Larriba-Pey, et al. 2015. The LDBC
social network benchmark: Interactive workload. In Proceedings of the

2015 ACM SIGMOD International Conference on Management of Data.
619–630.

[14] Georges Gardarin, Fei Sha, and Zhao-Hui Tang. 1996. Calibrating the
Query Optimizer Cost Model of IRO-DB, an Object-Oriented Federated
Database System.. In VLDB, Vol. 96. Citeseer, 3–6.

[15] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A bench-
mark for OWL knowledge base systems. Journal of Web Semantics 3,
2-3 (2005), 158–182.

[16] Olle Häggström et al. 2002. Finite Markov chains and algorithmic

applications. Vol. 52. Cambridge University Press.
[17] Stephen Harris and Nigel Shadbolt. 2005. SPARQL query processing

with conventional relational database systems. In International Con-

ference on Web Information Systems Engineering. Springer, 235–244.
[18] Daniel G Horvitz and Donovan J Thompson. 1952. A generalization

of sampling without replacement from a finite universe. Journal of the
American statistical Association 47, 260 (1952), 663–685.

[19] Hai Huang and Chengfei Liu. 2011. Estimating selectivity for joined
RDF triple patterns. In Proceedings of the 20th ACM international con-

ference on Information and knowledge management. 1435–1444.

[20] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2015. Perfor-
mance and scalability of indexed subgraph query processing methods.
Proceedings of the VLDB Endowment 8, 12 (2015), 1566–1577.

[21] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, et al. 2012. An
in-depth comparison of subgraph isomorphism algorithms in graph
databases. Proceedings of the VLDB Endowment 6, 2 (2012), 133–144.

[22] Viktor Leis, Andrey Gubichev, Atanas Mirchev, et al. 2015. How good
are query optimizers, really? Proceedings of the VLDB Endowment 9, 3
(2015), 204–215.

[23] Feifei Li, Bin Wu, Ke Yi, et al. 2016. Wander join: Online aggregation
via random walks. In Proceedings of the 2016 International Conference

on Management of Data. 615–629.
[24] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018.

Beyond macrobenchmarks: microbenchmark-based graph database
evaluation. Proceedings of the VLDB Endowment 12, 4 (2018), 390–403.

[25] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018.
Beyond macrobenchmarks: microbenchmark-based graph database
evaluation. Proceedings of the VLDB Endowment 12, 4 (2018), 390–403.

[26] Guy Lohman. 2014. Is query optimization a âĂĲsolvedâĂİ problem.
In Proc. Workshop on Database Query Optimization, Vol. 13. Oregon
Graduate Center Comp. Sci. Tech. Rep.

[27] Volker Markl, Vijayshankar Raman, David Simmen, et al. 2004. Robust
query processing through progressive optimization. In Proceedings of

the 2004 ACM SIGMOD international conference on Management of data.
659–670.

[28] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Pre-
venting bad plans by bounding the impact of cardinality estimation
errors. Proceedings of the VLDB Endowment 2, 1 (2009), 982–993.

[29] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved
selectivity estimation by combining knowledge from sampling and
synopses. Proceedings of the VLDB Endowment 11, 9 (2018), 1016–1028.

[30] Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets:
Accurate cardinality estimation for RDF queries with multiple joins.
In 2011 IEEE 27th International Conference on Data Engineering. IEEE,
984–994.

[31] Thomas Neumann and Gerhard Weikum. 2008. RDF-3X: a RISC-style
engine for RDF. Proceedings of the VLDB Endowment 1, 1 (2008), 647–
659.

[32] Anil Pacaci and M Tamer Özsu. 2019. Experimental Analysis of Stream-
ing Algorithms for Graph Partitioning. In Proceedings of the 2019 Inter-

national Conference on Management of Data. 1375–1392.
[33] Shi Qiao and Z Meral Özsoyoğlu. 2015. Rbench: Application-specific

RDF benchmarking. In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data. 1825–1838.
[34] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, et al. 2017. The

ubiquity of large graphs and surprising challenges of graph processing.
Proceedings of the VLDB Endowment 11, 4 (2017), 420–431.

[35] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga
Ngomo. 2015. Feasible: A feature-based sparql benchmark genera-
tion framework. In International Semantic Web Conference. Springer,
52–69.

[36] Michael Schmidt, Thomas Hornung, Georg Lausen, et al. 2009. SPˆ
2Bench: a SPARQL performance benchmark. In 2009 IEEE 25th Inter-

national Conference on Data Engineering. IEEE, 222–233.
[37] Haichuan Shang, Ying Zhang, Xuemin Lin, et al. 2008. Taming verifica-

tion hardness: an efficient algorithm for testing subgraph isomorphism.
Proceedings of the VLDB Endowment 1, 1 (2008), 364–375.

[38] Giorgio Stefanoni, Boris Motik, and Egor V Kostylev. 2018. Estimating
the cardinality of conjunctive queries over RDF data using graph
summarisation. In Proceedings of the 2018 World Wide Web Conference.
1043–1052.

[39] Markus Stocker, Andy Seaborne, Abraham Bernstein, et al. 2008.
SPARQL basic graph pattern optimization using selectivity estima-
tion. In Proceedings of the 17th international conference on World Wide

Web. 595–604.
[40] Fabian M Suchanek, Gjergji Kasneci, and GerhardWeikum. 2008. Yago:

A large ontology from wikipedia and wordnet. Journal of Web Seman-

tics 6, 3 (2008), 203–217.
[41] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, et al. 2015.

Join size estimation subject to filter conditions. Proceedings of the

VLDB Endowment 8, 12 (2015), 1530–1541.

[42] Shiv Verma, Luke M Leslie, Yosub Shin, et al. 2017. An experimental
comparison of partitioning strategies in distributed graph processing.
Proceedings of the VLDB Endowment 10, 5 (2017), 493–504.

[43] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: distance index
based subgraph matching in biological networks. In Proceedings of

the 12th International Conference on Extending Database Technology:

Advances in Database Technology. 192–203.
[44] Zhuoyue Zhao, Robert Christensen, Feifei Li, et al. 2018. Random

sampling over joins revisited. In Proceedings of the 2018 International

Conference on Management of Data. 1525–1539.

	Abstract
	1 Introduction
	2 Background
	3 Cardinality Estimation Techniques for Graph Data
	3.1 The G-CARE Framework
	3.2 Characteristic Sets (C-SET)
	3.3 SumRDF
	3.4 IMPR

	4 Cardinality Estimation Techniques for Relational Data
	4.1 Correlated Sampling (CS)
	4.2 Wander Join (WJ)
	4.3 Join Sampling with Upper Bounds (JSUB)
	4.4 Bound Sketch (BS)

	5 Experimental Setup
	5.1 Evaluation Measure
	5.2 Datasets
	5.3 Generation of Test Queries

	6 Performance Comparison
	6.1 Accuracy on RDF Graphs
	6.2 Accuracy on Non-RDF Graphs
	6.3 Varying Sampling Ratio
	6.4 Efficiency
	6.5 Impact on Plan Quality
	6.6 Summary

	7 Conclusions
	Acknowledgments
	References

