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ABSTRACT

Online information diffusion generates huge volumes of so-
cial activities (e.g., tweets, retweets posts, comments, likes)
among individuals. Existing information diffusion modeling
techniques are oblivious to conformity of individuals during
the diffusion process, a fundamental human trait according
to social psychology theories. Intuitively, conformity cap-
tures the extent to which an individual complies with social
norms or expectations. In this paper, we present a novel
framework called chassis to characterize online information
diffusion by bridging classical information diffusion model
with conformity from social psychology. To this end, we first
extend “Hawkes Process”, a well-known statistical technique
utilized to model information diffusion, to quantitatively cap-
ture two flavors of conformity, informational conformity and
normative conformity, hidden in activity sequences. Next, we
present a novel semi-parametric inference approach to learn
the proposed model. Experimental study with real-world
datasets demonstrates the superiority of chassis to state-of-
the-art conformity-unaware information diffusion models.

ACM Reference Format:

Hui Li, Hui Li, and Sourav S Bhowmick. 2020. CHASSIS: Conformity
Meets Online Information Diffusion. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3318464.3389780

1 INTRODUCTION

Information diffusion is a process by which information and
ideas spread over a network, creating a cascade. In particular,
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information diffusion in social networks continuously gen-
erates large-scale activities (e.g., share, post, tweet, retweet,
like, comment). These activities can be represented by asyn-
chronous time-stamped sequences wherein each individual
gives rise to a sequence of activities over time. In such se-
quences, there exist abundant triggering relations between
activities that describe “which activity triggers which activ-
ity” [53, 54]. These relations are typically modeled as diffu-
sion trees [28, 40]. For example, consider the social network
in Figure 1(a) depicting follower-followee relationships. Fig-
ure 1(b) depicts a sequence of activities over time, involving
some of the users, represented as a diffusion tree. Observe
that an activity (e.g., the post ofU4 at time t41) may trigger a
succeeding activity (e.g., the comment ofU5 at time t52) repre-
sented by a unidirectional link between them. Such unidirec-
tional links between activities lead to diffusion trees. Hence,
diffusion trees describe the information cascade (a.k.a infor-
mational cascade) generated by the information diffusion
process. It is paramount to model this information diffusion
process accurately as it underpins a variety of downstream
applications such as influence maximization (im) [26], viral
marketing [6, 39], rumour detection [36], user behaviour
prediction [12].
Several studies have linked conformity [2, 4, 5], a funda-

mental and well-studied concept in social psychology, to the
pivotal role it plays in the generation of information cas-
cade [1, 7]. Intuitively, conformity refers to the inclination
to align our attitudes and behaviors with those around us.
There are two flavors of conformity, namely informational
conformity and normative conformity [15]. The former occurs
when people conform to peer views in an attempt to reach
appropriate behaviors and attitudes due to lack of relevant
knowledge. The latter occurs because of the desire to be
accepted or that keep us from being isolated or rejected by
others. For example, reconsider Figure 1. It is indeed possible
that althoughU3 is unaware of the movie “Mission Impossi-
ble Fallout”, her response“It’s great” is same as others because
she chose to trust her friend U5 (i.e., informational confor-
mity). On the other hand, suppose U3 responds positively
because she wants to please her friends even if she dislikes
the movie. Then, this is an example of normative conformity.
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(b) Diffusion process
Figure 1. Information diffusion.

Since conformity plays a fundamental role in how online
users respond to social activities, it naturally influences the
information diffusion process. Consequently, it is paramount
for information diffusion models to incorporate it.

Example 1.1. The dynamics of spread of information in a
network is steered by an information diffusion model. The
Independent Cascade (ic) is one of the most well-studied in-
formation diffusion models. In this model, in the first step a
seed node is activated and subsequently at any time-step i ,
each newly activated node Ui gets one independent attempt
to activate each of its outgoing neighbors Uj with a proba-
bility pi, j , which is often set to 1

In(j) where In(j) refers to the
in-degree of Uj [3]. Observe that the ic model is conformity-
unaware as the computation of pi, j disregards conformity of
users.

Reconsider Figure 1(a). Based on the icmodel,p5,3 = 1
3 and

p5,2 = 1. Thus, U2 is more likely to be activated by U5 than
U3. However, if we consider their responses in Figure 1(b),
U3 may exhibit higher degree of conformity to U5 than U2.
Consequently, when conformity of individuals are taken into
account,U3 is more likely to be activated instead ofU2. Hence,
a conformity-aware information diffusion model may poten-
tially provide more accurate information on the diffusion
process. As several existing information diffusion models
(e.g., ic) are based only on the network structure, they fail to
exploit information related to conformity of individuals.

Despite the crucial role of conformity in online informa-
tion diffusion, research in this arena is scarce [43, 52]. It is
challenging to detect and quantify the two flavors of con-
formity from social activities. First, the private beliefs of
individuals may not be exposed explicitly in the activities.
For instance,U3 may not explicitly mention in her post that
she wants to please her friends or have not watched the
movie. Hence, it may not be possible to determine whether
an individual is conforming to another by simply search-
ing for one’s beliefs in the posts. Second, conformity of an
individual may vary with the context. One may show high
degree of conformity for one topic of discussion (e.g.,movies)
but not another (e.g., politics). Hence, any conformity com-
putation technique needs to be context-sensitive. Third, the
knowledge of topology of a social network is insufficient to

address this problem as connectivities between individuals
do not necessarily indicate manifestation of social activities
among them. For instance, some followers may rarely or
never interact with some of their followees, and some indi-
viduals may respond to some other unconnected individuals
in online discussions. For example, in Figure 1, U5 may re-
spond to a comment byU1 although they are not connected.
In this paper, we present a novel framework for infor-

mation diffusion called Conformity-aware HAwkes proceSS-
based Information DiffuSion (chassis) to characterize the
underlying dynamics of diffusion in the presence of confor-
mity. Specifically, we investigate how the aforementioned
two flavors of conformity can be captured in individuals’
interactions by exploiting diffusion trees constructed from
the observed activity sequences.

Since social activities represent asynchronous time-stamped
sequences, we deploy a well-known statistical technique
called “Hawkes process” [22, 23], which is a type of point
process∗ [47] that has been utilized recently to model infor-
mation diffusion [49, 53]. Specifically, we extend classical
Hawkes processes for information diffusion to capture time-
varying conformity of individuals in our model (Section 4).
We design a practical semi-parametric approach to learn the
model components from observed data (Section 7) as well as
infer the diffusion trees (Section 6) in an alternating fashion
(i.e., an instance of the Expectation-maximization method).
To this end, as detailed in Section 3, we represent the dif-
fusion trees by utilizing the branching structure, an equiv-
alent representation of Hawkes processes, which isolates
the events (e.g., activities) in a Hawkes process into immi-
grants (i.e., events that arrive independently) and offsprings
(i.e., events triggered by existing events). Then we utilize the
parent-child pairs of events (e.g., activities) in the branch-
ing structure (i.e., diffusion trees), to quantify the two types
of conformity in Section 5 and use them in our model. Ex-
tensive experiments with real-world datasets show superior
performance of chassis in modeling information diffusion
compared to several state-of-the-art conformity-oblivious
techniques. chassis can be utilized to predict individuals’
future behavior with considerable confidence, illustrating
the powerful effects of an individual’s inclination to align
one’s attitudes and behaviours with others [32].
In summary, this paper makes the following key contri-

butions: (a) We propose a novel conformity-aware Hawkes
process-based framework called chassis to characterize on-
line information diffusion. Our work bridges the classical
online information diffusion problem in data analytics with
conformity from the domain of social psychology. (b) We quan-
titatively capture two flavors of conformity, informational

∗Point processes are stochastic processes that are used to model events that occur at
random intervals relative to the time or space axis, and provide the statistical language
to describe the timing and properties of events.



conformity and normative conformity, hidden in activity se-
quences by utilizing diffusion trees (i.e., branching structure)
constructed from the activity sequences. In this context, we
propose a novel diffusion tree inference technique when ex-
plicit information about links between activities are unavail-
able to a downstream application. (c) We present a novel and
efficient semi-parametric inference approach that leverages
on the diffusion trees to learn the conformity-aware infor-
mation diffusion model competently from observed data. (d)
We conduct an experimental study with real social datasets
to demonstrate the superiority and effectiveness of chassis.

2 RELATEDWORK

Conformity in online social networks. A rich line of
work in social psychology [2, 4, 5, 8] has demonstrated the ex-
istence and importance of conformity in social interactions.
However, there is scant research on investigating confor-
mity in online social networks. The seminal work of Li et
al. [30] studied the interplay between influence and confor-
mity of each individual in online social networks by utilizing
the positive and negative relationships between individuals.
Subsequently, they modeled conformity in the context of
im problem [31]. Recently, [34] adopted group profiling in
conformity-aware im problem. Tang et al. [43] proposed a
probabilistic factor graph model that predicts user behavior
by exploiting the effect of conformity. The work in [52] as-
signs hidden roles to users and then learns the correlation
between roles and conformity. None of these work model
the interplay of informational and normative conformity,
which is a more realistic way to capture the role conformity
plays in social networks. Importantly, we focus on inferring
the conformity-aware information diffusion model from the
data, which is orthogonal to these efforts.

Diffusionmodels.According to a previous study [21], in-
formation diffusion models can be categorized into predictive
and explanatory models. Predictive models aim to uncover
and predict how a specific diffusion process would unfold in
a given network. These works consider the diffusion as a dis-
crete random process happened among network nodes and
can be further classified into non-progressive and progressive
models. In the former model, a node affected by a piece of
information cannot switch to unaffected status subsequently.
This includes the independent cascade (ic) [39, 44] and lin-
ear threshold (lt) [17] models, which are widely adopted in
the im problem. ic/lt model has also been augmented with
topic [11, 33], economic theory [6], and spatial-temporal fea-
tures [29] in estimating the diffusion spread. In comparison,
the progressive model (e.g., sir and sis [24, 38] for virus prop-
agation) allows an affected node to be unaffected again. All
these predictive models are used for estimating the diffu-
sion scope. They simplify the diffusion process to happen at
discrete steps instead of continuous time.

Explanatory models are used to infer the diffusion path
in order to retrace and understand how a piece of informa-
tion is propagated, and can benefit a series of applications
including fake news detection [48], user behavior predic-
tion [12], etc. For instance, [19] models the diffusion process
as a spatially discrete network of continuous, conditionally
independent temporal processes occurring at different rates.
They presented netrate algorithm to infer pairwise trans-
mission rates and the graph of diffusion. Recently, Hawkes
process has been employed in modeling the information dif-
fusion process. adm4 [53] uses the mutually-exciting linear
Hawkes model to capture the temporal patterns of user be-
haviors, and infer the social influence. mmel [54] captures
the temporal dynamics of the observed activities by utiliz-
ing multi-dimensional linear Hawkes processes, and learns
the triggering kernels nonparametrically. Although these
models are able to uncover the diffusion as a continuous
temporal process, they fail to take into account conformity
of individuals.
Lastly, there are also several efforts in the literature to

predict the information cascade [12, 20, 50]. However, all
these efforts are conformity-unaware.

3 BACKGROUND

In this section, we provide the necessary background knowl-
edge to understand the paper.

3.1 Hawkes Processes

Many applicationsmay need to deal with timestamped events
in continuous time. Point process [47] is a principled frame-
work to model such event data. Specifically, a point process
on a time line is a random process for realization of the event
times t1, t2, . . . where ti is the time of occurrence of the ith
event (e.g., a tweet, like). Point process can be equivalently
represented as a counting process N = {N (t)|t ∈ [0,T ]}
over the time interval [0,T ] where N (t) records the num-
ber of events up to time t . Let Ht be the history of events
before time t . Then dynamics of the point process could
be characterized by a conditional intensity function λ(t) as
follows:

λ(t) = lim
∆t→0

E[N (t + ∆t) − N (t)|Ht ]

∆t
(3.1)

where two events coincide with probability 0, i.e., N (t +∆t)−
N (t) ∈ {0, 1}. Intuitively, larger the intensity λ(t), greater
the likelihood of observing an event in the time window
[t , t + ∆t].

In some applications, the arrival of an event increases the
likelihood of observing events in the near future. To model
these applications, there exists a type of point processes
in which the event arrival rate explicitly depends on past
events. These processes are referred to as self-exciting pro-
cesses. Hawkes processes [22] is the most well-known self
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Figure 2. 3-dimensional Hawkes processes: (a) Five so-

cial activities during a time interval. (b) Counting pro-

cess over time for each individual. N (t) increases by

one when an activity happens. (c) Intensity functions.

exciting process and have been extensively used in many
domains (e.g., finance, seismology, social media).

In this paper, we focus on multi-dimensional Hawkes pro-
cess [53], which is defined by anM-dimensional point process
whereM Hawkes processes are integrated with each other.
That is, it is an M-dimensional counting process where an
arrival in one dimension can affect the arrival rates of all
dimensions. In information diffusion, each dimension i rep-
resents an individual Ui in a social network and an event
represents a social activity. Hence, each Hawkes process cor-
responds to an individualUi and the influence between them
is modeled by utilizing the mutually-exciting property of
theM-dimensional Hawkes process. Formally, the intensity
function of the ith dimension takes the following form [53]:

λi (t) = Fi
(
µi +

∑
j ∈[M ]

∑
tjl <t

αi jϕi j (t − tjl )
)

(3.2)

Wherein the constant µi > 0 is the base intensity of the ith
Hawkes process, describing the arrival of events (e.g., social
activities) triggered by external sources. It is also referred
to as exogenous intensity, and their arrivals are independent
of the previous events. The strength of influence between
dimensions (i.e., individuals) is parameterized by a sparse ex-
citation matrix A = [αi j ]i, j ∈[M ]. In particular, the coefficient
αi j ≥ 0 captures the mutually-exciting property between
the ith and jth processes. Larger value of αi j indicates that
events (activities) in the ith dimension are more likely to
trigger an event in the jth dimension in the future. The trig-
gering kernel ϕi j (t − tjl ) quantifies the change in the rate

a12

a11a52

(b) Diffusion trees (a) Branching structure

a41 a11
a51

Z41=a41 Z11=a41

Z51=a51 Z12=a51

a41

a12tt51 t41 t52 t11 t12

a52
Z52=a41 a51

(a41 ,a
52 )

(a
41 ,a

11 )

(a51 ,a
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Figure 3. (a) The branching structure of the 3-

dimensionalHawkes processes in Figure 2. (b) The cor-

responding diffusion trees.

of occurrence caused by the historical realization tjl . The
second item

∑
j ∈[M ]

∑
tjl <t αi jϕi j (t − tjl ) is referred to as en-

dogenous intensity and captures the mutually-exciting nature
of the point processes. In our context, it captures the interac-
tions between individuals in a social network – each event
occurred to an individualUj may increase (i.e., mutual exci-
tation) or decrease (i.e., mutual inhibition) the arrival rate
of occurrence in Ui by a certain amount which itself decays
over time. Figure 2 depicts a 3-dimensional Hawkes pro-
cesses involving U1, U4, and U5 in Figure 1(a). Specifically,
Figure 2(a) shows activity sequences at times t41, t52, and t11
in Figure 1(b) along with two additional activities by users
U5 andU1 at times t51 and t12, respectively. Figure 2(b) shows
the corresponding counting process of each dimension. Fig-
ure 2(c) illustrates λi (t) of the three individuals, provoking
different changes due to these activities (i.e., events). Observe
that each occurred activity causes a jump (up or down) in the
intensity function. Each jump is followed by a rapid decay
guided by the kernel function.

Essentially, various combinations of kernel functions could
recognize various temporal characteristics. When Fi (x) = x ,
such processes are referred to as linear Hawkes processes
[22] where the intensity is a linear accumulation of a series
of kernel functions. Unfortunately, such linearity may not
capture some real-world applications including information
diffusion [37]. Consequently, nonlinear Hawkes processes [9]
are proposed to address this limitation. In this paper, we in-
tegrate conformity with linear or nonlinear M-dimensional
Hawkes processes for modeling information diffusion.

3.2 Branching Structure

An equivalent view of the Hawkes process refers to the Pois-
son cluster process interpretation [23], which isolates the
events in a Hawkes process into two categories: immigrants
and offsprings. The offspring events are triggered by exist-
ing events in the process whereas the immigrants arrive
independently and hence do not have an existing parent
event. That is, we call an event an immigrant if it is gener-
ated due to the exogenous intensity µ = (µ1, µ2, . . . , µM )T

spontaneously, otherwise, it is an offspring. The offsprings
are structured into clusters, associated with each immigrant
event. This is referred to as the branching structure [22, 23].



It provides a way to capture the parent-child triggering rela-
tions between events as follows: (a) an immigrant event starts
generating offsprings; (b) each offspring starts generating
other offsprings immediately after birth.
To facilitate exposition in the context of social activity

sequences, we denote a collection of activities (i.e., events)
as {aik = (tik ,Cik )}

Ni (T )
k=1 in the time window [0,T ], where

tik denotes the occurrence time of the k th activity of an in-
dividual Ui , and Cik records the activity’s content. W.l.o.g,
we assume that an arbitrary activity can be triggered by
at most one activity. We introduce a set of auxiliary vari-
ables, denoted as {{Zik }

Ni (t )
k=1 }Mi=1, to represent the branching

structure as following:
• Zik = aik if activity aik is an immigrant; and
• Zik = ajl if the parent of activity aik is activity ajl .

If activity ajl triggers aik , (ajl ,aik ) is referred to as a parent-
child pair of activities (i.e., event aik is an offspring of event
ajl ). Given one offspring activity aik , we denote its parent
activity as Zik accordingly, and the corresponding parent-
child pair of activities as (Zik ,aik ).

Figure 3(a) depicts the branching structure representation
of the Hawkes processes in Figure 2. Each circle represents
an event (i.e., activity) and a directed link represents the
parent-child relationship between two events. For instance,
Z51 = a51 indicates that the activity a51 is an immigrant, and
Z12 = a51 denotes that the activity a51 generates a12. Hence,
(a51,a12) expresses a parent-child pair of events. Observe
that each connected component in the branching structure
represents a tree structure.

3.3 Diffusion Tree

A popular approach to represent a sequence of user activi-
ties over a time period is by using a collection of diffusion
trees [28, 40], denoted by D. A diffusion tree, Dt = (V ,E),
consists of a set of user activities as its nodes V , and a set
of unidirectional edges E = {(aik ,ajl )} denoting that the
activity aik triggers the activity ajl w.r.t the temporal prece-
dence tik < tjl . For example, in Twitter, the root node of Dt
is an original tweet. If the original tweet triggers a series of
response, it generates a series of child activities (e.g., retweet,
comment, like), referred to as first generation descendants.
Following this, first generation descendants subsequently
generate their own child activities (i.e., second generation
descendants), and so on. Figure 1(b) depicts a diffusion tree.
Observe that an original activity and its descendants in

a diffusion tree represent an immigrant and its offsprings,
respectively, in the branching structure. Hence, there is a
direct correspondence between a set of diffusion trees and
the branching structure of Hawkes processes. Each diffusion
tree Dt is a connected component in the branching structure
where a node and an edge in Dt are an event and a parent-
child pair of events (e.g., activities) in the latter, respectively.

For example, the two diffusion trees in Figure 3(b) represent
the branching structure in Figure 3(a). In the sequel, we shall
use these two concepts interchangeably.

4 CONFORMITY-AWARE INFORMATION

DIFFUSION MODEL

Equation 3.2 is used to model information diffusion by recent
works [53, 54]. Specifically, its components are estimated
from the observed social activities. Then, we can simulate
the diffusion process beyond timeT and predict various prop-
erties of the cascade. Observe that the strength of influence
from an individualUj to an individualUi in Equation 3.2 (i.e.,
αi j ) solely determines their degree of interaction in these
classical Hawkes-based models. Intuitively, the stronger the
influence αi j , the more likely Ui responds to Uj during in-
formation diffusion. However, as remarked earlier, interac-
tions between individuals are also likely to be impacted by
conformity of users. Hence, we need to augment classical
information diffusion models to capture this phenomenon
by incorporating informational conformity and normative
conformity [15].
Although in some scenarios conformity may be purely

informational or purely normative, in most cases these two
occur concurrently [25]. Furthermore, contributions of these
two types of conformity are likely to vary between different
instances of conformity and between individuals [13]. Con-
sequently, we decompose the time-varying influence strength
αi j (t) into two additive parts, informational influence α I

i j (t)

and normative influence αN
ij (t), to quantify the presence of

informational conformity and normative conformity, respec-
tively. That is,

αi j (t) = γ
I
i j (t)α

I
i j (t) + γ

N
ij (t)α

N
ij (t) (4.1)

In the above equation, the time-dependent informational
coefficient γ Ii j (t) and normative coefficient γ Nij (t) are parame-
terized to weigh informational conformity against normative
conformity at time t . Observe that ifαi j (t) > 0, thenwe know
that conformity plays a role whenUj is influencingUi . Substi-
tuting it into Eq. 3.2 gives us the model for conformity-aware
Hawkes process-based information diffusion:

λi (t) = Fi

(
µi +

∑
j ∈[M ]

∑
tjl <t

(γ Ii j (t)α
I
i j (t) + γ

N
ij (t)α

N
ij (t))ϕi j (t − tjl )

)
(4.2)

We elaborate on how to quantify α I
i j (t) and α

N
ij (t) in the

next section. In Section 7, we describe the inference of re-
maining components.

5 COMPUTATION OF CONFORMITY

In this section, we delineate how to quantify the two types
of conformity using diffusion trees (i.e., branching structure).
The formal algorithms are given in [32].



5.1 Informational Conformity

We often look to people around us who are better informed
and more knowledgeable, and then use their opinions as a
guide to our own behaviour and response. Such phenome-
non (i.e., the desire to be correct) not only occurs between
friends but also individuals who have never known one an-
other. This is known as informational conformity [10, 15].
Intuitively, informational conformity in social networks is
not symmetrical. That is, informational conformity from an
individualUi to an individualUj (i.e.,Ui conforms toUj ) may
differ from that of Uj toUi . According to social psychology
theories [14, 41], the higher the influence of Ui , the higher
the informational conformity ofUj toUi . Following this, if
Uj interacts withUi frequently, then we should boost their
informational influence. At the same time, during such in-
teractions, if Ui almost always agrees with Uj , we can say
that Ui is likely to conform to Uj . Consequently, we utilize
the notions of influence degree (i.e., measure of interaction
frequency) and context stance (i.e., opinion polarity w.r.t a
topic) to quantify the pairwise informational conformity. In-
tuitively, the product of these two items describes how likely
Ui ’s attitudes and behaviors are infected by another individ-
ualUj in the presence of informational conformity. That is,
informational influence from Uj to Ui (denoted as α I

i j (t)) is
computed as follows: α I

i j (t) = Φi j (t)×Ψi j (t)wherein the first
item Φi j (t) is referred to as influence degree, and the second
item Ψi j (t) aims to compute the context stance. Evidently,
both of them are derived from the historical interactions
between individuals. Put simply, the higher the α I

i j (t), the
higher is the informational conformity and vice versa.

Influence Degree. Frequent interactions between indi-
viduals demonstrate their closeness, and lead to high pair-
wise influence degree [51]. Furthermore, such influence de-
gree of one individual to another evolves over time. How-
ever, the effect of previous interactions may decrease with
time, namely the time decaying effects [35]. For simplicity,
we assume each response (i.e., one offspring activity in the
branching structure) provokes one interaction, followed by
an exponential decay [42]. Hence, we measure the influence
degree from individualUj to individualUi as:

Φi j (t) =

∑Ni (t )
k=1 INi j (t )(Zik , tik ) exp{−βi j (t − tik )}

Ni (t)
(5.1)

Wherein Ni j (t) records the collection of parent-child activity
pairs †, {(tjl , tik )}, up to time t . INi j (t )(Zik , tik ) is an indicator
function, which equals to one when (Zik , tik ) ∈ Ni j (t) and
zero otherwise. We use β = {βi j } to capture the decay rate
of previous interactions between individuals. Different from
Ni (t), Ni (t) denotes the total number of offspring activities
occurring to individual Ui until time t (i.e., Ni (t) ≤ Ni (t)),
†In the sequel, for simplicity, we sometimes use the occurrence time to denote one
activity, e.g., tjl represents ajl .

which could be calculated by leveraging the diffusion trees of
the activity collection Xt . Obviously, the domain of influence
degree from individual Uj to individual Ui is [0, 1]. Observe
that Φi j (t) does not assume any connection betweenUi and
Uj (i.e.,Ui andUj may or may not be friends/followers).

Context Stance.We glean insights on respondents’ opin-
ion polarity with respect to a topic in social interactions and
apply stance detection [16] to obtain the dissemination of
individuals’ beliefs. Generally, such opinion polarity is often
expressed in the form of discrete class labels, e.g., positive or
favor, negative or against, and neutral or none [16], either
explicitly or implicitly. Explicit stances are direct expressions
of opinion toward target concepts, such as “like” or “angry”
given to a particular post and the corresponding polarity is
1 or 0, respectively. Implicit stances can be extracted from
social media posts using NLTK (www.nltk.org), which is a
popular sentiment analysis package.
Given each parent-child pair of activities (tjl , tik ) consid-

ered in Ni j (t), we calculate the polarity pjl ,pik of activity tjl
and tik , and then append them into two vectors: −→p I

j (t) =
(pjl )ajl ∈Xt and

−→p I
i (t) = (pik )aik ∈Xt , respectively. Next, we

evaluate the Pearson correlation coefficient (Pcc) of the vec-
tors, denoted as Ψi j (t) = Pcc(−→p I

j (t),
−→p I

i (t)) ∈ [−1, 1], to
quantify the context stance over time. Intuitively, the higher
the value of context stance, the higher is the informational
conformity from individualUi to individualUj .

5.2 Normative Conformity

Without loss of generality, a new post (e.g., tweet) may lead
to a chain of interactions (e.g., retweet, comment, reply, like)
in a social network. In practice, such an immigrant activity
(e.g., a tweet) generates its offspring activities (e.g., a series of
retweets, comments, replies, likes) possibly involving multi-
ple individuals (i.e., dimensions). In the sequel, we refer to an
immigrant activity together with all its offspring activities
as one informational cascade. Hence, based on Section 3.3, a
diffusion tree Dt represents one informational cascade. For
example, all activities in Figure 1(b) construct one informa-
tional cascade. Figure 4 depicts another example.
An informational cascade occurs when it is optimal for

an individual, having observed the actions of individuals
ahead of him, to follow their behavior without regard to his
own information [7]. In other words, a cascade can occur
when people observe and follow “the crowd”, even when the
group consensus conflicts with their own private information
[1]. Such phenomenon of following the crowd is known as
normative conformity [10, 15].

Once one informational cascade starts around a particular
topic, a few early individuals commit their actions (i.e., adopt
or reject) through a sequence of activities (e.g., retweet, com-
ment, reply, like), and then subsequent individuals may refer
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Figure 4. Diffusion tree of one informational cascade:

“+” and “-” denote the opinion polarity (i.e., adoption
and rejection, respectively) of one activityw.r.t a topic.

to them. Hence, triggering links between the preceding and
following activities give us the opportunity to extract nor-
mative conformity by analysing the context stance hidden
in the diffusion trees.

Specifically, the normative conformity ofUi toUj depends
on the aggregated adoptions ofUi to behaviors and attitudes
of Uj . In reality, in one cascade, even though Uj ’s activity
does not immediately precedeUi ’s,Uj ’s decision may convey
information to Ui , and then Ui may act according to the
information conveyed by the actions of preceding individuals
(including Uj ) [7]. Hence, in order to quantify the normative
influence αN

ij (t), we need to ensure the followings in the
diffusion trees: (a) both individuals Ui and Uj are involved
within one cascade; and (b) the corresponding activity ajl
happens before aik .
Furthermore, informational cascades can be fragile, with

abrupt shifts or reversals in direction [7, 18]. Specifically,
either small shocks (i.e., when new information becomes
available) can easily shift the behavior of many individuals,
or higher-precision individuals can shift a cascade because
they are more inclined to use their own information than
those that precede them. For example, consider the activities
of individuals highlighted in blue (also known as fashion
leader [7]) in Figure 4. Observe that there is a shift in opinion
polarity at this point, which is adopted by subsequent actions
from individuals. Hence, the normative conformity ofUi to
Uj may vary due to such sudden shifts.

We formulate the normative influence αN
ij (t) as follows to

capture how likely individual Ui ’s attitudes and behaviors
are infected by another individualUj :

αNij (t) = Pcc
(−→p N

j (t),−→p N
i (t)

)
(5.2)

In order to compute the context stance for this type of con-
formity (right side of the above equation), we consider the
following two scenarios.

Scenario 1: Given an informational cascade, the two ac-
tivities ajl and aik lie on the same path of the diffusion tree
in chronological order. No matter ajl immediately precedes
aik or not, Uj ’s action ajl impactsUi ’s response aik to some

extent. In this case, we could directly capture their normative
influence from the two activities in two steps: (a) append
the polarity scores pjl ,pik into vectors −→p N

j (t),−→p N
i (t), re-

spectively; (b) recalibrate Pcc(−→p N
j (t),−→p N

i (t)). For example,
consider the yellow panel of Figure 4. Observe thatUj gives a
positive response ajl to the original post, and thenUд replied
Uj with an opposing view (i.e., “-” denotesUд ’s negative opin-
ion polarity) due to some reason. Afterwards,Ui agrees with
Uд . Obviously, Uд has a greater normative influence on Ui
thanUj .

Scenario 2: Consider the two activities ajl and aik located
in the green panel of Figure 4. Even though they are trig-
gered by different parent activities and are located in dif-
ferent paths of the diffusion tree, they are both impacted
by the highlighted activity in blue (i.e., the lowest common
ancestor of ajl and aik , denoting as LCA(ajl ,aik )). Further-
more, if LCA(ajl ,aik ) happens to be a fashion leader (i.e.,
Uh gives positive response to the original post, afterwards,
LCA(ajl ,aik ) suddenly shifts his opinion), it definitely would
have some effect on subsequent activities. Consequently, in
such scenario, we quantify the normative conformity ofUi
to Uj as follows. We first append the polarity pair pjl (resp.
pik ) and pLCA(tjl ,tik )

into vectors −→q N
j (t) (resp. −→q N

i (t)) and
−→q N

LCAi j
(t), and then recalculate their Pearson correlations co-

efficient Pcc(−→q N
j (t),−→q N

LCAi j
(t)) (resp. Pcc(−→q N

i (t),−→q N
LCAi j

(t)))
before appending to −→p N

j (t) (resp. −→p N
i (t)).

Scanning all information cascades satisfying the afore-
mentioned conditions up to time t , we calculate the Pearson
correlation coefficient of the vectors (Pcc

(−→p N
j (t),−→p N

i (t)
)
)

to quantify αN
ij (t) between individuals in the presence of

normative conformity.
Note the difference in the computation of context stance

for normative conformity compared to informational confor-
mity. For the latter, an individual may refer to surrounding
people who are better informed and more knowledgeable,
and then use their opinions as a guide for his/her own be-
haviours. Hence, computation of the context stance for in-
formational conformity focuses on the parent-child activity
pairs (i.e., Uj precedes Ui immediately). For the former, an
individual follows the behaviour of the preceding individu-
als during an informational cascade. Consequently, context
stance of Ui and Uj is computed by considering the aggre-
gated activities ofUi to the activities ofUj even thoughUj ’s
activity may not immediately precede Ui ’s activity (i.e., they
are not parent-child activity pairs).

6 CONSTRUCTION OF DIFFUSION TREES

In the preceding section, the informational and normative
influence (i.e., α I

i j (t), α
N
ij (t)) are computed by utilizing the



diffusion trees. In this section, we elaborate on how the
diffusion trees are construction.

Connectivity-aware construction. If an online social
network explicitly exposes connectivity information (i.e.,
parent-child link) of activity sequences to an application
then it is straightforward to construct the diffusion trees.
Activities with no parents form the immigrants and those
with parents form the offsprings.

Diffusion tree inference. The construction of diffusion
trees becomes challenging when parent-child link informa-
tion is unavailable from the social activities exposed to an
application (e.g., links in Figure 3 are missing). For example,
the Twitter api returns the following fields: tweet_id, cre-
ated_time, text, and user_id. That is, it does not provide con-
nectivity information (e.g., reply_id) of the activities. Hence,
we need to infer the latent diffusion trees (i.e., the branching
structure).

Branching structure or diffusion tree inference for informa-
tion diffusion has been addressed in several prior work [53,
54]. Unfortunately, these existing methods are only suitable
for linear Hawkes processes. Hence, it is desirable to de-
vise an inference strategy that can handle both linear and
nonlinear Hawkes processes by relaxing the requirement of
linearity.
We propose an expectation-maximization (EM) iterative

learning scheme to infer the diffusion trees. To initialize
the EM procedure, we firstly sample the auxiliary variables
{{Zik }

Ni (t )
k=1 }Mi=1. Afterwards, we update the probability of

branching structure (i.e., infer the diffusion trees) in the E-
step given the chassis model learned from the previous iter-
ation. Thus, the inference procedure of chassis can be em-
bedded into theM-step naturally. In this section, we briefly
describe the inference of diffusion trees. We defer the details
of the inference procedure of chassis in Section 7.
We present an overview of our inference strategy here.

Detailed discussion of the steps are given in [32]. The greater
the influence of the preceding activity to the following ac-
tivity, the more likely there is a triggering link between
them (i.e., they are a parent-child pair of activities). From
this perspective, we first deduce the Papangelous conditional
intensity [46] of Hawkes processes to weigh the extent to
which removing one activity will affect the subsequent activ-
ities in chronological order. Then, we utilize it to reflect the
probability that a preceding activity aik triggers on a suc-
ceeding activity ajl . After that, we obtain the parent-child
pairs of activities probabilistically.

7 INFERENCING CHASSIS MODEL

Once the diffusion trees are updated, we optimize the chassis
model to best explain the information diffusion process. Con-
sequently, in this sectionwe propose a novel semi-parametric
inference algorithm regardless of whether Hawkes processes

are linear or nonlinear, wherein exogenous intensity {µi }i ∈[M ],
decay rate of previous interactions {βi j }i, j ∈[M ], informa-
tional and normative coefficients {(γ Ii j (t),γ

N
ij (t))}i, j ∈[M ] are

learned from the observed activity sequences, while the trig-
gering kernel functions {ϕi j (t)}i, j ∈[M ] are estimated non-
parametrically via Fourier transform without prior domain
knowledge. The pseudocode of the algorithm is given in [32].

Parametric Inference. We denote the set of parameters
{µi ,γ

I
i j (t), βi j ,γ

N
ij (t)}i, j ∈[M ] as Θ. We can estimate them by

maximizing the likelihood over the observed data. Given
the social activity collection Xt over the time interval (0, t],
the log-likelihood of conformity-aware Hawkes processes
associated with the conditional intensity in Eq. 4.2 is in fact
the summation of that over all dimensions, each of which
can be interpreted as follows: the sum of the log-intensities
of activities that happened, minus an integral of the total
intensities over the observation interval (0, t] [53],

lnLi (Θ|Xt ) =
∑Ni (t )

k=1
ln λi (tik ) −

∫ t

0
λi (s)ds (7.1)

However,
∫ t
0 λi (s)ds is not always directly computable w.r.t

various intensity functions Fi (·). We propose a modified
flexible-size Euler integration method to calculate

∫ t
0 λi (s)ds

in an iterative manner.

Theorem 7.1. Let Λi (t) =
∫ t
0 λi (s)ds . Given an accuracy

bound ξ , within the time interval (0, t], taking Im steps with
the Euler method using step size hm = t

Im
, themth iteration

yields the following approximation
Λm
i (t) = hm

(
µi + λi (t1) + . . . + λi (tIm )

)
(7.2)

and the estimation error is upper bounded by |Λi (t)−Λ
(m)

i (t)| ≤
eLi t
Li

O(△t), where λi (t) is Lipschitz continuous with |(Λ
(m)

i )′(t)−

Λ′
i (t)| ≤ Li |Λ

(m)

i (t) − Λi (t)| and O(△t) denotes the first-order
truncation error.

The proof of Theorem 7.1 is given in [32]. Using this nu-
merical integration, it is straightforward to see that the log-
likelihood in Eq. 7.1 can be approximately calculated regard-
less of the forms of Fi (·). Next, we learn the parameters Θ by
maximum likelihood estimation (mle) using the gradient as-
cent method. Notably, we do not need to predefine the shape
of the kernel functions. Thus the log-likelihood in Eq. 7.1 is
concave, such that the global maximum and the convergence
of inference can be guaranteed [45]. Additionally, Θ can be
estimated in parallel over all dimensions.

Nonparametric Inference. Once the parameters Θ are
estimated, we are left to estimate the kernel functions. The
time shift in the kernel function ϕi j (t − tjl ) in time domain
corresponds to a multiplication by an exponential function
in frequency domain as follows:

ϕi j (t − tjl ) =⇒ e−jωtjl Φi j (ω) (7.3)



It provides a way to simplify the time-shifted kernel func-
tions, throughwhich the intensity function λi (t) can be trans-
formed to the frequency domain, referred to as Λi(ω).
If λi (t) is a linear combination of a series of time-shifted

kernel functions, it is straightforward to obtain Λi(ω) by ap-
plying Fourier transform directly. However, the nonlinear
functions Fi (·) prevent us from applying such strategy. To
circumvent this issue, we apply Taylor approximation to re-
lax the linearity limitation, and derive the frequency domain
counterpart of λi (t) as following:

Λi(ω) =

∫ ∞

−∞

λi (t)e
−jωtdt (7.4)

≈

∫ ∞

−∞

(
Fi (µi ) + F ′

i (µi )
∑
j ∈[M ]

∑
tjl <t

αi jϕi j (t − tjl )

)
e−jωtdt

= 2πFi (µi )δ (ω) + F ′
i (µi )

∑
j ∈[M ]

αi j (t)
∑
tjl <t

e−jωtjl Φi j (ω)

where δ (ω) is the Dirac delta function‡.
According to Eq. 3.1, we could obtain that the expectation

of an increment of the counting process Ni (t + dt) − Ni (t)
is essentially equivalent to λi (t)dt . Consequently, if we sep-
arate the period (0, t] into N equal-length time slots (i.e.,
NT = t ) and denote the corresponding number of activities
within each slot as Ni [0],Ni [1], . . . ,Ni [N − 1], respectively,
Λi(ω) can then be interpreted in terms of Ni [k] as:

Λi(ω) =
∑N−1

k=0
Ni [k]e

−jωkT

Since ω is a continuous variable, there are an infinite num-
ber of possible values of ω from 0 to 2π . Hence, Λi(ω) could
only be calculated at a finite set of frequencies. Therefore,
we divide the unit circle into N equally area (i.e., 1

NT Hz,
2π
NT rad/sec), and denote them as ωn =

2π
NT × n, then:

Λi[n] =
∑N−1

k=0
Ni [k]e

−jωnk (n = 0 : N − 1) (7.5)

wherein Λi[n] contains information about the amplitude and
phase of the sinusoid wave of frequency ωn . Intuitively, the
triggering kernel function ϕi j (t) should be proportional to
the decay rate of previous interactions βi j . As a result, given
ωn , we could obtain :

Φi j [ωn ] =
βi jΛi[n]

F ′
i (µi )

∑
j ∈[M ] αi j (t)βi j

∑Nj (t )
l=1 e−jωn tjl

(7.6)

In particular,

Φi j [ω0] =
Λi [0] − 2πFi (µi )

F ′
i (µi )

∑
j ∈[M ] αi j (t)Nj (t)

(7.7)

Thenwe could deduce the time domain counterpart ofΦi j [ω]
by inversing DFT (IDFT):

ϕi j (t) =
1
N

∑N−1
n=0

Φi j [ωn ]e
jωn t (7.8)

‡δ (ω) is zero everywhere except at ω = 0, and its total integral is 1.

The above estimation for kernel functions is completely data-
driven. We run the parametric and nonparametric inference
procedures alternatively until convergence.

Applications of chassis. By leveraging the estimated
chassis, we can predict user behaviours, such as next ac-
tivity prediction and future number of activities prediction.
Detailed discussion on such applications is given in [32].

8 PERFORMANCE STUDY

In the section, we present the performance of chassis. We
report key results here. Additional results are given in [32].
We have implemented the framework in Python. All exper-
iments are performed on a 64-bit Windows desktop with
Intel(R) Core(TM) E5-1620V2 CPU@3.70 and 16GB RAM.

Strategies. We compare the following information diffu-
sion models: (a) ADM4 [53]: It utilizes the mutually-exciting
linear Hawkes model to capture temporal patterns of user
behaviors, and infers the social influence by imposing both
low-rank and sparse regularization on the influence matrix.
(b) MMEL [54]: It captures the temporal dynamics of ob-
served activities by linear Hawkes processes, and learns the
triggering kernels nonparametrically. (c) CHASSIS-L: Our
proposed chassis model. Here, we set Fi (x) = x (i.e., linear
Hawkes processes). Initially, the base intensity µ is sampled
from a uniform distribution over [0, 0.01] for each dimension,
and the coefficients {γ Ii j (t), βi j ,γ

N
ij (t)}i, j ∈[M ] are generated

from a uniform distribution on [0, 0.1]. (d) CHASSIS-E: Sim-
ilar to CHASSIS-L, the only difference is Fi (x) = ex (i.e.,
exponential Hawkes processes).

Datasets.We use the following datasets: (a) Facebook: We
collect the data via Facebook Graph API (https://developers.
facebook.com/docs/graph-api), comprising nearly 44 million
public activities posted by 109, 211 individuals, from March
2018 to May 2018; (b) Twitter : We gather the data via Twitter
Streaming API (https://developer.twitter.com/en/docs), con-
taining nearly 52 million public activities posted by 123, 972
individuals, from March 2018 to May 2018. Additionally, we
obtain the relationships among such individuals (i.e., who
follows whom) in each dataset, which could be converted
into an excitation matrix A = [αi j ]i, j ∈[M ] (αi j = 1 if Uj fol-
lows Ui , otherwise αi j = 0) as the ground truth. Utilizing
such relationships, we grab the offspring activities of each
immigrant activity of each individual via a depth first search
algorithm. We evaluate the scalability of chassis using these
two datasets and extract two subsets of the datasets: 590,671
activities posted by 100,000 individuals in Facebook (denoted
as SF ) and the other with 671,810 activities posted by 110,000
individuals in Twitter (denoted as ST ), for other experiments.

Model Fitness.We study how well chassis can explain
the real-world data by comparing it with other strategies. We
use two evaluation metrics, namely LogLike and RankCorr.
Specifically, LogLike is the log-likelihood of the estimated

https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
https://developer.twitter.com/en/docs
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Figure 5. Model fitness (LogLike).

model on one test dataset and computed as lnL(Xtest |Θtraining)

=
∑

i ∈[M ]

( ∑Ni (ttest)
k=1 ln λi (tik ) −

∫ ttest
0 λi (s)ds

)
[53]. RankCorr

calculates the average Kendall’s rank correlation coefficient
between each row of influence matrix A and estimated Â, to
measure whether the relative order of the estimated social
influences is correctly recovered [53]. We order all activities
in a dataset chronologically, and use the first 30%, 50%, 60%,
70%, 80% samples for training, respectively.

Figure 5 shows the performance using LogLike on the
testing activities. LogLike increases as the number of activi-
ties for training increases, indicating that more training data
lead to better accuracy. Clearly, CHASSIS-L and CHASSIS-E
perform significantly better than ADM4 andMMEL, which
indicates that chassis can capture the information diffusion
better than the conformity-unaware strategies.

Is the superiority of chassis is due to conformity-awareness
or merely more flexible semi-parametric inference method?
To answer this, we design two baselines, L-HP and E-HP,
referring to our semi-parametric inference algorithm under
linear and exponential Hawkes, respectively, with the in-
tensities in Eq. 3.2. Both methods are conformity-unaware
and are inferior to CHASSIS-L and CHASSIS-E (Figure 5).
Hence, model fitness accuracy can be improved significantly
when conformity is taken into account. On the other hand,
both baselines exhibit better performance than ADM4 and
MMEL. It implies that the proposed semi-parametric infer-
ence scheme also improves model fitness performance.
Additionally, we investigate the importance of model-

ing both informational and normative conformity in chas-
sis by disabling one of them in Eq. 4.2. Specifically, we re-
move

∑
i, j ∈[M ] γ

N
ij (t)α

N
ij (t) (resp.

∑
i, j ∈[M ] γ

I
i j (t)α

I
i j (t)) , and

only quantify
∑

i, j ∈[M ] γ
I
i j (t)α

I
i j (t) (resp.

∑
i, j ∈[M ] γ

N
ij (t)α

N
ij (t))

in CHASSIS-LI (resp. CHASSIS-LN) and CHASSIS-EI (resp.
CHASSIS-EN). As shown in Figure 5,CHASSIS-L (resp.CHASSIS-
E) outperformsCHASSIS-LI (resp.CHASSIS-EI) andCHASSIS-
LN (resp.CHASSIS-EN), endorsing the necessity of modeling
both informational conformity and normative conformity.
All these approaches also outperform L-HP and E-HP. Fur-
thermore, CHASSIS-E (resp. CHASSIS-EI, CHASSIS-EN and

Table 1. Branching structure inference performance

Dataset Strategy
ADM4 MMEL CHASSIS-L CHASSIS-E

Charlie Hebdo 0.6547 0.7031 0.7966 0.8422
Sydney siege 0.6301 0.6908 0.7804 0.8380
Ferguson 0.6122 0.6743 0.7765 0.8201

Ottawa shooting 0.6003 0.6578 0.7523 0.8130
Germanwings-crash 0.5634 0.6020 0.7342 0.8002

E-HP) always has higher LogLike than CHASSIS-L (resp.
CHASSIS-LI, CHASSIS-LN and L-HP), indicating that non-
linear Hawkes processes are more suitable for capturing the
triggering patterns hidden in social activities.
The results using RankCorr are qualitatively similar to

LogLike [32].
Convergence. The LogLike of CHASSIS-L and CHASSIS-

E increase as the number of iterations grows and converge
after 80 iterations on Facebook and Twitter data [32].

Inferring the Diffusion Trees.We now report the diffu-
sion tree inference quality in chassis using the datasets from
pheme (https://doi.org/10.6084/m9.figshare.6392078.v1) [27].
It contains Twitter conversation threads (i.e., information cas-
cades) associated with different newsworthy topics. Since the
diffusion trees in each conversation are given, we use them
as the ground truth for evaluating the inferred diffusion trees.
We run the four Hawkes-based strategies on each dataset,
and construct the diffusion trees accordingly. Comparing
the inferred branching structure with the ground truth, we
evaluate the effectiveness of strategies in terms of F1-Score.
Table 1 reports the results. Observe that bothCHASSIS-E and
CHASSIS-L outperform the conformity-unaware strategies
on all datasets, reemphasizing the importance of conformity
in information diffusion. Again, CHASSIS-E outperforms
CHASSIS-L significantly, indicating that nonlinear Hawkes
processes are more appropriate than the linear ones.

9 CONCLUSIONS

A significant omission in existing online information diffu-
sion models is the role played by conformity, a fundamental
human trait according to social psychology theories. We
propose a novel framework called chassis to address this
limitation by integrating conformity into Hawkes process-
based information diffusion model. Specifically, we detect
and quantify conformity by analyzing the diffusion trees. We
propose an efficient semi-parametric inference algorithm,
wherein the parametric evaluation procedure assists in iden-
tifying conformity of individuals, and the nonparametric
procedure learns the triggering kernel functions flexibly in
a data-driven way without the need of prior domain knowl-
edge. Our experimental study not only demonstrates superi-
ority of chassis compared to conformity-unaware models
but also emphasizes the pivotal role conformity plays in
information diffusion.

https://doi.org/10.6084/m9.figshare.6392078.v1
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