
Graph Querying Meets HCI: State of the Art and Future
Directions

Sourav S Bhowmick
Nanyang Technological

University
Singapore

assourav@ntu.edu.sg

Byron Choi
Hong Kong Baptist University

Hong Kong
bchoi@comp.hkbu.edu.hk

Chengkai Li
The University of Texas at

Arlington
USA

cli@uta.edu

ABSTRACT
Querying graph databases has emerged as an important research
problem for real-world applications that center on large graph data.
Given the syntactic complexity of graph query languages
(e.g., SPARQL, Cypher), visual graph query interfaces make it easy
for non-expert users to query such graph data repositories. In this
tutorial, we survey recent developments in the emerging area of vi-
sual graph querying paradigm that bridges traditional graph query-
ing with human computer interaction (HCI). We discuss manual
and data-driven visual graph query interfaces, various strategies
and guidance for constructing graph queries visually, interleaving
processing of graph queries and visual actions, and visual explo-
ration of graph query results. In addition, the tutorial suggests open
problems and new research directions. In summary, in this tutorial
we review and summarize the research thus far into HCI and graph
querying in the database community, giving researchers a snapshot
of the current state of the art in this topic, and future research di-
rections.

1. INTRODUCTION
Graphs are a natural way of modeling data in a wide variety

of domains and have been extensively studied in mathematics and
many areas of computer science. Graph data in real-world applica-
tions such as biological and chemical databases (e.g., PubChem),
social networks (e.g., Twitter), co-purchase networks (e.g., Ama-
zon.com), and information networks (e.g., DBpedia) has lead to
a rejuvenation of research on graph data management and analyt-
ics. Several novel graph data management platforms have emerged
from academia, industrial research labs (e.g., Trinity), and startup
companies (e.g., GraphX). Several database query languages have
been proposed for textually querying graph databases, e.g., SPARQL,
Cypher1, and GraphQL [18].

Unfortunately, composing graph queries using aforementioned
graph query languages often demands considerable cognitive effort
from users and requires “programming” skill that is at least com-
parable to SQL [1]. A user must be familiar with the syntax of the

1http://neo4j.com/docs/stable/cypher-query-lang.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3054774

language, and must be able to express her search goal accurately in
a syntactically correct form. However, in many real life domains
(e.g., life sciences, social science, chemical science) it is unrealis-
tic to assume that end users are proficient in such query languages.
Hence, it is paramount to devise easy and intuitive techniques that
reduce the burden of query formulation and thus increase the us-
ability of graph databases.

Fortunately, unlike SQL, graph queries are more intuitive to draw
than to compose them in textual format. Consequently, visual query
interfaces (a.k.a GUI) that can enable an end user to draw a graph
query interactively have gained increasing attention in recent times
from academia [9, 16, 25, 26, 45] and industry (e.g., PubChem2,
eMolecule3). This has recently paved the way for research in a va-
riety of directions that are driven by visual query interfaces such as
novel visual query processing paradigm [25, 26], interactive guid-
ance to users by providing relevant and timely feedback and sug-
gestions during query formulation [23, 24, 39], exploration and vi-
sualization of graph query results [19, 45], among others.

This tutorial gives a comprehensive introduction to the topic of
visual graph querying, discussing state of the art in the industry
and in the academic world. In particular, a hallmark of this tutorial
is to emphasize research efforts that aim to bridge two tradition-
ally disparate topics in computer science, namely, graph querying
and human computer interaction (HCI). Specifically, a key compo-
nent we cover is the review of techniques and strategies that make
visual graph query interface design data-driven and query formula-
tion, query processing and results exploration HCI-driven. A brief
overview of the scope of the tutorial is as follows.

• Visual interfaces for graph querying: We review differ-
ent features and functionalities of a variety of visual graph
query interfaces that are proposed by research communities
and industry. We also review a recent effort in making such
interface construction and maintenance data-driven.

• Visual query formulation and guidance: We cover vari-
ous strategies for formulating different types of graph queries
visually. Since a user-friendly visual query system is ex-
pected to interactively guide users into query construction,
we review recent work in this direction in the context of vi-
sual query feedback (e.g., empty result) and suggestions. A
key emphasis here is work that leverage principles of HCI to
guide users during query formulation.

• Visual action-aware graph query processing: In this part,
we review HCI-driven graph query processing techniques.
Specifically, in contrast to traditional query processing

2http://pubchem.ncbi.nlm.nih.gov/
3https://www.emolecules.com/

Table 1: Tutorial overview.
Topic Representative papers Demo
Introduction No
Visual interfaces for graph querying [9, 12, 16, 25, 26, 39, 45], Pubchem, eMolecule Yes ([26], Pubchem)
Visual graph query formulation and guidance [5, 23, 24, 26, 39, 44, 47] Yes ([23, 47])
Visual action-aware graph query processing [4, 19, 25, 26] Yes ([4, 26])
Query results exploration and visualization [19, 26, 33, 43] Yes ([19])
Future research direction No

paradigm where a query is processed only after it is com-
pletely formulated, here we review efforts that interleave query
processing with visual actions taken by users during query
construction.

• Query results exploration and visualization: We review
techniques proposed in the literature to explore and visual-
ize results matches of a visual graph query. Specifically, we
highlight efforts that make such exploration HCI-driven.

• Future research directions: : Finally, we discuss open prob-
lems on the topic of visual graph querying and providing pos-
sible directions for future work.

2. TUTORIAL OUTLINE
Our presentation follows a top-down approach, starting from vi-

sual query interface design, proceeding to visual query formulation
and processing, visualization of query results, and concluding with
future research directions in this arena. Table 1 shows the key pa-
pers discussed in this tutorial. Additionally, a key feature of our
tutorial is live demonstration of various research prototypes related
to the aforementioned topics as highlighted in the rightmost column
in Table 1.

2.1 Visual Interfaces for Graph Querying
There have been considerable efforts on designing visual graph

query interfaces (i.e., GUI) for querying graph-structured data in
a variety of application domains [9, 12, 16, 25, 26, 39, 45]. Inter-
estingly, these GUIs provide diverse functionalities for formulating
graph queries of varying complexity. For instance, some GUIs [7]
provide a panel containing canned patterns to expedite query for-
mulation whereas others do not [26, 39]. Intuitively, a canned pat-
tern is a small topological pattern (e.g., a benzene ring, triangle)
which users can drag-and-drop into a query. Some may support ap-
proximate subgraph search but others may not. Additionally, some
GUIs may suffer from poor aesthetics compared to others despite
the fact that people prefer attractive interfaces and the effect of aes-
thetics in GUI appreciation is significant [11]. Hence, we begin
our tutorial by summarizing various GUIs proposed in the litera-
ture and in industry for querying graph-structured data highlight-
ing their distinguishing features, similarities and differences w.r.t
to structure, functionalities, and aesthetics. A key point of our dis-
cussion is the emphasis on the fact that despite decades of research
by the HCI community related to various theoretical models of vi-
sual tasks, menu design, and human factors, many of the current
GUIs for graph querying are oblivious to these results.

Next, we focus on the construction and maintenance of visual
query interfaces. There are currently two flavors for constructing
and maintaining a GUI, namely, manual and data-driven. Most
of the real-world GUIs follow the former approach (i.e., they are
constructed and maintained manually). That is, details of visual
design of a GUI are manually worked out and contents of various
components are created manually by “hard coding” them during

GUI implementation. Unfortunately, such manual effort may create
GUIs that do not provide sufficient features (e.g., canned patterns)
to aid query formulation, are static in nature when the underly-
ing graph data repository evolves, and have limited portability [7].
To alleviate these limitations, we introduce a recent work on data-
driven GUI construction and maintenance [48], which can automat-
ically construct the content of various panels of a GUI and maintain
them as underlying data evolves. Such a data-driven paradigm has
several benefits such as superior support for visual subgraph query
construction, significant reduction in the manual cost of maintain-
ing an interface for any graph query-based application, and porta-
bility of the interface across diverse variety of graph querying ap-
plications.

2.2 Visual Graph Query Formulation and
Guidance

Next, we review recent studies on techniques to facilitate visual
graph query construction.

Visual graph query formulation. To formulate a graph query,
there are mainly three approaches in the literature. In the edge-at-
a-time approach (e.g., [26]), a query is incrementally constructed
by adding one edge at a time. In contrast, in the pattern-at-a-
time approach (e.g., https://pubchem.ncbi.nlm.nih.gov/edit2/index.
html?cnt=0), one may compose a visual query by dragging and
dropping canned patterns or subgraphs that are available on the
GUI in addition to single edge construction. Observe that the lat-
ter approach is more efficient than the former as it typically takes
lesser time to construct a query. More recently, VISAGE [39] real-
izes Query By Example (QBE) for formulating graph queries using
examples.

Categories of query guidance. Regardless of the approach taken
to construct a visual query, a user-friendly visual query system
is expected to interactively guide users into constructing correct
queries. A non-exhaustive list of the kinds of guidance such a sys-
tem may employ is given below.

• Syntactic and semantic help. A visual query system can de-
tect and notify users when there is a syntax or semantic prob-
lem in a query (e.g., a missing quote on a string or a wrong
type passed to a function). A system could even suggest bet-
ter alternative syntax. These techniques can greatly enhance
users’ ability to formulate syntactically correct queries visu-
ally without resorting to memorizing various syntactic fla-
vors of a query language.

• Empty result feedback. It is beneficial to end users if we can
detect during query construction scenarios where a partially
constructed query returns empty results and alert them in a
timely fashion so that one can undertake appropriate reme-
dial action(s). Several recent studies [5,39] address this prob-
lem by notifying a user opportunely when a partially con-
structed visual query yields an empty result.

• Long-running query feedback. A recent study [44] shows
that a graph query that runs fast may slow down significantly
after a slight modification to the query’s structure. Unex-
pected query behaviors like this can confuse and annoy users
of visual query systems, especially in the context of exploratory
search. It would be better if the system could warn a user
about a potentially long-running query fragment during query
formulation. The study in [44] demonstrates a system in this
direction.

• Query fragments suggestion. Given a partially-constructed
visual graph query, it is useful to suggest top-k possible query
fragments that the user may potentially add to her query in
the subsequent step. Such suggestions can enhance user ex-
perience by greatly reducing the query formulation time. The
recent query log-driven effort in [23], which suggests edge
increments to the current query graph, is a step in this direc-
tion. However, since it provides only edge suggestions, the
query formulation process may take many steps and users
can only choose limited structural information. In contrast,
AUTOG [47] suggests subgraph increments, enabling formu-
lation of query graphs quickly. VISAGE [39] supports sug-
gestions on nodes, edges, as well as conditions.

There are two common threads in the above scenarios. First,
without the aid of a visual query feedback mechanism, users would
be unaware of these cases, since each case requires comprehensive
knowledge of the underlying data or query language. Feedback
about various problems encountered during query construction as
well as possible solutions is critical to enhancing the usability of
a visual querying system. Second, as query conditions in a vi-
sual querying environment are typically constructed iteratively, it
is often critical to detect and notify the aforementioned issues op-
portunely. It is ineffective to provide feedback at the end of query
formulation. For instance, consider the empty result problem. It
is ineffective to provide feedback after the query formulation as a
user may have wasted her time and effort in formulating additional
query conditions. Similarly, it is ineffective if the visual querying
scheme fails to alert the user opportunely when a “long-running”
query fragment is detected. Such opportune notification is also im-
portant in the context of query fragment suggestion as it is not ben-
eficial if suggestions are made after the query has been visually
constructed.

Interruption due to query feedback. The aforementioned no-
tifications, however, come with a cost: they interrupt a primary
task (i.e., query formulation). This is because notifications divert
attention [21, 38]. Intuitively, an interruption is a distraction that
causes one to stop a scheduled task to respond to a stimulus. Many
studies in the cognitive psychology and HCI communities have re-
ported that interrupting users engaged in tasks by delivering notifi-
cations inopportunely can negatively impact task completion time,
lead to more errors, and increase user frustration [2, 3, 21, 22, 37].
For instance, suppose a user is notified intrusively (e.g., invoking
a pop-up dialog box, highlighting a condition) of an empty result
(due to previously formulated condition) when she is constructing
a new edge in a query graph. This interruption may frustrate her as
mental resources allocated for the current task are disrupted. Such
inopportune, intrusive feedback adversely affects the usability of
the system.

There exists little work that systematically explores the issue
of delivering feedback opportunely by ensuring such notification
is “interruption-sensitive”. In [5], an interruption-sensitive frame-
work is proposed in the context of the empty results problem. Specif-
ically, it bridges the classical visual query feedback problem with

intelligent notification management from the domains of HCI and
cognitive psychology to notify the user about the following:

• Occurrence of the empty results problem due to the con-
structed query fragment opportunely so that she can avoid
wasting time and effort in continuing constructing new con-
ditions.

• Identify the constructed query condition(s) that is responsible
for an empty result.

• Optionally, suggest a query modification to mitigate the empty
results problem.

2.3 Visual Action-aware Graph Query
Processing

Given a graph query formulated using a visual query interface,
the next issue is the efficient processing of the query to retrieve
matching results. There is a large body of research in the literature
for efficient and scalable processing of a variety of graph queries on
a set of small/medium sized graphs and on a large network [17,28].
We can classify these efforts into two categories, namely, visual
action-unaware and visual action-aware. In visual action-unaware
graph query processing, the query processor remains idle when the
query is being constructed. It only starts processing the query once
the Run icon is clicked after the complete query is composed by
the user. Hence, any traditional graph query processing technique
can be utilized to process such a visual query. On the other hand, in
visual action-aware graph query processing, instead of processing
a query graph after its construction, visual query construction and
processing is interleaved [19, 25, 26]. That is, the query processor
utilizes the latency offered by the GUI actions to evaluate a partially
constructed query graph at each step during query construction to
generate candidate matches.

In this tutorial, we focus on visual action-aware graph query pro-
cessing instead of its visual action-unaware counterpart as the tech-
niques to process latter have been discussed in several tutorials in
major data management venues [31]. We group the review of visual
action-aware query processing techniques into two categories.

Query processing on a set of small data graphs. Recent work [25,
26] have proposed novel visual action-aware feature-based indexes
and query processing techniques to support exact and approximate
subgraph queries efficiently on a large collection of small or medium-
sized data graphs (e.g., chemical compounds). Specifically, when
a user draws a new edge or a canned pattern on the query can-
vas, candidate data graphs containing the current query fragment
are efficiently retrieved and monitored by leveraging the indexes.
This process is repeated until the user clicks on the Run icon to
signify the end of the query formulation step. Consequently, the
final query results are generated from the prefetched candidate data
graphs by performing verification test whenever necessary. Note
that as this step invokes the subroutine for subgraph isomorphism
test, the verification process needs to be minimized by judiciously
filtering as many false candidates as possible without any verifica-
tion test. These frameworks also support efficient maintenance of
candidate data graphs in the presence of query modification during
formulation.

Query processing on a large network. It is well-known that tech-
niques for processing queries on a large set of small or medium-
sized graphs are different from those employed for processing large
or massive networks [17]. Here we review a recent research [19] on
realizing the aforementioned query processing paradigm on a large
network (e.g., protein interaction networks and social networks).
First, it decomposes a large network into a set of graphlets and

supergraphlets using a minimum cut-based graph partitioning tech-
nique. Next, it mines a variety of frequent and infrequent fragments
from them and identifies their occurrences in these graphlets and
supergraphlets. Then, the indexing framework of [26] is augmented
so that the mined fragments can be exploited to index graphlets for
efficient blending of visual subgraph query formulation and query
processing.

Automated performance study. User studies are the sine qua non
for evaluating the performance and effectiveness of the aforemen-
tioned visual action-aware query processing techniques. For ex-
ample, consider the visual subgraph querying paradigm in [25,26].
In contrast to the traditional query processing paradigm where the
runtime performance of a large number of subgraph queries can be
easily measured by automatically extracting a random collection
of subgraphs from the underlying data and executing them [28],
each visual query graph must be formulated by a set of users. This
is because in this paradigm the availability of the GUI latency at
each formulation step is exploited to prefetch and refine candidate
matches. To address this challenge, we review a novel synthetic
visual subgraph query simulator [4], which focuses on simulating
subgraph query construction on a database containing a large num-
ber of small or medium-sized graphs. Using this framework, one
can automatically generate many test subgraph queries having dif-
ferent user-specified characteristics (e.g., frequent, infrequent) us-
ing indexes and simulate their formulation based on different query
formulation sequences without requiring human users. Specifi-
cally, it employs an HCI-inspired quantitative model to estimate the
time for subgraph query formulation and an algorithm to simulate
visual query formulation of the generated test queries by leverag-
ing the quantitative model. This framework can then be used to
automate exhaustive evaluation of performances of various visual
action-aware query processing techniques.

2.4 Query Results Exploration and
Visualization

Although there have been several work in the literature on in-
teractive data exploration [20] and visualization of graph analy-
sis [27,32,42], very few have focused on rich and interactive explo-
ration and visualization of graph query results. We can categorize
exploration and visualization of graph query results into two types.
For a large collection of small and medium-sized graphs, [25, 26]
highlight subgraphs in a result data graph with different color to
identify the component of the data graph that matches a visual
query. These results can be sorted by various measures such as
subgraph distance (for approximate match). On the other hand,
when queries are posed on a large network, in the literature there
are three types of visualization strategies, namely summarization-
based, region-based, and feature-based.

SLQ [43, 45] employs a summarization-based technique to un-
derstand the results of a graph query. Specifically, given a query
and a set of matches, it describes all the matches with a set of
summary graphs by preserving the connectivity of the keywords
associated with the graph query. This enables a user to get a big
picture of all the result matches. In [19], results of a visual sub-
graph search are viewed in “supergraphlet-at-a-time” mode where
one (super)graphlet containing result matches is displayed on the
result screen one at a time. Intuitively, a supergraphlet represents
a small region of a large network containing at least one match to
the query. A user can explore this region and its neighborhood by
double-clicking on a vertex. The work in [33] employs a feature-
based visualization of query results in the context of weighted RDF
graphs. Specifically, it provides a mechanism to explore large sets
of weighted subgraphs relative to features relevant to the user.

2.5 Future Directions
While good progress has already been made, research on bridg-

ing graph querying and HCI opens up many opportunities for con-
tinued research. The final part of the tutorial presents open prob-
lems in this area. Some of these topics were introduced by recent
vision papers [6, 7]. Our grand vision is a pervasive desire to con-
tinue stimulating shift in our traditional thinking by bringing to-
gether HCI and graph data management to work together.

Visual querying on massive graphs. All research related to data-
driven visual query interface construction, guidance for visual query
formulation, visual action-aware query processing, and exploration
and visualization of query results have focused either on a large set
of small or medium-sized data graphs or on networks with millions
of nodes. A natural extension to this paradigm is to support sim-
ilar problems on massive graphs (comprising hundreds to billions
of nodes), which may demand a distributed framework and novel
algorithms built on top of it.

Efficient processing of complex graph queries. Current research
demonstrates the viability of blending visual formulation and pro-
cessing of subgraph containment and subgraph similarity search
queries. It is an open problem to enhance the expressiveness of
such visual querying framework to handle more complex subgraph
queries such as homomorphism-based subgraph queries [14, 29],
subgraph simulation [13].

Aesthetics-aware GUI design. An issue that is paramount to an
end user but widely ignored by the data management community
is the aesthetics of the layout of the GUI. Many HCI studies have
asserted a strong link between visual complexity and aesthetics of
web pages [41] and have attempted to measure their aesthetics au-
tomatically by analyzing HTML sources and screenshots of web
pages [40]. In particular, GUI screenshot-based measure is con-
sidered superior to other methods as it better represents what a user
sees [40]. The work in [34–36] proposed an array of aesthetics
metrics to quantify visual complexity such as visual clutter, color
variability, contour congestion, and layout quality.

Existing approaches to make a GUI stand out is to work out all
of the aforementioned details of visual design manually. That is,
the layout of a visual query interface is not automatically gener-
ated by considering various GUI aesthetics metrics. Hence, how
can we extend data-driven GUI construction techniques to be visual
aesthetics-aware? Note that the data-driven visual layout design
problem can be reformulated as an optimization problem where
the goal is to find an “optimal” layout that minimizes query for-
mulation task complexity and visual complexity (measured using
aesthetics metrics) of the interface.

Multi-faceted exploration and visualization of query results. As
remarked earlier, techniques that enable rich, interactive exploration
and visualization of graph query results are still in its infancy. How
can we easily explore and visualize results of a variety of subgraph
queries to gain better understanding of it? This is especially a chal-
lenging problem when the underlying graph is massive as the entire
graph looks like a giant hairball and the subgraphs that are returned
as results to a query are lost in the visual maze. Furthermore, it is
interesting to explore additional insights that we may attach to the
matched results that may enable end users for further exploration.

3. HISTORY OF THE TUTORIAL
To the best of our knowledge, this tutorial has not been presented

in any major database or HCI conference. In particular, the tutorial
on data exploration in [20] does not focus on graph data or bridging
HCI with visual graph querying. The tutorials in [10, 15, 30, 31, 46]

focus on traditional graph querying and analytics. Our tutorial is
orthogonal to these efforts as we focus on visual graph querying
paradigm.

4. BIOGRAPHIES
Sourav S. Bhowmick is an Associate Professor in the School of
Computer Science and Engineering (SCSE), Nanyang Technologi-
cal University. He leads the data management research group (DANTe)
in SCSE. His research has appeared in top-tier venues in data man-
agement and analytics such as SIGMOD, VLDB, ICDE, VLDB
Journal, TKDE, WWW, and KDD. Sourav has been keynote and
tutorial speaker for several international conferences. He has re-
ceived Best Paper Awards at ACM CIKM 2004 and ACM BCB
2011 for papers related to evolution mining and biological network
summarization, respectively. His work on influence maximization
was nominated for the best paper award in ACM SIGMOD 2015.
Sourav has served as a PC member of premium data management
and data mining conferences (e.g., VLDB, ICDE, KDD, ICDM)
and reviewer for various premium journals (e.g., TKDE, VLDB
Journal).

Byron Choi is an Associate Professor at the Department of Com-
puter Science, Hong Kong Baptist University (HKBU). He obtained
his Ph.D in Computer and Information Science from the Univer-
sity of Pennsylvania in 2006. His research interests include graph-
structured databases, database usability, and database security. By-
ron’s publications have appeared in premium venues such as TKDE,
VLDBJ, SIGMOD, VLDB, and ICDE. He has served as a program
committee member or reviewer of premium conferences and jour-
nals including PVLDB, VLDBJ, ICDE, TKDE and TOIS. He has
served as the director of a Croucher Foundation Advanced Study
Institute (ASI), titled “Frontiers in Big Data Graph Research” in
2015. He was a recipient of the HKBU President’s Award for Out-
standing Young Researcher in 2016.

Chengkai Li is an Associate Professor in the Department of Com-
puter Science and Engineering at the University of Texas at Arling-
ton. He received his Ph.D. degree in Computer Science from the
University of Illinois at Urbana-Champaign in 2007. Chengkai’s
research interests are in database, data mining, Web data manage-
ment, and natural language processing. He is conducting research
on computational journalism, crowdsourcing and human computa-
tion, data exploration by ranking (top-k), skyline and preference
queries, database testing, entity query, and usability challenges in
querying graph data. Chengkai’s papers have appeared in presti-
gious database, data mining and Web conferences (e.g., SIGMOD,
VLDB, CIDR, KDD, WWW, WSDM) and journals (e.g., TODS,
TKDD, TKDE). He has served as General Co-Chair and Program
Co-Chair of IEEE IPCCC, and he has also served on the organiz-
ing committee of SIGMOD. He served on the program committees
of premier conferences (e.g., SIGMOD, VLDB, KDD, WWW, IJ-
CAI). He has also been a reviewer for prestigious journals (e.g.,
TODS, TOIS, TKDE, VLDB Journal). Chengkai is a recipient of
the 2011 and 2012 HP Labs Innovation Research Award.

5. ACKNOWLEDGMENTS
Sourav S Bhowmick was supported by the Singapore-MOE AcRF

Tier-2 Grant MOE2015-T2-1-040. Byron Choi was partially sup-
ported by HKRGC GRF 12232716 and 12201315. Chengkai Li
was partially supported by NSF grant 1408928 and NSF-China
grant 61370019. Any opinions, findings, and conclusions in this
publication are those of the authors and do not necessarily reflect
the views of the funding agencies.

6. REFERENCES
[1] S. Abiteboul, et al. The Lowell Database Research

Self-Assessment. In Communication of the ACM, 2005.
[2] P. D. Adamczyk, B. P. Bailey. If Not Now, When? The

Effects of Interruptions at Different Moments Within Task
Execution. In CHI, 2004.

[3] B. P. Bailey, J. A. Konstan. On the Need for Attention Aware
Systems: Measuring Effects of Interruption on Task
Performance, Error Rate, and Affective State. In Journal of
Computers in Human Behavior, 22(4), 2006.

[4] S.S. Bhowmick, H.-E. Chua, B. Thian, B. Choi. VISUAL:
An HCI-inspired Simulator of Blending Visual Subgraph
Query Construction and Processing. In ICDE, 2015.

[5] S.S. Bhowmick, C. E. Dyreson, B. Choi, M.-H Ang.
Interruption-Sensitive Empty Result Feedback: Rethinking
the Visual Query Feedback Paradigm for Semistructured
Data. In CIKM, 2015.

[6] S. S. Bhowmick. DB ./ HCI: Towards Bridging the Chasm
Between Graph Data Management and HCI. In DEXA, 2014.

[7] S. S. Bhowmick, B. Choi, C. E. Dyreson. Data-driven Visual
Graph Query Interface Construction and Maintenance:
Challenges and Opportunities. PVLDB 9(12), 2016.

[8] H. Blau, N. Immerman, D. Jensen. A Visual Language for
Querying and Updating Graphs. Tech. Report 2002-037,
Univ. of Mass., Amherst, 2002.

[9] D.H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher,
T. Eliassi-Rad. GRAPHITE: A Visual Query System for
Large Graphs. In ICDM Workshop, 2008.

[10] P. Cudré-Mauroux, S. Elnikety. Graph Data Management
Systems for New Application Domains. In VLDB, 2011.

[11] A. De Angeli, A. Sutcliffe, J. Hartmann. Interaction,
Usability and Aesthetics: What Influences Users’
Preferences? In Proc. of Conference on Designing
Interactive Systems, 2006.

[12] D. Erdös, Z. Fekete, A. Lukács. Visualized subgraph search.
IEEE VAST, 2009.

[13] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Y. Wu. Graph Pattern
Matching: From Intractable to Polynomial Time. VLDB,
3(1-2):264–275, 2010.

[14] W. Fan, J. Li, S. Ma, H. Wang, Y. Wu. Graph
Homomorphism Revisited for Graph Matching. In PVLDB,
2010

[15] C. Faloutsos, U. Kang. Mining Billion-Scale Graphs:
Patterns and Algorithms. In SIGMOD, 2012.

[16] F. Haag, S. Lohmann, S. Bold, T. Ertl. Visual SPARQL
Querying based on Extended Filter/flow Graphs. In AVI,
2014.

[17] W.-S Han, J. Lee, M.-D. Pham, J. X. Yu. iGraph: A
Framework for Comparisons of Disk Based Graph Indexing
Techniques. In VLDB, 2010.

[18] H. He, A. K. Singh. Graphs-at-a-time: Query Language and
Access Methods for Graph Databases. In SIGMOD, 2008.

[19] H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, S.
Zhou. QUBLE: Towards Blending Interactive Visual
Subgraph Search Queries on Large Networks. VLDB J.
23(3), 2014.

[20] S. Idreos, O. Papaemmanouil, S. Chaudhuri. Overview of
Data Exploration Techniques. In SIGMOD, 2015.

[21] S. T. Iqbal, B. P. Bailey. Effects of Intelligent Notification
Management on Users and Their Tasks. In CHI, 2008.

[22] S. T. Iqbal, B. P. Bailey. Investigating the Effectiveness of

Mental Workload as a Predictor of Opportune Moments for
Interruption. In CHI, 2005.

[23] N. Jayaram, S. Goyal, C. Li. VIIQ: Auto-Suggestion Enabled
Visual Interface for Interactive Graph Query Formulation. In
PVLDB, 8(12), 2015.

[24] N. Jayaram, R. Bhoopalam, C. Li, V. Athitsos. Orion:
Enabling Suggestions in a Visual Query Builder for
Ultra-Heterogeneous Graphs. In CoRR, abs/1605.06856,
http://arxiv.org/abs/1605.06856, 2016.

[25] C. Jin, S. S. Bhowmick, X. Xiao, J. Cheng, B. Choi.
GBLENDER: Towards Blending Visual Query Formulation
and Query Processing in Graph Databases. In SIGMOD,
2010.

[26] C. Jin, S. S. Bhowmick, B. Choi, S. Zhou. PRAGUE: A
Practical Framework for Blending Visual Subgraph Query
Formulation and Query Processing. In ICDE, 2012.

[27] U. Kang, C. Tsourakakis, C. Faloutsos. Pegasus: A
Peta-scale Graph Mining System - Implementation and
Observations. In ICDM, 2009.

[28] F. Katsarou, N. Ntarmos, P. Triantafillou. Performance and
Scalability of Indexed Subgraph Query Processing Methods.
In VLDB, 2015.

[29] A. Khan, Y. Wu, C. C. Aggarwal, X. Yan. NeMa: Fast Graph
Search with Label Similarity. VLDB, 6(3):181–192, 2013.

[30] A. Khan, L. Chen. On Uncertain Graphs Modeling and
Queries. In VLDB, 2013.

[31] A. Khan, S. Elnikety. Systems for Big Graphs. In VLDB,
2014.

[32] D. Koutra, D. Jin, Y. Ning, C. Faloutsos. PERSEUS: An
Interactive Large-Scale Graph Mining and Visualization
Tool. In VLDB, 2015.

[33] S. Liu, J. P. Cedeno, K. S. Candan, M. L. Sapino, S. Huang,
X. Li. R2DB: A System for Querying and Visualizing
Weighted RDF Graphs. In ICDE, 2012.

[34] E. Michailidou, S. Harper, S. Bechhofer. Visual Complexity
and Aesthetic Perception of Web Pages. In Proc. of ACM
International Conference on Design of Communication,
2008.

[35] A. Miniukovich, A. De Angeli. Quantification of Interface
Visual Complexity. In Working Conference on Advanced
Visual Interfaces, 2014.

[36] A. Miniukovich, A. De Angeli. Computation of Interface
Aesthetics. In SIGCHI, 2015.

[37] C. A. Monk, J. G. Trafton, D. A. Boehm-Davis. The Effect of
Interruption Duration and Demand on Resuming Suspended
Goals. J. of Experimental Psychology: Applied, 14, 2008.

[38] P. Palanque, M. Winckler, J.-F Ladry, M. H. ter Beek, G.
Faconti, M. Massink. A Formal Approach Supporting the
Comparative Predictive Assessment of the
Interruption-Tolerance of Interactive Systems. In ACM EICS,
2009.

[39] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, D.
H.Chau. VISAGE: Interactive Visual Graph Querying. In
AVI, 2016.

[40] K. Reinecke, T. Yeh, L. Miratrix, R. Mardiko, Y. Zhao, J.
Liu, K. Z. Gajos. Predicting Users’ First Impressions of
Website Aesthetics with a Quantification of Perceived Visual
Complexity and Colorfulness. In SIGCHI, 2013.

[41] A. N. Tuch, E. E. Presslaber, M. Stöcklina, K. Opwis, J. A.
Bargas-Avila. The Role of Visual Complexity and
Prototypicality Regarding First Impression of Websites:
Working Towards Understanding Aesthetic Judgements.
International J. of Human-Computer Studies, 70, 2012.

[42] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer,
J.J. van Wijk, J.-D. Fekete, D.W. Fellner. Visual Analysis of
Large Graphs: State-of-the-art and Future Research
Challenges. Computer Graphics Forum, 2011.

[43] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, X. Yan.
Summarizing Answer Graphs Induced by Keyword Queries.
VLDB, 6(13), 2013.

[44] X. Xie, Z. Fan, B. Choi, P. Yi, S. S. Bhowmick, S. Zhou.
PIGEON: Progress Indicator for Subgraph Queries. ICDE,
2015.

[45] S. Yang, Y. Xie, Y. Wu, T. Wu, H. Sun, J. Wu, X. Yan. SLQ:
A User-friendly Graph Querying System. In SIGMOD, 2014.

[46] D. Yan, Y. Bu, Y. Tian, A. Deshpande, J. Cheng. Big Graph
Analytics Systems. In SIGMOD, 2016.

[47] P. Yi, B. Choi, S. S. Bhowmick, J. Xu. AutoG: A Visual
Query Autocompletion Framework for Graph Databases. In
The VLDB Journal, 2017.

[48] J. Zhang, S. S. Bhowmick, H. H. Nguyen, B. Choi, F. Zhu.
DAVINCI: Data-driven Visual Interface Construction for
Subgraph Search in Graph Databases. In IEEE ICDE, 2015.

