
DUALSIM: Parallel Subgraph Enumeration in a Massive
Graph on a Single Machine

Hyeonji Kim ‡

hjkim@dblab.postech.ac.kr
Juneyoung Lee ‡

jylee@dblab.postech.ac.kr
Sourav S. Bhowmick †
assourav@ntu.edu.sg

Wook-Shin Han ‡∗
wshan@dblab.postech.ac.kr

JeongHoon Lee ‡
jhlee@dblab.postech.ac.kr

Seongyun Ko ‡
syko@dblab.postech.ac.kr

Moath H.A. Jarrah ‡
moath@dblab.postech.ac.kr

‡Pohang University of Science and Technology (POSTECH), Korea
†Nanyang Technological University, Singapore

ABSTRACT
Subgraph enumeration is important for many applications such as
subgraph frequencies, network motif discovery, graphlet kernel com-
putation, and studying the evolution of social networks. Most ear-
lier work on subgraph enumeration assumes that graphs are resi-
dent in memory, which results in serious scalability problems. Re-
cently, efforts to enumerate all subgraphs in a large-scale graph
have seemed to enjoy some success by partitioning the data graph
and exploiting the distributed frameworks such as MapReduce and
distributed graph engines. However, we notice that all existing dis-
tributed approaches have serious performance problems for sub-
graph enumeration due to the explosive number of partial results. In
this paper, we design and implement a disk-based, single machine
parallel subgraph enumeration solution called DUALSIM that can
handle massive graphs without maintaining exponential numbers of
partial results. Specifically, we propose a novel concept of the dual
approach for subgraph enumeration. The dual approach swaps the
roles of the data graph and the query graph. Specifically, instead
of fixing the matching order in the query and then matching data
vertices, it fixes the data vertices by fixing a set of disk pages and
then finds all subgraph matchings in these pages. This enables us to
significantly reduce the number of disk reads. We conduct exten-
sive experiments with various real-world graphs to systematically
demonstrate the superiority of DUALSIM over state-of-the-art dis-
tributed subgraph enumeration methods. DUALSIM outperforms
the state-of-the-art methods by up to orders of magnitude, while
they fail for many queries due to explosive intermediate results.

Keywords
Subgraph enumeration; dual approach; graph analytics

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915209

1. INTRODUCTION
Given an unlabeled query graph q and an unlabeled data graph g,

the subgraph enumeration finds all occurrences of q in g. Subgraph
enumeration is important for several applications such as subgraph
frequencies [31], network motif discovery [2, 12, 18, 22, 34, 35],
graphlet kernel computation [25], and studying the evolution of
social networks [16]. Furthermore, triangle enumeration, a spe-
cial case of the subgraph enumeration, facilitates applications such
as clustering coefficient computation [33] and community detec-
tion [32].
1.1 Motivation

Most of the earlier work on subgraph enumeration assumes that
graphs are resident in memory [7, 12], which encounters serious
scalability problems. Recently, efforts to enumerate all subgraphs
in a large-scale graph have seemed to enjoy some success by parti-
tioning the data graph and exploiting distributed frameworks such
as MapReduce [1, 20] and distributed graph engines [24]. Afrati
et al. [1] propose a seminal work for subgraph enumberation using
single map-reduce round method. In order to do this, the method
duplicates edges several times in multiple machines at the map
phase so that each machine can perform a multi-way join inde-
pendent of other machines. Although this multi-way join based
method requires one map-reduce round, it is very likely to keep
almost the entire graph in memory of each machine if the query
graph becomes complex. In order to avoid expensive join opera-
tions, Shao et al. [24] proposed an enhanced method called PSGL
which generates partial subgraph results level-by-level using the
parallel breadth-first search (BFS) without performing join. Those
partial results (a.k.a, partial solutions) are stored in the main mem-
ory of each machine. However, we show that the size of partial
solutions grows exponentially as the number of query vertices in-
creases. Thus, as we shall see later, this method fails to handle
even moderate-size graphs for most of the queries we tested. More
recently, Lai et al. [20] present Hadoop-based TWINTWIGJOIN,
which is an enhanced map-reduce method that executes a left-deep
join tree where each vertex in the tree corresponds to either a single
edge or two incident edges of a vertex. However, this join-based
approach can also be viewed as a variant of parallel BFS search.
Thus, it is bound to generate an explosive number of partial solu-
tions. As we shall show later, all existing distributed approaches
have serious performance problems for subgraph enumeration.

Furthermore, although distributed computing resources are read-
ily available through the Cloud nowadays, large-scale graph com-

Figure 1: A running example.

putation often demands judicious partitioning of the graph across
cluster machines that minimizes communication between the ma-
chines, which is known to be a hard problem [21]. From the end
users’ perspective, debugging and optimizing distributed algorithms
is hard [19]. Additionally, it is financially expensive for ordinary
users or a small research group to purchase and maintain such clus-
ter nodes. For example, it is highly unlikely that a biologist would
invest in a distributed framework to discover motifs in a protein-
protein interaction (PPI) network.

A natural question, therefore, is whether it is possible to devise
a scalable and efficient disk-based solution to the subgraph enu-
meration problem in a single machine? In this paper, we provide
an affirmative answer to this question. Specifically, we design and
implement a disk-based, single machine parallel subgraph enumer-
ation solution called DUALity-based Subgraph EnumeratIon on a
Single Machine (DUALSIM) that can handle massive graphs with-
out maintaining exponential numbers of partial results.

1.2 Overview & Contributions
At first glance, it may seem that the depth-first search (DFS)

strategy used in existing in-memory subgraph matching algorithms
[7, 12] could be adopted to address the aforementioned excessive
partial solution problem. Specifically, DFS-based subgraph match-
ing algorithms fix the matching order of query vertices and recur-
sively match one query vertex with data vertices one at a time, re-
quiring minimal space to store the current partial solution. How-
ever, this strategy may incur considerable redundant disk reads since
those data vertices are scattered across pages in disk. To illustrate
this problem, consider the data graph g in Figure 1(a) composed
of 7 vertices and 9 edges and the query graph q. Observe that g is
stored in four disk pages (p0 to p3) but we have only three mem-
ory frames available in the buffer. Each vertex in the page graph
pg represents a page, and each edge (pi, pj) in pg represents the
fact that there is at least one edge across two pages. We assume
that the subgraph qR in q having only three vertices u1, u2, and u3

is used for graph traversal. Consequently, we need to evict loaded
disk pages whenever necessary by following a buffer replacement

policy. As a result, this strategy will incur many disk page accesses
to enumerate all occurrences of qR!

In order to solve this challenging problem, we propose the novel
concept of the dual approach for subgraph enumeration. The key
feature of dual approach is that it swaps the roles of the data graph
and the query graph. Specifically, instead of fixing the matching
order in the query and then matching data vertices, it fixes the data
vertices by fixing a set of disk pages and then finds all subgraph
matchings in these pages (i.e., matching query vertices). This en-
ables us to significantly reduce the number of disk reads.

In the dual approach, before enumerating data subgraphs, we
first need to enumerate all possible query sequences, each of which
matches an ordered data sequence, thus making the data sequence
fixed. These query sequences are called full-order query sequences.
The full-order query sequence (ui1 , ui2 , · · · , uik) matches only
with ordered data sequence (vj1 , vj2 , · · · , vjk) such that j1 < j2 <
· · · < jk. For example, in Figure 1(b), there are six full-order query
sequences (qs1 to qs6). Suppose that we have a partial order con-
straint, u2 < u1. Then, qs1, qs5, and qs6 are pruned. When a full-
order query sequence matches a page sequence (pj1 , pj2 , · · · , pjk),
the condition j1 ≤ j2 ≤ · · · < jk must be satisfied. This is be-
cause a page can contain more than one data vertex.

The dual approach groups full-order query sequences by their
topology in order to minimize CPU time. This group sequence is
called a v-group sequence. Figure 1(b) shows examples of two v-
group sequences vgs1 and vgs2.

Next, the dual approach traverses the data graph stored in pages
based on v-group sequences. Figure 1(c) shows a series of page
sequences for the two v-group sequences. First, the page sequence
(p0, p1, p1) matches vgs2, and p0 and p1 are now in the buffer.
Next, the page sequence (p0, p1, p2) matches both vgs1 and vgs2.
In this way, we match the page sequence with a set of v-group
sequences.

After matching a page sequence with v-group sequences, we find
valid data vertex mappings for each v-group sequence. For each
valid mapping, we enumerate all full-order query sequences in the

v-group sequence and generate data vertex mappings for them. For
example, in Figure 1(d), a page sequence (p0, p1, p2) matches vgs1
and vgs2. Thus, in the vertex level mapping, we can find a vertex-
level matching sequence (v1, v3, v5). Since there is only one full-
order query sequence in vgs1, a full solution {(u3, v1), (u2, v3),
(u1, v5)} is obtained. Similarly, since there are two full-order query
sequences in vgs2, two full solutions {(u2, v1), (u1, v3), (u3, v5)},
{(u2, v1), (u3, v3), (u1, v5)} are obtained. Similarly, for the vertex-
level matching sequence (v2, v3, v5), we also generate three solu-
tions.

Another interesting issue we need to consider is how to select
a subset of query vertices for efficient graph traversal. Note that
this has a similar flavor to the external triangulation problem where
only two query vertices are used for matching data vertices in a
database [15, 17]. Specifically, reducing the number of query ver-
tices for graph traversal should reduce the number of disk accesses.
This is because in order to match the remaining query vertices, we
can utilize the adjacent lists which are already retrieved from disk.
For example, reconsider Figure 1(a). Suppose that query vertices
u1 and u2 are being matched with data vertices vi and vj , respec-
tively. Then, we can identify data vertices for u5 by intersecting
the adjacent lists of v1 and v2.

In order to handle this issue, we propose the concept of the red-
black-ivory (RBI) graph which is a vertex-colored graph where a
color is assigned to a query vertex according to the operational se-
mantics. If a query vertex u is colored red, we need to retrieve the
adjacency list of a data vertex for matching. If u is adjacent to m
(>1) red query vertices, u is colored ivory. Consequently, in order
to identify corresponding data vertices for u, we need to perform
an (m-way) intersection of the adjacency lists of data vertices for
the m red query vertices. If u is adjacent to only one red query
vertex, u is colored black. In order to identify corresponding data
vertices for u, we need to browse (or scan) the adjacency list of the
data vertex corresponding to the red query vertex. For example, in
Figure 1(a), we have 5 query vertices and 6 edges. In this case,
only u1, u2, and u3 are colored red (also called red query graph)
and are used for graph traversal. The other two query vertices u4

and u5 are colored ivory. Thus, we need to perform 2-way intersec-
tions for identifying corresponding data vertices for u4 and u5. For
example, once the two adjacency lists for u1 and u3 are obtained,
we can obtain corresponding data vertices for u4 by intersecting
the two adjacency lists.

In summary, this paper makes the following key contributions.
• We propose an efficient and scalable disk-based subgraph

enumeration method in a single machine for large-scale graphs.
Unlike existing methods, DUALSIM does not maintain ex-
plosive partial solutions resulting in robust performance.
• We propose the novel concept of dual approach for subgraph

enumeration. The dual approach uses novel concepts of v-
group sequence and v-group forest in order to minimize pro-
cessing time for subgraph enumeration. In addition, in order
to realize the dual approach with a limited buffer size, we
propose novel concepts of candidate page sequence and cur-
rent page window. In order to overlap CPU processing with
I/O processing, we propose novel concepts of internal and
external subgraphs. All of these new concepts together lead
to the concrete implementation of DUALSIM.
• We propose a technique that transforms a query graph to a

RBI query graph, which enables us to lower the number of
disk reads by matching part of the query graph only and uti-
lizing their associated adjacency lists.
• We conduct exhaustive experiments using various real-world

graphs to systematically demonstrate the superiority of DU-

ALSIM over the-state-of-the-art subgraph enumeration meth-
ods. Specifically, DUALSIM using a single machine signifi-
cantly outperforms TWINTWIGJOIN using a single machine
by up to 866.61 times. Note that, TWINTWIGJOIN fails to
process queries generating enormous partial solutions, while
DUALSIM handles all queries without maintaining such ex-
plosive partial solutions. DUALSIM using a single machine
also outperforms both PSGL and TWINTWIGJOIN using 51
machines by up to 35.04 and 903.47 times, respectively. Note
that PSGL failed for 46.6% of experiments we tested due to
enormous partial solutions.

1.3 Paper Organisation
The rest of the paper is organized as follows. In Section 2, we

introduce fundamental graph concepts and formally define the sub-
graph enumeration problem addressed in this paper. We introduce
the notions of the RBI query graph and the red query graph in Sec-
tion 3 and explain how they are generated from a query graph. In
Section 4, we introduce the dual approach using v-group sequence
and v-group forest. In Section 5, we describe the algorithm of DU-
ALSIM in detail. We present experimental results in Section 6 and
review related work in Section 7. We conclude in Section 8.

2. BACKGROUND
A data graph g(V,E) is modeled as an undirected and unlabeled

graph where V is the set of vertices, and E (⊆ V × V) is the set
of edges. A subgraph g′ of g(V,E) is a graph such that V (g′) ⊆
V (g) and E(g′) ⊆ E(g). Given a vertex v, we denote the degree
of v as d(v). adj(v) denotes the adjacency list of v. id(v) denotes
the id of v. P (v) denotes the page ID of the data vertex v. A query
graph q(V ′, E′) is an undirected, unlabeled, and connected graph.
We use ui and vj to represent the i-th query vertex and the j-th
data vertex, respectively.

A graph q(V ′, E′) is isomorphic to a subgraph of a data graph
g(V,E) if there is an injection (or an embedding) m : V → V ′

such that ∀(ui, uj) ∈ E, (m(ui),m(uj)) ∈ E′.
When storing adjacency lists of data vertices in disk, we use the

slotted page format, which is widely used in database systems. That
is, each (v, adj(v)) for v ∈ V is stored in pages. When the size of
an adjacency list is larger than the page size, the adjacency list is
broken into multiple sublists, and each sublist is stored in a page.

Following the convention in [15,17,20,24], we use the following
total order ≺ for data vertices in g. For any two data vertices vi
and vj , vi ≺ vj if and only if d(vi) < d(vj) or d(vi) = d(vj) and
id(vi) < id(vj). We rearrange the vertices in g according to ≺.

A vertex cover of an undirected graph q(Vq, Eq) is a subset of
vertices V ′q ⊂ Vq such that for any edge (ui, uj) ∈ Eq , ui ∈
V ′q , or uj ∈ V ′q , or both [8]. For example, consider the query
graph q in Figure 2. The vertex-covers of this graph are {u1, u4},
{u2, u3}, {u1, u2, u3}, {u1, u2, u4}, {u2, u3, u4}, {u1, u3, u4},
and {u1, u2, u3, u4}. A minimum vertex cover (MVC) is a vertex
cover having the smallest number of vertices. A connected vertex
cover is a vertex cover V ′q such that the induced subgraph using
V ′q is connected [28]. If the size of a connected vertex cover is
the minimum among all possible connected covers for q, the con-
nected vertex cover is called a minimum connected vertex cover
(MCVC) [28]. Reconsidering the above example, the vertex cover
{u1, u2, u3} is an MCVC whereas {u1, u4} is not.

In order to generate each subgraph exactly once, we need to elim-
inate the automorphism of a query graph q. Here, an automorphism
of q is a graph isomorphism from q to itself [20]. Suppose that an
embedding m is found. Then for any ui < uj in partial orders,
m(ui) ≤ m(uj) should be satisfied. Note that a set of partial or-

Figure 2: A query graph q, and two MVCs, and one MCVC.

ders can be obtained by breaking the automorphism of q [20, 24].
For example, if we have a triangle-shaped query having u1, u2, and
u3 as query vertices, partial orders u1 < u2 < u3 can be obtained.

Definition 1. [Problem Statement] Given a data graph g stored
in disk, a query graph q, and a set PO of partial orders, the sub-
graph enumeration problem identifies all mappings of g that are
isomorphic to q such that each mapping satisfies all partial orders
in PO.

3. RBI QUERY GRAPH
In order to minimize the number of disk reads, we need to use

a minimum number of query vertices during graph traversal. Once
adjacency lists for a subset of query vertices are retrieved from disk,
we can match the remaining query vertices with only the adjacency
lists retrieved. We realize this strategy by transforming the query
graph q to an RBI query graph qRBI by coloring its vertices.

In order to handle this issue, we propose the red-black-ivory
(RBI) query graph which is a vertex-colored graph where a color
is assigned to a vertex according to the operational semantics. If
u is colored red, we need to retrieve the adjacency list of a data
vertex for matching. If u is colored ivory, it is adjacent to m (>1)
red query vertices. Consequently, in order to identify correspond-
ing data vertices for u, we need to perform an (m-way) intersection
of the adjacency lists of data vertices for the m red query vertices.
If u is colored black, it is adjacent to only one red query vertex.
Then, in order to identify corresponding data vertices for u, we
need to browse (or scan) the adjacency list of data vertices for the
red query vertex. Figure 3 depicts two examples of query graphs
and RBI query graphs. In Figure 3(a), u1 and u2 are colored red.
The query vertices u4 and u5 are colored ivory because they are ad-
jacent to two red query vertices u1 and u2. On the other hand, u3

is colored black because it is adjacent to u2 only. In Figure 3(b),
u1, u2, and u3 are colored red. There is no black colored vertex
because u4 and u5 are both connected to two red query vertices.

Figure 3: Two examples showing a query graph q and its RBI query
graph qRBI .

A red query graph(RQG) qR(VR, ER) is an induced subgraph
of the red query vertices in qRBI(VQ, EQ) where VR ⊂ VQ and
ER ⊂ EQ. For example, in Figure 3(a), the RQG is an induced
subgraph of query vertices {u1, u2} and in Figure 3(b), it is an
induced subgraph of query vertices {u1, u2, u3}.

In order to select the smallest number of red query vertices, we
can use the MVC. That is, all query vertices in a selected MVC
are colored red. We can color the other query vertices based on
the description above. Although the number of red query vertices
increases slightly, we prefer to use the MCVC in this paper. This
approach enables us to access data vertices reachable from the data

vertices corresponding to the first red query vertex selected. Oth-
erwise, we have to scan all vertices regardless of their reachabil-
ity. This issue corresponds to the join versus cartesian product in
relational databases. Although we use MCVC in this paper, the ex-
tension to support MVC is straightforward. Note that, while finding
an MVC/MCVC is NP-hard, |Vq| is generally very small, so its ex-
ponential complexity is not a problem in reality. We may use an
approximate algorithm when |Vq| is large [26].

A keen reader may observe that a query graph may contain more
than one MCVC (or RQG). In this case, which one do we choose as
a red query graph? In the following, we propose two rules which
leverage partial orders and MCVCs, which can affect I/O time as
well as CPU time.

Given a set of partial orders PO, a query graph q(VQ, EQ) and
an RQG (VR, ER), a partial order (u1 < u2) ∈ PO is an internal
partial order if u1 ∈ VR and u2 ∈ VR.

Rule 1. Given any two RQGs, we choose the RQG which has
more internal partial orders.

Rule 2. If there is a tie in Rule 1, we choose a denser RQG.
That is, we choose the RQG which has more edges.

As shown in Figure 1(b), internal partial orders can prune full-
order query sequences. Thus, Rule 1 can reduce candidate data
vertices during graph exploration. Rule 2 can also reduce the CPU
processing time during red vertex matching if one RQG has more
edges than the other RQG.

4. DUAL APPROACH
Recall that in the dual approach, we swap the roles of the data

graph and the query graph. Specifically, instead of fixing the match-
ing order in the query and then matching data vertices, it fixes the
data vertices by fixing a set of disk pages and then finds all sub-
graph matchings in these pages (i.e., matching query vertices). This
enables us to significantly reduce the number of disk reads.
Full-order query sequence. Before enumerating data subgraphs,
the dual approach first must enumerate all possible query sequences,
each of which matches an ordered data sequence, thus making the
data sequence fixed. These query sequences are called full-order
query sequences, which is formally defined below.

Definition 2. [Full-order query sequence] Given an RQG qR(VR,
ER) and a set of partial order PO, a full-order query sequence qs
is a permuted sequence of vertices in VR such that PO is a subset
of the full order (qs[1] < qs[2] < · · · < qs[|VR|]) among query
vertices in qs.

Property 1 states that a full-order query sequence matches an
ordered data sequence of size |VR| element by element.

Property 1. Given an RQG qR(VR, ER), when a full-order query
sequence qs matches a data vertex sequence of size |VR| using a
mapping (injection)m,m[qs[1]]≺m[qs[2]]≺ · · · ≺m[qs[|VR|]].

Lemma 1. Suppose that vertices are stored in pages according
to id(·). Given an RQG qR(VR, ER), when a full-order query se-
quence qs matches a data vertex sequence of size |VR| using an in-
jection m, P (m[qs[1]]) ≤ P (m[qs[2]]) ≤ · · · ≤ P (m[qs[|VR|]]).

PROOF. Refer to Appendix C.
This way, we fix the page sequence of size |VR| in a non-decreasing

order, varying all full-order query sequences. There can be many
full-order query sequences of qR, and hence, finding subgraph map-
pings for each such sequence may lead to a redundant matching
process. To tackle this issue, we utilize the notion of v-group se-
quence.

Figure 4: An example of v-group forests.

v-group sequence. We first group the full-order query sequences
by their topology based on equivalence of query sequences as de-
fined below.

Definition 3. [Query Sequence Equivalence] Let QS be the
set of all full-order query sequences for an RQG qR(VR, ER). Let
∼= be an equivalent relation over QS such that qsi ∼= qsj if and
only if ∀1 ≤ k, k′ ≤ |VR|, if (qsi[k], qsi[k′])∈ ER, (qsj [k], qsj [k′])
∈ ER.

The equivalent class of qsi is a set of full-order query sequences
which are equivalent to (i.e., ∼=) qsi. This class is called a v-
group sequence, since all full-order query sequences in a v-group
sequence match the same data vertices. For example, in Figure 1,
qs3(u2, u1, u3) and qs4(u2, u3, u1) constitute a v-group sequence.
Thus, when (v1, v3, v5) matches qs3, it also matches qs4.

Once all v-group sequences are obtained, we need to determine a
matching order for each of them in order to traverse the data graph,
i.e., pages in the database. Since there can be multiple v-group
sequences, we may traverse the data graph as many times as the
number of v-group sequences. Thus, we provide a method for de-
termining a global matching order which is used to traverse the data
graph (i.e., pages in disk) based on all v-group sequences. The term
vgsi denotes the i-th v-group sequence, and {vgsi} is a set of all
v-group sequences.

v-group forest. In order to solve the explosive partial solution
size problem, when we traverse the data graph, we maintain candi-
date vertices for each red query vertex rather than saving all pos-
sible partial solutions. For this, we construct an acyclic traversal
structure called a v-group forest for each v-group sequence. This
way, the total size of partial solutions for each v-group sequence is
bounded by O(|VR| ∗ |VG|). If we use a bitmap, its size is signifi-
cantly smaller than the graph size.

Intuitively, each node in a v-group forest stores an array index
for the v-group sequences. Each node is associated with its level.
At each level, we have only one node. Thus, the number of levels
is equal to |VR|. Note that the array index is also used to enforce
the total order in the v-group sequences. Figure 4(a) shows the
v-group forest for vgs1 when the global matching order of array
indexes is (3, 2, 1). There is only one tree in this forest having
two edges, while the v-group forest for vgs2 consists of two trees.
In the second v-group forest, the node storing 2 as the array index
is not connected from the node storing 3. The node storing 1 as
the array index can be a child of the other two nodes; thus, we
choose the one which is farthest from its root node with respect to

the length of the path from the root node. The term vgfi denotes the
v-group forest for vgsi, and {vgfi} is a set of all v-group forests.
The term vgfi[j] denotes the node at level j of vgfi.

Data graph traversal. Given a global matching order, we explain
how we traverse the data graph considering the matching order as
well as the topology information of every v-group forest. In order
to do this, for each v-group forest, we first determine a set of can-
didate pages to explore at level l by considering its topology. Then,
a set of pages to explore at level l should be a union of the sets
of candidate pages for the nodes at level l of all v-group forests.
Figure 4(a) shows the visited pages by using two v-group forests,
vgf1 and vgf2. At the first level, we can match any page (p0 to p3)
in the database. For each page at the first level, we need to access
pages in the next level, considering the topologies of both v-group
forests. If we consider only the first v-group forest, we only need
to access pages connected from the page at the first level. However,
if we consider the second v-group forest, we need to consider all
pages for each page retrieved in the first level, incurring a Carte-
sian product. Note that the dotted lines between pages represent
the Cartesian product. Thus, the set of pages to retrieve at the sec-
ond level should be a union of candidate pages from both v-group
forests. Note that, even in this case, we can still exploit the total
order in each v-group sequence. Therefore, in this example, p0 at
level 1 does not match p1, p2, p3 at level 2, while p3 at level 1
matches p0 to p3. Figure 4(b) shows the visited pages by using
vgf3 and vgf4 derived from the global matching order (1, 2, 3). In
contrast to Figure 4(a), there is no Cartesian product needed when
we traverse the data graph.

Now, we explain how to select a global matching order. Different
matching orders can generate different numbers of Cartesian prod-
ucts. Thus, we enumerate all possible matching orders and choose
the one generating the least number of Cartesian products. Since
the number of red query vertices is very small, such enumeration
cost is negligible compared to the subgraph enumeration itself.

5. DUALITY-BASED SUBGRAPH
ENUMERATION

DUALSIM traverses the data graph level by level. However, due
to the limited buffer size, we can load a subset of pages in memory
for each level. Here, we need to ensure that the same sets of pages
are loaded only once in order to minimize the number of disk I/Os.
For this purpose, we propose novel concepts of current vertex/page

Figure 5: An example of candidate vertex/page sequences and current vertex/page windows.

window and candidate vertex/page sequence in Section 5.1, which
are used together with the concept of v-group forest in Section 4.
When we load a set of pages for each level, we issue page requests
in a sequential scan fashion without incurring random disk page
accesses. This strategy is important especially when we use HDDs.

Subgraph enumeration is a CPU intensive task. Thus, the im-
portant issue is how to overlap CPU processing with I/O process-
ing effectively. Specifically, as soon as a page is loaded at the last
level, we issue I/O requests for the next pages and execute subgraph
enumeration using pages in memory at the same time. This is how
our overlapping strategy can effectively hide the I/O cost. For this
purpose, we propose novel concepts of internal and external sub-
graphs under the dual approach in Section 5.2.

5.1 Candidate Sequence and Current Window
We traverse the data graph based on the v-group forest by retriev-

ing vertices/pages level-by-level. Suppose that mj buffer frames
are allocated for the j-th level in vgfi. Assume that there is one v-
group forest for ease of explanation and then explain how to handle
multiple v-group forests.

Candidate sequence and current window. A vertex/page window
currently in the buffer for processing is called the current vertex
window (CVW) and current page window (CPW). The candidate
vertex/page sequence (CVS and CPS) for vgfi[j] is recursively de-
fined as an ordered sequence of vertices/pages connected from the
current vertex/page window corresponding to the parent node of
vgfi[j]. As a base case, the candidate vertex/page sequence at level
1 is defined as a sequence of all vertices/pages.

Now, we explain how we load a subset of pages, i.e., the current
page window, from the candidate page sequence at each level so
that we can ensure that the same arrangement of page sets for all
levels is made only once. For this purpose, we divide the sequence
into disjoint windows. Since some vertices/pages in the sequence
can be in the buffer already, disjoint windows can be variably sized.
Once disjoint windows are identified, we can iterate over them one
by one. When we load a set of pages for each level, we issue page
requests in a sequential scan fashion without incurring random disk
page accesses.

Figure 5 shows an example of the current vertex window and the
current page window at each level. The data graph is stored in five
pages p0 ∼ p4, while we have four memory buffer frames. Due to
the partial order (u1 < u2 < u3), we have only one v-group se-
quence and, accordingly, one v-group forest vgf1. Consider Figure
5(b). At level 1, we need to retrieve all vertices. Thus, the candi-
date vertex sequence (denoted as cvs1) is (v1, v2, · · · , v9), while
the candidate page sequence (denoted as cps1) is (p0, p1, · · · , p4).
Suppose that two memory frames are allocated for the first level.
Then, we load the first two pages p0 and p1 in the buffer. Thus, the
current page window (cpw1) is (p0, p1), while the current vertex
window is (v1, v2, v3, v4). Once p0 and p1 are loaded, we can
identify cps2 and cvs2. Here, cps2 is (p0, p1, p2, p3), and cvs2 is
(v2, v3, v4, v5, v7). Suppose that we allocate one memory frame
for the second level. Then, the current page window at the second
level (cpw2) is (p0, p1, p2), while the second page window is p3.
Note that p0 and p1 in cpw2 are already in the buffer. After loading
cpw2, we can identify the candidate vertex/page sequences at the
last level. Figure 5(c) shows CPSs, CVSs, CPWs, and CVWs at
each level, when w1,1, w2,2, and w3,1 are chosen as current page
windows.

Merged sequence and current merged window. In general, there
can be multiple v-group forests. Thus, if we process these v-group
forests one by one, we are unable to ensure that the same arrange-
ment of page sets for all levels is made only once. In order to avoid
this problem, for each level, we first find all candidate sequences
for all v-group forests and merge them into one sorted sequence,
called merged sequence, removing any duplicate in the merged se-
quence. We then divide this merged sequence by disjoint windows
called merged window. After loading a merged, disjoint window,
we assign loaded vertices/pages to relevant v-group forests accord-
ingly. This way, we can avoid repeated loading of pages from disk.

Figure 6 shows an example of merged vertex/page sequences and
their windows at each level using g in Figure 5(a). Now we have
two v-group forests vgf1 and vgf2 as shown in Figure 6(b). Fig-
ure 6(c) and Figure 6(d) represent CPSs and CVSs for each v-group
forest and their current page windows. Consider Figure 6(e). The

Figure 6: An example of merged vertex/page sequences and their windows.

merged vertex sequence for level i (denoted as mvsi) is a merged
sequence using cvs1,i and cvs2,i. The merged page sequence for
level i (denoted as mpsi) is a merged sequence using cps1,i and
cps2,i. Suppose that two memory frames are allocated for level
1. The current merged page window (denoted as mpw1) is (p0,
p1), while the current merged vertex window (mvwi) is (v1, v2,
v3, v4). Once p0 and p1 are loaded, we can identify cps1,2, cps2,2,
and cps2,3. All three candidate page sequences are (p0, p1, p2, p3)
in this case, and thus mps2 is (p0, p1, p2, p3). We can also iden-
tify cvs1,2, cvs2,2, and cvs2,3 as (v2, v3, v4, v5, v7). Accordingly,
mvs2 is (v2, v3, v4, v5, v7). Suppose that we allocate one memory
frame for level 2. Then, the current merged page window (mpw2)
is (p0, p1, p2) since p0 and p1 are already in the buffer. After load-
ing mpw2, we can identify the candidate vertex/page sequences at
the last level of vgf1 (cvs1,3 and cps1,3). If we allocate one mem-
ory frame for level 3, the current merged page window (mpw3) is
(p0, p1, p2, p3) since p0 ∼ p2 are already in the buffer.

5.2 Internal and External Subgraphs
In order to support overlapped and parallel subgraph enumera-

tion in our dual approach, we define concepts of internal and ex-
ternal subgraphs, which are generalized concepts of internal and
external triangles [17]. Before introducing the concepts in detail,
we first explain how we overlap CPU processing with I/O process-
ing at a high-level. DUALSIM achieves two types of overlapping:
1) Once the current window at level 1 is loaded, we can start to
find data subgraphs within the window (i.e., internal subgraphs).
At the same time, we find subgraphs connected from the vertices
in the current window at level 1 by traversing the data graph level
by level as we explain in the previous section. Those subgraphs are
called external subgraphs. 2) As soon as we load a page at the last
level, we can find subgraphs using pages in memory. At the same
time, we can issues I/O requests for the next pages at the last level.
DUALSIM splits the buffer by the number of levels of the v-group
forest. The j-th area in the buffer consists of mj memory frames.
The first area, corresponding to level 1, is called internal area while
all the other areas together are called external area.

We assume that the adjacency list of each vertex can be loaded
in each buffer area. This assumption is called the small-degree as-
sumption [15]. However, what if we have vertices whose adjacency
lists are larger than an area? This can easily be handled by us-

ing [15]. First, identify all such vertices. For each large-degree
vertex u, load as many edges of u as the first area can hold. Then,
we report all subgraphs that involve at least one edge in the first
area. The key issue here is how to identify candidate vertex/page
sequences from a partly loaded adjacency list. This can be achieved
by scanning the incoming edges of all vertices in the data graph. If
we can identify the candidate vertex/page sequence, we can use
the dual approach. We then remove all edges in the first area from
the data graph. We repeat this process until no large-degree data
vertices remain.

We now define the concept of the internal subgraph and the ex-
ternal subgraph. If a data subgraph which matches the RQG is in the
internal area, then such a subgraph is called an internal subgraph.
The data subgraph matching the RQG is called external subgraph
if there is at least one data vertex in the internal area and there is
at least one data vertex in the external area. We assume that, af-
ter finding subgraphs which match the RQG, we further match the
other query vertices. Figure 7 shows internal subgraphs and exter-
nal subgraphs when the query graph is q in Figure 1. Suppose that
v1 ≺ v2 ≺ v3. The first two cases correspond to internal subgraphs
while the others correspond to external subgraphs.

Figure 7: An example of internal and external subgraphs.

Note also that DUALSIM is a true generalization of the-state-of-
the art triangulation [17], which handles the triangle-shaped query
having two red query vertices. Thus, in our framework, the buffer
space is divided into two areas. Like OPT [17], DUALSIM also
supports overlapped and parallel subgraph enumeration. That is, as
soon as a subset of disk pages is loaded into the internal area, we
overlap internal subgraph enumeration with external subgraph enu-
meration. The internal subgraph enumeration finds all internal sub-

graphs in the pages loaded into the internal area, while the external
subgraph enumeration finds all external subgraphs. Since we can
use any in-memory subgraph enumeration algorithm for finding in-
ternal subgraphs, we focus on enumerating external subgraphs.

More importantly, during the external subgraph enumeration, we
overlap CPU processing with I/O processing. That is, as soon as a
page for the last level of the v-group forest is loaded from disk,
DUALSIM finds external subgraphs using pages in memory, and
issues asynchronous I/O requests for the next pages at the same
time. This way, DUALSIM effectively hides I/O cost.

5.3 The DualSim Algorithms
DUALSIM consists of two steps: 1) the preparation step and 2)

the execution step. Algorithm 1 summarizes how DUALSIM works.
The elapsed time for the preparation step is at most 1 msec. for all
queries we tested, which is negligible.

Algorithm 1. DUALSIM

Input: A data graph g, A query graph q
/* 1. Preparation step */

1: PO ← FINDPARTIALORDERS(q);
2: 〈qRBI , qR〉 ← GENERATERBIQUERYGRAPH(q, PO);
3: {vgsi} ← FINDVGROUPSEQUENCES(qR, PO);
4: mog ← FINDGLOBALMATCHINGORDER({vgsi}));
5: {vgfi} ← BUILDVGROUPFORESTS({vgsi},mog);

/* 2. Execution step */
6: INITIALIZECANDIDATESEQUENCES(root nodes in {vgfi});
7: foreach (merged vertex/page window (mvw1,mpw1) from {vgfi[1]}) do
8: foreach (page id pid ∈ mpw1) do
9: AsyncRead(pid, COMPUTECANDIDATESEQUENCES(pid,

{cvwi,1}, all child nodes of {vgfi[1]});
10: end
11: wait until COMPUTECANDIDATESEQUENCES executions are finished
12: level← 2;
13: DELEGATEEXTERNALSUBGRAPHENUMERATION(level, qRBI ,

{vgsi}, {vgfi}, {mvwj}, {mpwj});
14: INTERNALSUBGRAPHENUMERATION(mvw1,mpw1);
15: UNPINPAGES(mpw1);
16: CLEARCANDIDATESEQUENCES(the children of {vgfi[1]});
17: end

In the preparation step, DUALSIM first finds a set PO of partial
orders using the symmetry-breaking algorithm [12] (Line 1). Then,
it generates qRBI and qR using PO (Line 2). Next, it finds all v-
group sequences (Line 3). It then finds a global matching order
considering all v-group sequences (Line 4). It next constructs a v-
group forest for each v-group sequence using the global matching
order (Line 5).

In the execution step, DUALSIM initializes candidate vertex/page
sequences for all root nodes in the v-group forests (Line 6). This
initialization makes every root node correspond to all vertices/pages.
Then, we traverse the data graph level-by-level with the v-group
forest by using the concept of merged vertex/page window (Lines
7 ∼ 16). Here, we use COMPUTECANDIDATESEQUENCES(·) (in
Appendix A) to compute the candidate vertex/page sequences for
each page in the current merged window.

Specifically, DUALSIM first obtains the current, merged vertex/page
window at level 1, mvw1/mpw1 (Line 7). For each page p in
mpw1, we asynchronously read the page (Line 8∼ Line 10). Note
that we can pass a callback function when we request an asyn-
chronous I/O. Here, the callback function, COMPUTECANDIDATE-
SEQUENCES(·) is invoked as soon as the requested page is loaded
into the buffer. Since the current level is set to 1, the callback
function computes the candidate vertex/page sequences for level 2.
We need to wait until all requested pages are loaded in the buffer.
Then, we invoke a recursive function, DELEGATEEXTERNALSUB-
GRAPHENUMERATION(·) in order to find all external subgraphs

connected from the current, merged vertex window (Line 13). This
way, the main thread delegates the external subgraph enumeration
to other threads. The main thread executes internal subgraph enu-
meration using the pages loaded in the internal area (Line 14).
When either internal subgraph enumeration or external subgraph
enumeration ends, then we perform Thread Morphing [17], which
assigns the available threads to the unfinished subgraph enumera-
tion. Execution of thread morphing is omitted in Algorithm 1 due
to space limitation. This is how we overlap the internal subgraph
enumeration with the external subgraph enumeration.

For example, consider Figure 6. mpw1 of the first iteration (Line
8) is (p0, p1), and mvw1 of the first iteration is (v1, v2, v3, v4). At
the first iteration, two pages p0 and p1 in mpw1 are loaded in the
internal area by calling AsyncRead. COMPUTECANDIDATESEQ-
UENCES(·) is invoked when each of the requested pages is loaded
into the buffer. Then, COMPUTECANDIDATESEQUENCES(·) com-
putes cvs1,2 with adj(v) and cps1,2 with {P (v′)|v′ ∈ adj(v)}
for each v in cvw1,1. This function also computes cvs2,2, cps2,2,
cvs2,3, and cps2,3. We then delegate the external subgraph enumer-
ation to the other threads by calling DELEGATEEXTERNALSUB-
GRAPHENUMERATION(·). After delegation of external subgraph
enumeration, the main thread invokes INTERNALSUBGRAPHENU-
MERATION(·). After executions for both functions are finished, the
pages p0 and p1 are unpinned for page replacement. These steps
are repeated until all merged vertex/page windows are processed.

Now, we explain DELEGATEEXTERNALSUBGRAPHENUMER-
ATION(·). The inputs to this function are l, qRBI , {vgsi}, {vgfi},
mvwl, and mpwl: Here, l is the current level to process: We
have a loop over merged vertex/page windows. At each iteration,
we identify the current, merged vertex/page window, mvwl, and
mpwl. If l is the last level, we invoke read requests with the
callback EXTVERTEXMAPPING(·) (in Appendix A), which finds
all vertex-level mappings using data vertices loaded in the buffer.
That is, once the current vertex window at every level is loaded
in the buffer, we can find the external subgraphs using EXTVER-
TEXMAPPING(·). At the same time, by invoking AsynRead(·)
calls for the next pages, we can overlap CPU processing of EXTVER-
TEXMAPPING(·) with I/O processing. Here, since all internal sub-
graphs are enumerated in the internal area, this function avoids
matching all red query vertices with data subgraphs in the inter-
nal area in order not to generate duplicate results. Instead, for
each page in mpwl, we request an asynchronous I/O with the call-
back function COMPUTECANDIDATESEQUENCES(·). Then, we
recursively invoke DELEGATEEXTERNALSUBGRAPHENUMERA-
TION(·) for the next level.

For example, consider Figure 6. Here, l is set to 2. Thus, at level
2, we compute the current merged vertex/page sequence,mpw2 (=
(p0, p1, p2)) and mvw2 (= (v2, v3, v4, v5)). We then request three
asynchronous reads with the callback function COMPUTECANDI-
DATESEQUENCES(·) for p0, p1, and p2. We recursively delegate
external subgraph enumeration to available threads. When DELE-
GATEEXTERNALSUBGRAPHENUMERATION(·) is called at level 3
(the last level in this example), we request asynchronous reads with
another callback function EXTVERTEXMAPPING(·) so that we can
find external subgraphs, starting from each page loaded at level 3.

I/O Cost of DualSim. Now, we analyze the I/O cost of DUALSIM.
Let |E| be the number of edges in the data graph,M be the memory
buffer size, and B be the page size. We assume that each edge is
stored in one memory word, andM is equally divided into (|VR|-1)
regions. Note that we need only one memory frame for scanning
pages at the last level. This additional memory frame is not consid-
ered in the asymptotic analysis. sj represents the average reduction
factor (0 ≤ sj ≤ 1) for level j. Since we access only pages con-

Algorithm 2. DELEGATEEXTERNALSUBGRAPHENUMERATION

Input: Current level l, RBI query graph qRBI , v-group sequences {vgsi},
v-group forests {vgfi}, merged current vertex windows {mvwj},
merged current page windows {mpwj}

1: foreach (merged vertex/page window (mvwl,mpwl) from {vgfi[l]}) do
2: if (l < |GR|) then
3: foreach (page id pid in mpwl) do
4: AsyncRead(pid, COMPUTECANDIDATESEQUENCES(pid,

{cvwi,l}, children of {vgfi[l]});
5: wait until COMPUTECANDIDATESEQUENCES executions are

finished;
6: DELEGATEEXTERNALSUBGRAPHENUMERATION(l +1, qRBI ,

{vgsi}, {vgfi}, {mvwj}, {mpwj});
7: UNPINPAGES(mpwl);
8: CLEARCANDIDATESEQUENCES(the children of {vgfi[l]});
9: else

10: foreach (pid in mpwl) do
11: AsyncRead(pid, EXTVERTEXMAPPING(pid, qRBI , {cvwi},

{vgsi}, {vgfi}));
12: end
13: end

nected from the pages loaded at level 1. Then, at level l, DUALSIM

requires s1(= 1)× |E|
M

|VR|−1

× s2 × |E|
M

|VR|−1

× · · · × sl × |E|B
disk

I/Os. Thus, the total I/O cost is the summation of disk I/Os for each
level as follows.∑

1≤l≤|VR|

l∏
i=1

si × (
|E|
M

|VR|−1

)l−1 × |E|
B

(1)

Buffer allocation strategy. Until now, we assume that the buffer
is divided into equal-sized memory frames. We propose a bet-
ter buffer allocation strategy where only two buffer frames * # of
threads are allocated for the last level, and two third of the remain-
ing buffer frames are allocated for the first level and one third are
equally divided for the other levels. One buffer frame is used when
we load a page at the last level, while the other buffer frame is
used for asynchronous I/O processing. When the number of red
vertices is 2 (i.e., triangulation), all the remaining buffer frames are
allocated for the first level. This allocation enables the effective
overlapping of CPU processing with I/O processing. By using this
strategy, the number of iterations for the first level is much smaller
than the equal-sized allocation strategy, which is very effective es-
pecially when we use HDDs. We use this buffer allocation strat-
egy for all experiments in Section 6. Experimental results show
that DUALSIM effectively hide the expensive I/O cost for subgraph
enumeration using either SSDs or HDDs.

6. EXPERIMENTS
In this section, we present the performance of DUALSIM. Specif-

ically, the key goals of this experimental study are as follows. Addi-
tional performance results are reported in Appendix B due to space
constraints.
• We show the insensitivity of the elapsed time of DUALSIM

to varying buffer size (Section 6.2.2).
• We show the linear speedup of DUALSIM with an increasing

number of CPU cores (Appendix B.1).
• We show significantly better performance of DUALSIM com-

pared to the state-of-the art subgraph enumeration methods
in a single machine (Section 6.2.3).
• We show significantly better performance of DUALSIM in a

single machine compared to the state-of-the art distributed
methods using 51 machines (Section 6.2.4). We also show
that DUALSIM is the only method to enumerate subgraphs in
massive graphs.

Table 1: Statistics of Datasets.
WG WT UP LJ OK WP FR YH

|V | 0.9M 2.4M 3.8M 4.8M 3.1M 25M 66M 1.4B

|E| 8.6M 9.3M 33M 86M 234M 234M 3610M 12.9B

Size 115MB 140MB 504MB 1.28GB 3.47GB 4.07GB 66.9GB 263GB

Figure 8: Queries.

6.1 Experimental Setup
Datasets/Queries. Eight real-world graph datasets were used in the
experiments (WebGoogle (WG), WikiTalk (WT), USPatents (UP),
LiveJournal (LJ), Wikipedia (WP), Friendster (FR), Yahoo (YH),
and Orkut (OK)). All datasets can be downloaded from their origi-
nal web sites. In order to show the performance over varying graph
sizes, we generated different sizes by choosing 20%, 40%, 60%,
80%, and 100% of vertices from Friendster. Table 1 summarizes
the statistics of these datasets. We use the same queries as in [24].
Figure 8 depicts the five queries.

Competitors. We compare the performance of DUALSIM with two
state-of-the-art distributed subgraph enumeration frameworks,
PSGL [24] and TWINTWIGJOIN [20]. We use binary files ob-
tained from the authors of both methods. Note that since TWIN-
TWIGJOIN is based on Hadoop, it can run in a single machine.
PSGL failed in most experiments in a single machine environment
due to memory overruns. Hence, we only discuss its performance
in a distributed setting. In addition, we implemented two vari-
ants of TWINTWIGJOIN using PostgreSQL (TTJ-PG) and Spark
SQL [4] (TTJ-SparkSQL) for comprehensive performance compar-
ison. That is, DUALSIM is compared to TTJ-PG for single machine
experiments and to TTJ-SparkSQL for cluster experiments. We
also added experimental results using the Samsung 850 Pro 1TB
SSD when DUALSIM is investigated in a distributed framework.

Running Environments. In our experiments, we use either a single-
machine environment or distributed environment. In the single
machine environment, we conducted experiments using two ma-
chines having identical hardware – an Intel Core i7-3930K CPU
(6 CPU cores), 24GB RAM, and one 1TB HDD (Western Digi-
tal VelociRaptor). DUALSIM was executed on Windows 7, while
TWINTWIGJOIN was executed on Linux since DUALSIM currently
supports the Windows platform only, while TWINTWIGJOIN cur-
rently supports the Linux platform only. Note that due to a faster
file system support in Linux, binaries executed on Linux are typi-
cally faster than those executed on Windows [14, 17]. In the dis-
tributed environment, we conducted experiments on a cluster of 51
machines, one master and 50 slaves, interconnected by an Infini-
Band 40G network. Each machine has two Intel Xeon E5-2650
CPUs (a total of 16 cores), 32GB RAM, and one 300GB HDD
(Hitachi Ultrastar). We use one machine in the cluster to execute
DUALSIM. Note that using a high speed network is important for
boosting the performance of distributed frameworks. Whenever we
load a database page from disk, we bypass OS cache. Thus, every
access to the database incurs a real disk I/O. This holds true even if
we use small datasets.

Measure. To measure the cost, the elapsed time is used. To mea-
sure the parallelization effect, the speed-up is used, which is the

elapsed time of the single thread execution over that of the multiple
thread execution.

6.2 Experimental Results
We now report the performance of DUALSIM. Table 2 shows the

various parameter values used for our experiments. Unless speci-
fied otherwise, values in boldface are used as default parameters in
each experiment.

Table 2: Parameters used in the experiments.

Parameter Description Values Used

DS data graphs
WebGoogle, WikiTalk, USPatents,
LiveJournal, Orkut, Wikipedia,
Friendster, Yahoo

q query graphs q1, q2, q3, q4, q5

t # of threads 1, 2, 3, 4, 5, 6 (single machine)
16 (cluster)

buf
buffer size
(% of data graph
size)

5, 10, 15, 20, 25 (single machine)

s # of slaves 8, 16, 32, 50 (cluster)

6.2.1 Preprocessing Cost
We first study the impact of preprocessing cost associated with

subgraph enumeration techniques. Note that all existing subgraph
enumeration methods use the degree-based ordering [1,20,24]. Ta-
ble 3 reports the results for different datasets. Note that this pre-
processing incurs an external sort of the original database, whose
I/O cost is O(nplognp) where np is the number of pages in the
database. At the last level in external-merge sort, we also update
adjacency lists of all reordered vertices before they are finally writ-
ten to disk. Thus, the preprocessing cost is theoretically cheaper
than the cost for q1. In fact, the preprocessing time is significantly
smaller compared to the execution time of complex query patterns.
For example, the processing time is 8.5 times smaller than process-
ing q4 for the FR dataset.

Table 3: Elapsed time of preprocessing (in sec.).

WG WT UP LJ OK WP FR YH
Preprocessing time 0.892 1.280 4.126 9.423 26.70 28.54 439.6 1951

Even if we consider dynamic graphs, we can still sort the database
whose cost is typically smaller than the cost for processing q1.
Once we have a database and have small updates to the database,
we do not need to reorder the whole database. In order to simu-
late evolving graphs, we make 95% of vertices fully sorted, and
append 5% of them to the database. We tested with FR dataset us-
ing queries q1 and q4. The performance degradation is only 14.7%
to 15.9%. Thus, in order to process complex queries (e.g., q4 and
q5), we always reorder the database as the reordering cost is signif-
icantly smaller than the cost for processing queries. Regarding q1,
we do not need to reorder the database until there is a significant
number of changes to the database.

6.2.2 Varying the Buffer Size
To see the effect of the memory buffer size on the elapsed time,

we varied it from 5% of the graph size to 25% in 5% increments.
We measure the relative elapsed time of DUALSIM with a given
memory buffer size compared to that with 25% of the graph size.

Figure 9 plots the relative elapsed times of DUALSIM using q1
and q4 for LJ and OK. DUALSIM showed almost constant perfor-
mance except in the case where the buffer is very small (5% of the
graph size). Specifically, for q1, the relative elapsed times of DU-
ALSIM remain 1 over varying buffer sizes. For the query q4, when

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25

re
l.
 e

la
p

s
e

d
 t

im
e

buffer size(%)

q1 (SSD)
q4 (SSD)
q1 (HDD)
q4 (HDD)

(a) LJ.

 1

 1.5

 2

 2.5

 3

5 10 15 20 25

re
l.
 e

la
p

s
e

d
 t

im
e

buffer size(%)

q1 (SSD)
q4 (SSD)
q1 (HDD)
q4 (HDD)

(b) OK.

Figure 9: Relative elapsed times for varying the buffer size.

we reduce the buffer size from 25% to 5% (5 times), DUALSIM
shows 2.22 and 2.56 times performance degradation. Overall, DU-
ALSIM achieves robust performance even under the limited mem-
ory budget. When we use the SSD instead of the HDD, DUALSIM
shows almost no performance degradation for q1 while it shows at
most 1.65 times the performance degradation for q4 when the buffer
size is set to 5% of the graph size.

6.2.3 Comparison in a Single Machine Environment
We now compare DUALSIM with TWINTWIGJOIN, which can

execute subgraph enumeration in a single machine. Note that DU-
ALSIM is configured to use a limited size of memory buffer (15%
of the graph size), while TWINTWIGJOIN uses all available mem-
ory (i.e., 24G memory size). We follow experimental parameters
for TWINTWIGJOIN as in [24].

Varying datasets. Figure 10 shows the elapsed times of DUALSIM
and TWINTWIGJOIN for q1 and q4 on different datasets. DUAL-
SIM consistently shows better performance than TWINTWIGJOIN
for all datasets. Specifically, DUALSIM outperforms both variants
of TWINTWIGJOIN by up to 318.34 times even if DUALSIM uses
much less memory. Also, note that TWINTWIGJOIN failed to pro-
cess all queries on the largest data set (i.e., YH).

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

WG WT UP LJ OK WP FR YH

E
la

p
s
e

d
 t

im
e

(m
in

.)

Datasets

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(a) Query q1.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

WG WT UP LJ OK WP FR YH

E
la

p
s
e

d
 t

im
e

(m
in

.)

Datasets

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(b) Query q4.

Figure 10: Varying datasets in a single machine.

The performance gain of DUALSIM is primarily due to two key
causes. First, it enables significant reduction in CPU processing
time using efficient graph traversal with the dual approach rather
than expensive join operations. Second, it achieves significant re-
duction in the number of disk I/Os since DUALSIM does not need
to write enormous partial results to disk at all. We shall report the
estimated and actual sizes of partial results of TWINTWIGJOIN and
PSGL in Appendix B.4. Although accurate estimation of interme-
diate result sizes is an interesting future research topic, it is beyond
the scope of this paper; Table 5 in Appendix B.4 uses estimation
formulae in [20, 24] in order to estimate the number of intermedi-
ate results. However, due to unrealistic assumptions, we will see
that these formulae lead to significant estimation errors.

Note that PostgreSQL uses merge join extensively and hence
must sort intermediate results. Consequently, if these results are
stored in memory, TTJ-PG outperforms the Hadoop-based TWIN-
TWIGJOIN, while it performs slower than the latter if the interme-
diate results need to be spilled to disk, which leads to external sort.

10
-3

10
-2

10
-1

10
0

10
1

10
2

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(a) Query q1.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(b) Query q2.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(c) Query q3.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(d) Query q4.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim

(e) Query q5.

Figure 11: Varying queries in a single machine.

Varying queries. We now vary queries by fixing datasets. Fig-
ure 11 reports the elapsed times in a single machine for all queries
using WG, WT, and LJ. Observe that DUALSIM shows much shorter
elapsed times compared to TWINTWIGJOIN. DUALSIM outper-
forms TWINTWIGJOIN by up to 77.83, 866.61, 779.39, and 318.34
times for q1, q2, q3, and q4 respectively. Note that the binary exe-
cutable of TWINTWIGJOIN fails to handle q5.

It is worthwhile to note that DUALSIM significantly outperforms
TWINTWIGJOIN as the number of solutions increases. For exam-
ple, DUALSIM outperforms TWINTWIGJOIN by 866.61 times in
WT using q2. DUALSIM efficiently traverses the graph using the
dual approach while TWINTWIGJOIN generates excessive partial
solutions so that the join cost for them is very expensive. There is a
relatively small number of solutions in UP for q4. Thus, DUALSIM
outperforms TWINTWIGJOIN by 3.54 times. Since WP is a bipar-
tite graph, there is no solution for q4 using WP. Even in this case,
DUALSIM outperforms TWINTWIGJOIN by 44.23 times due to ef-
ficient graph traversal based on the dual approach. Lastly, observe
that TWINTWIGJOIN fails to complete q3 on LiveJournal. This is
due to spill failure in Hadoop since TWINTWIGJOIN generates ex-
cessive partial results.

Varying graph size. Lastly, we demonstrate the scalability of DU-
ALSIM in a single machine over varying graph sizes. In order to
vary the number of vertices, we generate datasets by randomly
sampling 20%, 40%, 60%, and 80% vertices from the original FR
dataset according to [24]. Note that we choose FR over YH in this
experiment because TWINTWIGJOIN failed to process queries on
the latter dataset.

Figure 12 shows the performance over varying graph sizes. DU-
ALSIM outperforms TWINTWIGJOIN in all cases. Furthermore,
the performance gap between DUALSIM and TWINTWIGJOIN in-
creases as the graph size increases. Regarding q1, the performance
gaps are 20.25, 46.17, 17.26, 75.35, and 24.13 respectively. TWIN-
TWIGJOIN fails in several cases again. For q2 and q3, TWIN-
TWIGJOIN fails to report results whenever the graph size is larger
than 40% of the original FR.

6.2.4 Comparison on Distributed Environment
We now compare the performance of DUALSIM to the state-

of-the-art distributed subgraph enumeration methods (PSGL and
TWINTWIGJOIN). Recall that both distributed methods use 51 ma-
chines, while DUALSIM use only a single machine.

Varying datasets. Figure 13 plots the elapsed times of DUALSIM,
PSGL, and TWINTWIGJOIN for various real graphs. In all cases,
DUALSIM significantly outperforms competitors. Specifically, DU-
ALSIM is faster than PSGL and TWINTWIGJOIN by up to 6.53 and
162.05 times for q1, respectively. Regarding q4, DUALSIM outper-
forms PSGL and TWINTWIGJOIN by up to 12.96 and 24.64 times,
respectively.

Observe that TTJ-SparkSQL typically performs better than Hadoop-
based TWINTWIGJOIN when intermediate results can be stored
in memory. Otherwise, the former performs slower than the lat-
ter when queries generate large intermediate results as Spark SQL

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(a) Query q1.

10
0

10
1

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(b) Query q2.

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(c) Query q3.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim
TTJ (Hadoop)

TTJ (PostgreSQL)

(d) Query q4.

Figure 12: Varying graph size in a single machine.

must spill those results into disk. Importantly, TTJ-SparkSQL fails
for some queries which generate a large size of intermediate results,
where those results are divided into partitions across machines in a
cluster. Specifically, it fails to process if the size of a partition block
becomes larger than 2 GB. A typical workaround for this problem
is to manually set a larger number of partition blocks. However,
if we arbitrarily increase the number of partition blocks, the per-
formance would significantly decrease. For instance, when on FR
dataset, TTJ-SparkSQL fails with the default number of partition
blocks. Even when we increase the number of partition blocks by
up to 3200, it still fails due to the same problem. Both PSGL and all
variants of TWINTWIGJOIN implementations fails to process this
Yahoo dataset due to the out of memory problem.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

WG WT UP LJ OK WP FR YH

E
la

p
s
e

d
 t

im
e

(m
in

.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(a) Query q1.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

WG WT UP LJ OK WP FR YH

E
la

p
s
e

d
 t

im
e

(m
in

.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(b) Query q4.

Figure 13: Varying datasets in a cluster.

Varying queries. Figure 14 shows elapsed times of DUALSIM, TWIN-
TWIGJOIN, and PSGL for all queries using WG, WT, and LJ.
Again, DUALSIM outperforms its competitors for all queries. Specif-
ically, it outperforms TWINTWIGJOIN by up to 162.05, 903.47,
144.40, and 24.64 times for q1, q2, q3, and q4, respectively. DUAL-
SIM outperforms PSGL by up to 6.53, 8.88, 23.87, and 12.96 times
for q1, q2, q3, and q4, respectively. Recall that TWINTWIGJOIN
cannot handle q5. Furthermore, since PSGL maintains partial solu-
tions in memory, PSGL fails to process q2 and q3 for LJ, and q5 for
all three datasets. In these cases, the sizes of partial solutions are
enormous.

10
-3

10
-2

10
-1

10
0

10
1

10
2

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(a) Query q1.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(b) Query q2.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(c) Query q3.

10
-2

10
-1

10
0

10
1

10
2

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(d) Query q4.

10
-1

10
0

10
1

10
2

10
3

10
4

WG WT LJ

E
la

p
s
e
d
 t
im

e
(m

in
.)

Datasets

DualSim (SSD)
DualSim (HDD)

PSgL

(e) Query q5.

Figure 14: Varying queries in a cluster.

10
-1

10
0

10
1

10
2

10
3

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(a) Query q1.

10
-1

10
0

10
1

10
2

10
3

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(b) Query q4.

Figure 15: Varying graph size in a cluster.

Varying graph size. Figure 15 shows elapsed times with varying
the number of vertices in the data graph. DUALSIM outperforms
PSGL and TWINTWIGJOIN by up to 5.34 and 2.86 times, respec-
tively, for q1. TWINTWIGJOIN using 51 machines shows better
performance than DUALSIM using a single machine for q4 since
(a) TWINTWIGJOIN is optimized to process clique queries and (b)
there are relatively small numbers of results for FR. Specifically,
TWINTWIGJOIN requires two join operations for a clique query
while DUALSIM requires three-level graph traversal. PSGL fails to
complete queries for q1 using 80% and 100% datasets, and fails to
answer for q4 using 60%, 80% and 100% datasets, respectively.

We also perform experiments using q2 and q3 for varying graph
sizes (detailed in Appendix B.3). Note that all state-of-the-art tech-
niques fail as the graph size increases whereas DUALSIM success-
fully processes all queries and outperforms TWINTWIGJOIN and
PSGL by up to 5.27 and 35.04 times.

7. RELATED WORK
In-memory Methods. Most of the previous work on subgraph

enumeration assumes that the graph would fit in main memory. [7]
proposes a simple edge-searching based method with the time com-
plexity of O(α(g)|E|) for three query shapes, where α(g) is the
arboricity of the data graph g. [7] may incur significant disk reads
if it is applied to external subgraph enumeration. [12, 34] propose
enhanced algorithms compared to [7]. In contrast, in this paper we
propose a scalable and efficient disk-based approach to address the
subgraph enumeration problem.

Disk-based Methods. Many external triangulation methods [15,
17, 19, 29] have been proposed. However, all these methods only
deal with triangle enumeration, a special case of the subgraph enu-
meration. [17] proposes an overlapped and parallel, disk-based tri-
angulation framework, OPT. In this paper, we generalize OPT using
the concept of the dual approach so that we can support any shaped
queries efficiently.

Distributed Methods. Subgraph enumeration on a large-scale
graph is computationally expensive, and thus various, distributed
approaches have been proposed.

[23] proposes SGIA-MR, which is based on an edge-based join.
However, a reducer can run out of memory since it could generate
a large number of intermediate results [23]. [1] proposes a single
map-reduce round method for subgraph enumeration. The method
duplicates edges in multiple machines at the map phase so that each

machine can perform independent subgraph enumeration. How-
ever, when the query graph is complex, it can cause out-of-memory
error [20] due to the large amount of intermediate results. [20] is
the-state-of-the-art map-reduce algorithm. It first partitions a query
graph into a set of of TwinTwigs, each of which is an edge or two
incident edges. It then constructs a left-deep join plan. [20] shows
its superiority compared with [1,23], but it still suffers from a large
number of partial solutions.

[24] proposes a distributed subgraph enumeration method which
is based on Apache Giraph. At each superstep, it expands par-
tial subgraph instances. This method stores all partial solutions in
memory. Thus, it easily fails for many queries due to memory over-
runs.

Our disk-based DUALSIM algorithm not only employs a novel
dual approach on a single machine instead of a distributed setup to
address the subgraph enumeration problem but also addresses the
limitation of explosive intermediate result size effectively.

There are several, distributed triangulation methods. [11] pro-
poses a method based on PowerGraph, while [3] proposes an MPI-
based distributed algorithm. [30] proposes a map-reduce triangula-
tion. [9] presents a distributed triangulation method using efficient
external memory access.

Approximate Methods. There are several methods [2, 5, 6, 10,
36] which can estimate the number of subgraphs for a given query.
Although they are efficient for massive graphs, such approximate
counts may lead to erroneous conclusions [24].

8. CONCLUSION
In this paper, we proposed an efficient and scalable, disk-based

subgraph enumeration framework, DUALSIM, in a single machine.
For this framework, we proposed a novel notion of the dual ap-
proach for subgraph enumeration, which completely solves the no-
torious, excessive partial solution size problem. In order to effi-
ciently traverse the data graph, we proposed the novel concepts
of v-group forest and candidate data/page sequence. The dual ap-
proach together with these concepts minimizes the number of disk
I/Os while it uses a bounded storage space for saving candidate re-
sults. We also proposed the concept of v-group sequence in order
to avoid repeated pattern matching in the dual approach. We then
proposed detailed parallel algorithms for DUALSIM which support
overlapped and parallel subgraph enumeration under the dual ap-
proach. We also derived the cost model for DUALSIM. Experi-
ments using various real datasets showed that DUALSIM signifi-
cantly outperformed the-state-of-the-art methods both in a single
machine and in a distributed environment. DUALSIM showed ro-
bust performance for all queries, while the-state-of-the-art methods
failed for many queries we tested. Overall, we believe our over-
lapped and parallel subgraph enumeration provides comprehensive
insight and a substantial framework for future research.

9. ACKNOWLEDGMENTS
This work was supported in part by an industrial gift from Mi-

crosoft. This work was also supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea government
(MSIP) (No. NRF-2014R1A2A2A01004454), the MSIP(Ministry
of Science, ICT and Future Planning), Korea, under the “ICT Con-
silience Creative Program” (IITP-2015-R0346-15-1007) supervised
by the IITP(Institute for Information & communications Technol-
ogy Promotion), and Next-Generation Information Computing De-
velopment Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Science, ICT & Future Plan-
nig (NRF-2012M3C4A7033342). Sourav S Bhowmick was sup-
ported by the Singapore-MOE AcRF Tier-1 Grant RG24/12.
10. REFERENCES
[1] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating

subgraph instances using map-reduce. In ICDE, pages
62–73, 2013.

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C.
Sahinalp. Biomolecular network motif counting and
discovery by color coding. In ISMB, pages 241–249, 2008.

[3] S. Arifuzzaman, M. Khan, and M. V. Marathe. PATRIC: a
parallel algorithm for counting triangles in massive
networks. In CIKM, pages 529–538, 2013.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark SQL: Relational Data Processing in
Spark. In SIGMOD, pages 1383–1394, 2015.

[5] I. Bordino, D. Donato, A. Gionis, and S. Leonardi. Mining
large networks with subgraph counting. In ICDM, pages
737–742, 2008.

[6] L. S. Buriol, G. Frahling, S. Leonardi,
A. Marchetti-Spaccamela, and C. Sohler. Counting triangles
in data streams. In PODS, pages 253–262, 2006.

[7] N. Chiba and T. Nishizeki. Arboricity and subgraph listing
algorithms. SIAM J. Comput., 14(1):210–223, 1985.

[8] B. Escoffier, L. Gourvès, and J. Monnot. Complexity and
approximation results for the connected vertex cover
problem in graphs and hypergraphs. J. Discrete Algorithms,
8(1):36–49, 2010.

[9] I. Giechaskiel, G. Panagopoulos, and E. Yoneki. Pdtl:
Parallel and distributed triangle listing for massive graphs.
Technical Report, University of Cambridge, 2015,
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
866.pdf.

[10] M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other
small subgraphs in sublinear time. In SODA, pages 99–116,
2010.

[11] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In OSDI, pages 17–30, 2012.

[12] J. A. Grochow and M. Kellis. Network motif discovery using
subgraph enumeration and symmetry-breaking. In
RECOMB, pages 92–106, 2007.

[13] J. Lee, W. Han, R. Kasperovics, and J. Lee. An In-depth
Comparison of Subgraph Isomorphism Algorithms in Graph
Databases. PVLDB, 6(2):133–144, 2012.

[14] W. Han, S. Lee, K. Park, J. Lee, M. Kim, J. Kim, and H. Yu.
Turbograph: a fast parallel graph engine handling
billion-scale graphs in a single PC. In KDD, pages 77–85,
2013.

[15] X. Hu, Y. Tao, and C. Chung. Massive graph triangulation. In
SIGMOD, pages 325–336, 2013.

[16] S. R. Kairam, D. J. Wang, and J. Leskovec. The life and
death of online groups: predicting group growth and
longevity. In WSDM, pages 673–682, 2012.

[17] J. Kim, W. Han, S. Lee, K. Park, and H. Yu. OPT: a new
framework for overlapped and parallel triangulation in
large-scale graphs. In SIGMOD, pages 637–648, 2014.

[18] W. Kim, M. Li, J. Wang, and Y. Pan. Biological network
motif detection and evaluation. BMC Systems Biology,
5(S-3):S5, 2011.

[19] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a PC. In OSDI, pages
31–46, 2012.

[20] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph
enumeration in mapreduce. PVLDB, 8(10):974–985, 2015.

[21] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, 2009.

[22] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Simple
building blocks of complex networks. Science,
298(5594):824–827, 2002.

[23] T. Plantenga. Inexact subgraph isomorphism in mapreduce.
J. Parallel Distrib. Comput., 73(2):164–175, 2013.

[24] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel
subgraph listing in a large-scale graph. In SIGMOD, pages
625–636, 2014.

[25] N. Shervashidze, S. V. N. Vishwanathan, T. Petri,
K. Mehlhorn, and K. M. Borgwardt. Efficient graphlet
kernels for large graph comparison. AISTATS, pages
488–495, 2009.

[26] J. Cardinal and E. Levy. Connected vertex covers in dense
graphs. Theor. Comput. Sci., 411(26–28):2581–2590, 2010.

[27] F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in
a Map-Reduce Environment. TKDE, 23(9):1282–1298, 2011.

[28] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree
problem is NP-complete. SIAM Journal of Applied
Mathematics, 32(4), 826–834, 1977.

[29] S. Chu and J. Cheng. Triangle listing in massive networks
and its applications. In KDD, pages 672–680, 2011.

[30] S. Suri and S. Vassilvitskii. Counting triangles and the curse
of the last reducer. In WWW, pages 607–614, 2011.

[31] J. Ugander, L. Backstrom, and J. M. Kleinberg. Subgraph
frequencies: mapping the empirical and extremal geography
of large graph collections. In WWW, pages 1307–1318, 2013.

[32] J. Wang and J. Cheng. Truss decomposition in massive
networks. PVLDB, 5(9):812–823, 2012.

[33] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world‘ networks. nature, 393(6684):440–442, 1998.

[34] S. Wernicke. Efficient detection of network motifs.
IEEE/ACM Trans. Comput. Biology Bioinform.,
3(4):347–359, 2006.

[35] E. A. Wong and B. Baur. On network tools for network motif
finding: a survey study, 2010.

[36] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe.
Subgraph enumeration in large social contact networks using
parallel color coding and streaming. In ICPP, pages
594–603, 2010.

[37] P. Erdös and A. Rényi. On the evolution of random graphs.
Publ. Math. Inst. Hungar. Acad. Sci, 5:17–61, 1960.

APPENDIX
A. ALGORITHMS DETAILS

COMPUTECANDIDATESEQUENCES(·) computes the candidate
vertex/page sequences for all child nodes of {vgfi[cur]}. It first
pins page pid (Line 1). Then, for each v-group forest, for each
data vertex v in page pid, we check if v is in the current vertex
window, cvwi,cur (Lines 2 ∼ 4). If so, we compute candidate ver-
tex/page sequences for all child nodes of vgfi[cur] (Lines 5 ∼ 7).
All pinned pages in this function are unpinned in Algorithm 1 (for
level 1) or Algorithm 2 (for the other levels except the last level).

Algorithm 3. COMPUTECANDIDATESEQUENCES

Input: page ID pid, the current vertex windows for current level
{cvwi,cur}, all child nodes of {vgfi[cur]}

1: Pin page pid;
2: foreach (vgfi) do
3: foreach (v in data vertices of page pid) do
4: if (v ∈ cvwi,cur) then
5: foreach (the child node nc of vgfi[cur]) do
6: add adj(v) to cvs for nc;
7: add {P (v′)|v′ ∈ adj(v)} to cps for nc;
8: end
9: end

10: end
11: end

EXTVERTEXMAPPING(·) enumerates the vertex mappings for
all possible external subgraphs, starting from page pid loaded at
the last level. It first pins page pid (Line 1). Then, for each v-
group forest, for each data vertex v in page pid, we check if v is
in the current vertex window, cvwi,cur (Lines 2 ∼ 4). If so, we
map v to the corresponding node vgfi[|VR|] (Line 5). Note that
we use another mapping mvgs which can be used for enumerating
all full-order query sequences in the v-group sequence. Then, we
recursively map data vertices in the buffer to the remaining nodes
in vgfi by invoking RECEXTVERTEXMAPPING (Line 7). At the
end of EXTVERTEXMAPPING, we unpin page pid (Line 12).

Algorithm 4. EXTVERTEXMAPPING

Input: Page id pid, RBI query graph qRBI , current vertex windows
cvw, v-group sequences {vgsi}, v-group forests {vgfi}

1: Pin page pid;
2: foreach (vgfi) do
3: foreach (data vertex v in page pid) do
4: if (v ∈ cvwi,|VR|) then
5: mvgs[vgfi[|VR|]]← v;
6: idx← 2 ; // idx represents the index in

the matching order.
7: ; RECURSIVEEXTVERTEXMAPPING(idx, mvgs,

qRBI , cvwi, vgsi, vgfi);
8: mvgs[vgfi[|VR|]]←INVALID;
9: end

10: end
11: end
12: Unpin page pid;

RECEXTVERTEXMAPPING(·) recursively maps data vertices in
the buffer to the remaining nodes in vgfi. It basically follows
GenericQueryProc in [13] using the matching order qoi. The main
differences are that 1) RECEXTVERTEXMAPPING maps all red
query vertices to the corresponding data vertices, and then maps
non-red query vertices and 2) RECEXTVERTEXMAPPING uses two-

Algorithm 5. RECEXTVERTEXMAPPING

Input: Current matching index idx, v-group sequence mapping
mvgs, RBI query graph qRBI , vgfi’s current vertex window
cvwi, v-group sequence vgsi, v-group forest vgfi

1: UCON ← adj(qoi[idx]) ∩ qoi[1 : idx− 1];
2: foreach (v in

⋂
n∈UCON

adj(mvgs[qoi[n]])) do
3: if (IsJoinable(qoi[idx], v,mvgs, vgsi, cvwi)) then
4: mvgs[qoi[idx]]← v;
5: if (idx < |qR|) then
6: RECEXTVERTEXMAPPING(idx+ 1,m, qRBI ,

vgsi, vgfi);
7: else
8: foreach (qs ∈ vgsi) do
9: m← ∅;
10: for (1 ≤ j ≤ |VR|) do
11: m[qs[j]]← mvgs[qoi[k]] where the array

index of the qoi[k] is j;
12: end
13: NONREDVERTEXMATCHING(m);
14: end
15: end
16: mvgs[qoi[idx]]← INVALID;
17: end
18: end

level mapping functions (mvgs and m) to reduce the CPU process-
ing time. UCON represents a set of query vertices where each query
vertex is already matched and connected from qoi[idx].

B. ADDITIONAL EXPERIMENTAL RESULTS

B.1 Varying the Number of Threads
The purpose of this experiment is to assess the CPU paralleliza-

tion effect. We measure the elapsed times and speed-ups by varying
the number of execution threads. In order to simulate hot-run, we
preload the whole graph in memory so that the speed up due to CPU
parallelism can be measured. Figure 16 plots the speed-ups of DU-
ALSIM in LJ by varying the number of execution threads from 1
to 6. DUALSIM achieves almost linear speed-up. Specifically, the
speed-up using 6 threads for q1 is 5.46 while the speed-up for q4
is 5.53. The experimental results substantiate that DUALSIM fully
utilizes multi-core parallelism.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2 3 4 5 6

S
p
e
e
d
u
p

of threads

q1
q4

Figure 16: Varying the number of execution threads.

B.2 Comparison to OPT
We compare DUALSIM with OPT [17], a state-of-the-art disk-

based triangulation. We use LJ, FR and YH datasets to this end.
Figure 17 shows the results demonstrating superiority of DUALSIM
for enumerating triangles. DUALSIM is a generalization of OPT
but outperforms OPT since DUALSIM has a better buffer alloca-
tion strategy where most of buffer frames are allocated for internal
triangulation and only two buffer frames * # of threads are allo-
cated for external triangulation. By using this strategy, the number

of iterations for the first level is much smaller than OPT, which is
very effective when we use HDDs.

10
-2

10
-1

10
0

10
1

10
2

10
3

LJ FR YH

E
la

p
s
e

d
 t

im
e

(m
in

.)

Datasets

DualSim (SSD)
DualSim (HDD)

OPT (SSD)
OPT (HDD)

Figure 17: Comparison to OPT.

B.3 Varying Graph Size for Q2 and Q3
Figure 18 shows experimental results for q2 and q3 in a dis-

tributed enviroment. Regarding q2 and q3, DUALSIM outperforms
TWINTWIGJOIN and PSGL by up to 5.27 and 35.04 times. TWIN-
TWIGJOIN (Hadoop), TWINTWIGJOIN (Spark SQL), and PSGL
fail to process q2 when the input graph reaches 80%, 60%, and 40%
of the original FR, respectively. Regarding q3, they fail when the
input graph reaches 60% of the original graph size. We also note
that PSGL successfully processes q3 for 40% of vertices but fails
to process for 20% of vertices, since one slave machine has three
times more intermediate results even if the dataset size is smaller,
depending on partitioning results.

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(a) Query q2.

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

E
la

p
s
e

d
 t

im
e

(m
in

.)

% of vertices in friendster

DualSim (SSD)
DualSim (HDD)

PSgL
TTJ (Hadoop)

TTJ (Spark SQL)

(b) Query q3.

Figure 18: Varying graph size in a cluster.

B.4 Intermediate Result Size
Table 4 shows the actual number of intermediate results gener-

ated by TWINTWIGJOIN and PSGL for q1 and q4 across different
datasets. As remarked earlier, the massive number of these results
have significant adverse impact on the performances of these ap-
proaches.

Table 4: The actual number of intermediate results.

TWINTWIGJOIN PSGL
q1 q4 q1 q4

WG 17 728 487 120 080 516 14 267 638 80 638 724
WT 13 986 397 161 379 149 11 597 979 132 275 038
UP 24 233 735 30 466 127 11 290 035 10 776 978
LJ 330 307 042 20 761 697 361 290 581 577 19 871 938 971
OK 760 453 448 8 495 795 053 631 448 564 6 450 113 417
WP 135 418 732 42 568 284 26 134 800 25 236 087
FR 6 338 480 209 32 419 482 939 fail fail
YH fail fail fail fail

Table 5 shows the estimated number of intermediate results using
the estimation formulae in [20, 24]. We observe that there are sig-
nificant estimation errors in their estimation. In [24], when a query

vertex u is selected to match a data vertex v, it assumes that every
data vertex in adj(v) can be mapped to any non-matched query ver-
tex in adj(u). However, some vertices in adj(v) could have been
matched with query vertices already. Thus, this assumption leads to
over-estimation. In [20], the estimation model assumes the Erdös-
Rényi random graph model. However, this model does not capture
characteristics of real-world graphs. Furthermore, neither formula
takes into account of bloom filters or partial orders in their estima-
tion. Even if we do not use bloom filters or partial orders, their es-
timation still leads to significant errors due to the aforementioned,
unrealistic assumptions. Accurate estimation of intermediate result
sizes would be an interesting future research topic.

Table 5: The estimated number of intermediate results.

TWINTWIGJOIN PSGL
q1 q4 q1 q4

WG 89 647 379 255 985 479 728 292 937 40 912 661 890

WT 40 923 518 108 792 088 8 300 949 511 137 340 284 542

UP 305 676 473 867 478 443 339 556 041 11 701 483 501

LJ 1 595 424 330 4 656 266 644 7 274 351 324 930 439 994 468

OK 17 995 274 430 53 668 127 117 45 628 539 012 6 177 760 914 437

WP 2 475 955 253 7 061 648 888 355 660 021 848 2 156 268 223 798

FR 200 675 735 441 596 618 192 868 720 720 573 330 137 456 527 555 023

YH 123 599 731 090 351 495 517 035 13 589 362 651 547 132 438 400 752 902

B.5 Preparation Cost
Table 6 shows elapsed time for the preparation step for varing

queries. The preparation step takes at most 1 msec, which is negli-
gible.

Table 6: Elapsed time of preparation step (in msec.).

query q1 q2 q3 q4 q5
time 0 0 0 1 1

C. PROOF TO LEMMA 1
PROOF. According to Property 1, m[qs[1]] ≺ m[qs[2]] ≺ .. ≺

m[qs[|VR|]]. Vertices are stored according to id(·). Thus, if id(vi)
< id(vj), P (vi) ≤ P (vj). Therefore, the condition, P (m[qs[1]])
≤ P (m[qs[2]]) ≤ · · · ≤ P (m[qs[|VR|]]), is satisfied.

