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ABSTRACT
Prefix-based numbering (PBN) is a popular method for numbering
nodes in a hierarchy. But PBN breaks down when a node’s location
within a hierarchy changes, such as when XML data is queried
after being transformed by an XSLT program or when data is re-
formatted in the return clause of an inner FLWR expression in
a nested XQuery program. A query on transformed data cannot
be evaluated as efficiently since the extant PBN numbers cannot be
used (unless the data is materialized and then renumbered, which
can be expensive). In this paper we present a novel strategy to
virtually transform the data without instantiating and renumbering.
Our method, which we call virtual prefix-based numbering, couples
each PBN number with a level array that locates the node in the
numbering space of the virtual hierarchy. The virtual numbering
space preserves the property that location-based relationships be-
tween nodes can be determined by comparing (virtual) numbers.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing -
XML

General Terms
Design, Languages

Keywords
XML; virtual hierarchy; prefix-based numbering; view query

1. INTRODUCTION
About 40 years ago, E. F. Codd observed that the hierarchical

data model has a problem: queries must use path expressions to
locate data in the hierarchy, thereby tightly coupling queries to hi-
erarchies [5]. Codd explained that there are myriad natural hierar-
chies for any tree-like data collection and that tightly coupling path
expressions to just one hierarchy (or even a subset of the potential
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hierarchies) prevents queries from being ported to new collections
that have similar data organized in a different hierarchy, and also
increases the cognitive burden on query writers since they have to
know the hierarchy to write queries. Moreover, a query on data
with a hierarchy different than what the query expects will not al-
ways fail with an obvious error, rather the query usually will run to
completion and yield an empty or partial answer.

Today, path expressions are ubiquitous since data continues to be
organized in hierarchies in many areas of computer science, e.g.,
file systems, the semantic web, and databases. Databases, in par-
ticular, have embraced the management and querying of data repre-
sented in JSON or XML, which has a hierarchical data model and
is the focus of this paper.

To solve the problem he posed, Codd changed the data model,
but three other distinct solutions have been researched.

1. Rewrite the data - Physically transform the data to the de-
sired hierarchy [7, 16, 23]. But it can be excessively expen-
sive to transform a data collection, especially when a query
uses only a fraction of the data.

2. Rewrite the query - Evaluate the query through a (data trans-
formation) view [1, 9, 14, 21, 22, 24]. The chief drawback is
that a view is specific to a hierarchy, so each hierarchy needs
its own view.

3. Reinterpret the query - Relax or change the query to explore
a range of “close” hierarchies [2, 6, 13, 19, 20, 29]. But since
query evaluation does not transform the hierarchy, the result
is formatted in the source data’s hierarchy.

In this paper, we propose a new approach: reinterpret the data.
We develop a reinterpretation technique using a popular node num-
bering system for hierarchical data called prefix-based numbering
(PBN) (also called containment encoding, Dewey order, Dewey
numbering, and Dynamic-level numbering) [4,11,12,15,17,26,30].
PBN is primarily used in XML management systems to support
fast XQuery evaluation and efficient XML search [25], but can be
used for any hierarchical model. In our approach a user sketches
a virtual hierarchy for the data. Data is interpreted to be located
where it is specified in the virtual hierarchy; the data itself is not
physically moved. This paper makes the following contributions.

• We introduce a new numbering system for virtual hierarchies
called virtual prefix-based numbering (vPBN). A vPBN num-
ber can be moved to a new location within a hierarchy, yet be
used just like a PBN number to determine location-based re-
lationships in the context of the new location. In effect, vPBN



virtually rather than physically transforms data and supports
query evaluation in the transformed data space.

• We describe how to construct vPBN numbers. A vPBN num-
ber combines a PBN number with a level array that locates it
in the transformed space. We give an algorithm for comput-
ing level arrays. A transformation can also change a node’s
value, i.e., the subtree rooted at the node, and we show how
to compute the transformed value.

• We add a virtualDoc function to XQuery to allow the speci-
fication of a virtual hierarchy.

• We both analyze and empirically measure the cost of vPBN,
and show the cost to be modest.

2. TRANSFORMING DATA BREAKS PBN
The essence of PBN is that it encodes the hierarchy in the num-

bering. A node is numbered by combining its parent’s number (as a
prefix) with the ordinal of the node’s position in sibling order. The
primary benefit of PBN is that location-based relationships between
nodes (e.g., whether a node is a descendant of another) can be de-
termined from just the numbers. This is critical to fast query eval-
uation since nearly all queries involve a query language axis (e.g.,
ancestor, descendant, child, etc.) to locate nodes. While encoding
the hierarchy in the numbering makes PBN ideal for quickly and
easily determining how nodes are related, if the hierarchy changes,
for instance in a nested XQuery query when an outer FLWR ex-
pression traverses the data produced by an inner FLWR expression,
the numbering breaks down in two critical ways.

1. Location-based relationships change - The PBN number
for a node is rendered obsolete when a node is moved to
a new location in a hierarchy. For instance the ancestor-
descendant relationship between a pair of nodes could be in-
verted during a transformation. In the transformed instance
the node that moves from being a descendant to an ances-
tor would not have a node number that is a prefix of its new
descendant (previously its ancestor).

2. Values change - The value of a node in the hierarchy is built
from its descendants, i.e., every node which is prefixed with
the node’s number is part of the node’s value. But this prop-
erty does not hold for transformed data. A node that was
previously a child may move away, a non-child may move
to become a child, or the order of the children may change.
These kinds of changes alter the value of a node.

As a concrete example assume that Sam writes an XQuery query
to list for each book, its title and the list of authors for that book.
The query is shown in Figure 1. The return clause in the query
relates a <title>, $t, with a list of <author>s, $a, through
a <book> ancestor. When Sam runs his query on the XML data
model instance shown in Figure 2, the query will produce the data
model instance shown in Figure 3.

Sam’s query is a kind of data transformation, i.e., it transforms
the data into a new hierarchy. The new hierarchy is given in the
return clause where <author> elements are placed as children
of <title> elements, as long as the authors are related to the title
through a (least common) <book> ancestor.

Suppose that Rhonda wants to count the number of authors for
each title. She would like to reuse Sam’s query because it makes it
easier for her to write the query to compute the count. For instance,
Rhonda could embed Sam’s query as an “inner” query in a nested
query as shown in Figure 4. Alternatively, Rhonda could use Sam’s

for $t in doc("book.xml")//book/title
let $a := $t/../author
return <title>{$t/text()} {$a} </title>

Figure 1: Sam’s query to list the authors for each title
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Figure 2: Input data model instance for Sam’s query

query as a view, and use a query rewriting technique to combine
her query with the view [1, 9, 14, 21, 22, 24].

There are three complications with writing views. First, data
transformation views can be complex. It is surprisingly difficult
and tedious to express even simple data transformations in XQuery
as either a view or nested query. The culprit is the transformed
value, which must be meticulously constructed element by ele-
ment in a query’s return clause. Consider for instance a query to
transform the data to be the other <book> information (excluding
<title> and <author>). To do so, one would have to build
a list of a <book>’s children, remove from that list <title>
and <author> nodes, place the nodes in the resulting list as chil-
dren of a <book>, and then capture the attributes of a <book>
by building a string that looks like the <book> element by con-
catenating all of the pieces as shown in Figure 5. And this assumes
that none of the children of a <book> have transformed values!
When used as a view and combined with a query a query rewrit-
ing strategy will produce a long, complicated query that is difficult
to optimize. Second, data transformations construct new node
types. Often a data transformation will need to change the hierar-
chy rooted at a node. It can only do so by explicitly constructing
the node’s value piece-by-piece. The resulting node is a new type,
one not present in the original data. For example, the <title>
element in Figure 1 is a constructed element, and is distinct from
any <title> element originally in the data. These new elements
make it problematic for a query rewriting technique to push WHERE
clause constraints (e.g., choose books where the book publisher is
“Addison-Wesley”) from an outer query into the view query. Third,
data transformation views are tightly-coupled to a hierarchy so
each hierarchy potentially needs a different view.

Another option is to express Sam’s query in a dedicated data
transformation language [7, 16, 23]. Rhonda can the then write her
query to use the result of the transformation. The problem with this
option is that it needs (at least) two passes over the data, one to
transform the data and a second to evaluate the query on the trans-
formed data. This strategy is inefficient for large data collections
when a query uses only a small portion of the transformed data.

We propose a new strategy in this paper that virtually transforms
the data to a desired hierarchy. We illustrate our new approach with
an example. A virtual data transformation can be expressed using a
structural summary, DataGuide [10], or XMORPH program [7] to
describe the desired (virtual) hierarchy for the data. The DataGuide
for the result of Sam’s transformation is specified below. In the
DataGuide the children of an element type are listed within braces.
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Figure 3: Output data model instance for Sam’s query

for $t in (...Sam’s query...)//title
return <title>{$t/text()}

{count($t/author)}
</title>

Figure 4: Rhonda’s query to count the authors for each title

title { author { name } }

The specification is a virtual DataGuide (vDataGuide) since it de-
scribes the desired hierarchy rather than the data’s physical hierar-
chy. In the virtual hierarchy <title> elements contain <author>
children, and <name> grandchildren.

To use a vDataGuide in an XQuery query, we introduce a vir-
tualDoc function which is like the doc function but includes the
vDataGuide specification as a string parameter. The rest of the
query is logically evaluated with respect to the vDataGuide. An
example is shown in Figure 6. The query specifies that Rhonda’s
query is to be evaluated on the document described by the vData-
Guide for the result of Sam’s query. No data is physically trans-
formed, only the hierarchy of the data is changed so that nodes
appear in the location they should be after the transformation. The
query is subsequently evaluated in the transformed space. This al-
lows query writers to craft queries using any vDataGuide they de-
sire. The challenge addressed in this paper is how to efficiently
evaluate a query on data described by a vDataGuide.

3. RELATED WORK
Previous research has focused on front-end or query language-

level solutions to the problem of querying transformed data. Much
of this research effort has been devoted to discovering the best way
to relax the tight coupling of path expressions in a query to the hier-
archy of the data. Approaches include techniques to approximately
match a path to a hierarchy [2,3,13], apply XML search [6, 20,28],
or systems to relax, reinterpret, or rewrite the path expressions in a
query [19, 27, 29, 31]. But these approaches do not investigate how
to transform the XML values in the data; it is the values in the trans-
formed hierarchy rather than the source hierarchy on which queries
in the pipeline should be evaluated.

Research in XML data transformation languages is more rele-
vant [7,16,23], but these approaches are inefficient since two passes
are needed: one to transform the data, the second to query the trans-
formed data. The most relevant front-end research is to combine an
XML query with a view [1, 9, 14, 21, 22, 24]. Views that trans-
form data are cumbersome to write, and element types constructed
in the return clause of a view are distinct from seemingly simi-
lar element types referred to in path expressions in a query; they
potentially have different values which must be first constructed
before being queried. In other words, the view must be (temporar-
ily) materialized and then queried. In contrast, our idea is support
queries over data transformation views by manipulating the node
numbering system rather than by query rewriting. The primary ad-
vantage is that we virtually transform only data actually used in the

for $b in //book
let $v := $b/* except $b/title except $b/author
return (fn:concat( "<book ",

{return for $att in $b//@*
return (fn:concat(

name($att), "=", "’", $att, "’"))
}, ">",
{return for $ele in $v return {$ele}},

"</book>")

Figure 5: Including “other” book information in Sam’s transforma-
tion of Figure 1

for $t in
virtualDoc("x.xml",

"title { author { name } }"
)//title

return <title>{$t/text()}
{count($t/author)}

</title>

Figure 6: Combining Sam’s transformation with Rhonda’s query

query. Note however that virtual hierarchies only construct views
that are data transformations (which are a common, important kind
of view), query rewriting is still necessary for views, in general.

There are strategies for efficiently modifying PBN after an up-
date [12,18,25,30]. Update renumbering is orthogonal to and quite
different from virtual numbering. Update renumbering physically
changes the PBN number for every node in an edit. In contrast,
vPBN does not change any physical node numbers, instead it log-
ically renumbers the data, re-using the extant physical numbers.
Adapting update renumbering to support virtual hierarchies would
be very expensive since all of the nodes in a data collection would
have to be individually, physically renumbered at query time.

4. BACKGROUND
This section introduces terminology we use in the paper and re-

views PBN.

4.1 Terminology
A DataGuide describes the parent/child relationships among the

types in a data collection [10]. We assume a DataGuide, S =
(T,E) is a forest of T types and E edges, that connect a parent
type to a child type. The type of a node in an XML data instance
can be thought of as the concatenation of element/attribute names
on the path from the root (a URI) to that node (as described more
concretely in the typeOf function below). Note that this means
that for a recursive schema type, each level of recursion is a dif-
ferent (actual) type. Also, note that the type includes the URI, so
DataGuide’s for different URIs have different sets of types. Fig-
ure 7 displays the DataGuide for the data instances of Figure 2 and
Figure 3. The DataGuides are essentially the same size as the data
instances since the instances are small. In general a DataGuide for
a data collection will be much smaller than the data.

We assume the following helper functions for a DataGuide, S,
on an XML data instance, D.

• roots(S) = {t | (t, _) ∈ S ∧ ¬∃v((t, v) ∈ S)} is the set of
types in S that have no incoming edges.

• name(S, v) - If v ∈ D is an attribute or element then its
name is the label of the corresponding type in S, otherwise ◦
(v is a text node, for brevity we ignore other kinds of nodes).
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Figure 7: The DataGuides for the original data (Figure 2) and trans-
formed data (Figure 3)

• typeOf(S, v) - Yields the type of a node, v ∈ D. Each node
in the data has a well-defined type that is specified as a con-
catenation of the names of the elements on the path from a
data root to the node, vk, e.g., name(S, v0).name(S, v1). . . .
.name(S, vk) where vi is a node at level i on the path. The
type is a node in S.
• lcaTypeOf(S, v, w) - For v, w ∈ D, the lowest common an-

cestor type in S between typeOf(S, v) and typeOf(S,w)
or null if there is no least common ancestor (the nodes are in
different trees in the forest).
• length(S, v) - The length of the type of v (number of names

in the path).
• originalTypeOf(S′, S, v) - The original type of v, that is,
v is in a vDataGuide, S′, but we want the type of v in the
original Dataguide, S.

For example, the typeOf author in Figure 7(b) is title.author,
and it has a length of 2. Its originalTypeOf is data.book.author.
The lcaTypeOf of title.author and title is title.

As this paper is about prefix-based numbering, we use a sim-
ple specification of a vDataGuide. A vDataGuide can be specified
using the following grammar.

S ← label P
P ← { L } | ε
L← D L | ε
D ← * | ** | label

In the grammar, the terminal label is a name or type in the orig-
inal DataGuide. The label can be fully qualified to disambiguate
and uniquely name a type, e.g., x.y specifies a different type than
x.z.y is the (source) DataGuide. The terminal * represents the
children (which are not mentioned elsewhere in the vDataGuide)
for the specified label in the original DataGuide while ** repre-
sents descendants. So for example, a vDataGuide to express the
identity transformation (from and to the vDataGuide specified in
Figure 7(a)) can be given as

data {
book {
title author { name } publisher { location }
}
}

or simply as
data { ** }

Other issues relating to specifying data transformations, such as
richer expression of transformations and reasoning about potential
information loss, are orthogonal to this paper and have been re-
searched elsewhere [7, 16, 23]. Our focus is on node numbering.
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Figure 8: PBN numbers for the data model instance of Figure 2

4.2 Prefix-based Numbering
In this section we review prefix-based numbering (PBN). PBN

encodes the hierarchy in the numbering. In PBN each node in a
data model instance is numbered as follows: a node is numbered
p.k, where p (the prefix) is the number of its parent and k represents
that it is the kth sibling in the order of the children.

An example can help clarify PBN. Figure 8 shows the PBN num-
bers for the data model instance of Figure 2. The PBN numbers
are shown below the element and text nodes. The node numbered
1.2.2 (<author>) represents the second child in document order
relative to its parent (which has a PBN number of 1.2).

There are strategies for packing PBN numbers into as few bits as
possible, making PBN numbers relatively concise [11]. PBN num-
bers are also very efficient for queries. Given two PBN numbers
we can quickly compute (by comparing the numbers) a specific re-
lationship (child, parent, ancestor, descendant, following sibling,
preceding) of one PBN number relative to another. For instance
1.1.2 can be compared to 1.2. Since 1.1.2 is neither a prefix
nor a suffix of 1.2, it is not a child, parent, ancestor, or descendant.
The PBN number 1.1.2 precedes 1.2 in document order, but is
not a preceding sibling since the parent of 1.1.2 (1.1) is different
from that of 1.2 (1). The efficiency of PBN in quickly determining
these relationships makes it useful for query processing in XML
DBMSs and search engines.

There are also techniques for efficient update [18, 30]. This pa-
per is orthogonal to fractional PBN numbers or other renumbering
strategies.

4.3 After a data transformation
A data transformation renders PBN numbers useless. Consider

the transformation of the data in Figure 8 using the vDataGuide
clause from the query of Figure 6. The result is shown in Figure 9.
The original PBN number for each node is shown below the node.
The PBN numbers cannot be used to compute that <title> Y
(PBN number 1.2.1) is a parent of <author> D (PBN number
1.2.2) since Y ’s PBN number is not a prefix of D’s.

A transformation could produce two kinds of changes to the loca-
tion of a node. 1) Level change - The level of a node may change.
For example, <title> Y has moved from level 2 in Figure 8
to level 1 in Figure 9. 2) Parent change - A node’s parent may
change. For example, <author>D has switched from the second
<book> of Figure 2 to the <title> Y in Figure 9.

A transformed data model instance can be renumbered by re-
parsing or traversing the instance and assigning a new PBN num-
ber to each node. But renumbering is potentially expensive. First,
the transformed data instance may be large, requiring some of the
transformed data to be stored temporarily, thereby increasing disk
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Figure 9: Incorrect, original PBN numbers for the result of Sam’s
transformation

I/O and slowing query evaluation. Second, an XML management
system often has several indexes to improve query performance.
For example, there will usually be an index to quickly look up
nodes of a given type (e.g., find all the <author> elements). In
these indexes, when nodes are referenced, it is common to use the
PBN number as a logical key. But the numbers are those in the
original data instance, not the transformed instance. When the
transformed data is renumbered, the indexes have to be recreated
as well to use in query evaluation. Finally, it may be the case that
when a view physically constructs data, more data than is needed
is produced. The query may use only a small fraction of the data in
the view specification. Query rewriting tries to optimize the view
by pushing constraints from the query into the view. In contrast
our approach is to virtually transform only the data needed by the
query by applying the transformation at the level of the node num-
bers used in the query.

Since renumbering data is expensive we develop a strategy to
virtually transform the PBN, which we call virtual PBN (vPBN).
There are two parts to the technique: 1) computing virtual relation-
ships between node pairs and 2) computing virtual node values. We
consider each part in turn in Sections 5 and 6.

5. VIRTUAL RELATIONSHIPS
Virtual PBN maps each PBN number to a virtual PBN number

(vPBN number). A vPBN number is like a PBN number, but adds
a level array. The level array records the tree level of each com-
ponent in a PBN number. Figure 10 depicts the level array below
each PBN in the transformed instance of Figure 9. The leftmost
<title> has a level array of [1,1,1] indicating that each com-
ponent in the PBN number is on level 1. The leftmost <name> has
a level array of [1,1,2,3] indicating that the first two compo-
nents represent the ancestor at level 1, the next at level 2, and the
last component is at level 3. The level array together with a PBN
number forms a vPBN number.

vPBN numbers can be compared to determine location-based re-
lationships. The relationships of interest are listed below. In this
list for a vPBN number, x, let xa denote the level array, xn de-
note the PBN, and max(xa) be the maximum number in the level
array xa. Note that for each location-based relationship, there is
one additional constraint: the relationship must hold for the types
of x and y in the vDataGuide, V . That is, node x is a descendant
of node y if only if vAncestor(x, y) holds and in the vDataGuide,
ancestor(typeOf(V, x), typeOf(V, y)). We assume that PBN is
used to number the types in a DataGuide and quickly determine
relationships in the DataGuide.

• vSelf(x, y) - x is the virtual self y iff
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Figure 10: vPBN numbers for the result of Sam’s transformation

xa = ya ∧ xn = yn
∧ self(typeOf(V, x), typeOf(V, y)).

• vAncestor(x, y) - x is a virtual ancestor of y iff

max(ya) > max(xa)
∧ ∀i

[
1 ≤ i ≤ max(xa)

∧ ya[i] = xa[i]⇒ xn[i] = yn[i]
]

∧ ancestor(typeOf(V, x), typeOf(V, y)).

• vParent(x, y) - x is a virtual parent of y iff

vAncestor(x, y) ∧ max(ya) + 1 = max(xa)
∧ parent(typeOf(V, x), typeOf(V, y)).

• vDescendant(x, y) - x is a virtual descendant of y iff

max(xa) > max(ya)
∧ ∀i

[
1 ≤ i ≤ max(ya)

∧ xa[i] = ya[i]⇒ xn[i] = yn[i]
]

∧ descendant(typeOf(V, x), typeOf(V, y)).

• vChild(x, y) - x is a virtual child of y iff

vDescendant(x, y) ∧ max(ya) + 1 = max(xa)
∧ child(typeOf(V, x), typeOf(V, y)).

• vDescendant-or-self(x, y) - x is a virtual descendant or self
of y iff

vDescendant(x, y) ∨ vSelf(x, y)
∧ desendant-or-self(typeOf(V, x), typeOf(V, y)).

• vPreceding(x, y) - x precedes y in virtual document order
iff

¬vAncestor(x, y) ∧ ¬vSelf(x, y)
∧ ∃i

[
i ≤ max(xa)

∧ ∀j ≤ i
[
xa[j] = ya[j]⇒ xn[j] = yn[j]

]
∧ i 6= max(xa)⇒ xn[i] < yn[i]

]
∧ preceding(typeOf(V, x), typeOf(V, y)).



• vPreceding-sibling(x, y) - x virtually precedes y and is a
virtual sibling iff

max(xa) = max(ya)
∧ vPreceding(x, y) ∧ ¬vSelf(x, y)
∧ ∀i

[
1 ≤ i ≤ max(xa)− 1

∧ xa[i] = ya[i]⇒ xn[i] = yn[i]
]

∧ preceding-sibling(typeOf(V, x), typeOf(V, y)).

• vFollowing(x, y) - x follows y in virtual document order iff

¬vAncestor(x, y) ∧ ¬vSelf(x, y)
∧ ∃i

[
i ≤ max(xa)

∧ ∀i
[
j ≤ i

∧ xa[j] = ya[j]⇒ xn[j] = yn[j]
]

∧ i 6= max(xa)⇒ xn[i] > yn[i]
]

∧ following(typeOf(V, x), typeOf(V, y)).

• vFollowing-sibling(x, y) - x virtually follows y and is a vir-
tual sibling iff

max(xa) = max(ya) ∧ vFollowing(x, y)
∧ ¬vSelf(x, y) ∧
∧ ∀i

[
1 ≤ i ≤ max

∧ xa)− 1(xa[i] = ya[i]⇒ xn[i] = yn[i]
]

∧ following-sibling(typeOf(V, x), typeOf(V, y)).

Let’s consider several examples using the vPBN numbers in Fig-
ure 10. In the figure, the original PBN number is shown below the
element name or text value. Below each PBN number is the level
array for the number in the vDataGuide. The leftmost <name> is a
virtual descendant of the leftmost <title> since its prefix at level
1 is 1.1, which matches the prefix at level 1 of <title> (1.1).
But is not a virtual descendant of the rightmost <title>; that
<title> has has a prefix of 1.2 at level 1 which does not match
1.1. Text nodeC 1.1.2.1.1 virtually precedes <author> 1.2.2
since C is not a virtual ancestor or self of <author>, and at level
1 C has a prefix of 1.1 which is less than <author>’s prefix at
level 1 (1.2). Finally C is not a virtual following-sibling of D
since though they are at the same level, they do not have the same
virtual parent (their prefixes differ at level 1).

So vPBN has the property that a location-based relationship can
be computed just by comparing the numbers for two nodes, just
like PBN. vPBN slightly increases the space cost, at worst doubling
the size of a number compared to PBN, though we will see in the
next section that the level arrays do not have to be stored with the
numbers since the level array can be stored with each type (it is the
same array for each element of that type).

5.1 Sibling ordinals computed dynamically
The final component of a PBN number is a sibling ordinal, e.g.,

the nth sibling is numbered n. The ordinal can be used in some
path expressions, for instance, XPath has a node test for the ordinal,
though data-centric applications tend not to use ordinals in queries
(data is assumed to be unordered). While vPBN does preserve doc-
ument order, it does not not compute sibling ordinals. Instead, if
an ordinal is needed, it must be computed dynamically, e.g., by
queueing the siblings.

5.2 Assigning vPBN numbers
Each node in a transformed data instance must have a vPBN

number, that is, a PBN number and a level array. The PBN number
is always that of the node in the original data instance, but the level
array must be constructed. Fortunately it is not necessary to assign
a level array to each node individually, rather the level array is the
same for each type in a vDataGuide.

We now present an algorithm (Algorithm 1) to build a map (a
hash table) that maps each type to a level array. The algorithm tra-
verses the vDataGuide to build the map, and also uses the original
DataGuide. For each node that it visits, the algorithm extends the
level array of the previous level. There are three cases to consider,
which are depicted in Figure 11 and Figure 12. We explain the
figure below.

Case 1: The transformation moves a descendant in the origi-
nal document to become a child in the virtual hierarchy - In Fig-
ure 11(a), Y is a descendant of X . The transformation moves Y to
become X’s child as depicted in Figure 11(b). Assume that X is at
level n, so Y ends up at level n+1. Moreover, assume thatX’s level
array is a. Y ’s level array is constructed by concatenatingX’s level
array with [n+1, . . . ,n+1], which has one array position for each
component, z1. . . . .zm.y, indicating that all these components are
at level n+1. As an example, consider constructing the level array
for name in Figure 7(b). The level of its parent is 2, its parent’s level
array is [1,1,2] (which can be seen in Figure 10). Since name is
a child of author in Figure 7(a) only one new value is concate-
nated to the level array: [1,1,2] • [3], yielding [1,1,2,3] for
the level array of type title.author.name.

Case 2: The transformation moves an ancestor to a child - In
Figure 11(a), X is an ancestor of Y . The transformation moves
X to become Y ’s child as depicted in Figure 11(c). Assume Y
is at level n, so X will move to level n+1. Y ’s level array is
the level array of its incoming least common ancestor, a, concate-
nated with the array [n, . . . ,n], which has one array position for
each component, x.z1. . . . .zm.y, indicating that all these compo-
nents are at level n. Since X’s PBN number lacks the components
z1. . . . .zm.y, it omits those components from its level array. In-
stead X’s level array is that of the least common ancestor, a, con-
catenated with the array [n,n+1] indicating that component x is
at level n, and there is one more level with no corresponding com-
ponent in its PBN number. So X’s level array is one larger than its
PBN number. As an example, consider inverting name and author
in Figure 7(b). In the original DataGuide shown in Figure 7(a)
the least common ancestor of name and title is book, which has
a PBN number of length 2, so the least common ancestor’s level
array is the first two positions of the level array for title, i.e.,
[1,1]. The level array for name would then be [1,1] • [2,2].
The first two numbers in its PBN number correspond to its parent
in the first level, while the last two locate its position on the second
level. The level array for author, the new child of name would be
[1,1] • [2,3].

Case 3: The transformation creates a parent, child relationship
between a pair of nodes previously related only through a least
common ancestor - In Figure 12(d), X is related to Y through least
common ancestor Z. The transformation moves X to become Y ’s
parent as depicted in Figure 12(e). Assume X will move to level
n, so Y ends up at level n+1. X’s level array is the level array of
its incoming least common ancestor, a, concatenated with the array
[n, . . . ,n], which has one array position for each component,
v1. . . . .vm.x, indicating that all these components are at level n.
Y ’s level array is the level array of its incoming least common an-
cestor, a, concatenated with the array [n+1, . . . ,n+1], which has
one array position for each component, w1. . . . .wk.y, indicating
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Figure 11: Case 1 and Case 2 for extending the level array

that all these components are at level n+1. As an example, consider
constructing the level arrays for title and author in Figure 7(b).
In the original DataGuide shown in Figure 7(a) the least common
ancestor of title and author is book, which has a PBN number
of length 2, so the least common ancestor’s level array is the first
two positions of the level array for title, i.e., [1,1]. The level
array for title would then be [1,1] • [1]. All three numbers
in its PBN number place it on the first level. The level array for
author, the new child of title is [1,1] • [2].

Consider building the level arrays for the nodes in Figure 10.
Algorithm 1 first builds the level array for the root type in the
vDataGuide of Figure 7(b). The only root type is title. The al-
gorithm allocates an array of length 3 (the length of the original
path for <title> in Figure 7(a). It fills in the array by assigning
level 1 to every cell. Next it recursively descends the vDataGuide to
build the level arrays for level 2. It uses case 1) given above (a de-
scendant becomes a child) for the text node type, and case 3) (types
are related through a least common ancestor) for the author. The
algorithm then recursively descends the vDataGuide repeatedly ap-
plying case 1 to construct the rest of the level arrays.

Algorithm 1 has a worst-case time complexity of O(cN) where
N is the size of the vDataGuide and c is the deepest level (longest
PBN number) in the tree. The algorithm visits each cell in the
vDataGuide, costing O(N). When it visits a cell it allocates and
fills an array of at most size c, and also might compute a least
common ancestor. This can be done at a cost of c by numbering
the DataGuide using PBN. The least common ancestor type can be
computed by finding the shared prefix in a pair of PBN numbers.

The worst-case space complexity is also O(cN) since the algo-
rithm computes a map with N key/value pairs each of size O(c).

5.3 Properties of vPBN
We now prove that virtual prefix-based numbers can be used to

compute relationships in the space described by a vDataGuide. For
brevity, we focus only on the descendant relationship (the other
relationships are variants).
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Figure 12: Case 3 for extending the level array

THEOREM 1. Let VD be a virtual document created from a doc-
ument, D, using a vDataGuide, VG, then vDescendant(w, q)⇔ w
is a descendant of q in VD .

PROOF. (⇐) Assume false. Then w is not a descendant of q in
VD but vDescendant(w, q) holds. Since vDescendant(w, q) we
know that typeOf(VG, w) must be a descendant of typeOf(VG, q)
and q’s level array has fewer levels than w’s, so for w to not be
a descendant of q it must be the case that for some i, wa[i] =
qa[i] ∧ wn[i] 6= qn[i]. Is this possible? There are three cases.

Case 1) w is a descendant of q in D, hence q’s PBN number is a
prefix of w’s, so wn[i] = qn[i] for all i ≤ max(qa).

Case 2) w is an ancestor of self of q in D. Algorithm 1 will
create level arrays for w and q that are the same up to w and q’s
least common ancestor, which is w. Hence, wn[i] = qn[i] for all
i ≤ max(qa).

Case 3)w follows (or precedes) q inD. Algorithm 1 will create a
level array for q that is the same up the level array forw to the point
where they diverge at their least common ancestor, z, as depicted
in Figure 12. Said differently, let p.z be the PBN number for z and
za be its level array. q’s level array will be za padded with extra
levels up to level n. w’s level array will be za padded with extra
levels strictly greater than n. Hence, w and q must have the same
PBN number’s up to z, so wn[i] = qn[i] for all i ≤ max(za). And
for all max(za) < j ≤ max(qa), wa[j] 6= qa[j].

Hence, wa[i] = qa[i] ∧ wn[i] 6= qn[i] cannot be satisfied.
(⇒) Assume false. Then it is not the case that vDescendant(w, q)
holds, even when w is a descendant of q in VD . If w is a de-
scendant of q then we know that typeoOf(VG, w) must be a de-
scendant of typeOf(VG, q). Moreover, it must be the case that
q’s vPBN is a (virtual) prefix of w’s. So it must be the case that
wa[i] = qa[i] ⇒ wn[i] = qn[i] for all i ≤ max(qa). Hence,
vDescendant(w, q) must hold.

6. COMPUTING TRANSFORMED VALUES
Suppose that an XML DBMS stores the source XML data as

a long string. Then the value of each kind of node is a specific
substring. For instance, the value of an element is the substring
beginning with the starting tag for that element and continuing to
the ending tag. Consider the value of the first <author> element
in Figure 2. It is the following string (with whitespace stripped).

<author><name>C</name></author>



Algorithm 1: Algorithm to build level arrays
Input: Shape D, Shape T
D is the DataGuide of the original data
T is the vDataGuide
Output: M
M maps a Type T to a level array A: T → A

Procedure build(Shape D, Shape T , int n, int[] L, Type v, Map M )
n is the current level
L is the current level array
v is the current lowest common ancestor type
begin

// iterate through the roots of the vDataGuide
forall the r ∈ roots(T ) do

// Find the length of the lca in D
x← originalTypeOf(S,D, r)
if v 6= null then

x← lcaTypeOf(D, v, x)

k ← length(x)

// Allocate an array of sufficient length
s← length(originalTypeOf(S,D, r))
ra ← new array[s+ 1]

// Copy the current level array
for i← 1 . . . k do

ra[i]← L[i]

// Extend the new array with the current level
if k + 1 = s then

ra[s+ 1] = n
else

for i← k + 1 . . . s do
ra[i]← n

// Add to the map
M(typeOf(r))← ra

// Do not recurse if r is a text node type
if r 6= ◦ then

forall the (r, c) ∈ edges(S) do
// Recursively call build
build(D, c, n+ 1, ra, x,M )

// Call build initially
M ← new Map()
build(D,T, 1, [ ],null ,M )

The value is an important part of XQuery processing. For in-
stance, in the evaluation of the return clause each variable that is
bound to a node evaluates to the value of that node.

A critical component in the implementation of an XML DBMS
that uses PBN is a value index to quickly find the value of a node
given its PBN number. The index maps a node’s PBN number to
a range of characters in the source data string that forms its XML
value. For the node corresponding to the first <author> element
the value index would map its PBN number, 1.1.2, to the range
29-60 indicating that the XML value starts at the 29th character in
the source data string and ends at the 60th character.

The character positions are not necessarily this simple, rather
they are usually some combination of a disk block number and off-
set within the block to facilitate fast retrieval from disk [4]. The
XML string may also be modified for storage. Header informa-
tion for each node, e.g., the kind of node (text, element, etc.) is
often inserted into the XML string stored on disk. When retriev-
ing the value from disk, the header information for each node is
read, processed, and removed from the value. We will assume that
the header information has a PBN number and a Type ID, which is

<data>11 1.1 <book>2 1.1.1 <title>3

1.1.1.1 X5 1.1.2 <auth50 </title>0

1.1.2.1 C6 1.1.3or> 70 </author>0

<publisher ...

PBN Type ID

Figure 13: XML string with node header information on disk

an integer field that names the source data type, e.g., a <title>
would have an integer that corresponds to the source data type
data.book.title. An example of the string layout on disk is
shown in Figure 13. The header information for each node, which
consists of a PBN number and a Type ID, is shaded in the figure.

A data transformation, unfortunately, potentially changes the value
of a node. The pieces of the transformed value could be non-
contiguous and out of order with respect to the transformed value.
So getting the value of a node has to be implemented differently.

For example, consider computing the transformed value of the
first <title> in Figure 10. One of its descendants is an <author>,
which should be part of its transformed value. But Figure 13 shows
that the text for <author> starts after the closing tag for <title>;
it is not originally part of <title>’s value.

In this section we describe how to compute transformed values.
An overview of the strategy is depicted in Figure 14. (As an aside,
the problem of computing a transformed value is similar to that
of computing a node constructor for the transformed space, e.g., a
getChildren constructor builds a sequence of PBN numbers, so
we use the same strategy for node constructors.) The strategy has
two steps: 1) Preprocessing and 2) Rendering. Preprocessing iden-
tifies a “container” string that contains all the pieces of the trans-
formed value, reads the container string from disk, and constructs
children queues that are populated with the pieces that will form the
value. The second step, Rendering, uses the queues to construct the
transformed value from the pieces.

6.1 Preprocessing
The first step is to read from disk a string that is large enough

to contain all of the pieces of a transformed value. This container
string is the source data value of the node or one of its ancestors.
The node that contains the pieces of the value in the source data is
described by the intersection of the level arrays for the node and its
descendants in the vDataGuide.

Consider preprocessing the value of the first <title> in Fig-
ure 10, which has a PBN number of 1.1.1. We want to determine
the PBN number of the node that has a value which contains all of
the pieces that are a part of the <title>’s value. The intersection
of the level arrays of the node and all its descendants in Figure 10
is the level array [1,1]. (In effect, the intersection computes the
level array of the least common ancestor of the types in the original
DataGuide.) So the container string for node 1.1.1 is the string
returned by the source data value index look-up for 1.1 (which is
the value of a <book> element).

Next, the string is read and processed. For each piece of the value
string, the header information is processed. If the header indicates
that the piece does not have a type that should be in the vDataGuide,
then the piece is discarded. Otherwise, the piece is added to one of
the children queues. There is one queue for each element type in
the vDataGuide. The queue holds, in document order, the PBN
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Figure 14: Two-step process for computing a transformed XML string

number of each potential child for a node of the indicated type and
the value of its piece, e.g., the title queue holds the PBN numbers
and (partial) values of children for a <title> in the transformed
value as shown in Figure 10.

6.2 Maintaining Document Order
Note that the nodes in each child queue are sorted in document

order by PBN number. Since the container string is processed in
document order, the sorted order is maintained at no additional
cost; each new piece is simply appended to the appropriate queue.

6.3 Rendering
The transformed value is created by recursively descending the

vDataGuide and concatenating, in the appropriate order, the text
pieces. Algorithm 2 gives the algorithm. Starting with the root,
the algorithm visits each child queue in the vDataGuide. It iterates
through the child queue, recursively building the transformed value
of a child. Depending on the vDataGuide, several passes may be
required over a child queue, so an optional, helpful strategy is to
cache the computed transformed value, and look-up the value when
needed.

As an example, consider building the transformed value for PBN
number 1.1.1. Figure 14 shows the children queues for this PBN
number. The algorithm starts with the root queue. It selects
the first node, and since it is an element type node, constructs its
value by recursively calling Function buildValue. The recursive
call traverses the title queue. The first node in that queue is a
text node descendant of 1.1.1 and the transformed string becomes
“X”. Next, the second child in the queue is visited. It too is a de-
scendant (in the transformed space), and so its value is constructed
by recursively visiting the author and name queues. These vis-
its build the string “<name>C</name>”. That string is wrapped
with <author> tags, appended to the string “X”, and returned
to the top level invocation of Function buildValue which wraps
<title> tags around the result yielding the transformed value
given below.

<title>X<author><name>C</name></author></title>

We analyze the cost of each step in the algorithm separately. Pre-
processing has a worst-case time complexity of O(M) where M is
the length of the container string. It scans the container string at a
cost of O(M) and puts the desired pieces into the children queues.
We reasonably assume constant time queue insertion cost, and con-
stant time queue selection (using a hash table). Preprocessing has
a space complexity of O(M) since the children queues contain at
most the pieces of the processed string.

Though the complexity appears modest, note that M could be
the size of the entire data collection (the smallest least common
ancestor of the types in the vDataGuide could be the root of the
data collection, i.e., the pieces of the transformed value are spread
throughout the data). The on-the-fly preprocessing step however
can be replaced by a static preprocessing step. The XML string
can be shredded to queues once when it is first inserted into the
data store. One queue is needed for each each type in the origi-
nal DataGuide. The source queues are (logically) merged at query
evaluation time, in sorted order, into a single queue for the chil-
dren of a particular type (since the children are not known until the
data is virtually transformed). The queue contains all of the pieces
for that type and the rendering algorithm has to quickly skip to the
cluster of descendants for any given PBN number. Such a queue
can be efficiently implemented using a B+-tree. This strategy costs
O(D) space to store the queues for each type, where D is the size
of the data collection, and lowers the amount of memory needed
at run-time from O(M) to O(v) where v is the size of the longest
branch in the vDataGuide.

Rendering has a worst-case time complexity of O(M). It visits
each node in each child queue at most once, and there are at most
M pieces (usually far fewer). However, it has a worst-case space
complexity ofO(T ) where T is the length of the transformed value
since the transformed value is constructed on-the-fly. It also main-
tains a cache of size O(M). Strategies to reduce the cache size and
stream output of virtual values are beyond the scope of this paper.

7. IMPLEMENTATION & EXPERIMENTS
We chose to extend eXist-db, version 1.4.1, which is an open

source native XML DBMS written in Java. We chose eXist-db be-
cause it is a fully-functional XML DBMS, with continuing support
and releases, and an active development community. The eXist-
db project provides the best opportunity to contribute our research
results to a public domain, widely-visible, and widely-used XML
DBMS. We made the following changes to eXist-db.

• Modified the ANTLR grammar to parse vDataGuides, and
added the virtualDoc() function.

• Modified the org.exist.numbering package to support
vPBN as discussed in Section 4.3.

• Modified classes in the org.exist.storage package to
add a Type ID to each node header in an XML string stored
on disk.



Algorithm 2: Algorithm to build a transformed value
Input: Shape T , Queues Q[ ]
T is the vDataGuide
Q[ ] is the children queues data structure
Output: XMLString s
s is the transformed value

Function buildValue(Shape T , Queues Q[ ], PBN n, Type t)
T is the vDataGuide
Q[ ] is the children queues
n is the parent’s PBN number
t is the parent’s type
begin

// Check to see if we’ve already computed the value
if cache.contains(n) then

return cache.get(n)

// Initialize the string
String s←""

// For each child in the queue
for c ∈ Q[t] do

// Check if it is a child of this node
if n is null or descendant(c.PBN, n) then

if c is a text node then
s←concat(s, c.value)

else
// Recursively call buildValue
String v ←buildValue(t, Q[ ], c.PBN, c.type)
s←concat(s, c.startTag, v, c.endTag)
// Cache computed value
cache.put(c.PBN, v)

return s

// Call buildValue initially
return buildValue(T , Q[ ], null, root)

• Added a SAX parser to parse inserted documents and build
D ataGuide-related BerkeleyDB tables needed to analyze a
DataGuide and construct a transformed value. Modified the
existing SAX parser to invoke the actions in the new parser.

• Added the code from the XMORPH project [7, 8] to support
evaluation of vDataGuides.

• Modified the data serializers to retrieve the virtual value of a
node when needed.

The code is available from the project’s home page, cs.usu.edu/
~cdyreson/XMorph. We have not yet implemented support for
XUpdate operations (which may also need to modify the vDataGuide
tables), sibling ordinal predicates, or ordering constructors (the ORDER
clause).

We performed several experiments which we explain below. The
experiments were run on a dedicated machine with an Intel 3.40GHZ
CPU, 16GB of RAM, and a 1TB, 7200RPM disk. We implemented
and tested using Java 1.7, with a Xerces SAX parser, BerkeleyDB
Java Edition, version 4.0.71, eXist-db, version 1.5.1, on a Linux
system running Ubuntu 13.0.11. The measurements in each experi-
ment were averaged over 5 runs. To eliminate eXist caching effects
we used an “embedded” implementation of eXist-db and restarted
it after each query, i.e., every query starts with a cold cache. We
did not clear the operating system cache between runs.

Nested vs. virtual vs. “perfect" view experiments: The first
experiment tests the example given in Section 2. It compares the
nested query given in Figure 4 against the vDataGuide query given
in Figure 6, and a “best-case” hand-crafted view. The result is
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Figure 15: Nested query compared to vDataGuide and view query,
i.e., query in Figure 4 vs. Figure 6 vs. perfect view query

shown in Figure 15(a). For the data, we used DBLP XML data,
which is 1GB in size. We converted DBLP’s various formats for
proceedings, articles, etc. to a single format to ensure that the en-
tire dataset was queried (e.g., we converted <booktitle> to
<journal> elements). We then sliced the data into 100MB frag-
ments, each representing 10% of DBLP data, and coalesced the
fragments to form 10 data sets from 100MB to 1GB in size. In the
nested XQuery, the inner result is constructed, parsed and renum-
bered for evaluation in the outer query. The vDataGuide avoids
constructing and parsing the temporary inner result, but must still
do some rendering since every article appears in the result. The
view query does not have to transform the data, so performs best.

The second experiment repeats the first experiment, but adds a
highly selective condition (where <title> equals a specific ti-
tle) to the outer query. The result is shown in Figure 15(b). The
nested XQuery still produces a large result, from which one title
is selected. In contrast, the vDataGuide evaluates the query in the
virtual numbering space by performing the selection, just like the
hand-written view. The third experiment uses a less selective condi-
tion (where <year> is 2002). The result is shown in Figure 16(a).

The three experiments illuminate how the cost of vPBN com-
pares to that of using views. In Section 2 we noted that a data trans-
formation view could be complicated to write, might construct new
element types with the same element names as those in the under-
lying data, and are tightly-coupled to hierarchies decreasing their
portability. Only the second issue impacts cost. The experiments
show the upper and lower bounds on evaluating a query using a
view. If the view rewriting can combine the view and the query to
avoid constructing a temporary <title> type (if it can avoid the
second issue) then vPBN overhead will be incurred. But if the view
rewriting inserts the view as a nested query (is unable to recognize
that <title> in the view does not have to be constructed) then
the view approach will devolve to the nested query approach. The
selectivity of the query determines how much extra work vPBN has
to do rendering transformed values using Algorithm 2 described in
Section 6.3 vs. the perfectly written view. In either case, vPBN
would still offer better portability and make it easier to write the
data transformation.

Overhead experiment: The overhead experiment measures the
overhead of vPBN compared to normal eXist-db evaluation. It uses
a query on an identity vDataGuide. The identity vDataGuide just
slows query evaluation, especially for large vDataGuides, without
doing any “useful” work, since the transformed data is the same as
the original data. Rather than quickly reading an XML value for a
node from disk, each value must be constructed piece by piece by
pre-processing and rendering. We designed an experiment using
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Figure 16: Further experiments with DBLP
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Figure 17: Raw cost of vDataGuide on XMark benchmark

the XMark benchmark. We generated five documents (benchmark
factors .1 through .5) and evaluated the queries in the benchmark.
The vDataGuide is big, it has 238 element types. The results are
graphed in two figures. Figure 17 shows the raw cost of evaluating
each query using vPBN on a document generated with the given
benchmark factor. We removed benchmark queries Q2, Q3, and
Q4 as they concern sibling ordinals, e.g., get the nth child.1 Some
queries are far more expensive than others to evaluate because they
traverse and retrieve large parts of the document. To visualize the
actual overhead we plotted the ratio of the overall cost (vPBN/PBN)
for each query and factor. The result is shown in Figure 18. A
slowdown of 2 means that the query was 200% slower using vPBN.
For many of the queries the slowdown decreases as the document
size increases. The graph also shows that for the expensive queries
(Q8, Q9, Q11, and Q12) the slowdown is 2 to 3 for vPBN. Again,
the experiment was designed to uncover the overhead cost, and the
overhead is only incurred when a query uses a vDataGuide.

Heap experiment: We also monitored memory use as part of the
overhead experiment using Java’s verbose garbage collection op-
tion. Figure 19(a) shows the results for XMark’s benchmark query
Q8 at a benchmark factor of 0.5. The graph plots average heap size
(after generational and full garbage collection events) over the life-
time of the run. For instance, at about 37% of the run, vPBN maxed
out at 16GB of memory, triggering a full garbage collection event.
The graph shows that vPBN consumes more heap space, at a faster
rate, leading to more garbage collection events. The extra memory
use is part of the overhead illustrated in the previous experiment.

Input experiment: This experiment measures the additional time
for data input with vPBN. A separate SAX parser builds the vData-
Guide when an XML document is stored. We used the DBLP col-
lection from the first experiment. The results are plotted in Fig-
ure 16(b). For a 1GB document, the overhead is about 20%.

1Sibling ordinals in PBN are known statically, while vPBN must
compute them dynamically, which we have not yet implemented.
Interestingly eXist-db computes ordinals dynamically because it
uses fractional PBN numbers.
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Permuting vDataGuide experiment: The permutation experi-
ment measures the impact of changing the virtual hierarchy. We
created ten different vDataGuides that use the same number of la-
bels by varying the depth of nesting from 2 (a relatively flat struc-
ture) to 6 levels (richer nesting), and permuted the order of the la-
bels. We ensured that the size of the virtual document was roughly
the same for each vDataGuide by nesting only singleton elements
(e.g., we nested <year> inside <journal>). Each query outputs
the entire virtual document. We tested using the 1GB DBLP dataset
from the first experiment. The result is shown in Figure 19b. The
cost remains flat across the various shapes showing that the struc-
ture of the vDataGuide has little impact on performance.

8. SUMMARY
Prefix-based numbering supports efficient query evaluation of hi-

erarchical data through the fast evaluation of location-based node
relationships. But the numbering is rendered obsolete when nodes
change location in a data transformation. This paper introduces vir-
tual prefix-based numbering (vPBN) which allows nodes to appear
as though they were moved to a new location without physically
moving the nodes. vPBN is concise. It slightly increases the size
of a PBN number. Each PBN number needs an additional integer-
sized field to name a type; the type maps to the needed level array
to convert a PBN number to a vPBN number. The level arrays are
stored with the element types. vPBN supports efficient querying.
We showed that vPBN maintains the property that node relation-
ships, e.g., is this node an ancestor of another, can be determined
by simply comparing the numbers for each node, as is currently
done using PBN. Update is also efficient. vPBN numbers are dy-
namically constructed, and so do not add to the cost of data update
(other than updating the tables to analyze the DataGuides). Finally,
vPBN is practical. We gave an overview of the changes needed to
implement vPBN in eXist-db.

In future we plan to automatically generate vDataGuides. Re-
lying on programmers to specify vDataGuides has two problems.
First, a programmer may change the query but forget to change the
vDataGuide. Second a programmer may give an incorrect vData-
Guide, resulting in data in the wrong hierarchy for the query. The
best way to solve both problems is to take vDataGuide construction
out of the hands of programmers and instead automatically infer
a vDataGuide from an XQuery query. Another approach to mak-
ing it even easier to construct vDataGuides is to develop a GUI
for visualizing a DataGuide and supporting drag and drop opera-
tions to construct the desired vDataGuide. Adding features to the
vDataGuide specification language, such as vDataGuide composi-
tion and value-based conditional guides, would also help. We also
plan to implement a strategy to store nodes indexed by PBN num-
ber. This will lower the cost of rendering virtual values since a re-
lated node can be found by a fast index-lookup rather than by a slow
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Figure 19: Heap and permutation experiments

traversal of the containing subtree. Finally, we plan to examine the
open problem of creating a virtual hierarchy from data annotated
with metadata, especially proscriptive metadata (e.g., security) that
restricts use of the data. The metadata may limit or modify data as
it is virtually transformed to fit in a virtual hierarchy.
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