
QUBLE: Blending Visual Subgraph Query Formulation with
Query Processing on Large Networks

Ho Hoang Hung§ Sourav S Bhowmick§,¶ Ba Quan Truong§,¶

Byron Choi† Shuigeng Zhou‡

§School of Computer Engineering, Nanyang Technological University, Singapore
¶Singapore-MIT Alliance, Nanyang Technological University, Singapore

†Department of Computer Science, Hong Kong Baptist University, Hong Kong
‡School of Computer Science, Fudan University, China

hoho0002|assourav|bqtruong@ntu.edu.sg, choi@hkbu.edu.hk, sgzhou@fudan.edu.cn

ABSTRACT
In a previous paper, we laid out the vision of a novel graph query
processing paradigm where instead of processing a visual query
graph after its construction, it interleaves visual query formulation
and processing by exploiting the latency offered by the GUI [4].
Our recent attempts at implementing this vision [4,6], show signif-
icant improvement in the system response time (SRT) for subgraph
queries. However, these efforts are designed specifically for graph
databases containing a large collection of small or medium-sized
graphs. Consequently, its frequent fragment-based action-aware
indexing schemes and query processing strategy are unsuitable for
supporting subgraph queries on large networks containing thou-
sands of nodes and edges. In this demonstration, we present a novel
system called QUBLE (QUery Blender for Large nEtworks) to real-
ize this novel paradigm on large networks. We demonstrate various
innovative features of QUBLE and its promising performance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
Querying graph databases has emerged as an important research

problem for real-world applications that center on large graph data.
At the core of many of these applications lies a common and im-
portant query primitive called subgraph search, where we want to
retrieve one or more subgraphs in a set of data graphs that exactly
or approximately match a user-specified query graph. Efforts to ad-
dress this problem can be broadly classified into two streams. One
stream focuses on processing subgraph queries on a large number
of small or medium-sized graphs (e.g., chemical compounds). The
other stream aims to handle query processing on a small number of
large graphs (e.g., protein interaction networks, social networks).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, 22 – 27 June, New York, USA
Copyright c⃝2013 ACM ...$10.00.

A number of graph query languages (e.g., SPARQL) have been
proposed that can be used to formulate subgraph queries. Unfor-
tunately, in many real life domains it is unrealistic to assume that
users are proficient in expressing graph queries using these lan-
guages. The traditional approach to address this query formulation
challenge is to build a user-friendly visual framework on top of
a state-of-the-art graph query processing technique. In this tradi-
tional visual query processing paradigm, although the final query
that a user intends to pose is revealed gradually in a step-by-step
manner during query construction, it is not exploited by the query
processor prior to clicking of the Run icon to execute the query.
This often results in slower system response time (SRT), which is
the duration between the time a user presses the Run icon to the
time when the user gets the query results, as the query processor
remains idle during the entire query formulation process [4, 6].

In [1, 4], we laid out the vision of a novel visual graph query
processing paradigm where instead of processing a query graph af-
ter its construction, it interleaves the two traditionally orthogonal
steps, namely visual query construction and processing, bringing in
at least two key benefits. First, it ensures that the query processor
does not remain idle during query formulation. Second, it signifi-
cantly improves the SRT as in this new paradigm it is the time taken
to process a part of the query that is yet to be evaluated (if any).
Note that from a end user’s perspective, the SRT is crucial as it is
the time a user has to wait before she can view the results.

Our most recent work that implemented the above vision pre-
sented a visual subgraph querying algorithm called PRAGUE [6]
designed specifically for graph databases containing a large collec-
tion of small or medium-sized graphs. Consequently, its frequent
fragment-based indexing schemes and query processing strategy
cannot be easily adopted to support subgraph queries on large net-
works. This is primarily because generating frequent subgraphs
is itself a bottleneck here as the time complexity of subgraph iso-
morphism, the core procedure of any frequent subgraph mining al-
gorithms, grows exponentially with the graph size. Furthermore,
small-sized frequent fragments typically may occur many times.
As a result, a large number of candidates may be generated against
small-sized query fragments. Additionally, visualizing query re-
sults is computationally and cognitively challenging issue in the
case of large networks. Even if a network contains few thousands
of nodes and edges, it imposes significant cognitive burden as the
entire network looks like a giant hairball and subgraphs that match
the query are lost in the visual maze.

In this demonstration, we present a novel system called QUBLE
(QUery Blender for Large nEtworks) to realize our visual sub-
graph querying paradigm on large networks. In particular, the

Query Blender

Actions

Large Network

Query Fragment

Candidates

User

Feature Extraction

Static Index

Constructor

Results

Visualizer

Action-Aware

Indices

Results

G-SPIG

Generator

Interaction

Viewer

QUBLE GUI

Action-Aware

Index

Constructor

Results

Network

Partitioning

Graphlet

Constructor

Modification

Handler

(Super)graphlets

(a) Architecture.

32

1

(b) Visual interface. (c) Interaction Viewer.
Figure 1: System architecture and visual interface of QUBLE.

architecture in [5] is modified significantly in the following ways
to address the aforementioned challenges. First, we decompose
a large network into pieces of small data graphs (called graphlets)
while ensuring that no structural information is lost during this pro-
cess. Consequently, the decomposed graph set can be viewed as a
collection of small or medium-sized data graphs. Second, we dis-
cover approximate sets of frequent and infrequent fragments from
this collection and identify their occurrences in the data graphs. A
benefit of this strategy is that it is very storage-efficient as each
fragment is now associated with a list of data graph identifiers in
lieu of complete location details in the original network. Third,
we redefine and build action-aware indexes of PRAGUE [5, 6] to
support subgraph search. Fourth, a (super)graphlet-at-a-time inter-
active results visualization strategy is incorporated to support ef-
fective visualization of query results.

2. SYSTEM OVERVIEW
Figure 1(a) shows the system architecture of QUBLE and mainly

consists of the following modules.
The GUI module: Figure 1(b) depicts the screenshot of the “edge-

at-a-time” visual interface of QUBLE. A user begins formulating a
query by choosing a network as the query target and creating a new
query canvas using Panel 1. The left panel (Panel 2) displays the
unique labels of nodes that appear in the dataset in lexicographic
order. In the query formulation process, a user chooses labels from
Panel 2 for creating nodes in the query graph. Panel 3 depicts the
area for formulating graph queries. A user drags a node that is part
of the query from Panel 2 and drops it in Panel 3. Next, she adds an-
other node in the same way. Then, she creates an edge between the
added nodes by left and right clicking on them. Additional nodes
and edges are added to the query graph by repeating these steps.
Finally, the user can execute the query by clicking on the Run icon
in Panel 1. Figure 2(a) depicts the screenshot for interactive display
of the query results (discussed later).

The Network Partitioning module: This module decomposes a
large network to pieces of small data graphs by exploiting METIS [7],
a fast and widely used minimum cut-based graph partitioning algo-
rithm. Note that the task of such graph partitioning algorithm is to
assign a single partition number to each node of the input network
based on the required number of nodes in one partition. Edges
that connect nodes that have different partition numbers are “cut”
away. The goal is to minimize edge-cut while trying to achieve the
required number of nodes in a partition.

The Graphlet Constructor module: The goal of this module is
to construct graphlets and supergraphlets from the partitions and
cut edges. A graphlet is either a partition graph or a bridge. Infor-
mally, partition graphs are partitions generated by the graph par-
titioning algorithm on the original network. On the other hand,

bridges are graphs that are constructed from cut edges that link
certain pairs of partition graphs. Each graphlet (denoted by Gℓ)
is identified by a unique identifier, denoted by gid(Gℓ). Clearly,
any edge in the original network can only belong to exactly one
graphlet. Two graphlets are adjacent iff they share some common
nodes in the original network but not edges. A set of graphlets is
considered as adjacent set (denoted as ∆) iff each graphlet is adja-
cent to at least one other graphlet in the set.

A supergraphlet is a graph generated by merging a set of ad-
jacent graphlets. Formally, let ∆ = {Gℓ1 , Gℓ2 , . . . , Gℓn} be an
adjacent set and n ≥ 2. Then a supergraphlet G∆ = (V∆, E∆)
of ∆ is a graph satisfying the followings: (a) ∀ v ∈ V∆, v ∈ Vℓi

where 0 < i ≤ n and (b) ∀ e ∈ E∆, e ∈ Eℓj where 0 < j ≤ n.
Each supergraphlet G∆ is assigned a supergraphlet identifier, de-
noted by sgId(G∆) (sgId for brevity), which is a concatenation of
identifiers of all graphlets in the adjacent set of the supergraphlet in
ascending order. For example, let gid(G1) = 1 and gid(G2) = 2.
Then if ∆ = {Gℓ1 , Gℓ2}, sgId(G∆) = 1-2. Since a gid can be
considered as a special case of supergraphlet identifier containing
only a single identifier, we shall use sgId to denote a gid as well.

Obviously, constructing all possible supergraphlets is prohibitively
expensive. However, some supergraphlets are needed to identify
all occurrences of frequent fragments and SIFs (discussed below).
Hence, this module constructs them selectively only when subgraph
verification needs to be performed (i.e., to verify if a supergraphlet
actually contains a (sub)graph).

The Feature Extraction module: This module generates fre-
quent fragments and SIFs from the graphlets and supergraphlets.
Let g be a connected subgraph of Gℓ or G∆ in the set of graphlets
and supergraphlets (denoted by D∆) and has at least one edge.
Then, g is a fragment in D∆. Given a fragment g ⊆ Gi and Gi ∈
D∆, Gi is called a fragment support graph (FSG) of g. We denote
a set of supergraphlet identifiers of FSGs of g as fsgId(g). The
support of g (denoted as sup(g)) is the number of graphlets (not
supergraphlets) that are FSGs of g. For example, let fsgId(g) =
{3-7,1,6}. Then, sup(g) = 2 as we only count the graphlets.

A fragment g is frequent if sup(g) ≥ α|Dℓ| where α is the
minimum support threshold, 0 < α < 1 and Dℓ ⊆ D∆ is the
set of graphlets. Otherwise, the fragment is infrequent. Since the
number of infrequent fragments can be prohibitively large, we only
index the small infrequent fragments (SIFs). Given an infrequent
fragment g, g is a SIF if (a) |g| = 1 or (b) |g| = 2 and g is a
maximal cover graph (MCG) of at least one adjacent set. A graph Q
is called maximal cover graph (MCG) of a supergraphlet G∆ where
∆ = {Gℓ1 , Gℓ2 , . . . , Gℓn} if Q is isomorphic to G′ = (V ′, E′),
G′ ⊆ G∆ and ∀Gℓi ∈ ∆, ∃e ∈ E′ s.t e ∈ Eℓi . Q is said to have
a cover match in the original network G. For distinction, we refer
to an infrequent fragment that is not a SIF as non-small infrequent

1 2

(a) Result visualizer GUI. (b) Viewing approximate matches. (c) Drill-down “localized” view.

Figure 2: Results visualization in QUBLE.

fragment (NIF). Observe that that all size-one fragments that are
not frequent are SIFs. Also, as sup(g) ≤ |fsgId(g)|, g may be
a frequent subgraph in the original network but not in Dℓ. In this
case if |g| ≤ 2 then it is classified as a SIF. Otherwise, it is a
NIF. Note that such “miscategorization” does not adversely impact
the performance of QUBLE. Interestingly, it is not necessary to
identify all frequent fragments accurately to support efficient visual
subgraph query processing in our paradigm.

We now summarize the frequent fragment and SIF generation
process. First, it uses an existing frequent graph mining algorithm
(gSpan [8] in our case) to generate frequent fragments from the
graphlet set. This step can identify all FSGs of size-one fragments
as an edge can only belong to at most one graphlet. However, FSG
sets of frequent fragments with size two or more are incomplete
as a fragment can not only be subgraph of a graphlet but also a
subgraph of a supergraphlet. Consequently, QUBLE takes a two-
phase approach to resolve this issue. In the first phase, it identifies
all the cover matches of all frequent fragments. It consists of two
key steps. It identifies all the cover matches of frequent fragments
whose size is two, i.e., identify all supergraphlets that contain size-
two frequent fragments. During this step, it also identifies size-two
SIFs and some of their cover matches in the supergraphlets. Next, it
identifies all the cover matches for frequent fragments having size
greater than two. In the second phase, it completes identification of
FSG sets of all SIFs.

The Action-Aware Index Constructor module: This module
is responsible for constructing the following two types of indexes.

Action-aware static index. We use the two action-aware static
indices of PRAGUE [4–6] for indexing frequent fragments and SIFs.
The action-aware frequent index (A2F) is a graph-structured index
having a memory-resident and a disk-resident components called
memory-based frequent index (MF-index) and disk-based frequent
index (DF-index), respectively. The MF-index indexes all frequent
fragments having size less than or equal to β (fragment size thresh-
old) whereas frequent fragments with size larger than β reside in
the DF-index. Specifically, the DF-index is an array of directed
graphs called fragment clusters. Each vertex v in a fragment clus-
ter is a frequent fragment g (represented by its CAM code [3]) and
points to a set of FSG identifiers of g. There exists an edge (v′, v)
iff g′ is a proper subgraph of g and |g| = |g′|+ 1. The structure of
MF-index is similar to that of a fragment cluster. In addition, leaf
vertices representing frequent fragments of size β is associated with
a fragment cluster list where each entry points to a fragment clus-
ter in the DF-index that contains the fragment as a subgraph. The
action-aware infrequent index (A2 I) consists of an array of SIFs ar-
ranged in ascending order of their sizes. Each entry stores the CAM
code of a SIF g and a list of FSG identifiers of g.

Action-aware dynamic index. The G-SPIG Generator module
generates a dynamic index called graphlet-based spindle-shaped
graph (G-SPIG) on-the-fly during visual query construction by ex-

tending the idea of spindle-shaped graphs (SPIG) in PRAGUE [5,6].
For each new edge em created by the user, QUBLE creates a G-
SPIG. Each edge is assigned a unique identifier according to their
formulation sequence. That is, the m-th edge constructed by a user
is denoted as em where m is the label of the edge.

Similar to a SPIG, a G-SPIG is also a directed graph where each
vertex represents a subgraph g of the query fragment containing
the new edge em. There is a directed edge from vertex v′ to vertex
v if g′ ⊂ g and |g| = |g′| + 1. The source vertex (vertex with
no incoming edge) in the first level represents em and the target
vertex (vertex with no outgoing edge) in the last level represents
the entire query fragment at a specific step. The content of v in
a G-SPIG is different from SPIG. Specifically, each v is associated
with the CAM code of the corresponding g, a list of labels of edges
of g, a list of identifier set called Indexed Fragments List (IFL) to
capture information related to frequent or infrequent nature of g or
its subgraphs, and a set of identifiers Ω(g) called supergraphlet id
set to hold the sgIds of candidate graphlets and supergraphlets that
may contain g, if g is not indexed by action-aware static indices
(i.e., g is a NIF). An IFL contains two attributes, namely frequent
id and SIF id. If g is in the A2F-index or A2 I-index, then the iden-
tifier of the vertex or entry v representing g in the corresponding
index is stored in frequent id or SIF id attribute, respectively. If g
is neither in the A2F-index nor in the A2 I-index, then Ω(g) stores
the new sgIds created by “joining” (called fragment join) com-
mon graphlets in fsgIds of gv1 and gv2, which are any two frag-
ments associated with two different parents of v. For example, let
fsgId(gv1) = {4-7,3-6,2} and fsgId(gv2) = {3-7,1,6}.
Then Ω(g) = {3-4-7,3-6-7,3-6}. If gv1 or gv2 is in the
A2F-index or A2 I-index, then their corresponding FSG identifiers
are retrieved from these indices to compute Ω(g). Otherwise, su-
pergraphlet id sets of the two parents (Ω(gv1) and Ω(gv2)) are used.

The Query Blender module: This module exploits the action-
aware indices and the latency offered by the GUI actions to blend
visual query formulation and query processing. When a user adds
a new edge em to query q, it computes the identifiers of candi-
date graphlets and supergraphlets that contain q using the action-
aware indexes. Specifically, if q represents a frequent fragment or
SIF, it retrieves FSG id set of q from the A2F-index or A2 I-index,
respectively, and use it as the candidate set. Otherwise, q repre-
sents a NIF and the supergraphlet id set of q is used as the candi-
date set. Next, given a subgraph distance threshold σ, the G-SPIG
set is exploited to identify relevant subgraphs of q that need to be
matched for retrieving approximate candidates. We retrieve all the
connected common subgraphs (CCS) such that the subgraph dis-
tance1 is within σ . Specifically, these subgraphs are query frag-
ments represented by the vertices at levels |q| − 1 to |q| − σ in
the G-SPIG set. In order to reduce the verification cost for a large

1The subgraph distance measures the number of edges that are allowed to be missed
in q in order to match a (super)graphlet.

candidate set, the candidate set is separated into two parts, iden-
tifiers of verification-free candidate graphs (Rfree) and identifiers
of candidates that need verification (Rver). For each vertex in the
i-th level, if it is a frequent fragment or SIF, then the candidates are
computed using the aforementioned exact matching procedure and
combined with existing Rfree. Otherwise, it is a NIF and requires
verification. Consequently, supergraphlet id sets are exploited to
compute the candidates and combined with existing Rver . Lastly,
candidates that exist in both Rfree and Rver are removed from
Rver .

The above steps are repeated for each new edge to incremen-
tally update the candidate identifiers until the user clicks on the
Run icon when the final set of graphlets and supergraphlets con-
taining at least one matches (exact or approximate) are generated.
Subgraphs that exactly match the query are verified, if necessary,
from candidate graphlets and supergraphlets. Next, candidates that
match the query approximately are added to the results (we extend
VF2 [2] to handle CCS-based similarity verification).

The Interaction Viewer module: This module provides a real-
time graphical view of the working of the visual query evaluation
paradigm. It depicts the effect of each visual query formulation
step, the size of candidate (super)graphlets as well as the time taken
by QUBLE to compute them. Consider the construction of the query
in Figure 1(b). The query evaluation process at every step is de-
picted in Figure 1(c). The bottom part of the screen displays sizes
of candidate (super)graphlets at different steps. The top part of the
display plots the time taken by the Query Blender module to com-
pute and maintain candidate graphlets at every step.

The Modification Handler module: This module assists a user
to modify the formulated query appropriately. A user is free to
delete any edge that has been previously constructed by her. After
a modification by the user, it updates the G-SPIG set by removing
irrelevant vertices and updates the candidate set.

The Results Visualizer module: This module addresses the
challenge mentioned in Section 1 to facilitate visualization of query
results. Specifically, results are viewed in “supergraphlet-at-a-time”
mode where one supergraphlet or graphlet containing result matches
is displayed on the results screen one at a time. This enables view-
ing a small “piece” of the original network containing a match.
Figure 2(a) depicts the results visualization of the query in Fig-
ure 1(b). Panel 2 shows the set of (super)graphlet identifiers con-
taining at least one results match. Each (super)graphlet occupies a
section of the panel and its matches are listed as list. By default,
only matches with minimum subgraph distance to the query is dis-
played. For example, the graphlet with sgId 2076 has a single ex-
act match 94247[0]-54575[9]-22236[10]-22425[11]-22237[12]2.
Panel 1 displays the corresponding (super)graphlet (e.g., 2076).
When the mouse is hovered on a match in Panel 2, the correspond-
ing subgraph is highlighted in Panel 1 in red color. Moreover, when
a vertex is double-clicked in Panel 1, neighbors of this vertex are
automatically retrieved and displayed, further facilitating graph ex-
ploration. If a user wants to retrieve all matches (exact and ap-
proximate) in a particular (super)graphlet, she can right-click on
the (super)graphlet identifier in Panel 2 to initiate computation of
all matches. For example, the list associated with the graphlet 2076
in Panel 2 in Figure 2(b) shows all matches in the graphlet. Note
that since the size of a (super)graphlet is significantly smaller than
the original network, the remaining matches to the query graph can
be quickly computed. Clicking on a match in Panel 2, presents
a “localized” view of the matching subgraph in the network in
Panel 1 (Figure 2(c)). Additionally, one can also view the results

2Here each node is represented as id[label] where id is a globally unique identifier
and label is the node’s label which is also used in the query.

sorted in ascending order of subgraph distance by clicking on the
tab Matches in Panel 2.

3. RELATED SYSTEMS AND NOVELTY
Recently, there have been a number of studies on subgraph query

evaluation over large networks (e.g., [9]). In contrast to QUBLE,
none of these strategies address subgraph search problem by parti-
tioning a large network or by exploiting frequent patterns for can-
didate pruning. More importantly, all these efforts follow the con-
ventional query processing paradigm.

More germane to this work is our previous research in [4–6].
Firstly, we focus on querying large networks here instead of a large
set of small or medium-sized graphs. Secondly, we use SIFs instead
of DIFs (discriminative infrequent fragments) as representative in-
frequent fragments. Thirdly, the generation of frequent fragments
and SIFs are much more involved in QUBLE. Note that in [4, 6],
frequent fragments and DIFs can be directly generated by using
gSpan [8]. Fourthly, although the topological structure of a SPIG [6]
and G-SPIG is identical, the vertex content is different. In G-SPIG,
each vertex stores a set of (super)graphlet identifiers of (Ω(g)) and
SIF id among other features, which are irrelevant in a SPIG. Due
to these differences, the candidate generation process during visual
query formulation also differs. Lastly, the visualization of result
matches is much more challenging in QUBLE.

4. DEMONSTRATION OBJECTIVES
QUBLE is implemented in Java JDK 1.7. Our demonstration will

be loaded with synthetic and real networks with different sizes (up
to 100K nodes). Example query graphs will be presented. Users
can also write their own ad-hoc queries through our GUI.

One of the key objectives of the demonstration is to enable the
audience to interactively experience the proposed query processing
paradigm in real-time on large networks. During the visual con-
struction of a subgraph query, the Interaction Viewer module shall
be enabled to assist users in gaining such experience. Through this
module, one will be able to view the generation of candidate (su-
per)graphlets at each visual step and the time taken by QUBLE at
each step for fetching candidates (Figure 1(c)) and appreciate the
fact that the latency offered by the GUI at each step is sufficient to
finish this prefetching task. Furthermore, she will be able to inter-
actively view result matches on a large network by “drilling down”
into specific parts of the network in real-time using the Results Vi-
sualizer (Figure 2). Lastly, we shall interactively demonstrate how
QUBLE efficiently handle query modification.

Acknowledgement: Shuigeng Zhou was supported by Research
Innovation Program of Shanghai Municipal Education Committee
under grant No. 13ZZ003.

5. REFERENCES
[1] S. S. Bhowmick, B. Choi, S. Zhou. VOGUE: Towards A Visual

Interaction-aware Graph Query Processing Framework. In CIDR, 2013.
[2] L.P. Cordella, P. Foggia, C. Sansone, M. Vento. An improved algorithm for

matching large graphs. In 3rd IAPR TC-15 Workshop on Graph-based
Representations in Pattern Recognition, 2001.

[3] J. P. Huan, W. Wang. Efficient Mining of Frequent Subgraph in the Presence of
Isomorphism. In ICDM, 2003.

[4] C. Jin, et al. GBLENDER: Towards Blending Visual Query Formulation and
Query Processing in Graph Databases. In ACM SIGMOD, 2010.

[5] C. Jin, et al. GBLENDER: Visual Subgraph Query Formulation Meets Query
Processing. In ACM SIGMOD, 2011.

[6] C. Jin, et al. PRAGUE: A Practical Framework for Blending Visual Subgraph
Query Formulation and Query Processing. In ICDE, 2012.

[7] G. Karypis, V. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM J. on Scientific Computing, 20(1), 1999.

[8] X. Yan, J. Han. gSpan: Graph-based Substructure Pattern Mining. In ICDM,
2002.

[9] G. Zhu, X. Lin, K. Zhu et al. TreeSpan: Efficiently Computing Similarity
All-Matching. In SIGMOD, 2012.

