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ABSTRACT
Given a graph database D and a query graph g, an exact subgraph
matching query asks for the set S of graphs in D that contain g as
a subgraph. This type of queries find important applications in sev-
eral domains such as bioinformatics and chemoinformatics, where
users are generally not familiar with complex graph query lan-
guages. Consequently, user-friendly visual interfaces which sup-
port query graph construction can reduce the burden of data re-
trieval for these users. Existing techniques for subgraph matching
queries built on top of such visual framework are designed to opti-
mize the time required in retrieving the result set S fromD, assum-
ing that the whole query graph has been constructed. This leads to
sub-optimal system response time as the query processing is initi-
ated only after the user has finished drawing the query graph.

In this paper, we take the first step towards exploring a novel
graph query processing paradigm, where instead of processing a
query graph after its construction, it interleaves visual query con-
struction and processing to improve system response time. To re-
alize this, we present an algorithm called GBLENDER that prunes
false results and prefetches partial query results by exploiting the
latency offered by the visual query formulation. It employs a novel
action-aware indexing scheme that exploits users’ interaction char-
acteristics with visual interfaces to support efficient retrieval. Ex-
tensive experiments on both real and synthetic datasets demonstrate
the effectiveness and efficiency of our solution.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Graphs provide a natural way of modeling data in a wide vari-

ety of domains, such as social networks, bioinformatics, chemoin-
formatics, and Semantic Web. For example, in chemoinformatics
graphs are used to represent atoms and bonds in chemical com-
pounds. In bioinformatics, protein interaction networks are graphs
where nodes represent molecules and edges represent interaction
between them. Therefore, it is evident that graph databases are
growing rapidly in size in a wide spectrum of applications. As a
result, there is a critical need for efficiently querying these growing
graph databases.

In recent times, the database community has shown tremendous
interest in proposing innovative solutions to query large graph
databases [2, 5, 6, 9, 12–14, 17–21]. Querying graph data involves
two key steps: query formulation and efficient processing of the
formulated query. A number of query languages have been pro-
posed for graphs which can be used to formulate a query in textual
form. For instance, GraphLog [3] represents both data and queries
as graphs. PQL [10] is a pathway query language designed for bi-
ological networks. More recently, GraphQL [6] was proposed for
querying general graph structured data.

Most of the existing graph query processing techniques have fo-
cused on exact graph or subgraph matching queries. That is, given
a graph database D = {g1, g2, . . . , gn} and a query graph q, find
all the graphs in which q is a subgraph. Note that it is inefficient to
sequentially scan D to process q because (a) accessing the whole
graph database is costly and (b) subgraph isomorphism test is NP-
complete [4]. Hence, state-of-the-art methods build graph indices
to efficiently process graph queries. Such strategy is typically per-
formed in two major steps: filtering and candidate verification.
First, the filtering step uses the index to eliminate subset of the false
results and produce a candidate answer set. Then, the candidate
verification step verifies whether the query is indeed a subgraph of
each candidate. Since the candidate answer set is typically much
smaller than the database, index-based query processing is signifi-
cantly more efficient than sequential scan of the graph database.

1.1 Motivation
While the database community has made considerable progress

in devising efficient graph query processing strategies, formulating
a graph query using a graph query language often demands consid-
erable cognitive effort from the end user (consumer) and requires
“programming" skill that is at least comparable to SQL. A user
must be familiar with the syntax of the language, and must be able
to express his/her needs accurately in a syntactically correct form.
However, in many real life domains it is unrealistic to assume that
users are proficient in expressing such textual queries. For exam-
ple, in life sciences domain biologists may need to be familiar with
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Figure 1: Visual interface of GBLENDER.

PQL to be able to formulate meaningful queries over biological net-
works. However, they cannot be expected to learn the complex
syntax of PQL. In fact, the need for easy and intuitive techniques
that can reduce the burden of query formulation is fundamental to
the spreading of graph data management tools to wider commu-
nity [8]. This highlights the need for a user-friendly visual query-
ing scheme on top of existing graph processing methods to replace
data retrieval aspects of graph query languages.

A visual interface for graph query construction typically enables
a user to formulate a query by clicking-and-dragging items on the
query canvas. Figure 1 depicts an example of such a visual inter-
face for formulating graph queries. A user may sequentially drag
items from Panel 2 to Panel 3 to create labeled nodes in the query
graph and then create edges between them by clicking on relevant
nodes. Once the user has finished construction of the query, he/she
can click on the “Run" icon to execute the query. Typically, query
evaluation in such a graphical framework can be performed in two
key steps. First, the visual query is transformed into its textual or
algebraic form. Second, the transformed query is evaluated using
an existing state-of-the-art index-based graph processing method.
Observe that the visual querying framework does not require a user
to be familiar with the syntax of underlying graph query language.
This is highly desirable in a wide variety of domains where a typi-
cal consumer is not proficient in database query languages.

A key feature of the traditional visual querying paradigm is that
query evaluation is only initiated after the “Run" icon is clicked.
Although the final query that a user intends to pose is revealed
gradually in a step-by-step manner during query construction, it is
not exploited by the query processor prior to clicking of the “Run"
icon. This is primarily due to the fact that the data management
community has traditionally considered visual interface-related is-
sues more relevant to the human-computer interaction community
and orthogonal to data processing. In this paper, we take the first
step towards exploring a novel graph query processing paradigm
by blending these two orthogonal areas. Specifically, we interleave
query construction and query processing to prune false results and
prefetch partial query results in a single-user environment by ex-
ploiting the latency offered by the GUI-based query formulation.
A key objective of this new paradigm is to improve the system re-
sponse time (SRT), which refers to the duration between the time
a user presses the “Run" icon to the time when the user gets the
query results. Note that in traditional graph processing paradigm
SRT is identical to the time taken to evaluate the entire query. In

contrast, in the new paradigm since we initiate query processing
during query construction, SRT is the time taken to process a part
of the query that is yet to be evaluated (if any). Often, as we shall
see in Section 5, this results in significant improvement in SRT com-
pared to traditional index-based graph processing methods.

Query processing on graphs in this new paradigm is challeng-
ing for a number of reasons. Firstly, the naïve strategy of match-
ing every edge a user draws on the query canvas to the underlying
database can be prohibitively expensive due to multiple subgraph
isomorphism tests and repeated access to the disk. How can we
blend query evaluation and query construction so that it can mini-
mize disk access as well as subgraph isomorphism tests? Further,
the number of candidate graphs for subgraph isomorphism should
be manageable during the entire period. Secondly, what type of
indexing schemes should we have to support such query process-
ing paradigm? Indexing mechanism in this new paradigm should
be effective even when the entire query is not known and must be
able to exploit typical users’ interaction behaviors with the visual
interface for efficient pruning and retrieval. As we shall see in Sec-
tion 3.2, existing state-of-the-art graph indexing schemes are not
suitable for this purpose as they are oblivious to visual actions (or
steps) taken by users during query construction. Further, they are
primarily designed based on the assumption that the entire graph
query is available. Thirdly, the prefetching-based graph query pro-
cessing (we prefetch partial results) must be completely transparent
from the user. A user’s interaction behavior with the visual inter-
face should not be affected by the query processing strategy. In this
paper, we address all these issues.

1.2 Overview
In this paper we present an index-based method that blends vi-

sual query formulation and query processing, called GBLENDER
(Graph blender). GBLENDER employs two novel action-aware
indexing methods, called action-aware frequent index (A2F) and
action-aware infrequent index (A2I), to support efficient matching
of frequent and infrequent query fragments, respectively, while for-
mulating a visual query graph. The A2F index is a graph-structured
index and has a memory-resident and a disk-resident components.
In contrast to existing graph indexing schemes, its structure exploits
some of the users’ interaction characteristics with visual interfaces
(e.g., visual queries grow incrementally in size during query for-
mulation, smaller-sized query fragments appear more often in vi-
sual queries compared to larger-sized fragments). The A2I-index
indexes discriminative infrequent subgraphs (infrequent fragments
whose subgraphs are all frequent) to prune the candidate space for
infrequent queries. Note that except for FG-Index [2], none of the
existing feature-based indexing schemes support infrequent frag-
ments. FG-Index builds an index only for infrequent edges (in-
frequent fragment with only one edge) but not for infrequent sub-
graphs. We shall elaborate further on the differences in Section 3.2.

Based on the above indexing schemes, we propose an innovative
matching paradigm for querying graphs. When a user draws a new
edge on the query canvas during query formulation, GBLENDER
searches the query fragment in the A2F and A2I indexes. If the
query fragment is a frequent fragment, then it retrieves the identi-
fiers of the matching graphs by probing the A2F index. This iden-
tifier set is progressively refined as the size of the query grows
gradually with the addition of new edges by the user. Note that
in this work we assume that the user does not commit any mistake
while formulating a query graph. If the final query remains frequent
then the results are directly computed without subgraph isomor-
phism test. Otherwise, if the query fragment evolves to an infre-
quent fragment, then the algorithm probes the A2 I index to retrieve



relevant identifiers of graphs containing discriminative infrequent
fragments. Then, it retrieves the corresponding candidate graphs
from the graph database which is progressively refined based on
the subsequent actions by the user. Note that GBLENDER accesses
the graph database only once (during infrequent fragment match-
ing) throughout the query processing stage. When the “Run" icon
is clicked, the system returns the exact results by filtering the false
candidates using subgraph isomorphism test (if necessary).

We have applied GBLENDER to both real-world and synthetic
datasets. Our experiments demonstrate that GBLENDER has excel-
lent real-world performance and the system response time grows
gracefully with increasing number of graphs in the database. We
also show that GBLENDER significantly outperforms state-of-the-
art indexing schemes based on traditional querying paradigm (high-
est observed factor being four orders of magnitude). In summary,
the main contributions of this paper are as follows.

• We introduce an innovative graph matching paradigm that
blends visual graph query construction and query processing
to prefetch partial results during query formulation.

• In Section 3, we propose two novel action-aware indexing
schemes, called action-aware frequent index (A2F) and action-
aware infrequent index (A2I), that exploit typical visual inter-
action characteristics of users to facilitate efficient pruning
and retrieval of partial results matching query fragments.

• We present a novel algorithm called GBLENDER that imple-
ments our proposed paradigm for exact subgraph matching
queries by exploiting the indexing schemes (Section 4).

• By applying GBLENDER to real-world and synthetic datasets,
in Section 5, we show its effectiveness, significant improve-
ment of system response time over existing methods, and
ability to gracefully handle increasing number of graphs in
the database.

2. PRELIMINARIES
In this section, we first introduce concepts related to graph databases

and queries which we shall be using subsequently. Then, we in-
troduce the visual interface of GBLENDER for formulating visual
queries.

2.1 Exact Subgraph Matching Problem
A graph G is denoted as (V, E), where V is the set of nodes and

E ⊆ |V | × |V | is the set of (directed or undirected) edges in the
graph. Nodes and edges can have labels as attributes specified by
mappings φ : V → ∑

V`
and ψ : E → ∑

E`
respectively, where∑

V`
is the set of node labels and

∑
E`

is the set of edge labels.
The size of G is denoted by |G| = |E|. For ease of presentation,
we present our method using undirected graphs with labeled nodes.
It is straightforward to extend our method to process other kinds of
graphs.

A graph G1 = (V1, E1) is a subgraph of another graph G2 =
(V2, E2) (or G2 is a supergraph of G1) if there exists a subgraph
isomorphism from G1 to G2, denoted by G1 ⊆ G2 (or G2 ⊇ G1).
The graph G1 is called a proper subgraph of G2, denoted as G1 ⊂
G2, if G1 ⊆ G2 and G1 + G2.

Definition 1. (Subgraph Isomorphism) A subgraph isomorphism
is an injective function f : V1 → V2, such that (1) ∀u ∈ V1,
φ1(u) = φ2(f(u)), and (2) ∀(u, v) ∈ E1, (f(u), f(v)) ∈ E2 and
ψ1(u, v) = ψ2(f(u), f(v)).

2.2 Graph Fragments
We now introduce the notion of frequent and infrequent graph

fragments.
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Figure 2: Fragment samples in a chemical compound database.
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Figure 3: Frequent and infrequent fragments.

2.2.1 Fragment Support Graph (FSG)
Informally, we use the term fragment to refer to a small subgraph

existing in graph databases or query graphs. We shall refer to a
fragment in a query graph as query fragment in order to distinguish
it from a fragment in the database. Let D be a graph database
containing a set of graphs. In order to uniquely identify a graph in
D, we assign a unique id to each graph in the database. Let g be
a subgraph of Gi ∈ D (0 < i ≤ |D|) and has at least one edge.
Then, g is a fragment in D. Note that g can be a path, a tree, or
a graph. Also, some of the fragments in D may appear frequently
in many graphs, while some other fragments may appear only in a
few graphs. Figure 2 shows a sample of a graph database and some
fragments in it. Observe that the fragments C-C-C and C-N can
be found in every graph in Figure 2(b). However, the fragments
C-O-C and C-F only appear once in the whole database.

Given a fragment g ⊆ G and G ∈ D, we refer to G as the
fragment support graph (FSG) of g. We denote the set of FSGs of
g as Dg . |Dg| is called (absolute) support, denoted by sup(g).
Since each graph in D is denoted by a unique identifier, fsgId(g)
denotes the set of identifiers of the graphs in Dg .

2.2.2 Frequent Fragments
A fragment g is frequent if its support is no less than α|D| where

α is the minimum support threshold. That is, if g ∈ D and sup(g) ≥
freq(D) where freq(D) = α|D| and 0 < α < 1 then g is a fre-
quent fragment in D. We denote the set of frequent fragments in
D as F . For example, let |D| = 10000 and α = 0.1. Then,
freq(D) = 1000. That is, all fragments with support larger than or
equal to 1000 inD are frequent fragments. The fragments f0−f15

in Figure 3 are frequent fragments as their supports are no less than
1000 (shown in parenthesis). Note that a frequent fragment’s sub-
graph must be a frequent fragment [17].



2.2.3 Infrequent Fragments
Given a fragment g ∈ D, if the support sup(g) < freq(D)

then g is an infrequent fragment. For example, in Figure 3 f16-
f21 are infrequent fragments as their support is less than 1000. We
denote the set of infrequent fragments in D as I. Obviously, a
fragment is either frequent or infrequent in a given database. Note
that the number of infrequent fragments in D depends on the min-
imum support threshold. As we increase the threshold towards 1,
the number of infrequent fragments increases in D. Consequently,
it is computationally expensive to index all infrequent fragments in
the database. To alleviate this problem, we focus our attention to
those infrequent fragments whose subgraphs are all frequent. We
refer to these fragments as discriminative infrequent fragments.

Definition 2. (Discriminative Infrequent Fragment) Given g ∈
I , let sub(g) be the set of the subgraphs of g. If sub(g) ⊂ F or
|g| = 1, then g is a discriminative infrequent fragment in D.

For example, consider Figure 4 that lists all the subgraphs of
f19, f20, and parts of f21 (Figure 3). As all the subgraphs of f19

are frequent fragments, f19 is a discriminative infrequent fragment.
Observe that f19 (as an infrequent fragment) is a subgraph of f20

and f21. Hence, f20 and f21 are general infrequent fragments but
not discriminative. Due to the same reasons, f16, f17, and f18 are
discriminative infrequent fragments. In the sequel, we shall refer
to discriminative infrequent fragment and discriminative fragment
interchangeably. We denote a set of discriminative fragments in a
database D as Id. It is easy to observe that an infrequent fragment
may contain more than one discriminative fragments. We refer to
the one with the smallest size as minimal discriminative fragment.

Definition 3. (Minimal Discriminative Fragment (MDF)) Let
g ∈ I, g′ ⊂ g, and g′ ∈ Id. If @g′′ ∈ Id such that |g′| > |g′′|
and g′′ ⊂ g, then g′ is the minimal discriminative fragment of g,
denoted as mdf(g).

For example, consider the infrequent fragment f21. Observe that
it contains three discriminative fragments (f16, f18, and f19). Since
f16 is the smallest among them, it is the MDF of f21. Next, we
discuss some of the key characteristics of infrequent fragments that
we shall exploit subsequently.

If a graph g contains a discriminative fragment as its subgraph,
then g must be an infrequent fragment. Formally,

LEMMA 1. Let g′ ∈ Id and g ∈ D. If g′ ⊂ g then g ∈ I.

PROOF. Since g′ ∈ Id, |Dg′ | < freq(D). Also as g′ ⊂ g,
|Dg| ≤ |Dg′ |. Therefore, |Dg| ≤ |Dg′ | < freq(D). Hence, g is
an infrequent fragment.

On the other hand, if a graph is an infrequent fragment, then it
must contain at least one discriminative fragment.

LEMMA 2. Given g ∈ I, ∃g′ ∈ Id such that g′ ⊆ g.

PROOF. If @ (g′ ⊂ g and g′ ∈ Id), then sub(g) ⊂ F . Con-
sequently, g itself is a discriminative fragment (By Definition 2).
Hence, the above lemma holds.

Next, we define the notion of largest subgraph. Let g′ ⊂ g and
|g′| = |g| − 1. Then, g′ is the largest subgraph of g. Note that
g can have more than one largest subgraphs. We denote a set of
largest subgraphs of g as Lsub(g). If all the largest subgraphs of
an infrequent fragment are frequent fragments, then the infrequent
fragment must be a discriminative fragment.
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Figure 4: Subgraphs of infrequent fragments.

THEOREM 1. Given g ∈ I, if Lsub(g) ⊂ F , then g ∈ Id.

PROOF. Assume that g ∈ I but g /∈ Id. Then, ∃g′ ⊂ g, g′ ∈ Id

(based on Lemma 2). Hence, ∃g′′ ∈ Lsub(g), such that g′ ⊆
g′′. Therefore, g′′ ∈ I (based on Lemma 1), which contradicts
Lsub(g) ⊂ F . Therefore, g is a discriminative fragment.

As we shall see later, Theorem 1 can be used for fast identi-
fication of discriminative fragment. Based on the above discus-
sion, it follows that if one of the subgraphs of g is a discriminative
fragment, g is an infrequent fragment. Therefore, a discriminative
fragment plays a central role in the formation of infrequent frag-
ment and can be used in turn to identify an infrequent fragment.
In practice, the number of discriminative fragments is significantly
smaller than the total number of infrequent fragments, as will be
demonstrated in Section 5.

2.3 Visual Interface of GBLENDER
Figure 1 depicts the screenshot of the visual interface of

GBLENDER. It consists of four main panels. A user begins for-
mulating a query by choosing a database as the query target and
creating a new query canvas by clicking on the buttons in the Tool-
bar (Panel 1). The left panel (Panel 2) displays the unique labels of
nodes that appear in the dataset in lexicographic order. In the query
formulation process, the user chooses labels from this panel for
creating the nodes in the query graph. The Visual Query Designer
panel (Panel 3) depicts the area for formulating graph queries. A
user drags a node that is part of the query from Panel 1 and drops
it in Panel 3. Next, he/she adds another node in the same way.
Then, she creates an edge between the added nodes by left and
right clicking on them. Additional nodes and edges are added to
the query graph by repeating these steps. Finally, the user can exe-
cute the query by clicking on the “Run" icon in the Query Toolbar.
The Results Window (Panel 4) displays the query results.

3. ACTION-AWARE INDEXING
In this section, we present two indexing schemes, namely action-

aware frequent index (A2F) and action-aware infrequent index (A2I),
to support efficient matching of frequent and infrequent query frag-
ments, respectively, while formulating a visual query graph. Our
indexing schemes are user action-aware. That is, the structure of
the index is designed to take advantage of typical actions a user
undertakes in order to formulate a visual graph query. We begin
by identifying the key features of such an action-aware index. In
the sequel, we assume that frequent fragments are mined from the
database using an existing technique e.g., gSpan [16].

3.1 Key Features of Action-Aware Index
A visual graph query can be formulated in different ways by fol-

lowing different sequences of GUI actions. Figure 5 shows two
different sequences of visual actions (also referred to as steps), de-
noted by Sequence 1 and Sequence 2, a user may undertake to for-
mulate the query in Figure 1. We can make the following observa-
tions related to the query formulation process.

• Visual query formulation in GBLENDER follows a “node/edge-
at-a-time" approach where a user incrementally adds new



nodes or edges in the visual query designer panel (Panel 3
in Figure 1). Consequently, after every step the size of the
query fragment grows by one. Recall that in this paper we
focus on error-oblivious query graphs where a user correctly
formulates the queries. Hence, deletion of edges due to mis-
takes committed by a user is beyond the scope of this work.
Also, observe that the structure of the query fragment can
evolve from a path to a tree or graph.

• At any step, the partial query graph formulated thus far, is
either a frequent or infrequent fragment. Typically, as more
edges are added, the chance of a query to remain frequent
diminishes. Once it becomes infrequent, it remains as in-
frequent for rest of the formulation steps. For instance, in
Figure 5 the partial query evolved from a frequent fragment
to an infrequent one after Step 6 in Sequence 1 whereas it
becomes infrequent after the second step in Sequence 2.

In our proposed paradigm of blending visual query formulation
and query processing, it is important to filter negative results af-
ter every visual action taken by a user. Consequently, we need an
efficient indexing scheme which can exploit the above visual in-
teraction characteristics effectively to prune false results. We en-
visage that such an action-aware indexing scheme should support
the following key features: (a) It should be able to prune a part of
irrelevant results even if only partial query graph is known during
query formulation. (b) Since the size of a partial query graph g′

grows by one, given a list of graphs that satisfy the fragment g′ in
Step i, it is important to support efficient strategy for identifying
the graphs that match the fragment g′′ (generated at Step i + 1)
where g′ ⊂ g′′ and |g′′| = |g′| + 1. (c) A partial query graph
may evolve from being a frequent fragment to an infrequent one in
the database. Furthermore, it may also evolve from a simple path
to a complex graph structure. Hence, the proposed strategy should
be able to support pruning based on both graph-structured frequent
and infrequent fragments. (d) Since smaller fragments always ap-
pear more often in different visual queries compared to larger-sized
fragments, smaller-sized graph fragments should be efficiently in-
dexed to support fast retrieval. (e) Lastly, since subgraph isomor-
phism testing is known to be NP-complete [4], the indexing scheme
should minimize expensive candidate verification while retrieving
partial results.

3.2 Why Existing Strategies Cannot be Used?
While state-of-the-art indexing strategies are certainly innovative

and powerful, we found out that they cannot be directly adopted for
efficiently blending visual query formulation and processing for the
following reasons. Firstly, these schemes are based on the conven-
tional paradigm that the entire query graph must be available be-
fore query processing. However, in our proposed paradigm query
processing is initiated as soon as a fragment of the query graph
is visually formulated. For instance, gIndex [17] uses apriori-like
strategy to enumerate a set of fragments of the query by checking
whether a fragment belongs to the underlying frequent subgraph
index. In order to generate this fragment set, the entire query graph
should be available. TreePi [19] indexes frequent and discrimina-
tive trees and adopts a new pruning technique based on the concept
of Center Distance Constraints (CDC). The basic idea is that if the
query graph appears in a candidate graph, distances between pairs
of features in query graph must be preserved in the candidate graph
as well. This distance computation requires the availability of the
entire query graph. (Tree + ∆) [20] enumerates all frequent sub-
trees in a query graph q and computes the candidate answer set.
If q is a non-tree cyclic graph, then it obtains a set of discrimina-
tive graph features to generate the candidate answer set. Observe
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that the entire query graph must be available to enumerate frequent
subtrees as well as to determine if q is cyclic. CDIndex [14] is only
suitable for graphs with limited sizes, as it exhaustively enumerates
and indexes all the subgraphs in the database. It is not supportive
to our paradigm not only due to the size limitation but also due to
the requirement of expensive multiple subgraph isomorphism test
for partial query graph fragments.

GString [9] is a semantic-based approach to index chemical com-
pound databases. It converts a graph into its string representation
and then uses suffix tree-based indexing scheme. A query graph
is converted into a GString and summary string, and then matched
against the suffix-tree. The generation of GString and summary
string, requires availability of the entire query graph. C-tree [5] is
a clustering-based index to support both subgraph queries and sim-
ilarity queries. The graph closure is a “bounding box" containing
structural information of the constituent graphs. A subgraph query
is processed in two phases. First, candidate answer set is generated
by traversing the C-tree and pruning nodes using an approximate
subgraph isomorphism technique called pseudo subgraph isomor-
phism. Next, each candidate answer is verified for exact subgraph
isomorphism. C-tree is not designed for repeated processing of par-
tial query fragments as it will result in multiple pseudo subgraph
isomorphism test.

Secondly, a key feature of action-aware indexing scheme is that
it should be able to exploit both frequent and infrequent subgraph
fragments to prune false results. However, very few existing tech-
niques support both types of fragments. For example, gIndex [17]
only indexes discriminative frequent graphs and assumes that they
are most likely to appear in query graphs. This assumption may not
hold for many applications as a user may submit various queries
with arbitrary structures. TreePi [19] and (Tree + ∆) [20] in-
dex frequent and discriminative subtrees rather than subgraphs, as
trees can be manipulated efficiently. FG-Index [2] uses frequent
subgraphs as index features. Frequent graph queries are answered
without verification and infrequent queries require only a small
number of verifications. While it supports infrequent edges, it does
not support infrequent graphs. C-tree and GString do not support
frequent or infrequent fragments as indexing features.

Lastly, since the above indexes are designed for conventional
subgraph matching paradigm, they do not require to support ef-
ficient traversal and retrieval of graph fragments g and g′ where
|g| = |g′|+ 1. For example, FG-Index [2] indexes only individual
subgraphs such that given a query q, at best it can directly retrieve
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Figure 6: An example of DF-index.

the result for q if q is indexed, but it must start the search from the
beginning if q∪{e} needs to be matched. In other words, the search
cannot move to q ∪ {e} directly from q. Further, relatively more
efficient pruning of smaller-sized frequent fragments compared to
larger-sized fragments is also not an important requirement for ex-
isting approaches.

3.3 Action-Aware Frequent (A2F ) Index
A challenge in creating an index for frequent fragments is that

the frequent fragment set can be large for a small α and hence the
index built on the frequent fragments can be too large to fit in the
main memory. Then, the performance of repeated evaluation of
partial query fragments may degrade as the processing needs fre-
quent disk access. To address this issue, similar to FG-Index [2],
we create a memory-resident and a disk-resident components of
A2F index. We refer to them as memory-based frequent index (MF-
index) and disk-based frequent index (DF-index), respectively.

How do we determine which frequent fragment should reside
where? To answer this question, we take a different strategy com-
pared to FG-Index by exploiting a key feature of visual query for-
mulation. Recall that the construction of visual queries always
grows incrementally from small to larger-sized query fragments.
Consequently, smaller frequent fragments are processed more fre-
quently in various visual queries compared to their larger counter-
parts. We exploit this feature to determine where a frequent frag-
ment should reside. Specifically, small-sized frequent fragments
(frequently utilized) are stored in MF-index whereas larger frequent
fragments (less frequently utilized) reside in DF-index. Formally,
let β ≥ 1 be the fragment size threshold. If g ∈ F and |g| ≤ β,
then index g into the MF-index. Otherwise, index g into the DF-
index. Note that the sizes of MF-index and DF-index can be tuned
by adjusting β based on the average size of typical queries and
availability of memory. For instance, when β is the maximal size
of frequent fragments, all the frequent fragments are indexed in
MF-index. Even though it is faster to match frequent fragments in
MF-index, it occupies larger memory space. In contrast, if β is too
small, most of the frequent fragments are indexed in the DF-index
and query processing needs to frequently access the disk. We shall
empirically study the effect of β on query processing in Section 5.
We now elaborate on the structure of these two types of frequent
index.

3.3.1 Disk-Based A2F Index (DF-Index)
Informally, DF-index is an array of fragment clusters. A frag-

ment cluster is a directed graph C = (VC , EC) where each node
v ∈ VC is a frequent fragment g where |g| > β. There is an edge
(v′, v) ∈ EC iff g′ ⊂ g and |g| = |g′|+1. We denote the root node
(node with no incoming edge) of C as root(C). Each fragment g
of v is represented by its CAM code [7], denoted as cam(g). We
choose the maximal code among all possible codes of a graph by
lexicographic order as this graph’s canonical code.
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Figure 7: An example of MF-index.

Each node with fragment g in C points to a set of FSG identifiers
of g (denoted as delId(g) where delId(g) ⊆ fsgId(g)). Note
that it is not space efficient to attach the complete list of FSG iden-
tifiers of g on each frequent fragment in the index as the size can
be large when α is close to 1. Fortunately, the following property
holds: given g, g′ ∈ F , if g′ ⊂ g then fsgId(g) ∩ fsgId(g′) =
fsgId(g) [2]. That is, node v′ (representing g′) and its child node
v (representing g) shares a large number of FSGs. We exploit this
property to make the index more space-efficient. We elaborate
on this with a simple example. Figure 6 depicts an example of
DF-index (β = 3) based on the frequent fragments in Figure 3.
In the fragment cluster C2, we assign those FSG ids to f9 that
are not in f14. Since fsgId(f14) ⊂ fsgId(f9), |delId(f9)| =
|fsgId(f9)| − |fsgId(f14)| = 200. For the leaf node f14,
delId(f14) = fsgId(f14). Also observe that we can retrieve the
identifers of all FSGs of g by traversing all its children and adding
them together. For instance, in the case of fragment cluster C1,
fsgId(f8) = delId(f8)∪delId(f11)∪delId(f12)∪delId(f13).

Definition 4. (DF-index) Given a set of frequent fragments F in
a graph database D and fragment size threshold β, an DF-index
constructed on F consists of the following components:

• An array, called Cluster Array (CA), stores a collection of
fragment clusters. Let CA[i] be the i-th entry in the CA. The
fragment cluster stored in CA[i] is assigned an identifier Ci.

• A fragment cluster Ci is a graph Ci = (VCi , ECi) where
v ∈ VCi represents a frequent fragment g ∈ F such that
|g| > β. Each (v′, v) ∈ ECi represents the parent-child
relationship between two vertexes. Fragment g is the child of
g′ iff g′ ⊂ g and |g| = |g′|+ 1.

• An array, called FSG Array (FA), stores delId list of distinct
frequent fragments in CA.

• ∀ v ∈ VCi and ∀i, v = (cam(g), j)) where cam(g) is the
CAM code of g and FA[j] contains delId(g).

3.3.2 Main Memory-Based A2F Index (MF-Index)
The MF-index indexes all frequent fragments having size less

than or equal to β. Similar to a fragment cluster, it is a directed
graph GM = (VM , EM ) where the nodes and edges have same
semantics as C. In addition, nodes representing frequent fragments
of size β are leaf nodes in GM and do not have any child fragments.
Each leaf node v ∈ VM representing a fragment g, is additionally
associated with a fragment cluster list Lwhere each entryLi points
to a fragment cluster Cj in the DF-index such that g ⊂ root(Cj).

Definition 5. (MF-index) Given a set of frequent fragments F
in a graph database D and fragment size threshold β, an MF-index
constructed on F is a graph GM = (VM , EM ) where v ∈ VM

represents a frequent fragment g ∈ F and satisfies the following
conditions.



Algorithm 1 BuildA2FIndex
Input: A set of frequent fragments F , fragment size threshold β
Output: MF-index and DF-index
1: Sort F by size ascending order
2: Index each |g| = 1, g ∈ F in MF-index
3: for gi ∈ A2F-index, gj ∈ F do
4: if gi ⊂ gj and |gj | = |gi|+ 1 then
5: if |gi| = β then
6: if gj 6∈DF-index then
7: Index gj in Ck , k++
8: Insert Ck in DF-index
9: end if

10: Add gj ’s fragment cluster id in gi.L
11: else
12: if |gi| > β then
13: Index gj in the same fragment cluster as gi

14: else
15: Index gj in MF-index
16: end if
17: Connect gi and gj with an edge
18: delId(gi) = delId(gi)− fsgId(gj)
19: end if
20: end if
21: end for

• for each v ∈ VM , |g| ≤ β.
• if v is not a leaf node then v = (cam(g), delId(g)) where

cam(g) is the CAM code of g and delId(g) is a list of FSG
identifiers of g s.t. delId(g) ⊂ fsgId(g).

• if v is a leaf node then v = (cam(g), delId(g),L) where L
is a list of fragment cluster identifiers of g and delId(g) =
fsgId(g). Let Li be the i-th entry of L. Then, Li contains
an index j of CA such that CA[j] = Cj and g ⊂ root(Cj).

• Each (v′, v) ∈ EM represents the parent-child relationship
between two vertexes. Fragment g is the child of g′ iff g′ ⊂ g
and |g| = |g′|+ 1.

EXAMPLE 1. Figures 6 and 7 depict DF-index and MF-index,
respectively, built based on the fragments listed in Figure 3 and
β = 3. The fragments f0 and f1 are chosen as the root nodes in the
MF-index as they have the least size (|f0| = |f1| = 1). Since f2

and f3 are supergraphs of f0 and f1 with one additional edge, they
are connected to f0, f1 as their children, respectively. Similarly, f4,
f5, and f6 are inserted into the MF-index. Since the sizes of these
fragments are 3, they are leaf nodes in the MF-index (Figure 7).

Next, we create a set of fragment clusters for each leaf node in
the MF-index and insert them into the Cluster Array of DF-index
(Figure 6). Since f7 is the child of f4 with size 4, we create a frag-
ment cluster, denoted as C0, containing f7 and it’s children f11,
f12, and f14. Note that root(C0) = f7. C0 is added to f4’s clus-
ter list L4. We also add delId(f7), delId(f11), delId(f12), and
delId(f14) in the array FA of the DF-index. Similarly, we build the
fragment clusters C1, C2 and C3 and add them in CA.

3.3.3 Algorithm for Building A2F Index
Algorithm 1 shows the top-down approach of the A2F-index con-

struction. Firstly, the frequent fragments are sorted in ascending or-
der based on their size (Line 1). All frequent edges are indexed in
the MF-index (Line 2). Given gi ∈ A2F-index, gj ∈ F , if gi ⊂ gj

and gj has one more edge than gi, then gj is a child of gi (Line
4). Note that the cost of subgraph isomorphism test here is not sig-
nificant as the frequent fragments are already sorted by their size.
Consequently, for a given frequent fragment we just need to check
only those fragments that have one additional edge. If |gi| = β,
gi is a leaf node in the MF-index. Consequently, gj should reside

Algorithm 2 BuildA2IIndex
Input: F , D
Output:A2 I-index
1: Get I1 from D to A2 I-index
2: for gi ∈ F , ej ∈ F1 do
3: gnew = gi + ej

4: if gnew ∈ Id and gnew /∈ DFA then
5: fsgId(gnew) ← Retrieve FSG identifiers of gnew

6: if |fsgId(gnew)| > 0 then
7: Add gnew in A2 I-index with fsgId(gnew)
8: end if
9: end if

10: end for
Discriminative
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Figure 8: An example of A2I index.

in the DF-index. If gj 6∈DF-index, the algorithm indexes gj as the
root of fragment cluster Ck and insert Ck in the cluster array of DF-
index (Lines 6-9). It inserts gj’s fragment cluster id in gi’s fragment
cluster list (Line 10). If |gi| > β, then gj is indexed in the same
fragment cluster as gi. Otherwise, it indexes gj in the MF-index
(Lines 12-16). Then it connects gi and gj with an edge and updates
gi’s FSG id entries by deleting gj’s FSG ids (Lines 17-18). This
process is repeated until all the frequent fragments are indexed.

3.4 Action-Aware Infrequent (A2I) Index
The A2 I-index indexes infrequent fragments to prune the candi-

date space for infrequent queries. In order to ensure that the index
is space-efficient, we index only the discriminative infrequent frag-
ments Id instead of infrequent fragments I as often in practice
|Id| ¿ |I|. Except for FG-Index, none of the existing feature-
based graph indexing schemes index infrequent fragments. FG-
Index builds an index only for infrequent edges (infrequent frag-
ments with only one edge). Consequently during query formula-
tion, if an infrequent query fragment is complex-structured, then
FG-Index is not very effective in reducing candidate space by prun-
ing negative results. For example, consider Figure 3. The sub-
graphs of the infrequent fragment f21 with support 200 are listed in
Figure 4. Observe that none of the subgraphs of f21 is an infrequent
edge. As the candidate pruning strategy of FG-Index exploits only
the frequent fragments and infrequent edges, the candidate space
of f21 can only be reduced to 1000 by its largest frequent fragment
f15. However, it is possible to adapt the indexing scheme so that
the candidate space can be reduced to 300 by its infrequent sub-
graph f18. It is worth mentioning that reduction of candidate space
reduces the number of subgraph isomorphism tests.

We now describe the structure of A2I-index designed specifically
to address the above issue by indexing infrequent fragments. Intu-
itively, it consists of an array of discriminative fragments (denoted
as DFA) arranged in ascending order of their sizes. Each entry
in DFA stores the CAM code of g ∈ Id and a list of FSG identi-
fiers of g (fsgId(g)). Figure 8 depicts an example of A2I-index
constructed using the discriminative fragments in Figure 3. For
instance, cam(f16) is stored in DFA[0]. Also, DFA[0] has a
pointer to the list of FSG identifiers of f16. Note that as the support
of each discriminative infrequent fragment is less than α|D|, it is
possible to store A2I-index in the memory (see Section 5).

Definition 6. (A2I-index) Given a set of discriminative infre-
quent fragments Id in a graph database D, an A2 I-index con-
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Figure 9: Candidates maintenance during query evaluation.

structed on Id consists of an array, called Discriminative Fragment
Array (DFA), which stores Id. Let DFA[i] be the i-th entry in the
DFA. Then, DFA[i] = (cam(gk), fsgId(gk)) where gk ∈ Id.
Further, if i < j are indexes of DFA then |gi| ≤ |gj |.

3.4.1 Algorithm for Building A2I Index
The algorithm for building A2 I-index is shown in Algorithm 2.

We denote the sets of infrequent and frequent fragments with only
one edge as I1 and F1, respectively. Firstly, we retrieve I1 fromD
and index them in the A2I-index (Line 1). Next, we add a frequent
edge ej on the frequent fragment gi to form a new graph gnew

(Lines 2-3). Obviously, there are different ways to construct such a
new graph by adding ej to different nodes of gi. We shall elaborate
on this later. If gnew is not a frequent fragment and does not exist
in DFA, then it checks if gnew is a discriminative fragment using
Theorem 1 (Line 4). The algorithm retrieves the identifiers of FSGs
of gnew from fsdId(gi) using subgraph isomorphism test (Line
5). If gnew exists, then it adds gnew and fsgId(gnew) in the A2 I-
index (Lines 6-7). The algorithm repeats this process until no new
fragment is generated.

Observe that there are two ways to add a frequent edge on a fre-
quent fragment: (a) connect a new node on a node of the frequent
fragment. (b) connect two existing nodes of a frequent fragment
without introducing a new node. Let g ∈ F has n nodes and K
be the number of frequent edges in F . Let |gnew| be the number
of newly generated graphs of g. Then the largest possible value
of |gnew| is as follows: |gnew| = Kn + (max(|g|) −min(|g|)).
The computational complexity to evaluate this equation is O(n2).
We remove the frequent fragments, newly generated fragments that
do not exist in the database, and existing discriminative fragments
from the newly generated graphs at each step. Furthermore, as sub-
graph isomorphism test is used to retrieve fsgId(gnew) (Line 5),
it is important to reduce the size of FSG space. We achieve this by
considering only the FSGs in Dgi instead of D.

4. ACTION-AWARE QUERY PROCESSING
We now discuss how the action-aware indexes proposed in the

preceding section can facilitate blending of query formulation and
processing. In the sequel, we assume that a user does not commit
any errors while formulating a visual query (no deletion of edges).
Since a visual query is formulated step-by-step by adding edges
incrementally, our proposed action-aware query processing algo-
rithm, called GBLENDER, utilizes the latency offered by the GUI
actions to retrieve partial results.

Algorithm GBLENDER is shown in Algorithm 3. The visual
query q to be formulated, initially empty, is initialized as frequent
in Line 1. Let Rc and Rg represent sets of candidate FSG iden-
tifiers and candidate graphs, respectively. When the GUI action
adds a new edge on q, then if q’s state is frequent, it matches q in
MF-index or DF-index (Line 4-5). This step is encapsulated by the

Algorithm 3 GBLENDER

Input: A GUI action Action, A2F-index, A2 I-index, and D.
Output: Results of the visual query fragment.
1: q.fr=true
2: if Action is e then
3: q = q + e
4: if q.fr is true then
5: Rc ← FrequentFragment(q, A2F-index) /* Algorithm 4 */
6: end if
7: if q.fr is false then
8: Rc ← InfrequentFragment(q, A2 I-index) /* Algorithm 5 */
9: Rg ←PrefetchCandGraphs(Rc,D) /* Algorithm 6 */

10: end if
11: else
12: if Action is Run then
13: if q ∈ A2F-index or A2 I-index then
14: Results = Rc

15: else
16: Results ← Verify(q, Rg)
17: end if
18: end if
19: end if

Algorithm 4 FrequentFragment
Input: Query fragment q, set of candidate FSG ids Rc, A2F-index
Output: Updated Rc

1: if |q| ≤ β then
2: fsgId(q) ← Search(q, MF-index)
3: if fsgId(q) 6= ∅ then
4: Rc=fsgId(q) ∩Rc

5: else
6: q.fr = false
7: end if
8: else
9: fsgId(q) ← Search(q, DF-index)

10: if fsgId(q) 6= ∅ then
11: Rc=fsgId(q) ∩Rc

12: else
13: q.fr = false
14: end if
15: end if

FrequentFragment procedure which we shall elaborate later. If q is
an infrequent fragment, the algorithm invokes InfrequentFragment
procedure to retrieve Rc (Line 8). The candidate graphs (Rg) satis-
fying Rc are fetched from D and q is set as an infrequent fragment
(Line 9). If the GUI action is clicking the “Run" icon (Line 12),
then if the current q is a frequent one or a discriminative fragment,
the algorithm returns exact results from Rc (Lines 13-14). Other-
wise the query is a “non-discriminative" infrequent fragment, and
it returns results by verifying candidates in Rg (Line 16). Here we
use commonly used Ullman’s algorithm [15] for subgraph isomor-
phism test. Note that we can easily replace this step with a more
efficient subgraph testing algorithm such as the one described in
[12]. We now elaborate on the FrequentFragment, InfrequentFrag-
ment, and PrefetchCandGraphs procedures in detail.

FrequentFragment procedure. Algorithm 4 shows the Frequent-
Fragment procedure. If |q| ≤ β, then it searches q in the MF-index
(Lines 1-2). Firstly, it transforms q into its CAM code and then it
performs the graph isomorphism test by comparing the CAM code
of q with those in the MF-index. Two graphs g and g′ are isomor-
phic to each other, if and only if cam(g) = cam(g′) [7]. These
steps are encapsulated by the Search procedure in Line 2. If q can
be found in the MF-index, then the algorithm retrieves its FSG iden-
tifiers fsgId(q) and updates Rc (Lines 3-4). Otherwise, q is iden-
tified as an infrequent fragment (Line 6). If |q| > β, then the algo-
rithm executes the same steps in the DF-index (Lines 9-14). Note



that the time complexity of this algorithm is O(n) where n is the
number of frequent fragments with size |q|.

EXAMPLE 2. Consider Sequence 1 in Figure 5 to formulate the
visual query in Figure 1. Figure 9 depicts the states of Rg and
Rc during different steps. After Step 1, q matches f0 in the MF-
index. As a result, fsgId(f0) is assigned to Rc. After Step 2,
the algorithm searches the new q among the children of f0 (f2 and
f3) in the MF-index. Since only f2 matches q, fsgId(f2) replaces
fsg(f0) in Rc. After Step 3, f5 matches the new q and as a result
fsgId(f5) replaces fsgId(f2) in Rc (Figure 9(a)).

After Step 4, since f5 is a leaf node in the MF-index, no matched
fragment can now be located in the MF-index. Hence, the algorithm
searches the list of fragment cluster identifiers L of f5 (C0, C1, and
C3). Since f8 in C1 matches q (Figure 6), C1 is retrieved from the
DF-index to the memory. Then fsgId(f8) is computed from FA
in the DF-index, which replaces fsgId(f5) in Rc. After Step 5,
the new q is matched among the children of f8 and f13 is selected.
Consequently, fsgId(f13) is assigned to Rc to replace fsgId(f8)
(Figure 9(b)). So far the query graph has remained as a frequent
fragment. Since we do not need to fetch candidates from D for
frequent fragments, Rg has remained empty during this process. If
the user clicks on the “Run" icon now, then the results of q is Rc.

InfrequentFragment procedure. Algorithm 5 shows the pro-
cedure for evaluating infrequent fragments. Recall that there is
at least one discriminative fragment in q (Lemma 2). Therefore,
the algorithm finds the MDF of q, which can match an element in
the A2I-index. Firstly, it retrieves each subgraph (denoted as qs)
of q with n edges which is also a supergraph of the new edge e
(Lines 1-2). Then, for each such qs, it checks if there is a match
in the A2I-index (using the Search procedure). If there is, then
qs is mdf(q). Consequently, it updates Rc by intersecting it with
fsgId(qs) (Lines 2-5). Otherwise, the algorithm continues to search
for mdf(q) with n + 1 edges by repeating the above operations.

Theoretically, searching for mdf(q) has exponential complexity.
Fortunately, in practice this does not adversely effect the perfor-
mance of GBLENDER for two main reasons. Firstly, in practice the
value of n is small as typically a user does not visually formulate
very large queries. Secondly, once one mdf(q) is found, we do
not need to search for others any more as this MDF is sufficient to
reduce the candidate space below α|D|.

EXAMPLE 3. Reconsider Example 2. The query is a frequent
query in the first five steps. After Step 6, no matched frequent
fragment can be found in the A2F-index. Hence, q has evolved
into an infrequent fragment. The algorithm now searches for a qs

which is an mdf(q). In this case, it finds that qs = f19 which is
matched in the A2 I-index. Consequently, Rc is updated as follows:
Rc=fsgId(f13) ∩ fsgId(f19) (Figure 9(c)). Next, the algorithm
fetches the candidate graphs having ids in Rc from D and assigns
them to Rg . After Step 7, as qs = f16 is mdf(q), Rc is updated
again (Figure 9(d)). The final candidate space can be calculated as
following:

|Rc| = |fsgId(f13) ∩ fsgId(f16) ∩ fsgId(f19)|
≤ Min(|fsgId(f13)|, |fsgId(f16)|, |fsgId(f19)|))
= |fsgId(f19)| = 300

PrefetchCandGraphs procedure. Algorithm 6 outlines the pro-
cedure for prefetching candidate graphs from the database for the
subgraph isomorphism testing. Recall that prefetching is only nec-
essary when the current query fragment is infrequent. Note that
as the current query contains one infrequent fragment as subgraph,

Algorithm 5 InfrequentFragment
Input: Infrequent query fragment q, Rc, and A2 I-index
Output: Updated Rc

1: for n=1 . . . |q| do
2: for each qs s.t. |qs| = n and qs ⊆ q and e ⊆ qs do
3: fsgId(qs) ← Search(qs, A2 I-index)
4: if fsgId(qs) 6= ∅ then
5: Rc=fsgId(qs) ∩Rc

6: exit
7: end if
8: end for
9: end for

Algorithm 6 PrefetchCandGraphs
Input: Rc, Rg , and D
Output: Rg

1: if Rg = ∅ then
2: Rg ← Fetch(Rc,D) /* Retrieves from the database D */
3: else
4: Rg = Rg ∩Rc

5: end if

the size of candidate results is definitely bounded by α|D|. In ad-
dition, the prefetching operation just needs to access the database
only once during the entire infrequent query evaluation process.
After that, as the query size grows, the new candidate set can be
generated from the previous one (Line 4). The time complexity of
this algorithm is O(m) where m is the number of elements in Rc.

EXAMPLE 4. Reconsider Example 3. Since the current Rg is
empty, candidate graphs are prefetched from the database based on
the ids in Rc after Step 6 (Lines 1-2) as depicted in Figure 9(c).
After Step 7, the new candidates are subset of the candidates in
Step 6. Hence, Rg is updated by removing the graphs whose ids
are not in Rc (Line 4) in Figure 9(d).

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of GBLENDER. The

set of frequent fragments, which is used as an input to construct the
action-aware indexes is mined using gSpan [16]. GBLENDER is
implemented in Java JDK 1.6 and the results display component is
implemented using ZGRViewer [11]. We run all experiments on an
Intel Pentium4 3.4GHz machine with 3GB memory, running Linux
2.6.28 System.

To the best of our knowledge, there is no existing subgraph match-
ing system that realizes our proposed paradigm. Hence, we com-
pare GBLENDER (denoted by GBR for brevity) to the following
state-of-the-art graph indexing methods: C-Tree [6] (denoted by
CT), FG-Index [2] (denoted by FGI), and SSI [12]1. CT is imple-
mented in Java whereas both SSI and FGI are implemented in C++.

5.1 Experimental Setup
Datasets. We use the AIDS Antiviral dataset containing 43K

graphs as real-world dataset. Note that this dataset has been used
by several existing graph indexing schemes such as gIndex [17],
FG-Index [2], C-Tree [5], and SSI [12]. The average size of a graph
is 25 vertices and 27 edges. The maximum size of a graph is 222
vertices and 251 edges. There are 63 different types of atoms in
the dataset. In accordance with [5, 12], we generate vertex-labeled
graphs from the molecule structures (omitting Hydrogen atoms).
Further, we remove the edge labels as it increases the chance of a
fragment to be frequent.
1Despite our best efforts (including contacting the authors), we could not get the
source code of the approaches discussed in [19, 20].



S

C

C

N C

S

N

C

N

N N

C

C

1

1

1

1

2

2

2
3

3

4

3

4

5

4

4

5

5

6

7

6

6

6

7

8

8

CC

C

C

C

C

2

5

CC

C

C

C

C

C

C

C

C

2

3

4

5

7

8 9

10

1

6

CC

C

C

C

CC

C

C

C
9

 Q5 (28s)

Q1 (25s)  Q2 (35s)  Q3 (32s)

 Q4 (27s)

36

7

1

0

59

0

1

1

6

7

7

8

0

2

1

0

1

5

 Q6 (30s)

 Q7 (20s)  Q8 (20s)  Q9 (22s)  Q10 (22s)

1 1
1 1

2

2

22

3 4

3

4

4

3 3

4

55

1

2

5
CO

O C

CC

C

C

C 6
3

4 7

8

C
3

Figure 10: Queries on real and synthetic datasets.

Query FGI SSI CT GBR |Rg |SRT |Rc| SRT |Rc| SRT |Rc| SRT |Rc|
Q1 8 0 223 35241 11300 34736 0.002 0 32013
Q2 27 0 324 14868 13300 20946 0.002 0 4280
Q3 47 0 187 12836 11000 12904 0.005 0 8445
Q4 76 NA 47 6927 6800 269 29 476 269
Q5 260 NA 116 25601 6870 37 18 68 37
Q6 200 NA 89 18252 7870 503 50 750 283

Table 1: Query performance on the AIDS dataset (in msec.)

To test the scalability of GBLENDER on database size, we use
the synthetic graph dataset generator of FG-Index [2] (Graphgen)
to generate five datasets with sizes from 20K to 100K. We set the
number of distinct labels to 10. The average number of graph edges
in each dataset is set to 30 and the average graph density is 0.1.

Querysets. We chose ten queries as shown in Figure 10. Q1 −Q6

are queries on the AIDS dataset whereas Q7 − Q10 are queries on
the synthetic datasets. Since these queries are formulated by users
using the visual interface, it is not realistic to expect a user to for-
mulate large queries visually. Therefore, we chose query graphs
whose sizes do not exceed 10. Note that GBLENDER can handle
larger query graphs gracefully. Further, the labels on the edges of
a query in Figure 10 represent the default sequence of steps for
query formulation in GBLENDER. For example, in Q4 the default
sequence of steps for query formulation is: [(S,C), (C,S), (S,C),
(C,C), (C,N), (N,C)]. Unless mentioned otherwise, we shall be us-
ing the default sequence for formulating a particular query.

Participants profile. In order to formulate visual queries, three
unpaid male volunteers participated in the experiment. Participants
ranged in ages from 21 to 27. All subjects have varying degree of
familiarity with graph queries.

At the start, participants were trained to use the GUI of GBLENDER.
For every query, the participants were given some time to determine
the steps that are needed to formulate the query visually. This is to
ensure that the effect of thinking time is minimized during query
formulation. Note that faster a user formulates a query, the lesser
time GBLENDER has for prefetching. The participants were given
one query at a time. That is, only after the correct formulation of
the current query, a participant was given the next query. If an er-
ror was committed by a participant then that particular formulation
effort is ignored and he had to start afresh. Each query was for-
mulated five times by each participant (using the default sequence
unless specified otherwise) and reading of the first formulation of
each query was ignored. The average query formulation time for a
query by all participants is shown in parenthesis in Figure 10.

AIDS dataset size (K) 1 5 10 20 40
Index Size (MB) 0.025 0.128 0.306 0.724 1.55

Syn. dataset size (K) 20 40 60 80 100
Index Size (MB) 14.2 29.7 45 60.6 76

Table 2: Size of A2I-index.

GBR
FGI CT SSI

β 3 5 8 11
Size 3.8+23.5 7.5+23 18.6+17.4 24.8+0 0.8+43.2 45 20.4

Table 3: Index size comparison (MB).

5.2 Performance on Real Graph Dataset
We discuss the performance of GBLENDER on the AIDS dataset

from a variety of aspects. We set α = 0.1 and β = 8 in all exper-
iments unless specified otherwise. We follow the default settings
of FGI, SSI, and CT as suggested in [2], [12], and [5], respectively.
The largest size of the indexed frequent fragments is 10.

Candidate size and system response time (SRT). To evaluate the
query performance of GBLENDER, we use the six queries (Q1 -
Q6) on the AIDS dataset. Note that Q1 - Q3 are frequent query
fragments and the remaining ones are infrequent queries. Table 1
shows the average system response time (SRT), the candidate size
(denoted by |Rc|), and the size of result set (denoted by |Rg|). Re-
call that in GBLENDER, SRT refers to the duration between the time
a user presses the “Run" icon to the time when the user gets the
query results. The average SRT is computed by taking the average
of the SRTs of all participants (last four formulations). In FGI, CT,
and SSI, SRT refers to the execution time of a query. Each query
was executed five times in each approach and the results from the
first run were always discarded.

We can make the following observations. Firstly, GBR and FGI
are orders of magnitude faster than SSI and CT for frequent queries
(Q1 - Q3). This is because both these approaches follow verification-
free frequent fragment matching strategies whereas SSI and CT need
to verify a large candidate set. More importantly, GBR is up to four
orders of magnitude faster than FGI. This is mainly due to the inno-
vative paradigm of blending query formulation with query process-
ing. Secondly, for the infrequent queries (Q4 - Q6), GBR has the
best performance among all the approaches. Note that the perfor-
mance gap between GBR and SSI is significantly reduced due to the
fast subgraph isomorphism algorithm employed by SSI rather than
its index pruning ability. Recall that in GBR we use Ullman’s sub-
graph isomorphism algorithm which has been shown to be around
two orders of magnitude slower than SSI (for query size equal to
10) [12]. Hence, we expect GBR to be orders of magnitude faster
than SSI if the fast subgraph isomorphism algorithm is adopted.
Thirdly, both FGI and GBR have |Rc| = 0 for frequent queries for
reason mentioned above. Note that the candidate size of an infre-
quent query is not available for FGI (denoted as NA). Further, the
candidate space of GBR is significantly smaller than SSI for infre-
quent queries. For instance, in Q4, |Rc| of SSI is 6927 whereas it
is 476 for GBR. This again highlights the limitation of the pruning
power of SSI’s index.

Size of A2I-index. Table 2 shows the size of A2I-index for the
AIDS and synthetic (for β = 4, α = 0.05) datasets with different
sizes. Note that the dataset size refers to the number of graphs in
the dataset. It is evident that the index size is small enough to easily
reside in the main memory.

Effect of β on index size. We now compare the index size of GBR
to existing schemes. Note that the value of β in GBR affects the
sizes of index in the memory and disk. Hence, we measure the
size of index for different values of β. Table 3 reports the index



Query Sequence Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Avg. SRT

Q3
1,2,3,4,5,6,7,8,9 443 468 374 318 228 127 110 17 642 0.002
5,2,1,3,4,6,7,9,8 520 450 321 194 374 210 146 17 650 0.002

Q6
1,2,3,4,5,6,7,8 434 405 384 345 325 651 261 348 50
5,6,1,2,3,4,7,8 150 335 34 660 361 28 25 336 70

Table 4: Effect of variation in query formulation sequence (in msec.)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 SRT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Formulation Steps

T
im

e 
(s

)

 

 

GBR−3
GBR−5
GBR−8
GBR−10

(a) Q2

s1 s2 s3 s4 s5 s6 s7 s8 s9 SRT
0

0.2

0.4

0.6

0.8

1

Formulation Steps

T
im

e 
(s

)

 

 

GBR−3
GBR−5
GBR−8
GBR−10

(b) Q3

Figure 11: Effect of β on frequent queries (in sec.).

size of different approaches. Since in GBR both MF-index and A2 I-
index are memory-resident while DF-index is disk-resident, in the
table the index size is represented as (size in memory + size in disk).
Observe that the size of index in disk decreases with the increase in
β as more frequent fragments are indexed in memory. Note that the
value of β only affects the index construction of frequent fragments
and has no effect on the infrequent fragments. Also, observe that
GBR’s index is smaller than that of FGI and CT.

Effect of β on SRT. We now study how the SRT of frequent query
fragments are affected due to variation of β. Figure 11 depicts the
results for the queries Q2 and Q3. The x-axis represents the se-
quence of formulation steps for a specific query (9 and 10 steps
for Q3 and Q2, respectively) and the rightmost point represents the
SRT. The y-axis represents the average time taken by all the par-
ticipants (last four formulations). We denote the performances of
GBR for different values of β as GBR-β. We can make the follow-
ing observations. Firstly, β does not have significant impact on the
SRTs of Q2 and Q3. Secondly, all the steps in both queries take less
than a second to match query fragments. Note that the time taken
to construct an edge visually in GBR is between 1 and 2 seconds.
This justifies virtually “zero" SRT for frequent queries as prefetch-
ing of partial results can be completed while a user is constructing
an edge on the visual interface. Note that this also justifies excellent
performance for infrequent queries as the SRT essentially consists
of verification time after the “Run" icon is clicked (Line 16 in Al-
gorithm 3). Thirdly, since GBR-8 builds more frequent fragments
in the MF-index compared to GBR-3 and GBR-5, the former takes
relatively longer to search for matched frequent fragments in the
MF-index. Lastly, GBR-3 at Step s4, GBR-5 at Step s6, and GBR-8
at Step s9 begin to access DF-index to search for larger frequent
fragments. Consequently, the response time increases distinctly
compared to previous steps. Note that such increase is not visible
for GBR-10 as all the frequent fragments are in the MF-index.

Effect of α. In this experiment, we compare the performance of
representative queries for different values of α. We vary the value
of α from 0.05 to 0.2 for GBR, FGI, and SSI. The remaining param-
eters are set to their default settings. Note that CT does not have
an α parameter. Variation of α may change the nature of a query.
For instance, Q2 is a frequent query when α=0.1, but it evolves to
an infrequent query for α=0.15. On the other hand, Q1 and Q3

are always frequent fragments, while Q4 and Q6 are always infre-
quent queries. Figure 12 reports the SRT of representative queries
for different values of α (in log scale). Firstly, for frequent queries
(Figure 12(a), Figure 12(b) for α < 0.15), GBR and FGI signif-

icantly outperform SSI and CT as the former are verification-free
techniques. Also, none of them are significantly affected by varia-
tions in α as they remain frequent. Secondly, for infrequent queries
(Figures 12(b) (for α ≥ 0.15), 12(c), and 12(d)) both GBR and SSI
perform better than FGI and CT. Specifically, FGI mainly depends
on frequent fragments to reduce the candidate space. The larger the
value of α, the lesser frequent fragments are built in FGI, which de-
grades the pruning ability of FGI. In contrast, not only GBR benefits
from the paradigm of blending of query formulation and process-
ing, but also due to the fact that it uses both frequent and infrequent
fragments to reduce the candidate space. Also SSI outperforms FGI
and CT for the reasons discussed earlier.

Effect of query formulation sequence. Observe that a visual query
can be formulated by following different sequence of steps. In
this experiment we assess the effect of these different sequences
on the SRT. Table 4 lists two different formulation sequences for
frequent query Q3 and infrequent query Q6, average times (all par-
ticipants) to retrieve partial results, and the average SRT. For fre-
quent queries, the formulation sequences only have minor effect
on the prefetching time during the query formulation. Therefore,
there is no change in the SRT. In contrast, for Q6 different se-
quences may result in different SRT due to the change in candidate
space. For example, the candidate sizes for Q6 are 750 and 861
for the two sequences, respectively. However, the difference in SRT
is not significant due to the following reasons. Firstly, if a query
fragment evolves from a frequent fragment to an infrequent one,
then the A2F-index contributes to the reduction of the candidate
space besides the A2 I-index. Secondly, we only retrieve the MDF
(if available) instead of all discriminative fragments. Note that al-
though the candidate space can change under different formulation
sequences for the infrequent query, for any sequence it is always
bounded in α|D|.
5.3 Performance on Synthetic Graph Dataset

We now assess the scalability of GBLENDER using the synthetic
dataset and the queries Q7 to Q10. Here we compare GBR with
only FGI as it has superior overall performance in terms of SRT and
index pruning capability in comparison with SSI and CT. We set
β = 4 and α ∈ {0.01, 0.05}. We denote the performances of
GBR for different values of α as GBR-α. Figure 13 depicts the
performance results (in log scale) and confirms the strengths of
GBLENDER. Observe that the SRT of GBR (less than 0.1s) is two
orders of magnitude faster than FGI across all datasets and α. Note
that as α increases to 0.05, less frequent fragments are generated
and as a result the performance of FGI-0.05 degrades compared to
FGI-0.01, especially when the dataset is large. More importantly,
our proposed paradigm enables GBLENDER to scale gracefully.

6. RELATED WORK
Recently, there have been a number of studies by the database

community to develop techniques for subgraph isomorphism and
graph isomorphism to speed up subgraph and similarity search over
large graph databases [2, 5, 6, 9, 12–14, 17–21]. These efforts fol-
low the conventional query processing paradigm where the formu-
lation of a query graph is independent of its evaluation against the
database. Typically, the complete query is first specified before
it is processed. In contrast, GBLENDER realizes a novel query
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Figure 12: Effect of α on queries (in msec.).
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Figure 13: Scalability of GBLENDER (in msec.).

processing paradigm by blending two traditionally independent ar-
eas, namely human-computer interaction and database query pro-
cessing. Specifically in the proposed approach, when a subgraph
matching query is visually formulated, its evaluation is interleaved
with the formulation activities. Hence, our method is orthogonal to
existing studies related to subgraph query processing.

In order to speed up subgraph evaluation, most existing works fo-
cus on developing indexing techniques to support efficient search-
ing. As discussed in Section 3.2, our proposed indexing scheme
is different. In particular, unlike existing strategies, the design of
the proposed indexing scheme is influenced by the characteristics
of users’ visual interaction behaviors during query formulation.

More germane to this work is the study described in [1] in the
context of XML query processing. Similar to us, the authors pro-
posed a technique that blends visual XML query formulation and
query processing by exploiting the latency offered by the GUI-based
query formulation to prefetch portions of the query results. Our
proposed GBLENDER differs from this effort in the following ways.
Firstly, we focus on graph queries instead of tree-structured XML
queries. Evaluation of graph queries is typically more challeng-
ing than tree queries due to its inherent computational complexity.
Secondly, as [1] is built on top of a relational backend, it leverages
on existing well-known indexing schemes and SQL queries to ef-
ficiently prefetch partial results. In contrast, we propose a novel
users’ action-aware indexing scheme to support efficient compu-
tation of partial results that match different fragments of a visual
subgraph matching query.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented GBLENDER - an exact subgraph

matching tool for matching graph queries formulated using a visual
interface. It is the first work that makes a strong connection be-
tween graph query processing and visual query formulation to im-
prove system response time. GBLENDER employs a novel indexing
scheme, which exploits some of the users’ interaction characteris-
tics with visual interfaces to support efficient pruning and retrieval.
The innovative subgraph matching algorithm used by GBLENDER
exploits the latency offered by the GUI-based query formulation to
prune false results and prefetch partial query results in a single-user
environment. Experimental studies on real and synthetic graphs
validated the merit of our proposed graph processing paradigm.

We have barely scratched the surface of this novel query pro-
cessing paradigm. We are currently exploring how other types of

graph queries (e.g., similarity search) can be realized in this frame-
work. Also, we wish to explore how query formulation errors can
be gracefully integrated in this paradigm. In summary, the results
of this paper are an important first step in this regard.
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