
ASTERIX: Ambiguity and Missing Element-Aware XML Keyword
Search Engine

Ba Quan Truong
Nanyang Technological University

Singapore
bqtruong@ntu.edu.sg

Sourav S Bhowmick
Nanyang Technological University

Singapore
assourav@ntu.edu.sg

Curtis Dyreson
Utah State University

USA
curtis.dyreson@usu.edu

Hong Jing Khok
Nanyang Technological University

Singapore
hjkhok1@e.ntu.edu.sg

ABSTRACT

Despite a decade of research on xml keyword search (xks), demon-

stration of a high quality xks system has still eluded the infor-

mation retrieval community. Existing xks engines primarily suf-

fer from two limitations. First, although the smallest lowest com-

mon ancestor (slca) algorithm (or a variant, e.g.,elca) is widely

accepted as a meaningful way to identify subtrees containing the

query keywords, slca typically performs poorlyon documentswith

missing elements, i.e., (sub)elements that are optional, or appear in

some instances of an element type but not all. Second, since key-

word search can be ambiguous with multiple possible interpreta-

tions, it is desirable for an xks engine to automatically expand the

original query by providing a classi�cation of di�erent possible in-

terpretations of the queryw.r.t. the original results. However, exist-

ing xks systems do not support such result-based query expansion.

We demonstrate asterix, an innovative xks engine that addresses

these limitations.

1 INTRODUCTION

The lack of expressivity and inherent ambiguity of xml keyword

search (xks) bring in three key challenges in building a superior

xks engine. First, we need to automatically connect the nodes that

match the search keywords in an intuitive, meaningful way. In this

context, the notion of smallest lowest common ancestor (slca) [12]

is arguably the most popular strategy to address this challenge and

has become the building block of many xml keyword search ap-

proaches [2, 7, 8]. A keyword search using the slca semantics re-

turns nodes in the xml tree such that each node in the result satis-

�es the following two conditions: (a) the subtree rooted at a node

contains all of the keywords, and (b) no proper descendant of the

node satis�es condition (a). The set of returned nodes is referred

to as the slcas of the keyword search query. The second challenge

deals with e�ective identi�cation of the desired return information.
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Speci�cally, it focuses on �ltering nodes within these matching

subtrees to produce relevant and coherent results. There have been

several research e�orts toward addressing this challenge [2, 7, 8]

such as �ltering irrelevant matches under an slca node by return-

ing only contributors [8]. The third challenge is ranking [2, 6] or

clustering [5] these relevant result subtrees according to certain

criteria and returning them.

The aforementioned challenges have inspired a large body of

research on xks [2, 7, 8, 12]. Several xks systems have also been

demonstrated in major venues [1, 6]. Hence, at �rst glance onemay

question the need for yet another xks demonstration. In this paper,

we justify the need for such a demonstration by advocating that a

high quality xks system has still eluded the information retrieval

research community after all these years!

Despite the admirable e�orts of state-of-the-art xks techniques,

they su�er from two key drawbacks. First, as shown in our previ-

ous work [11], xks techniques based on slca and its variants (e.g.,

elca) perform poorly in the presence of the missing element phe-

nomenon. Due to the “relaxed” structure of xml data, a subelement

may appear in one nested substructure of an xml document but

be missing in another “similar” substructure. Note that in many

real-world xml documents more than 40% of the element labels are

missing labels [11]. Hence, it is highly possible for users’ searches

to involve missing elements. For example, the area element in the

xml document D1 in Figure 1(a) appears in the �rst city substruc-

ture but is missing in the last two substructures. A keyword query

that contains the label of a missing element lowers the quality of

slca nodes. For example, consider the query Q1(Provo area) on

D1. The node with id 0.4 (for brevity, we will use nid to denote

a node with id id) is selected as the slca node by [12]. However,

n0.4.1 is not a relevant match as it is not Provo’s area.

Second, a keyword query can be ambiguous with multiple pos-

sible interpretations or be exploratory in nature where the user

does not have a speci�c search target but would like to navigate

among possible relevant answers. For example, the results of a

queryQ2(alaska)may contain subtrees having multiple interpre-

tations such as the country Alaska and the Alaskan range moun-

tains. Hence, an xks engine that can automatically expand the orig-

inal query (e.g., Q2) by providing a classi�cation of di�erent possi-

ble interpretation of the query w.r.t the original result set is desir-

able. For the above example, Q2 can be expanded to Q2a(alaska,
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Figure 1: (a) Sample xml documents D1, (b) its DataGuide, and (c) the architecture of asterix.

Figure 2: The asterix GUI.

country) and Q2b(alaska, mountain) that classi�es the origi-

nal result set into two key clusters containing information related

to Alaska and the Alaskan range, respectively. Observe that such

result-based query expansion can guide users to focus on the rele-

vant subset of the original query results when a speci�c expanded

query is chosen. Unfortunately, existing xks systems do not pro-

vide e�ective techniques for such result-based query expansion.

In this demonstration, we present a novel xks system called as-

terix (Ambiguity and miSsing elemenT-aware kEyword seaRch

In XML) to address the above limitations. asterix has two novel

features. First, it produces high-quality slca nodes, which are iden-

tical to slca nodes produced by any other slca-based xks tech-

nique when the query does not contain missing elements or la-

bels but unlike these existing techniques, avoids irrelevant results

when missing elements are involved. Second, it supports result-

based query expansion that lets users navigate withinmultiple pos-

sible interpretations of the result set.

2 SYSTEM ARCHITECTURE

Figure 1(c) shows the system architecture of asterix.Wemodel an

xml document D as an ordered and node-labeled tree. Each node

n ∈ D is assigned a Dewey number as its identi�er (e.g., Figure 1(a))

and is associated with a label (i.e., tag) and text value (if any). Each

node n has a type de�ned by its pre�x path. The xml Repository

stores the xml �les in the disk. The Indexer module traverses D to

generate an inverted list of the keywords and a path index to sup-

port e�cient evaluation of keyword search. The DataGuide Gener-

ator module constructs theDataGuide [4] ofD. The Synopsis Graph

Builder module uses the DataGuide to build a synopsis graph of D.

Note that these three modules are executed o�ine as the outputs

remain invariant unless the document is modi�ed. Given a key-

word query Q on D, the fslca Computation module implements

the two variants of the messiah algorithm, namely c-messiah and

p-messiah [11], to �nd full slca (fslca) nodes in D. Speci�cally,

these nodes enable an xks engine to handle missing elements. The

Heuristic-based Selector module leverages the synopsis graph to fa-

cilitate automatic selection of the correct variant of messiah for

processing Q without any user intervention. The Result Subtrees

Generator module leverages these fslca nodes to extract a set of

result subtrees in D that match the query and ranks them. The

Result-based Query Expansion module takes the result subtrees as

input and generates the top-k expanded queries to provide multi-

ple interpretations of the original query (if any). We now elaborate

on these modules.

The GUI Module. Figure 2 depicts the screenshot of asterix

gui. A user begins formulating a query by choosing an xml docu-

ment as the query target. Panel 1 allows her to upload a new xml

document or retrieve an existing xml document. The left panel

(Panel 2) displays the DataGuide of the target document. Panel

3 depicts the area for formulating keyword queries and to view

the expanded queries based on the original result set. Panel 4 al-

lows a user to choose di�erent variants of messiah. By default,

asterix automatically chooses the correct variant of messiah by

invoking theHeuristic-based Selector module. However, for demon-

stration purpose we also provide an option to switch to “manual”

mode (by selecting the manual radio button) and choose either the

p-messiah or c-messiah variant from the dropdown list before exe-

cuting the query. Note that Panel 4 is disabled in “live” applications

as the correct variant is chosen automatically. Panel 5 allows us to

choose the query expansion strategy i.e., whether the keywords

added to the original query is selected only from element labels in

the result set or from both element labels and text values. Panel 6

displays the query results.

The DataGuide Generator Module. Given D, this module ex-

tracts itsDataGuide in linear time by employing [4]. ADataGuide S

is a pre�x tree representing all unique paths in D i.e., each unique

path p in D is represented in S by a node (referred to as schema

node) whose root-to-node path is p. Hence, each schema node in

S corresponds to a type and the hierarchical relationship among

schema nodes represents type relations (e.g., descendant or child

type). For example, Figure 1(b) depicts the DataGuide of document

D1 in which tcity is a descendant (or child) type of tstate .

The Indexer Module. This module generates two types of in-

dexes on an xml document D. (a) An Inverted List where each key-

word is mapped to a list of matches sorted by document order. The

list of matches is also partitioned into two sublists corresponding



to value matches and type matches of the keyword. (b) A path index

where each root-to-node path p in the DataGuide tree is mapped

to a list of nodes of path p in D. Each index is a B-tree. In addition,

it generates several statistics of D (e.g., keyword frequency).

The Synopsis Graph Builder Module.Thismodule generates

a synopsis graph of D, which shall be exploited by the Heuristic-

based Selector module (discussed later). The synopsis graph G is a

lightweight version of the XSketch-index [10], which is a directed

acyclic graph synopsis where each synopsis node д represents a set

of data nodes with the same labels and each edge (дp ,дc ) signi�es

the parent-child relationship between the data nodes of дp and дc .

Each internal (resp. leaf) synopsis node stores the structural (resp.

value) distribution of the child labels (resp. value tokens) among its

data nodes. Speci�cally, G is stored with the DataGuide S where

each synopsis node corresponds to exactly one schema node in S.

The FSLCA Computation Module.Thismodule generates the

same slca nodes as any state-of-the-art approach when the query

does not involve missing elements but avoids irrelevant results

when missing elements are involved. To this end, it implements

two variants of a novel algorithm calledmessiah, namely c-messiah

and p-messiah. The reader may refer to [11] for detailed descrip-

tion and performance results of these algorithms. Here, we brie�y

describe the key idea.

Since the missing element phenomenon does not occur in an

xml document without missing elements (called a full document),

existing slca-based techniques work �ne on it. Hence, messiah

logically transforms D to a minimal full document F (D) (i.e., it

does not physically add missing elements), where all missing el-

ements are represented as empty elements, and then employs ef-

�cient strategies to identify full slca (fslca) nodes from it. For

example, if we compute the slca nodes on F (D1 ) (i.e.,minimal full

document of D1) for Q1, it would produce n0.4.3 due to the exis-

tence of the empty element area as its child. Hence, a full slca

(fslca) node of a query Q in a document D is an slca node of Q

on F (D).

Since a full document F (D) may contain empty nodes that do

not exist in the original document D, each fslca node can be cate-

gorized as complete (c-fslca) or partial (p-fslca). In the case of the

former, both the fslca node and its supporting matches are in the

original document D whereas for the latter the fslca node is in D

but some of its supporting matches may not be. For example, con-

sider the queryQ3 (area,city) on D1. Then the fslca node n0.3.1
is a c-fslca as its subtree includes matches for both city and area.

On the other hand, n0.4.2 is a p-slca node as it does not have any

area element as descendant in D1. This module implements two

algorithms called c-messiah and p-messiah to e�ciently identify

these two categories of fslca nodes, respectively.

Both variants of the algorithm retrievemultiple document-order-

sorted streams of candidates to �nd fslca nodes. p-messiah re-

trieves two streams of candidates, namely L1 and L2, for p-fslca

nodes without valuematches and with at least one value match, re-

spectively. First, in the L1 stream it locates the label matches in the

DataGuide of D and �nds the slcas of these matches (e.g., city

node in Figure 1(b) for Q3). Next, it retrieves the instances in D

corresponding to these DataGuide nodes (e.g., n0.3.1, n0.4.2, and

n0.4.3). Second, in the L2 stream, for each value match v (anchor

node), it computes the lca a1 betweenv and the last and next value

match of each keyword (e.g., n0.4.2 for the value match n0.4.2.0 in

Figure 1(a)). Then it computes the slca level ℓ between v’s path

and paths of each label keyword using DataGuide (ℓ = 3 for Q3)

and �nds ancestor a2 ofv at level ℓ (e.g., n0.4.2). The p-fslca candi-

date of v is the descendant between a1 and a2 (e.g., n0.4.2). Hence,

the �nal p-fslca nodes are n0.3.1, n0.4.2, and n0.4.3.

The c-messiah, on the other hand, retrieves three streams of

candidates Ls , L1, and L2, where L1 and L2 are the same as in p-

messiah and Ls is the stream of slca candidate nodes. The results

of c-messiah are generated only from Ls by �ltering nodes using

candidates from L1 and L2. For instance, for the query Q3, the Ls
stream contains the slca candidates n0.3.1 and n0.4 in D1. The L1
stream is used to �lter any candidate nodes whose paths are pre-

�xes of the path country/state/city (e.g., n0.4). Using the L2
stream, for each value match v , it compute the p-fslca candidate

anchored atv (n0.4.2) and �lters candidate ancestors of the p-fslca

node. Hence, the �nal c-fslca node is n0.3.1.

The Heuristic-based Selector Module.Observe that c-messiah

ignores result nodes containing missing elements (returns c-fslca)

whereas p-messiah returns all complete fslca nodes of c-messiah

as well as additional results containing missing elements where

these elements are indicated as empty nodes (returns p-fslca). Since

a user may not have su�cient knowledge to manually choose a

variant for a queryQ , it is important to automatically deducewhich

variant of messiah needs to be executed forQ . This module imple-

ments a heuristic-based mechanism to achieve it.

Intuitively, the selection choice is in�uenced by the usefulness

of the additional results generated by p-messiah. We advocate that

it depends on the number of complete fslcas as well as the num-

ber of results (denoted by N ) desired by a user. So if an xks sys-

tem returns more than N c-fslca results, then a user may not be

interested in the results with missing elements. Consequently, c-

messiah is relatively more appropriate for this case. On the other

hand, if there are fewer than N c-fslca results, then displaying

additional results with missing elements using p-messiah will be

potentially useful.

The challenge here is to estimate the number of c-fslcas a pri-

ori. We address it by utilizing the synopsis graph (Synopsis Graph

Builder) [11]. To illustrate the selection process using it, let us re-

consider Q1 and Q3 on D1. For Q1(Provo area), from the syn-

opsis graph we know that all cities have name but only 33% of

name have value Provo. Meanwhile, only 33% of cities have area.

Assuming the distributions are independent, 11% of cities have

both Provo and area. Since there are 3 city elements inD1, the es-

timated result size is 3×0.11 = 0.33. Similarly, forQ3(city area),

33% of city elements have area which leads to the estimated re-

sult size of 1. Let N = 1. Since 0.33 < 1, p-messiah is used for Q1

but c-messiah is used for Q3.

The Result Subtrees Generator Module.Thismodule selects

relevant return nodeswithin the fslca subtrees satisfying the query

Q and ranks them based on certain criteria (e.g., subtree size). Since

our fslca computation and result-based query expansion modules

are orthogonal to it, any state-of-the-art approaches related to rel-

evant information identi�cation and result ranking (e.g., [2, 7, 8])

can be used here. asterix uses the strategy in [2].



The Result-based Query Expansion Module. Given the set

of result subtrees of a queryQ , this module generates top-k (k = 4

in the current version) expanded queries from the result set. Broadly,

it consists of two key phases, keyword gathering and keyword re-

�nement. In the keyword gathering phase, for each result tree, the

root-to-leaf paths are extracted and node labels in the same level

are grouped together. Each level is then associated with a set of

distinct keywords. Then, duplicate keywords across di�erent sub-

trees are removed. The intention here is to eventually select some

of these keywords for expanding Q . However, since there could

be many expanded keywords, the output of this phase needs to be

re�ned based on certain heuristics.

In the keyword re�nement phase, it �rst selects the top-m (m =

10) frequent keywords in the above collection. Next, keywords that

do not produce any new informationwhen they are added toQ (i.e.,

produces the same set of subtrees as Q) are pruned. For instance,

consider the query Q4(paris). Adding the keyword "france" to

Q4 does not generate any new information as the results of Q4

and the query Q4a(paris, france) are identical. Then, it identi-

�es keywords that can be used to disambiguate Q . Intuitively, the

goal is to identify keywords that co-occur withQ but appear in dif-

ferent context and have very di�erent distributions. For example,

consider the query Q2 and keywords "country" and "mountain".

Both these keywords co-occur with alaska in Mondial but have

di�erent context and result distributions. Speci�cally, for each key-

word w it computes its result distribution and intersection proba-

bility (probability of shared subtrees with the results of Q). Next,

it computes the information gain due to the addition of w to Q

by leveraging kl-divergence. Hence, each keyword is associated

with three measures and the goal is to select top-k keywords when

added to Q maximize the result distribution and information gain

and minimize intersection probability. We exploit Fagin’s Thresh-

old Algorithm (ta) [3] to e�ciently generate the top-k expanded

queries.

3 RELATED SYSTEMS AND NOVELTY

Several xks result retrieval techniques have been proposed in the

literature [2, 7] based on slcamatching semantics and its variants

(e.g.,elca) [12]. However, unlike asterix these e�orts do not ad-

dress the missing element phenomenon e�ectively. There has also

been recent research in improving user experience for xks [1, 2, 5].

However, none of these e�orts focus on expanding queries with

multiple interpretations by analyzing the result set. In addition,

since these e�orts are grounded on slca or elca semantics, they

also su�er from the missing element problem. Liu et al. [9] inves-

tigated the problem of query expansion based on clustering Web

search results (i.e., textual content). However, this method cannot

be adopted e�ectively in xml data.

Several xks systems have been demonstrated in major confer-

ence venues [1, 6]. These systems also su�er from the missing el-

ement problem as they leverage the slca semantics. Nevertheless,

our demonstration is complimentary to them as we focus on the

missing element problem and automatic expansion of ambiguous

queries based on query results.

4 DEMONSTRATION OBJECTIVES

Asterix is implemented in Java JDK 1.7 on top of Berkeley db

4.0.103. Our demonstration will be loaded with a few popular real

xml datasets (e.g., Mondial, Interpro, dblp and Shakespeare) of

sizes up to 1GB. Example queries with or without missing labels

will be presented for formulation. Users can also write their own

ad-hoc queries in Panel 3.

FSLCA computation and result display. One of the key ob-

jectives of the demonstration is to enable the audience to inter-

actively experience the fslca Computation module that addresses

the missing element problem. Speci�cally, we �rst set the Panel 4

in manual mode. Then, the user can formulate a query with miss-

ing label (Panel 3), select PartialFSLCA or CompleteFSLCA strat-

egy in Panel 4 to invoke the p-messiah or c-messiah algorithm,

respectively, and observe the di�erences in the result set in Panel

6. Through this experience, users will be able to appreciate the limi-

tation of slca semantics in tackling the missing element phenome-

non. Note that users can also formulate queries without any miss-

ing label and experience that the results returned by messiah is

identical to those returned by slca-based techniques.

Automatic selection of MESSIAH variant. Through the gui,

we shall also demonstrate theHeuristic-based Selectormodule,which

selects the correct variant of messiah automatically for a given

query. First, we set Panel 4 to automatic mode. Then, the user can

re-execute the above query (or any other query) and observe in

Panel 6 the correctness of the selection of c-messiah or p-messiah

based on the result size estimation technique described earlier. Ad-

ditionally, through the aforementioned experiences users will be

able to appreciate superior performance of these modules, consis-

tent with the results reported in [11].

Result-based query expansion. Lastly, users can experience

the working of the Result-based Query Expansion module by click-

ing on the search box in Panel 3 after executing a query. They will

be able to view top-4 expanded queries generated from the result

set. Selecting any of the expanded queries will enable the user to

view a subset of the original results that contain these keywords.
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