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Abstract
Despite recent progress in high-throughput experimental stud-
ies, systems level visualization and analysis of large pro-
tein interaction networks (ppi) remains a challenging task,
given its scale and high-dimensionality. Specifically, tech-
niques that automatically abstract and summarize ppis at
multiple resolutions to provide high level views of its func-
tional landscape are still lacking. In this demonstration, we
present a novel data-driven and generic system called fuse
(Functional Summary Generator) that generates functional
maps of a ppi at different levels of organization, from broad
process-process level interactions to in-depth complex-complex
level interactions. By simultaneously evaluating interaction
and annotation data, fuse abstracts higher-order interac-
tion maps by reducing the details of the underlying ppi to
form a functional summary graph of interconnected func-
tional clusters. We demonstrate various innovative features
of fuse which aid users to visualize these summaries in a
user-friendly manner and navigate through complex ppis.

Categories and Subject Descriptors
J.3 [Life And Medical Sciences]: Biology and genetics;
H.5.2 [Information Interfaces And Presentation]: User
Interfaces—Theory and methods

General Terms
Algorithms, Performance

1. INTRODUCTION
With advances in high throughput experimental biology,

the number of large scale and disease specific protein inter-
action networks (ppi) have grown rapidly. The amount of
information contained within large ppi, however, can often
overwhelm researchers, making systems level analysis and
visualization of ppis a daunting task. Consequently, making
sense of the deluge of interaction data has emerged as an
important research problem. A key solution to visualizing
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large interaction networks is to identify means of abstract-
ing and decomposing the network into modules or functional
clusters that interact with one another [3]. This allows one
to perceive higher-order structures and patterns.

At the same time, knowledgebases with Gene Ontology
(go) annotations, such as UniprotKB, provide a wealth of
annotation data at different levels of specificity. As proteins
may involve in multiple roles and functions, go attributes
associated with a protein or a gene can be high-dimensional.
As majority of function annotation and high throughput or
curated interaction data are encoded at protein or gene level,
higher-order abstraction maps such as complex-complex or
process-process functional landscapes, are often unavailable.
However, availability of such information is invaluable as it
not only allows one to ask questions about the relationships
among high-level modules, such as cellular processes and
complexes, but also allows one to visualize higher order pat-
terns from a bird’s eye perspective. For instance, consider
the Alzheimer’s Disease (ad) related ppi in IntAct [6]. A
multi-level bird’s eye view of the functional landscape of ad
network will enable us to understand the interplay of related
processes in tandem to identify the causative mechanisms of
ad. One might be able to answer the following questions:
How do signaling pathways implicated for ad associate with
one another? How do proteins related to transportation play
a role in ad, and how are they associated with bioenergetics?
(see [13] for details).

We present fuse (Functional Summary Generator) – a
novel interaction network visualization system that gener-
ates multi-level functional summaries of the underlying ppi
graph [13]. fuse attempts to identify summaries that best
represent higher-order abstractions of the ppi graph by si-
multaneously evaluating both interaction and annotation
data. In particular, each summary graph simultaneously
satisfy the following requirements: (a) it is at a specific level
of detail, (b) it is representative of the original network,
and (c) redundancies are minimized. These summaries are
presented as layers of increasingly detailed functional land-
scapes, and users can navigate between the layers of sum-
maries, visualizing broad processes map at the highest level,
all the way to the underlying ppi itself at the lowest level.

2. RELATED SYSTEMS & NOVELTY
The traditional data-driven approach to address this prob-

lem is to perform graph clustering to identify densely con-
nected regions [2, 12, 14]. Cluster function can then be in-
ferred and annotated by finding enriched annotations within
the cluster. Although effective for identification of com-



plexes, they are less suitable for identifying higher level func-
tional clusters, such as biological processes and pathways,
where interactors within them are likely to overlap [11].
CFinder [1] locates overlapping communities based on struc-
ture of the network, but ignores the wealth of functional
knowledge already encoded in go annotations. These ap-
proaches also places strong focus on connectivity, ignoring
the attribute coherence of the proteins in cluster. In prac-
tical applications of ppi summarization, however, attribute
coherent regions (groups of proteins (vertices) that share a
common vertex property) are key to forming meaningful, in-
terpretable modules. Otherwise, clusters with inconsistent
vertex properties, even if structurally well-connected, may
not simply summarize into one functionally interpretable
cluster that a user can quickly infer. Although some recent
techniques utilize annotation information when clustering
the networks [10], they form non-overlapping partitions and
do not scale for high-dimensional attributes found in go
annotated interaction networks. Other functional groups
may also be less structurally dense (e.g., signaling path-
ways). Finally, because the annotations that describe pro-
teins and their functions are high-dimensional, finding the
right choice of attribute coherent groupings is combinatorial
and non-trivial. To our knowledge, no existing method di-
rectly addresses our need for generating overlapping clusters
from high-dimensional attributed graphs.
Figure 1 depicts the summarization quality for varying

summary granularity sizes (k) compared to state-of-the-art
graph clustering methods, namely Markov clustering (mcl) [9],
mcode [2], and nemo [12], and csv [14]. The reader may
refer to [13] for the details. With the hprd [7] molecule
class annotations as gold standard, observe that fuse gen-
erates summary with significantly higher F-measure score
compared to the graph clustering-based approaches. Addi-
tionally, fuse assigns labels that are most representative of
the proteins in the cluster. Thus, fuse is the first system
that automatically generates superior quality summaries at
multiple levels of complexity of the underlying ppi.

3. SYSTEM OVERVIEW
Figure 2 illustrates the system architecture of fuse, which

consists of the following modules.

The GUI module: Figure 3(a) shows the screenshot of the
fuse interface. The user loads an input ppi graph through
the menu panel (Panel 1). A new tabbed pane is created to
allow the construction of higher-order summaries. The side
panel (Panel 2) provides a means to several system features–
including controlling user-defined parameters, searching for
proteins and clusters, and filtering results. The summary
graph generated by fuse is displayed in Panel 3. Finally, the
user runs the summary construction by pressing RUN button
in Panel 4. Figures 5(b)-(c) depict sample summaries con-
structed through fuse. The size and color of the node is
correlated with the size of the cluster, while the thickness of
the edges imply the association strength between two clus-
ters. Additionally, the association strength slider in Panel
4 can be adjusted to dynamically filter edges in the result
summary based on an edge’s association significance cutoff.

The Parser module: This module parses the input ppi
into the graph storage. A protein interaction network (ppi),
G = (V,E), contains a set of vertices V , representing pro-
teins, and a set of edges E, representing interactions. Cur-
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Figure 1: Quality of summarization by FUSE.

Figure 2: Architecture of FUSE.

rent version of fuse supports the following input network
formats: psi-mi 2.5 [5] formatted graphs and hprd [7] graphs.
This module also caches the network to accelerate subse-
quent reading of the network.

The Functional Clusters Constructor module: Let
u ∈ S∆ be a functional term in the annotation database S∆.
The annotation database contains go functional attributes
of individual proteins. Also stored in the database is the go
directed acyclic graph (dag) ontology, denoted as D. Each
protein v ∈ V can be associated with a term association
vector, denoted by ∆v, indicating go terms associated with
v. A functional cluster, denoted as C(u), is a subgraph of
G such that every node in the subgraph shares the function
represented by the go term u. Prior to summary construc-
tion, possible functional clusters candidates must be enu-
merated. This module computes the candidate functional
clusters from the input graph and the annotation database.

The Iterative Summarizer module: Intuitively, graph
summarization seeks to mix and match functional clusters
from the candidates to identify the summary graph consist-
ing of k clusters that best represent the underlying ppi. A
functional summary graph of the underlying protein interac-
tion network G(V,E), ΘG, is defined as ΘG = (S, F, Pi, α) ,
where S is a set of functional clusters and F is a set of edges
that links the functional clusters. Let ocuv be the number
of interactions connecting proteins in C(u) and C(v). Let
Pi be the probability density function of observing ouv or
more number of interactions between C(u) and C(v). Let
β be a significance cut-off parameter (user-defined). Then,
(C(u), C(v)) ∈ F if and only if Pi(X > ocuv) ≤ 2β/|S|2.
The bijection α : 1, 2, . . . ,m↔ S is an ordering of S.

To model this problem, we introduced a profit maximiza-
tion model that quantifies the meaning of having a represen-
tative functional summary graph. It aims to find Θmin =



(a) Visual interface. (b) Detailed viewer interface.

Figure 3: The FUSE system.

(S, F, Pi, α) by maximizing information profit under a bud-
get constraint. Every protein i ∈ V is assigned a non-
negative information budget b, which represents the informa-
tion it contains. Let the ordered set ∆ = ⟨u1, u2, . . . , un⟩ be
a topological sort of D. Let S∆ be the set of functional clus-
ters induced from ∆. Every functional cluster C(u) ∈ S∆ is

assigned a non-negative structural information value ψC(u),
which represents the amount of structural information con-
tained within the functional subgraph. When a functional
cluster C(u) is added to the summary, for every protein
i ∈ V (u), a portion of b is taken out and added to summary
information gain. This represents new information added
to the summary. The amount to take depends on ψC(u).
Imposing information budget b limits the amount of infor-
mation a protein can provide. A parameter 0 ≤ d ≤ 10
is also introduced to penalize redundancy. Thus, repeated
representation of a protein i yields reduced information gain,
modeling diminishing returns. Let Ki be a set of functional
clusters such that C(u) ∈ Ki if and only if i ∈ C(u). Based
on this profit model, we construct the set of functional clus-
ters that maximizes profit by satisfying the following opti-
mization problem:

maximize
∑
i∈V

|S|∑
j=1

p(i, j)

where

b(i,m) =


d
10

(b(i,m− 1)− p(i,m− 1)) if m > 1,
αS(m− 1) ∈ Ki

b(i,m− 1) if m > 1,
αS(m− 1) /∈ Ki

b if m = 1
and

p(i,m) =

 ψαS(m) if b(i,m) ≥ ψαS(m) and αS(m) ∈ Ki

b(i,m) if b(i,m) < ψαS(m) and αS(m) ∈ Ki

0 αS(m) /∈ Ki

subject to
|S| = k
S ⊂ S∆

The profit maximization problem is a variation of the
budgeted maximum coverage problem [8], which is an NP-
hard problem. To permit a tractable solution, we adopt a
modified greedy approach that greedily finds the next can-
didate that leads to the greatest gain in profit while adding
a complexity cost constraint. Functional clusters that are
too large or too small may be selected at early iterations,
causing very poor cluster choices at later iterations due to
limited information budget and summary size k constraint.
The complexity cost constraint seeks to reduce this effect.

Given graph size |V | and summary size k, the expected car-
dinality of a functional cluster in the summary is defined

by E[|C|] = |V |
k
. Size deviation cost, denoted by cC(u), is

defined as the square of the deviation of |C(u)| from E[|C|],
cC(u) =

(
|V (u)| − |V |

k

)2

. Each time a cluster is selected,

total profit is reduced by this complexity cost factor.
The aforementioned heuristic is realized in this module.

The MapProfit store keeps track of the current remaining
budget of the nodes in the ppi. Upon finding the best can-
didate, the MapProfit commits changes to the budget and
cost landscape, which will be used in subsequent iterations.

The Summary Graph Constructor module: After the
summary clusters have been identified, this module com-
putes the association significance between clusters to gener-
ate the edges of the summary and construct the final sum-
mary graph. The result is then stored in the Summaries
data store to allow visualization. Multiple summaries will
be generated at varying levels of detail, which will be pre-
sented to the user as an ensemble of functional landscapes.

Summary Viewer sub-module: Upon successful sum-
mary graph construction, this gui sub-module computes the
layout and displays the result. The graph visualization mod-
ule is built on top of the prefuse visualization system [4].

Detailed Viewer sub-module: If the user wishes to drill
into the details of the summary, she has various options,
including clicking on edges of the summary to reveal the un-
derlying ppi detail. ppi subgraph construction is handled by
this module. It provides the graphical view of the underlying
protein interaction subgraph of the clusters and their edges
as depicted in Figure 4. Here, the nodes from two associated
functional clusters and their connectivity are shown. Alter-
natively, the user may opt to convert the entire summary
into the ppi view as shown in Figure 3(b). Here, the ppi
view will show the ppi with proteins grouped into their re-
spective functional clusters, as determined by the summary.

4. DEMONSTRATION OBJECTIVES
fuse is implemented in Scala and Java. Several context-

specific interaction datasets will be provided as case studies
(e.g., Alzheimer’s disease network and chromatin network
from IntAct [6]). The user will also be able to open files
that conform to the psi-mi 2.5 format for summarization.
A video of fuse is available at http://www.youtube.com/

watch?v=oFUnMZC6ZOs.

Multi-resolution pan and zoom. The key objective



(a) ppi level detail. (b) High resolution summary. (c) Low resolution summary.

Figure 5: Multi-level summaries of the FUSE system.

Figure 4: Subgraph of two functional clusters.

of the demonstration is to allow the user to visualize multi-
resolution functional maps of the underlying ppi network
(Figure 5). fuse visualization is designed to be navigated
like one would navigate typical mapping tools. Pan and
zoom is supported by clicking and dragging the graph and
turning the mousewheel, respectively. Multi-level granular-
ities of the ppi functional maps are presented as layers of
summaries. The user will be able to zoom in or out between
levels of detail by controlling the granularity slider. At the
topmost level, the map of broad processes that comprise the
network are shown. At the lowest level, the actual ppi it-
self is presented. Through this demonstration, the users will
not only visualize the interaction of higher order clusters in
a summary, but also visualize how smaller clusters collapse
into larger clusters as the slider is adjusted.
The user will be able to double-click on any node to find

detailed information. Depending on whether the node is a
functional cluster or protein, the corresponding go annota-
tion or UniprotKB page that describes the protein will be
displayed, respectively. Right-clicking the node, however,
opens a pop-up menu with several options. One of the op-
tions allow the user to view the underlying ppi subgraph
represented by the functional cluster. This subgraph can
also be navigated like any graph visualization. Similarly,
right-clicking an edge opens subgraph of the clusters inci-
dent to the edge. Users may also select multiple nodes of
interest through standard click-and-drag selection. With the
shift key, sets of nodes can be selected. The combined ppi
subgraph of these nodes can also be viewed. Thus, parts of
the summary can be shortlisted for viewing as ppi.
Hovering the mouse over a node will reveal its interaction

neighborhood. As most navigation tasks can be completed
in two clicks or less, the user will be able to explore the web
of interactors and their interactions quickly.

Dynamic visualization. We further aid visualization
by having a dynamic visualization of the summaries. Here,
“uninteresting” parts of the graph can be collapsed, hidden,
or disconnected to remove visualization clutter. Interesting
parts can be expanded to reveal more detail. The user will
first select one or more nodes, then right-click to reveal the
pop-up menu. Several modification actions will be avail-
able to the user, including actions that hide, collapse, ex-
pand, or disconnect these nodes from the rest of the graph.
Hide removes selected clusters from the visualization. Col-
lapse simplifies view by combining selected clusters into a
single node. Expand reveals sub-clusters or underlying ppi of
the cluster within the visualization itself. Finally, discon-
nect isolates selected clusters by removing all edges going
into/from them. For example, consider Figure 5(a). Three
functional clusters (the large and small ribosome subunits
and the saga complex) contribute to the majority of the
dense “hairball” in the center of the ppi graph. Disconnect-
ing these clusters from the rest of the ppi graph creates less
cluttered graph for analysis.

Search and filter. The user can search for proteins
through the search box, filter through the filter box, and
hide or show nodes and edges by weight or size factors.
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