# In Silico Identification of Endo16 Regulators in the Sea Urchin Endomesoderm Gene Regulatory Network

Huey-Eng Chua<sup>§</sup> Qing Zhao<sup>§</sup> Sourav S Bhowmick<sup>§</sup> C F Dewey, Jr<sup>†</sup> Lisa Tucker-Kellogg<sup>‡</sup> Hanry Yu<sup>¶</sup>

<sup>§</sup>School of Computer Engineering, Nanyang Technological University, Singapore
<sup>‡</sup>Mechanobiology Institute, National University of Singapore, Singapore
<sup>¶</sup>Department of Physiology, National University of Singapore, Singapore
<sup>†</sup>Division of Biological Engineering, Massachusetts Institute of Technology, USA
<sup>chua0530</sup>|assourav|zhaoqing@ntu.edu.sg, LisaTK|nmiyuh@nus.edu.sg, cfdewey@mit.edu

# ABSTRACT

Recent functional genomics research has yielded a large insilico gene regulatory network model (622 nodes) for endomesoderm development of sea urchin, a model organism for embryonic development. The size of this network makes it challenging to determine which genes are most responsible for a given biological effect. In this paper, we explore feasibility and accuracy of existing in silico techniques for identifying key genes that regulate Endo16, a widely-accepted gastrulation marker. We apply target prioritization tools (sensitivity analysis and PANI) to the endomesoderm network to identify key regulators of Endo16 and validate the results by comparing against a set of benchmark Endo16 regulators collated from literature survey. Our study reveals that global sensitivity analysis methods are prohibitively expensive and inappropriate for large networks. We show that PANI efficiently produces superior prioritization results compared to both random prioritization and local sensitivity analysis (LSA) techniques. Specifically, the area under the ROC curve was 0.625,  $\sim 0.5$ , and 0.549 for PANI, random prioritization, and LSA, respectively. Our study reveals that certain unique characteristics of the endomesoderm network affect the performance of target prioritization techniques. In addition to identifying many known regulators of Endo16, PANI also discovered additional regulators (e.g., Snail) that did not appear initially in the benchmark regulators set.

#### **Categories and Subject Descriptors**

J.3 [Life and Medical Sciences]: Biology and genetics.

#### **General Terms**

Algorithms, Experimentation, Performance, Verification

#### Keywords

PANI, sea urchin, endomesoderm, endo16, target prioritization

*ÎHI'12*, January 28–30, 2012, Miami, Florida, USA.

# 1. INTRODUCTION

Gastrulation is a process that happens early in embryogenesis when the blastula (unstructured assembly of cells) rearranges and forms the three germ layers (ectoderm, mesoderm, and endoderm) of the embryo [34]. These three germ layers subsequently differentiate and develop into different tissues and organs in the organogensis process. In the sea urchin, the gastrulation process consists of primary and secondary invagination [9]. In primary invagination, a portion of the epithelial wall of the blastula bend inwards creating the primitive gut known as archenteron. The secondary invagination starts when the archenteron has extended a distance of one-quarter to one-half across the blastocoel. Gastrulation defects can result in abnormal development of the body [14] and even death [29]. For instance, mutation of the Shp2 phosphatase in zebrafish embryos result in convergence and extension cell movement defects. The phenotypes display craniofacial and cardiac defects similar to symptoms observed in human with Noonan and LEOPARD syndromes [14]. Although the gastrulation process varies across different organisms, there are certain characteristics which remain common. For instance, the gastrulation movements, such as invagination which is the inward bending of a sheet of cells, are preserved across species [36]. The use of animal models to study the gastrulation process enhances our understanding of the mechanisms underlying the developmental defects.

The use of monoclonal antibody and cloned gene probes enable the study of individual genes during gastrulation. Endo16, a cell surface glycoprotein, was first isolated from the purple sea urchin (*Strongylocentrotus purpuratus*) and characterized by [23]. The authors proposed that the Endo16 protein may be involved in cell adhesion and gastrulation. Further studies in [30] identified Endo16 as essential for gastrulation. Sea urchin Lytechinus variegatus embryos deficient in Endo16 fail to undergo gastrulation and their blastocoele are filled with dissociated cells of unknown identity [30]. Understanding how regulators, such as Otx, affect Endo16 protein expression brings us one step closer to discovering therapeutic targets for gastrulation defects.

# **1.1 Related Work and Motivation**

Efforts in sea urchin developmental research have resulted in a vast accumulation of knowledge about different players in the gastrulation process [20, 23, 30]. In an attempt to in-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2012 ACM 978-1-4503-0781-9/12/01 ...\$10.00.

tegrate this knowledge, Davidson et al. [8] have constructed an ordinary differential equation (ODE) model describing the dynamic interactions between these different players based on experimental data from published literature. As the integrated network model grows large in size, it becomes increasingly difficult to study it manually. The endomesoderm gene regulatory network model described in [16] currently consists of 622 nodes (molecules) and 778 edges (interactions). In order to study the regulation of particular molecules (*e.g.*, Endo16), researchers have to sieve through the entire regulatory network to trace out relevant regulatory pathways. Hence, in silico techniques can play a key role in studying this problem by prioritizing the nodes that are likely to be relevant Endo16 regulators. However, to the best of our knowledge, no in silico study has been carried out to study the Endo16 regulatory pathway in the sea urchin endomesoderm gene regulatory network.

At first glance, it may seem that we can efficiently identify these target nodes by leveraging on the existing sensitivity analysis approaches [12, 27, 41]. Sensitivity analysis measures the effect of a parameter perturbation (e.q., a kinetic rate constant change) on the node of interest, such as Endo16, and assigns sensitivity values to a node based on the extent of perturbation on Endo16. The parameter values of a real biological network vary due to differences in genetics, cellular environment and cell type. Hence, no single "true" nominal parameter value is deemed to exist. Thus, global sensitivity analysis (GSA) based methods, such as multi-parametric sensitivity analysis (MPSA) [41] and SOBOL [33], are deemed to be more appropriate for biological networks compared to local sensitivity analysis (LSA). GSAbased methods prioritize nodes using the sensitivity values when all parameters are varied simultaneously. These tools have been used widely to analyze several networks [41, 42]. However, our initial investigation revealed that these tools suffer from the following compelling limitations that prevent us from adopting them for investigating the endomesoderm gene regulatory network. First, they are computationally expensive as they require simulating the network behaviour for a combinatorial number of different parameter combinations. The use of GSA methods is limited to networks of smaller size. Particularly, both MPSA and SOBOL fail to perform the study of Endo16 regulators in the large endomesoderm network on a modern server machine due to memory issues<sup>1</sup>. Second, prioritization based only on the sensitivity values means that "insensitive" nodes that may be important regulators may be missed. Lastly, as we shall see in Section 2.1, the sea urchin endomesoderm network is partially correct or partially complete. Unfortunately, sensitivity analysis based approaches are not robust enough to generate robust results from such networks. In summary, the aforementioned limitations have been the key obstacles for the research community to undertake systematic in silico strategy to study the Endo16 regulatory pathway in the endomesoderm gene regulatory network.

# **1.2** Overview

This paper takes a first step to investigate the use of *in silico* target prioritization tools to identify regulatory nodes of Endo16 in the endomesoderm gene regulatory network.

Target prioritization is the problem of choosing a set of regulatory molecules specific to a particular node of interest (output node) that is related to the biological problem under investigation [7]. In this work, we chose Endo16 as the output node for the endomesoderm network due to its critical role in gastrulation.

Recently, we proposed a generic algorithm for target prioritization called PANI (Putative TArget Nodes PrIoritization), which uses network information and simple empirical scores to prioritize and rank biologically relevant target molecules in signaling networks [7]. PANI takes a two-phase approach to identify and rank target molecules. First, it prunes the nodes based on a reachability rule to eliminate nodes that are likely to be non-regulators. Then, it calculates the *puta*tive target score of each resulting node, which is a weighted rank aggregation of a dynamic property (profile shape similarity distance (PSSD)) and two structural properties (target downstream effect (TDE) and bridging centrality (BC) [13]) of the node. In [7], we demonstrated that PANI can prioritize a majority of drug targets that regulate Erk in the MAPK-PI3K network (containing only 36 nodes). Furthermore, the quality of results generated by this approach is superior to the GSA-based techniques. Hence, in this paper we investigate whether PANI can also be exploited to prioritize targets specific to Endo16 regulation in the large endomesoderm network containing more than 600 nodes.

Our study reveals several interesting findings. PANI is successful in producing superior quality results by prioritizing many known Endo16 key regulators in around 250 seconds on a modern desktop machine. We also observe that the endomesoderm network has certain unique structural and dynamic characteristics. Specifically, it contains a very large strongly connected component (SCC) and many nodes have constant concentrations. Consequently, the structural properties (e.g., BC) in PANI play a more critical role compared to the dynamic property (PSSD) in producing superior quality results compared to random prioritization and LSA, which are oblivious to these characteristics. Note that PANI provides us the flexibility to tune the relative weights of structural and dynamic properties according to the characteristics of the underlying network. Lastly, PANI identified several target molecules (e.g., Snail) that were not initially part of the set of benchmark regulators which we harnessed during literature survey. Further investigation revealed that these molecules indeed play a role in regulating Endo16. Hence, in addition to identifying many known regulators of Endo16, PANI's prioritization results give us a clue to additional targets that may also be regulators.

The rest of the paper is organized as follows. In Section 2, we describe the sea urchin endomesoderm gene regulatory network model used for analysis. In Section 3, we describe the use of PANI to prioritize the Endo16 regulators and the steps to validate the results. PANI's prioritization results are then presented and discussed in Section 4. We discuss how PANI's parameters affect the result quality in Section 5.

# 2. ENDOMESODERM NETWORK

In this section, we summarize the general characteristics of the endomesoderm gene regulatory network model and briefly describe the biological process (endomesoderm specification) described by this network. The Endo16 regulatory pathway (Figure 1a) which we use to validate our results in Section 4 forms a portion of this network. We create the

<sup>&</sup>lt;sup>1</sup>SBML-SAT is used to perform MPSA and SOBOL analysis and is obtained from http://sysbio.molgen.mpg.de/SBML-SAT/. The default number of simulations is set to 2000 and 10000 for MPSA and SOBOL, respectively.



Figure 1: (a) The sea urchin Endo16 regulatory pathway. Edges and modules (blue, red and green boxes) are labelled and elaborated in Section 2.2 and (b) Degree distribution of the endomesoderm network.

Endo16 regulatory pathway based on literature survey and the scope of the survey is described in Section 3.2.

# 2.1 Network Characteristics

We obtain the ODE model of sea urchin endomesoderm gene regulatory network (BIOMD000000235) from the Biomodels.net database [18]. This model is constructed from numerous perturbation experiments and contains 622 nodes and 778 edges. The nodes consist of 217 root nodes (with no incoming edges), 4 singletons (nodes with no incoming or outgoing edges) and 401 intermediate nodes (with incoming and outgoing edges). Amongst the intermediate nodes, 25 are not in any  $sccs^2$ . Of the remaining intermediate nodes, there are 8 sccs containing two nodes and one huge scc containing 360 nodes. The high percentage of nodes (~ 60%) involved in SCCs implies that many of the molecules are involved in autoregulation (a molecule regulating its own activity), a characteristic common in gene regulatory networks [19]. Figure 1b shows that the degree distribution of the endomesoderm network follows the power-law. Another characteristic of in silico models is their incompleteness, which may be due to missing genes or interactions [16], or to the approach used for model construction. In the case of the endomesoderm network, the authors use a heuristicbased approach to construct the network kinetics as it is impractical to perform parameter estimation for the entire network due to its large size. Validation against a similar subnetwork constructed using parameter estimation shows that there is 74% agreement of the simulation results. When compared to experimental data, the level of agreement falls to 48%. Hence, the endomesoderm network is partially correct. Note that such partial correctness is a real-world feature of many biological networks. Hence, any in silico approach for prioritizing biologically relevant targets must be robust enough to handle such networks.

#### 2.2 Endomesoderm Specification

The network model used in [16] is an extension of that proposed in [8]. Although the model is partially correct (Section 2.1), it is still able to describe the key steps in endomesoderm development, namely, the initiation of the endomesoderm specification signal, the maintenance of the specification signal, the activation of the Delta/Notch signaling pathway, and the specification of  $veg_1$  endoderm. Hence, it is still useful for our *in silico* study of the regulation of Endo16, whose expression is one of the crucial end points of the endomesoderm specification. In subsequent description, annotations of edges and modules (blue, red and green boxes) refer to that in Figure 1a.

Initiation of the endomesoderm specification signal. The single-cell zygote undergoes cleavage to form a multicell embryo. By the  $6^{th}$  cleavage, the initial specification of the veg<sub>2</sub> domain occurs. This step requires two inputs: an intracellular signal from the micromeres and the nuclearization of  $\beta$ -catenin (cB), a cofactor required by the TCF transcription regulator for gene activation [8]. The nuclearization of cB relieves the repression of TCF by Groucho (Gro) as TCF binds with the nuclearized cB (n $\beta$ ) to form a complex (n $\beta$ :TCF) (blue box A) [8]. n $\beta$ :TCF activates several genes, including Blimp1 [4].

Maintenance of the specification signal. The activity of  $n\beta$ :TCF is regulated positively by a feedback loop involving Blimp1 and Wnt8; and negatively by its repressor, SoxB1 [2] (edge 1). In the feedback loop,  $n\beta$ :TCF activates Blimp1 (edge 2) and together with Blimp1 results in the activation of Wnt8 (edge 3) [8]. This in turn initiates the amplification of the endomesoderm specification activation signals (edge 4) [8]. Dri which is positively regulated by Pmar1 [24] (edge 5), affects the late vegetal clearance of SoxB1 in the veg\_ domain [1] (edge 6). The  $n\beta$ :TCF signal is required for expression of many veg\_ endomesodermal regulatory genes in the early to mid blastula stage, such as GCm [8].

Activation of the Delta/Notch signaling pathway. At around the 8<sup>th</sup> to 9<sup>th</sup> cleavage, the micromeres express Delta, a ligand which activates the Notch receptor in the veg<sub>2</sub> cells, thus initiating the specification of these cells as mesodermal precursors [24]. Genes under the control of the Notch pathway, such as GataE, are expressed [11]. The Delta/Notch signaling is effected by the Suppressor of Hairless (SuH) transcription factor which is initially inhibited by Groucho (Gro) (red box B) [22]. The activity of Delta is in turn modulated by several molecules, namely, Ets1, HesC and Pmar1. Ets1 has been implicated in downregulation of Delta expression at the late blastula stage when Erk is inhibited [31]. Inhibition of Erk prevents the phosphorylation of Ets1 on Thr107, thus inhibiting Ets1 (edge 7) [31]. HesC-Pmar1 provides a double-negative control of Delta activity, whereby

 $<sup>^2\</sup>mathrm{In}$  a given SCC containing nodes u and v, there exists a path from u to v and vice versa.

Pmar1 inhibits HesC activity (edge 8) which in turn, inhibits Delta activity (edge 9) [6]. Hence, Pmar1 and Ets1 activate Delta while HesC inhibits Delta. The Neutralized-like-1 (Nr1) homolog in *Drosophila*, Neuralized (Neur), acts as a ubiquitin ligase which promotes the internalization and degradation of Delta [17], suggesting that Nr1 may interact with Delta in the sea urchin in the same way. However, no supporting evidence has yet been found in the sea urchin. Hence, we did not consider Nr1 as part of the Endo16 regulatory pathway in Figure 1a.

Specification of  $veg_1$  endoderm. At the late blastula stage, specification of the  $veg_1$  endoderm takes place. In this step, endodermal markers such as Endo16 are expressed [8]. Initially, Endo16 is expressed in the vegetal plate of the blastula [30]. The expression of Endo16 is regulated differently depending on the cell type and the embryogenesis phase. For instance, in primary mesenchymal cells (PMC), expression of Endo16 is downregulated [30]; Endo16 expression is maintained throughout the invaginating archenteron during gastrulation but downregulated in the anterior one-third of the archenteron at the end of gastrulation [30]. Specifically, the expression of Endo16 is regulated by Blimp1, Otx and Brain-1, -2, and -4 (Brn1/2/4). The initial activation of Endo16 in the endomesoderm is a result of Blimp1 activation of Otx (edges 10 and 11) [20,38], while the late phase expression of Endo16 is regulated by Brn1/2/4 [40]. In [40], morpholino-substituted antisense oligonucleotide (MASO) treatment depresses the expression of Endo16 Module B significantly (edge 12). Quantitative PCR (QPCR) perturbation data at the later endoderm stage suggests that Otx drives the expression of Brn1/2/4 (edge 13) [40].

The activity of Otx is in turn regulated by several molecules, namely, Blimp1, GataE, Bra, Hox11/13b and Dri. There are three positive feedback loops that maintain Otx activity. The first two loops involve Blimp1 (edge 10) and GataE (edge 14) which interact with the  $\beta$ 1/2 transcription unit of Otx [39]. The third loop involves Bra and Hox11/13b. Bra, a target gene of Otx, activates Otx (edge 15). The Bra-induced amplification of Otx is further amplified by Hox11/13b activation of Bra (edge 16) [28]. Dri is found to positively regulate the activity of Otx $\beta$ 1/2 from QPCR perturbation data [1] (edge 17).

Another player in the Endo16 regulatory pathway is Evenskipped (Eve). Experimental data in [32] shows that Eve is regulated by four other molecules, namely, Otx, Blimp1, Hox11/13b and  $n\beta$ :TCF. Both Otx (edge 18) and  $n\beta$ :TCF (edge 19) activate Eve. The remaining nodes, Blimp1 and Hox11/13b, form a separate autoregulatory loop with Eve. In the Blimp1/Eve loop, both Blimp1 and Eve are positively activated (edge 20); in the Hox11/13b/Eve loop, Eve is repressed while Hox11/13b is activated (edge 21). Observation of the spatial expression of Hox11/13b in the vegetal plate in [3] suggests that Hox11/13b is downstream of the Wnt8/Blimp1/Otx (green box C) positive autoregulatory loop (edge 22).

Interested readers may refer to [8] and [24] for a detailed description of the model.

# 3. IN SILICO PRIORITIZATION

In this section, we describe our approach to identify and prioritize Endo16 regulators in the endomesoderm network. Our approach consists of two key steps. First, target prioritization was performed by exploiting the algorithm PANI [7]. Second, the results generated by the previous step were validated. Target prioritization and all subsequent experiments were carried out on an Intel 1.86GHz dual core processor machine with 2GB RAM, running Microsoft Windows XP.

# 3.1 Step 1: In Silico Prioritization

PANI [7] is a generic target prioritization algorithm that suggests target proteins for drug development, by predicting the most influential nodes in a disease-related signaling network. We have chosen to apply PANI (a two-phase algorithm described in [7]) to the problem of identifying key regulators of gastrulation. Briefly, the first (pruning) phase of PANI tests for the existence of a path between each node in the endomesoderm network and the node of interest, Endo16. Nodes having such paths are retained for further analysis in the next phase. Specifically, at the end of the first phase, 606 nodes are selected for subsequent processing. In the second phase (prioritization phase), a *putative target score* is calculated for each node and used for prioritization. The *putative* target score is a weighted rank aggregation of the profile shape similarity distance (PSSD), the target downstream effect (TDE) and the bridging centrality (BC) [13] of the nodes, which we elaborate in turn.

The first property, PSSD, identifies the most relevant upstream regulators of Endo16 by assessing the similarity between the concentration-time series profile (plot of a node's concentration against time) of each node with that of Endo16. Specifically, the PSSD between Endo16 and node v is calculated as the minimum dynamic time warping (DTW) distance [15] between two pairs of concentration-time profiles, namely  $\{\zeta_{\text{Endo16}}, \zeta_v\}$  and  $\{\zeta_{\text{Endo16}}, \zeta'_v\}$  where  $\zeta'_v$  is the inverted profile of node v. In this paper, the concentration-time profiles are obtained from *in silico* simulations of the endomesoderm network model [16] using *Copasi* with parameters:  $\{duration=70 \text{ hours, } intervals=0.1 \text{ hours}\}^3$ . That is, the length of the concentration time series  $(|\zeta|)$  is set to 700. The second property, TDE, measures the potential impact on the network when a node is perturbed. It is calculated as the sum of the effect of each of its downstream node w, which is the product of w's degree and the probability of perturbing w. The probability of perturbing w depends on the likelihood of the existence of a path leading to w. In the case of the endomesoderm network, we set this probability as 1 since the network is constructed based on extensive literature survey [16]. The last property, BC, identifies nodes that are located at a connecting bridge between modular subregions in a network [13]. It is calculated as the product of two ranks, namely, the inverses of betweenness centrality [5] and bridging coefficient [13].

The choice of the relative weights for the aforementioned properties in order to compute putative target score is influenced by the topological and dynamic characteristics of the network. For instance, PANI's computation of the PSSD ranks depend on similarity of changes in the concentrationtime series profiles [7]. Consequently, the presence of many nodes having constant profiles in the network affects the PSSD rank and hence the prioritization results. Interestingly, in the endomesoderm network, 49.2% of the 197 nodes related to the benchmark regulators have constant profiles. Additionally, the presence of a large SCC in the network also

<sup>&</sup>lt;sup>3</sup>The simulation time is unrelated to the duration parameter which intuitively, corresponds to the range of  $\zeta$  and is related to  $|\zeta| (\frac{duration}{interval} = |\zeta|)$ .



have an effect on TDE and BC rankings. Hence, we allocate relatively lesser weights to PSSD and TDE compared to BC. Specifically, we set  $\omega_{\text{PSSD}}=0.1$ ,  $\omega_{\text{TDE}}=0.2$  and  $\omega_{\frac{1}{BC}}=0.7$ . Note that this is in contrast to the weights of these properties for the MAPK-PI3K network where PSSD is given higher weightage compared to TDE and BC [7]. In Section 5, we shall investigate the effect of different values of these weights on the target prioritization for the endomesoderm network.

#### **3.2** Step 2: Validation of Results

A key issue of the previous step is the validation of the quality of the prioritization results. The purpose of the target prioritization is to identify the key regulators of Endo16. Hence, we will evaluate the quality of the results in terms of the biological relevance of the prioritized targets as Endo16 regulators in the sea urchin endomesoderm network.

We collate a list of known sea urchin Endo16 regulators based on extensive literature survey and use it as benchmark for validating the prioritized targets. We note that the use of literature survey for validation of biological relevance has limitations. For instance, the result of the validation is affected by the literature survey process, such as the keywords and selection criteria used for gathering and selecting the relevant literature. In order to keep our survey process as relevant to the problem as possible, we have looked for literature pertaining specifically to the sea urchin endomesoderm specification. We used the keywords "sea urchin endomesoderm" to search the *PubMed* repository and 73 publications were returned as of July 1, 2011. The literature survey was done based on these publications.

The specific steps for results validation were as follows.

• First, we constructed the sea urchin Endo16 regulatory pathway by mapping out the interactions between different molecules from the publications. We restricted our regulatory pathway (Figure 1a) to reflect nodes in the network model [16] that were relevant to Endo16 regulation to facilitate our validation later, as nodes in this regulatory pathway would be used as the benchmark set of Endo16 regulators. This benchmark set of regulators were made up of 20 different molecules. These molecules were represented as multiple nodes in the network (Tables 1 and 2), each of which is a different form of the molecule (*e.g.*, protein, gene, mRNA) in different embryonic territories (*e.g.*, endoderm, mesoderm and primary mesenchyme cells (PMC)). For instance, Protein P Otx is the Otx protein in the PMC.

- Next, we evaluated the quality of the results by assessing how well the top ranking (top 10%) nodes correspond with the benchmark set of Endo16 regulators. We also evaluated the sensitivity and specificity of our prioritization technique to identify the set of Endo16 regulators using Receiver Operating Characteristic (ROC) analysis (Section 4.1).
- Finally, we compared the performance of PANI with random prioritization and local sensitivity analysis (LSA) in the context of the endomesoderm network (Section 4.2).

#### 4. VALIDATION OF IDENTIFIED TARGETS

In this section, we validate the quality of our prioritized results. In order to assess how well the prioritization results can identify the set of benchmark regulators, we examine the correlation between the list of PANI's top ranking nodes and the benchmark regulators, and perform a ROC analysis. For a more complete analysis, we also compare PANI to two baseline approaches, namely random prioritization and the LSA-based approach.

# 4.1 Top-Ranked Nodes and ROC Analysis

From the prioritized list of targets generated by PANI, we take the top 10% of nodes to test for enrichment of known Endo16 regulators. Tables 1 and 2 report the ranks of all the nodes based on their putative target scores. Recall from Section 3.1 that the size of the pruned set of candidate nodes is 606. Hence, there are 61 nodes in the top 10%. Observe that the top 61 nodes in Tables 1 and 2 consist of 25 different molecules  $V = \{ Wnt8^{\ddagger}, Bra^{\ddagger}, Hox^{\ddagger}, cB^{\ddagger}, Delta^{\ddagger}, GataE^{\ddagger}, GataE^{\ddagger}, GataE^{\ddagger}, CataE^{\ddagger}, CataE^{a}, CataE^{,$ Notch<sup>‡</sup>, Otx<sup>‡</sup>, Pmar1<sup>‡</sup>, SoxB1<sup>‡</sup>, Ets1<sup>‡</sup>, HesC<sup>‡</sup>, Dri<sup>‡</sup>, Erg, Hex, Hnf6, Snail, Tgif, VEGFR, SoxC, Tel, VEGFSignal, Sm30, Gcm, Gcad} as some of these molecules are represented multiple times. Molecules marked with <sup>‡</sup> are implicated in the endomesoderm specification process that controls Endo16 activity (Section 2.2) and represent a significant percentage in the top 61 nodes. For instance, cB is represented as Protein M cB, Protein E cB and Protein P cB, referring to  $\beta$ -catenin protein in the endoderm, in the mesoderm and in primary mesenchyme cells (PMC), respectively. In total, 45 (74%) of the 61 putative target nodes are implicated in the regulation of Endo16, implying that the top 10% nodes are enriched with known Endo16 regulators.

We note that 12 molecules in V not marked with  $^\ddagger$  do not correspond with the benchmark regulators in Figure 1a. We extended our literature search beyond the 73 publications to look for evidence implicating these molecules {Gcm, Hnf6, Tgif, Erg, Hex, Snail, Gcad, VEGFR, SoxC, Tel, VEGFSignal, Sm30} in the Endo16 regulatory pathway. We found that GataC is activated by Gcm [11] and Hnf6 [26] and indirectly inhibited by Alx1. Knockdown of GataC correlates strongly with down-regulation of FoxA [16] which inhibits Bra<sup>‡</sup> [10]; Alx1 is activated by Tgif which is also involved in positive double feedback loops containing Erg and Hex [25]; Snail represses Gcad activity [37] which plays an inhibitory role on the nuclearization of  $cB^{\ddagger}$  [21]. Hence, many of these nodes regulates the benchmark Endo16 regulators either directly or indirectly. Only VEGFR, SoxC, Tel, VEGFSignal, and Sm30 were not found linked with the benchmark regulators. PANI's prioritization results identify both benchmark Endo16 regulators and additional nodes that are likely to play a regulatory role.

| ID       | Node Name       | $\Psi_P$                             | $\Psi_L$ | ID  | Node Name       | $\Psi_P$                            | $\Psi_L$  | ID  | Node Name         | $\Psi_P$                             | $\Psi_L$                | ID         | Node Name                   | $\Psi_P$                             | $\Psi_L$         | ID  | Node Name            | $\Psi_P$                | $\Psi_L$                |
|----------|-----------------|--------------------------------------|----------|-----|-----------------|-------------------------------------|-----------|-----|-------------------|--------------------------------------|-------------------------|------------|-----------------------------|--------------------------------------|------------------|-----|----------------------|-------------------------|-------------------------|
| 1        | gene E Alx1     | 306 <sup>‡</sup>                     | 126      | 90  | *gene M Otx     | 310 <sup>‡</sup>                    | 126       | 179 | mrna E FvMo       | $162^{\ddagger}$                     | 68                      | 268        | mrna M Tel                  | 187 <sup>‡</sup>                     | 126              | 357 | pre M umanrl         | 316 <sup>‡</sup>        | 126                     |
| 2        | gene E Apobec   | $308^{\ddagger}$                     | 126      | 91  | gene M Pks      | $309^{\ddagger}$                    | 126       | 180 | mrna E GataC      | 214                                  | $68^{\ddagger}$         | 269        | mrna M Tgif                 | $258^{\ddagger}$                     | 126              | 358 | pre M umr            | $316^{\ddagger}$        | 126                     |
| 3        | *gene E Blimp1  | $313^{\ddagger}$                     | 126      | 92  | *gene M Pmar1   | $309^{\ddagger}$                    | 126       | 181 | *mrna E GataE     | $114^{\ddagger}$                     | 84                      | 270        | *mrna M UbiqSoxB1           | 154                                  | $5^{\ddagger}$   | 359 | *pre P cB            | $316^{\ddagger}$        | 126                     |
| 4        | *gene E Bra     | $310^{\ddagger}$                     | 126      | 93  | gene M Sm27     | $313^{\ddagger}$                    | 126       | 182 | mrna E Gcad       | 25                                   | $5^{\ddagger}$          | 271        | *mrna M umadelta            | 281                                  | $102^{\ddagger}$ | 360 | *pre P Ets1          | $315^{\ddagger}$        | 126                     |
| 5        | *gene E Brn     | $305^{\ddagger}$                     | 126      | 94  | gene M Sm30     | $307^{\ddagger}$                    | 126       | 183 | mrna E Gcm        | $61^{\ddagger}$                      | 51                      | 272        | mrna M umanrl               | 280                                  | $103^{\ddagger}$ | 361 | PRE P Gcad           | $315^{\ddagger}$        | 126                     |
| 6        | gene E capk     | 318                                  | 126      | 95  | gene M Sm50     | $314^{\ddagger}$                    | 126       | 184 | mrna E Gelsolin   | $107^{\ddagger}$                     | 67                      | 273        | mrna M umr                  | 281                                  | $102^{\ddagger}$ | 362 | pre P L1             | $316^{\ddagger}$        | 126                     |
| 7        | gene E CyP      | $309^{\ddagger}$                     | 126      | 96  | gene M Snail    | $307^{\ddagger}$                    | 126       | 185 | *mrna E HesC      | $167^{\ddagger}$                     | 126                     | 274        | mrna M vegfr                | $247^{\ddagger}$                     | 126              | 363 | *pre P Otx           | $315^{\ddagger}$        | 126                     |
| 8        | *gene E Delta   | $310^{\ddagger}$                     | 126      | 97  | *gene M SoxB1   | $308^{\ddagger}$                    | 126       | 186 | mrna E Hex        | $250^{\ddagger}$                     | 109                     | 275        | *mrna M Wnt8                | $42^{\ddagger}$                      | 61               | 364 | pre P UbiqAlx1       | $316^{\ddagger}$        | 126                     |
| 9        | gene E Dpt      | 307 <sup>‡</sup>                     | 126      | 98  | gene M SoxC     | 309 <sup>‡</sup>                    | 126       | 187 | mrna E Hnf6       | $193^{\ddagger}$                     | 126                     | 276        | mrna M z13                  | $203^{\ddagger}$                     | 126              | 365 | PRE P UbiqES         | $316^{\ddagger}$        | 126                     |
| 10       | *gene E Dri     | $308^{\ddagger}$                     | 126      | 99  | gene M SuTx     | $308^{\ddagger}$                    | 126       | 188 | *mrna E Hox       | $73^{\ddagger}$                      | 70                      | 277        | mrna P Alx1                 | 146                                  | $37^{\ddagger}$  | 366 | *pre P UbiqEts1      | 316 <sup>‡</sup>        | 126                     |
| 11       | gene E Endo16   | $308^{\ddagger}$                     | 126      | 100 | gene M tbr      | 309 <sup>‡</sup>                    | 126       | 189 | mrna E Kakapo     | $107^{\ddagger}$                     | 67                      | 278        | mrna P Apobec               | 226                                  | 62 <sup>‡</sup>  | 367 | *pre P UbiqHesC      | 316 <sup>‡</sup>        | 126                     |
| 12       | gene E Erg      | $309^{\ddagger}$                     | 126      | 101 | gene M Tel      | $309^{\ddagger}$                    | 126       | 190 | mrna E Lim        | $178^{\ddagger}$                     | 77                      | 279        | *mrna P Blimp1              | 205                                  | $78^{\ddagger}$  | 368 | pre P UbiqHnf6       | $316^{\ddagger}$        | 126                     |
| 13       | gene E es       | $309^{\ddagger}$                     | 126      | 102 | gene M Tgif     | $310^{\ddagger}$                    | 126       | 191 | mrna E Msp130     | $262^{\ddagger}$                     | 126                     | 280        | *mrna P Bra                 | $115^{\ddagger}$                     | 77               | 369 | pre P UbiqSoxC       | $316^{\ddagger}$        | 126                     |
| 14       | *gene E Ets1    | $308^{\ddagger}$                     | 126      | 103 | gene M vegfr    | $310^{\ddagger}$                    | 126       | 192 | mrna E MspL       | $227^{\ddagger}$                     | 126                     | 281        | *mrna P Brn                 | 273                                  | $68^{\ddagger}$  | 370 | pre P UbiqTel        | $316^{\ddagger}$        | 126                     |
| 15       | *gene E Eve     | $310^{\ddagger}$                     | 126      | 104 | *gene M Wnt8    | 309 <sup>‡</sup>                    | 126       | 193 | mrna E Not        | 249                                  | $68^{\ddagger}$         | 282        | mrna P capk                 | $307^{\ddagger}$                     | 126              | 371 | protein E Alx1       | $237^{\ddagger}$        | 116                     |
| 16       | gene E Ficolin  | 310 <sup>‡</sup>                     | 126      | 105 | gene M z13      | 309 <sup>‡</sup>                    | 126       | 194 | *mrna E Notch     | 281                                  | $101^{\ddagger}$        | 283        | *mrna P cB                  | 152                                  | $5^{\ddagger}$   | 372 | protein E Apobec     | 286                     | $35^{\ddagger}$         |
| 17       | gene E FoxA     | $313^{\ddagger}$                     | 126      | 106 | gene P Alx1     | 311 <sup>‡</sup>                    | 126       | 195 | mrna E Nrl        | $195^{\ddagger}$                     | 126                     | 284        | mrna P CyP                  | $117^{\ddagger}$                     | 77               | 373 | *protein E Blimp1    | $127^{\ddagger}$        | 113                     |
| 18       | gene E FoxB     | 311 <sup>‡</sup>                     | 126      | 107 | gene P Apobec   | 308 <sup>‡</sup>                    | 126       | 196 | mrna E OrCt       | 224                                  | $62^{\ddagger}$         | 285        | *mrna P Delta               | $58^{1}$                             | 77               | 374 | *protein E Bra       | $4^{\ddagger}$          | 126                     |
| 19       | gene E FoxN23   | 307 <sup>‡</sup>                     | 126      | 108 | *gene P Blimp1  | 313 <sup>‡</sup>                    | 126       | 197 | *mrna E Otx       | $35^{+}$                             | 83                      | 286        | mrna P Dpt                  | $276^{\ddagger}$                     | 126              | 375 | *protein E Brn       | 137                     | $39^{\ddagger}$         |
| 20       | gene E FoxO     | 310 <sup>‡</sup>                     | 126      | 109 | *gene P Bra     | 310 <sup>‡</sup>                    | 126       | 198 | mrna E Pks        | $162^{\ddagger}$                     | 68                      | 287        | *mrna P Dri                 | 121 <sup>‡</sup>                     | 80               | 376 | protein E capk       | $298^{\ddagger}$        | 126                     |
| 21       | gene E FvMo     | 308 <sup>‡</sup>                     | 126      | 110 | *gene P Brn     | $307^{I}$                           | 126       | 199 | *mrna E Pmar1     | $59^{1}$                             | 77                      | 288        | mrna P Endo16               | 97 <sup>‡</sup>                      | 77               | 377 | *protein E cB        | 6 <sup>‡</sup>          | 126                     |
| 22       | gene E GataC    | 310 <sup>‡</sup>                     | 126      | 111 | gene P capk     | 318                                 | 126       | 200 | mrna E Sm27       | 263 <sup>‡</sup>                     | 126                     | 289        | mrna P Erg                  | 74 <sup>‡</sup>                      | 71               | 378 | protein E CyP        | $297^{\ddagger}$        | 126                     |
| 23       | *gene E GataE   | 309 <sup>‡</sup>                     | 126      | 112 | gene P CyP      | 309 <sup>‡</sup>                    | 126       | 201 | mrna E Sm30       | 211 <sup>‡</sup>                     | 126                     | 290        | *mrna P Ets1                | $23^{1}$                             | 81               | 379 | *protein E Delta     | 131 <sup>‡</sup>        | 126                     |
| 24       | gene E Gcad     | 308+                                 | 126      | 113 | *gene P Delta   | 310+                                | 126       | 202 | mrna E Sm50       | $238^{+}$                            | 126                     | 291        | *mrna P Eve                 | $132^{+}$                            | 64               | 380 | *protein E Delta2    | $282^{+}$               | 126                     |
| 25       | gene E Gcm      | 312 <sup>‡</sup>                     | 126      | 114 | gene P Dpt      | 307 <sup>‡</sup>                    | 126       | 203 | mrna E Snail      | 275 <sup>‡</sup>                     | 126                     | 292        | mrna P Ficolin              | 98 <sup>‡</sup>                      | 80               | 381 | protein E Dpt        | 125                     | $9^{\ddagger}$          |
| 26       | gene E Gelsolin | 307 <sup>‡</sup>                     | 126      | 115 | *gene P Dri     | 308 <sup>‡</sup>                    | 126       | 204 | *mrna E SoxB1     | 311                                  | 38                      | 293        | mrna P FoxA                 | $176^{\ddagger}$                     | 77               | 382 | *protein E Dri       | 220 <sup>‡</sup>        | 126                     |
| 27       | *gene E HesC    | 308 <sup>‡</sup>                     | 126      | 116 | gene P Endo16   | 308 <sup>‡</sup>                    | 126       | 205 | mrna E SoxC       | $191^{\ddagger}$                     | 126                     | 294        | mrna P FoxB                 | 244                                  | 80 <sup>‡</sup>  | 383 | protein E Endol6     | 64 <sup>‡</sup>         | 60                      |
| 28       | gene E Hex      | 309 <sup>‡</sup>                     | 126      | 117 | gene P Erg      | 309 <sup>‡</sup>                    | 126       | 206 | *mrna E SuH       | 280                                  | $100^{+}$               | 295        | mrna P FoxN23               | $228^{\ddagger}$                     | 126              | 384 | protein E Erg        | 221 <sup>‡</sup>        | 112                     |
| 29       | gene E Hnf6     | 317 <sup>‡</sup>                     | 126      | 118 | *gene P Ets1    | 308 <sup>‡</sup>                    | 126       | 207 | mrna E SuTx       | $162^{1}$                            | 68                      | 296        | mrna P FoxO                 | $108^{\ddagger}$                     | 80               | 385 | protein E es         | 296 <sup>‡</sup>        | 126                     |
| 30       | *gene E Hox     | 311 <sup>‡</sup>                     | 126      | 119 | *gene P Eve     | 310 <sup>‡</sup>                    | 126       | 208 | mrna E tbr        | 266 <sup>‡</sup>                     | 116                     | 297        | mrna P FvMo                 | 271                                  | $68^{\ddagger}$  | 386 | *protein E Ets1      | $163^{\ddagger}$        | 118                     |
| 31       | gene E Kakapo   | $307^{\ddagger}$                     | 126      | 120 | gene P Ficolin  | $310^{\ddagger}$                    | 126       | 209 | mrna E Tel        | $189^{\ddagger}$                     | 126                     | 298        | mrna P GataC                | 202                                  | $18^{\ddagger}$  | 387 | *protein E Eve       | 217                     | $30^{\ddagger}$         |
| 32       | gene E Lim      | $308^{\ddagger}$                     | 126      | 121 | gene P FoxA     | $313^{\ddagger}$                    | 126       | 210 | mrna E Tgif       | $254^{\ddagger}$                     | 115                     | 299        | *mrna P GataE               | $47^{\ddagger}$                      | 78               | 388 | protein E Ficolin    | $297^{\ddagger}$        | 126                     |
| 33       | gene E Msp130   | $313^{\ddagger}$                     | 126      | 122 | gene P FoxB     | 311 <sup>‡</sup>                    | 126       | 211 | *mrna E UbiqSoxB1 | 154                                  | $5^{\ddagger}$          | 300        | mrna P Gcad                 | 25                                   | $5^{\ddagger}$   | 389 | protein E FoxA       | $174^{\ddagger}$        | 114                     |
| 34       | gene E MspL     | 311 <sup>‡</sup>                     | 126      | 123 | gene P FoxN23   | $307^{\ddagger}$                    | 126       | 212 | mrna E umr        | 281                                  | $102^{\ddagger}$        | 301        | mrna P Gcm                  | $161^{\ddagger}$                     | 117              | 390 | protein E FoxB       | $279^{\ddagger}$        | 126                     |
| 35       | gene E Not      | 307 <sup>‡</sup>                     | 126      | 124 | gene P FoxO     | $310^{\ddagger}$                    | 126       | 213 | *mrna E uvaotx    | 281                                  | 97 <sup>‡</sup>         | 302        | mrna P Gelsolin             | $109^{\ddagger}$                     | 67               | 391 | protein E FoxN23     | $287^{\ddagger}$        | 126                     |
| 36       | gene E Nrl      | $312^{\ddagger}$                     | 126      | 125 | gene P FvMo     | $308^{\ddagger}$                    | 126       | 214 | mrna E vegf       | 283                                  | 96 <sup>‡</sup>         | 303        | *mrna P HesC                | $155^{\ddagger}$                     | 72               | 392 | protein E FoxO       | $297^{\ddagger}$        | 126                     |
| 37       | gene E OrCt     | $308^{\ddagger}$                     | 126      | 126 | gene P GataC    | $310^{\ddagger}$                    | 126       | 215 | mrna E vegfr      | $248^{\ddagger}$                     | 126                     | 304        | mrna P Hex                  | 87 <sup>‡</sup>                      | 76               | 393 | PROTEIN E frizzled a | 318                     | 126                     |
| 38       | *gene E Otx     | $310^{\ddagger}$                     | 126      | 127 | *gene P GataE   | $309^{\ddagger}$                    | 126       | 216 | *mrna E Wnt8      | $43^{\ddagger}$                      | 61                      | 305        | mrna P Hnf6                 | $120^{\ddagger}$                     | 77               | 394 | PROTEIN E frizzled i | 318                     | $52^{\ddagger}$         |
| 39       | gene E Pks      | $308^{\ddagger}$                     | 126      | 128 | gene P Gcad     | $308^{\ddagger}$                    | 126       | 217 | mrna E z13        | 209 <sup>‡</sup>                     | 126                     | 306        | *mrna P Hox                 | 70 <sup>‡</sup>                      | 77               | 395 | protein E FvMo       | 177                     | $25^{\ddagger}$         |
| 40       | *gene E Pmar1   | 309 <sup>‡</sup>                     | 126      | 129 | gene P Gcm      | $312^{\ddagger}$                    | 126       | 218 | mrna M Alx1       | $190^{\ddagger}$                     | 126                     | 307        | mrna P Kakapo               | $109^{\ddagger}$                     | 67               | 396 | protein E GataC      | 265                     | $31^{\ddagger}$         |
| 41       | GENE E Sm27     | $313^{\ddagger}$                     | 126      | 130 | gene P Gelsolin | $307^{\ddagger}$                    | 126       | 219 | mrna M Apobec     | 210                                  | $22^{\ddagger}$         | 308        | mrna P L1                   | 281                                  | $99^{\ddagger}$  | 397 | *protein E GataE     | $46^{\ddagger}$         | 94                      |
| 42       | gene E Sm30     | 307 <sup>‡</sup>                     | 126      | 131 | *gene P HesC    | $308^{\ddagger}$                    | 126       | 220 | *mrna M Blimp1    | 198                                  | 77 <sup>‡</sup>         | 309        | mrna P Lim                  | 201                                  | 77 <sup>‡</sup>  | 398 | protein E Gcad       | 68 <sup>‡</sup>         | 126                     |
| 43       | gene E Sm50     | $314^{\ddagger}$                     | 126      | 132 | gene P Hex      | $309^{\ddagger}$                    | 126       | 221 | *mrna M Bra       | $100^{\ddagger}$                     | 77                      | 310        | mrna P Msp130               | 80 <sup>‡</sup>                      | 80               | 399 | protein E Gcm        | $10^{\ddagger}$         | 48                      |
| 44       | gene E Snail    | 307 <sup>‡</sup>                     | 126      | 133 | gene P Hnf6     | $307^{\ddagger}$                    | 126       | 222 | *mrna M Brn       | 251                                  | $68^{\ddagger}$         | 311        | mrna P MspL                 | $63^{\ddagger}$                      | 80               | 400 | protein E Gelsolin   | 75                      | $15^{\ddagger}$         |
| 45       | *gene E SoxB1   | $308^{\ddagger}$                     | 126      | 134 | *gene P Hox     | $311^{\ddagger}$                    | 126       | 223 | mrna M capk       | $107^{\ddagger}$                     | 67                      | 312        | mrna P Not                  | 274                                  | $68^{\ddagger}$  | 401 | *protein E Gro       | $300^{\ddagger}$        | 126                     |
| 46       | gene E SoxC     | 309 <sup>‡</sup>                     | 126      | 135 | gene P Kakapo   | 307 <sup>‡</sup>                    | 126       | 224 | *mrna M cB        | 152                                  | $5^{\ddagger}$          | 313        | mrna P Nrl                  | $105^{\ddagger}$                     | 66               | 402 | *protein E Grotcf    | 143                     | $45^{\ddagger}$         |
| 47       | gene E SuTx     | $308^{\ddagger}$                     | 126      | 136 | gene P Lim      | $308^{\ddagger}$                    | 126       | 225 | mrna M CyP        | $270^{\ddagger}$                     | 126                     | 314        | mrna P OrCt                 | 226                                  | $62^{\ddagger}$  | 403 | protein E Grotfc     | 313                     | $118^{\ddagger}$        |
| 48       | gene E tbr      | $309^{\ddagger}$                     | 126      | 137 | gene P Msp130   | $313^{\ddagger}$                    | 126       | 226 | *mrna M Delta     | $50^{\ddagger}$                      | 47                      | 315        | *mrna P Otx                 | $37^{\ddagger}$                      | 82               | 404 | protein E gsk3 a     | 318                     | $85^{\ddagger}$         |
| 49       | gene E Tel      | $309^{\ddagger}$                     | 126      | 138 | gene P MspL     | $311^{\ddagger}$                    | 126       | 227 | mrna M Dpt        | $85^{\ddagger}$                      | 67                      | 316        | mrna P Pks                  | 271                                  | $68^{\ddagger}$  | 405 | protein E gsk3 i     | 318                     | 126                     |
| 50       | gene E Tgif     | $310^{\ddagger}$                     | 126      | 139 | gene P Not      | $307^{\ddagger}$                    | 126       | 228 | *mrna M Dri       | $272^{\ddagger}$                     | 126                     | 317        | *mrna P Pmar1               | $55^{\ddagger}$                      | 75               | 406 | *protein E HesC      | $134^{\ddagger}$        | 126                     |
| 51       | gene E vegfr    | $310^{\ddagger}$                     | 126      | 140 | gene P Nrl      | $312^{\ddagger}$                    | 126       | 229 | mrna M Endo16     | 91 <sup>‡</sup>                      | 77                      | 318        | m rna P Sm27                | 67 <sup>‡</sup>                      | 80               | 407 | protein E Hex        | $170^{\ddagger}$        | 112                     |
| 52       | *gene E Wnt8    | 309 <sup>‡</sup>                     | 126      | 141 | gene P OrCt     | $308^{\ddagger}$                    | 126       | 230 | mrna M Erg        | $257^{\ddagger}$                     | 126                     | 319        | mrna P Sm30                 | $54^{\ddagger}$                      | 44               | 408 | protein E Hnf6       | $241^{\ddagger}$        | 126                     |
| 53       | gene E z13      | $309^{\ddagger}$                     | 126      | 142 | *gene P Otx     | $310^{\ddagger}$                    | 126       | 231 | *mrna M Ets1      | $168^{\ddagger}$                     | 126                     | 320        | mrna P Sm50                 | 60 <sup>‡</sup>                      | 80               | 409 | *protein E Hox       | $17^{\ddagger}$         | 104                     |
| 54       | gene M Alx1     | $311^{\ddagger}$                     | 126      | 143 | gene P Pks      | $308^{\ddagger}$                    | 126       | 232 | *mrna M Eve       | $126^{\ddagger}$                     | 65                      | 321        | mrna P Snail                | $111^{\ddagger}$                     | 69               | 410 | PROTEIN E Kakapo     | 75                      | $15^{\ddagger}$         |
| 55       | gene M Apobec   | $309^{\ddagger}$                     | 126      | 144 | *gene P Pmar1   | $309^{\ddagger}$                    | 126       | 233 | mrna M Ficolin    | $267^{\ddagger}$                     | 126                     | 322        | *mrna P SoxB1               | $182^{\ddagger}$                     | 126              | 411 | protein E L1         | 303 <sup>‡</sup>        | 126                     |
| 56       | *gene M Blimp1  | $313^{\ddagger}$                     | 126      | 145 | gene P Sm27     | $313^{\ddagger}$                    | 126       | 234 | mrna M FoxA       | $180^{\ddagger}$                     | 77                      | 323        | mrna P SoxC                 | 231                                  | 77 <sup>‡</sup>  | 412 | protein E Lim        | $199^{\ddagger}$        | 126                     |
| 57       | *gene M Bra     | $310^{\ddagger}$                     | 126      | 146 | gene P Sm30     | $307^{\ddagger}$                    | 126       | 235 | mrna M FoxB       | $268^{\ddagger}$                     | 126                     | 324        | mrna P SuTx                 | 271                                  | $68^{\ddagger}$  | 413 | protein E Msp130     | $297^{\ddagger}$        | 126                     |
| 58       | *gene M Brn     | 307 <sup>‡</sup>                     | 126      | 147 | gene P Sm50     | $314^{\ddagger}$                    | 126       | 236 | mrna M FoxN23     | $230^{\ddagger}$                     | 110                     | 325        | mrna P tbr                  | 208                                  | 73 <sup>‡</sup>  | 414 | protein E MspL       | $296^{\ddagger}$        | 126                     |
| 59       | gene M capk     | $307^{\ddagger}$                     | 126      | 148 | gene P Snail    | $307^{\ddagger}$                    | 126       | 237 | mrna M FoxO       | $267^{\ddagger}$                     | 126                     | 326        | mrna P Tel                  | 218                                  | $77^{\ddagger}$  | 415 | *protein E nBtcf     | $83^{\ddagger}$         | 112                     |
| 60       | gene M CyP      | 309 <sup>‡</sup>                     | 126      | 149 | *gene P SoxB1   | 308 <sup>‡</sup>                    | 126       | 238 | mrna M FvMo       | $165^{\ddagger}$                     | 68                      | 327        | mrna P Tgif                 | 95 <sup>‡</sup>                      | 74               | 416 | protein E Not        | 253                     | $25^{\ddagger}$         |
| 61       | *gene M Delta   | 310 <sup>‡</sup>                     | 126      | 150 | gene P SoxC     | 309 <sup>‡</sup>                    | 126       | 239 | mrna M GataC      | 216                                  | $68^{\ddagger}$         | 328        | mrna P UbiqAlx1             | 150                                  | 61               | 417 | *protein E Notch     | $133^{\ddagger}$        | 59                      |
| 62       | gene M Dpt      | 308 <sup>‡</sup>                     | 126      | 151 | gene P SuTx     | 308 <sup>‡</sup>                    | 126       | 240 | *mrna M GataE     | $113^{\ddagger}$                     | 75                      | 329        | mrna P Ubiqes               | 154                                  | 6+               | 418 | *protein E Notch2    | 259                     | $42^{\ddagger}$         |
| 63       | *gene M Dri     | 308 <sup>‡</sup>                     | 126      | 152 | gene P tbr      | 309 <sup>‡</sup>                    | 126       | 241 | mrna M Gcad       | 25                                   | $5^{+}$                 | 330        | *mrna P UbiqEts1            | 154                                  | 4+               | 419 | protein E Nrl        | $242^{\ddagger}$        | 126                     |
| 64       | gene M Endo16   | 308+                                 | 126      | 153 | GENE P Tel      | 309+                                | 126       | 242 | mrna M Gcm        | 86+                                  | 57                      | 331        | *mrna P UbiqHesC            | 154                                  | 7*               | 420 | PROTEIN E OrCt       | 286                     | 35+                     |
| 65       | GENE M Erg      | 309+                                 | 126      | 154 | GENE P Tgif     | 310+                                | 126       | 243 | mrna M Gelsolin   | 102                                  | $20^{+}$                | 332        | mrna P UbiqHnf6             | 154                                  | 5*               | 421 | *protein E Otx       | $14^{+}$                | 98                      |
| 66       | "GENE M Ets1    | 308+                                 | 126      | 155 | GENE P VEGFR    | 310+                                | 126       | 244 | "mrna M HesC      | 173+                                 | 105                     | 333        | mrna P UbiqSoxC             | 152                                  | 5*               | 422 | PROTEIN E Pks        | 177                     | $25^{+}$                |
| 67       | *gene M Eve     | 310+                                 | 126      | 156 | *gene P Wnt8    | 309+                                | 126       | 245 | mrna M Hex        | 250+                                 | 126                     | 334        | mrna P UbiqTel              | 152                                  | 5*               | 423 | *protein E Pmar1     | 21+                     | 126                     |
| 68       | gene M Ficolin  | 310+                                 | 126      | 157 | GENE P z13      | 309+                                | 126       | 246 | mrna M Hnf6       | 193 <sup>+</sup>                     | 126                     | 335        | mrna P vegfr                | 32+                                  | 79               | 424 | PROTEIN E Sm27       | 297+                    | 126                     |
| 69       | GENE M FoxA     | 313+                                 | 126      | 158 | mrna E Alx1     | 215*                                | 119       | 247 | "mrna M Hox       | 72+                                  | 77                      | 336        | "mrna P Wnt8                | 45+                                  | 61               | 425 | PROTEIN E Sm30       | 295+                    | 126                     |
| 70       | GENE M FoxB     | 311+                                 | 126      | 159 | mrna E Apobec   | 224                                 | 62*       | 248 | mrna M Kakapo     | 102                                  | 20*                     | 337        | mrna P z13                  | 203+                                 | 126              | 426 | PROTEIN E Sm50       | 295+                    | 126                     |
| 71       | GENE M FOXN23   | 307*                                 | 126      | 160 | *mrna E Blimpl  | 196                                 | 74*       | 249 | mrna M Lim        | 181*                                 | 102                     | 338        | none                        | 57*                                  | 126              | 427 | PROTEIN E Snail      | 166*                    | 126                     |
| 72       | GENE M FOXO     | 310+                                 | 126      | 161 | mrna E Bra      | 92+                                 | 76        | 250 | mrna m Msp130     | 262+                                 | 126                     | 339        | PRE E CB                    | 316+                                 | 126              | 428 | PROTEIN E SoxB1      | 12+                     | 126                     |
| 73       | GENE M FVMo     | 308*                                 | 126      | 162 | mrna E Brn      | 245                                 | 95*       | 251 | mrna M MspL       | 225*                                 | 126<br>co <sup>†</sup>  | 340        | PRE E Gcad                  | 315*                                 | 126              | 429 | PROTEIN E SoxC       | 246*                    | 126                     |
| 74       | GENE M GataC    | 310*                                 | 126      | 163 | mrna e capk     | 307*                                | 126       | 252 | mrna M Not        | 252                                  | 68*<br>=±               | 341        | *PRE E Notch                | 316*                                 | 126              | 430 | *PROTEIN E SuH       | 142*                    | 89<br>16 <sup>†</sup>   |
| 75       | GENE M GataE    | 309*<br>200 <sup>±</sup>             | 126      | 164 | mrna E cB       | 157<br>970 <sup>‡</sup>             | 07<br>100 | 253 | INRNA M Notch     | 154                                  | 07<br>21                | 342        | *PRE E Otx<br>*ppp E C., D1 | 315 <sup>+</sup><br>21 <sup>+1</sup> | 126              | 431 | PROTEIN E SUHN       | 103                     | 10 <sup>+</sup>         |
| 10       | GENE M Gcad     | 308 <sup>+</sup>                     | 120      | 105 | mrna e Cyp      | 270°<br>164 <sup>±</sup>            | 120       | 204 | IIIRNA M INTI     | 100                                  | 3°<br>aat               | 343        | *DDD E Cutt                 | 315 <sup>*</sup>                     | 120              | 432 | PROTEIN E SUIX       | 1/7<br>90ct             | 207                     |
| 70       | GENE M GCM      | 312 <sup>+</sup>                     | 120      | 100 | mRNA E Delta    | 104 <sup>+</sup><br>77 <sup>±</sup> | 117       | 200 | mrna m OrCt       | 210<br>24 <sup>±</sup>               | 22 <sup>+</sup>         | 344        | *DDD F IIL O DI             | 310 <sup>+</sup>                     | 120              | 433 | *DROTEIN E TBr       | 200*                    | 119<br>Eot              |
| 78       | GENE M Gelsolin | 308*                                 | 126      | 167 | mrna E Dpt      | 777*                                | 40        | 256 | mrna M Otx        | 34*                                  | 80                      | 345        | TPRE E UbiqSoxB1            | 316*                                 | 126              | 434 | PROTEIN E TCF        | 139                     | 53*                     |
| 79       | GENE M HesC     | 308*                                 | 126      | 168 | "mrna e Dri     | 266*                                | 126       | 257 | mrna M Pks        | 153                                  | 21*                     | 346        | PRE E UMR                   | 316*                                 | 126              | 435 | PROTEIN E Tel        | 235*                    | 126                     |
| 80       | GENE M Hex      | 309*                                 | 126      | 169 | mrna E Endol6   | 90*                                 | 58        | 258 | mrna M Pmarl      | 56 <sup>+</sup>                      | 102                     | 347        | PRE E UVAOtx                | 316*                                 | 126              | 436 | PROTEIN E Tgit       | 204*                    | 111                     |
| 81       | GENE M Hnfb     | 317*<br>211 <sup>±</sup>             | 120      | 171 | mrna e Erg      | 201 <sup>+</sup>                    | 109       | 209 | mRNA M Sm27       | 200°<br>211 <sup>‡</sup>             | 120                     | 348        | PRE L VEGF                  | 310 <sup>+</sup>                     | 120              | 437 | *DROTEIN E UDIQAIXI  | 309                     | 110*                    |
| 82       | GENE M HOX      | 311 <sup>+</sup>                     | 120      | 1/1 | mrna E ES       | $185^{+}$<br>$171^{+}$              | 120       | 200 | mRNA M Sm30       | 211 <sup>+</sup><br>920 <sup>+</sup> | 120                     | 349        | PRE M CB                    | 3107                                 | 120              | 438 | PROTEIN E UbiqDelta  | 310<br>200 <sup>†</sup> | 114*                    |
| 03       | GENE M Kakapo   | 200 <sup>†</sup>                     | 120      | 170 | * TRINA E EUSI  | 1471                                | 110       | 201 | mena M S. 1       | 202*<br>07* <sup>±</sup>             | 120                     | 300        | *npr M N. ( )               | 010 <sup>+</sup>                     | 120              | 439 | *DROTEIN E UDIQES    | 209*                    | 120<br>100 <sup>†</sup> |
| 84       | GENE M LIM      | 308 <sup>+</sup>                     | 120      | 174 | mRNA E Eve      | 147*<br>967* <sup>‡</sup>           | 03        | 202 | MRNA M Shall      | 210 <sup>+</sup>                     | 120                     | 351        | *ppp M O                    | 310 <sup>+</sup>                     | 120              | 440 | PROTEIN E UbiqEts1   | 308                     | 108 <sup>+</sup>        |
| 80       | GENE M MSp130   | 313 <sup>+</sup><br>211 <sup>‡</sup> | 120      | 175 | mRNA E Ficolin  | 207*<br>17* <sup>‡</sup>            | 120       | 203 | mrna m SoxB1      | 31 <sup>+</sup><br>101 <sup>‡</sup>  | 38<br>196               | 352        | *DRE M Otx<br>*DRE M ScorD1 | 315 <sup>+</sup><br>21 <sup>±‡</sup> | 120              | 441 | *protein E UbiqGead  | 308<br>200 <sup>‡</sup> | 100 <sup>+</sup>        |
| 00<br>97 | GENE M MSpL     | 311 <sup>+</sup><br>207 <sup>‡</sup> | 120      | 170 | mrna e foxa     | 110                                 | 10        | 204 | *mdna ni 50XU     | 191.                                 | 120<br>109 <sup>‡</sup> | 254        | *DDE M SU                   | 310°<br>21¢‡                         | 120              | 442 | PROTEIN E UDIQUESU   | 217 <sup>‡</sup>        | 120                     |
| 01       | GENE IN NOU     | 212                                  | 120      | 177 | mrna e foxb     | 208*                                | 120       | 200 | menna ni Sufi     | 201<br>16 <sup>±‡</sup>              | 102.                    | 004<br>255 | *DDE M UL:-CD1              | 310°<br>31¢‡                         | 120              | 443 | *DROTEIN E UDIQHIIIO | 017 <sup>‡</sup>        | 120                     |
| 00       | GENE M D-C4     | 300‡                                 | 120      | 170 | mDNA E FOXINZO  | 204.                                | 120       | 200 | minina m ou ix    | 100 <sup>-</sup>                     | 110                     | 250        | *DDE M UNADAlta             | 216                                  | 120              | 444 | PROTEIN E UDIQ50XB1  | 200‡                    | 120                     |
| 09       | GENE IN OTOL    | 009.                                 | 120      | 110 | IIIRINA E FOXO  | 2011                                | 120       | 201 | THEFT IN THE      | 209                                  | 110                     | 000        | i ne ni UMADella            | 010.                                 | 140              | 440 | TROTEIN IS ODIQOXO   | 909.                    | 120                     |

Table 1: Node names and associated identification numbers (IDs) (assigned in alphabetical order) for the endomesoderm network. Table is read from top to bottom and from left to right.  $\Psi_P$  and  $\Psi_L$  are the ranks of PANI and LSA, respectively. The different embryonic region are represented by M, E and P which indicates mesoderm, endoderm and PMC cells, respectively. Nodes associated to molecules found in Figure 1a are marked with \*. The higher normalized ranks of each node *i* is marked with <sup>‡</sup>, where the normalized PANI and LSA ranks are  $\frac{\Psi_{P_i}}{MAX(\Psi_P)}$  and  $\frac{\Psi_{L_i}}{MAX(\Psi_L)}$ , respectively;  $\Psi_{P_i}$  is the PANI rank of node *i* and  $MAX(\Psi_P)$  is the maximum PANI rank of all nodes in Tables 1 and 2. This table contains IDs [1 - 445] and the rest of the IDs continue in Table 2.

| 446     protrass P Usapella     309     114     429     protrass P Map130     114     126     831     protrass P Map130     114     128       447     protrass P Map130     114     429     protrass P Map130     114     528     protrass P Map130     114     587     protrass P Map130     114     588     protrass P Map130     114     588     protrass P Map130     115     115     115     115     115     115     115     115     115     115     115     115     115     115     116     116     116     116     116     116     116     116     116     116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID         | Node Name            | $\Psi_P$                | $\Psi_L$               | ID   | Node Name            | $\Psi_P$                | $\Psi_L$                  | ID         | Node Name            | $\Psi_P$                | $\Psi_L$        | ID   | Node Name            | $\Psi_P$          | $\Psi_L$        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-------------------------|------------------------|------|----------------------|-------------------------|---------------------------|------------|----------------------|-------------------------|-----------------|------|----------------------|-------------------|-----------------|
| 447     ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 446        | PROTEIN E UbiqTel    | 309 <sup>‡</sup>        | 126                    | 491  | *protein M HesC      | $159^{\ddagger}$        | 114                       | 536        | protein M vegfr      | 140 <sup>‡</sup>        | 126             | 581  | protein P Msp130     | 101 <sup>‡</sup>  | 126             |
| 448   perrerse V LUAR   312   126   543   *PROTEN M MUSS   22   12   553   *PROTEN P BUTCS   767   117     450   *PROTEN F VEGT   821   86   465   PROTEN M LI   328   126   554   *PROTEN P ALL   126   154   FROTEN P ALL   126   154   *PROTEN P NOLL   117   156   126   554   *PROTEN P ALL   126   556   *PROTEN P ALL   126   126   556   *PROTEN P ALL   126 <td>447</td> <td>*protein E umadelta</td> <td>310</td> <td><math>114^{\ddagger}</math></td> <td>492</td> <td>PROTEIN M Hex</td> <td><math>172^{\ddagger}</math></td> <td>117</td> <td>537</td> <td>PROTEIN M VEGFSignal</td> <td><math>124^{\ddagger}</math></td> <td>114</td> <td>582</td> <td>protein P MspL</td> <td>89<sup>‡</sup></td> <td>126</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 447        | *protein E umadelta  | 310                     | $114^{\ddagger}$       | 492  | PROTEIN M Hex        | $172^{\ddagger}$        | 117                       | 537        | PROTEIN M VEGFSignal | $124^{\ddagger}$        | 114             | 582  | protein P MspL       | 89 <sup>‡</sup>   | 126             |
| 440     portran E usar     304     90 <sup>4</sup> 440     "mortran M Relation"     22 <sup>2</sup> 110     530     Protran M Ala     200 <sup>5</sup> 126     544     Protran P Noteh     171     126       541     Protran K Vecor     R4 <sup>1</sup> 126     544     Protran N Lim     200 <sup>7</sup> 126     543     Protran N P Noteh     171     126       542     Protran K Vecor     141     148     480     Protran N Lim     200 <sup>7</sup> 126     543     Protran N P Noteh     171     281       545     Protran N E Wats     119     490     Protran N Not     252     Protran N P Relation     277     26 <sup>1</sup> 564     Protran N Cak     28 <sup>1</sup> 126     500     Protran N Not     277     26 <sup>1</sup> 565     Protran N Cak     277     26 <sup>1</sup> 565     560     Protran N Not     277     26 <sup>1</sup> 565     560     Protran N Cak     277     26 <sup>1</sup> 560     Protran N Cak     277     26 <sup>1</sup> 560     Protran N Not     277     26 <sup>1</sup> 560     Protran N Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 448        | protein E umanrl     | $312^{\ddagger}$        | 126                    | 493  | PROTEIN M Hnf6       | $243^{\ddagger}$        | 126                       | 538        | *protein M Wnt8      | $2^{\ddagger}$          | 21              | 583  | *protein P nBtcf     | 76 <sup>‡</sup>   | 113             |
| 450     ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 449        | protein E umr        | 304                     | 90 <sup>‡</sup>        | 494  | *protein M Hox       | $22^{\ddagger}$         | 110                       | 539        | protein M z13        | $293^{\ddagger}$        | 126             | 584  | PROTEIN P Not        | 277               | $26^{\ddagger}$ |
| 451   PROTENE F VIGER   82 <sup>1</sup> 68   496   PROTENE F VIGER   112   114   126   42   126   541   PROTENE F PIOTENE F BINOTENE F BINOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 450        | *protein E uvaotx    | 291                     | 93 <sup>‡</sup>        | 495  | PROTEIN M Kakapo     | 71                      | $17^{\ddagger}$           | 540        | protein P Alx1       | $122^{\ddagger}$        | 108             | 585  | *protein P Notch     | $151^{\ddagger}$  | 126             |
| 452   protress F versorsignal   141*   126   497   protress F versorsignal   126   542   *protress F versorsignal   126   543   *protress F versorsignal   126   543   *protress F versorsignal   126   544   *protress F versorsignal   126   544   *protress F versorsignal   126   543   *protress F versorsignal   126   543   *protress F versorsignal   126   544   *protress F versorsignal   126   126   126   545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 451        | protein E vegf       | $82^{\ddagger}$         | 86                     | 496  | protein M L1         | 303 <sup>‡</sup>        | 126                       | 541        | PROTEIN P Apobec     | 288                     | $34^{\ddagger}$ | 586  | *protein P Notch2    | $119^{\ddagger}$  | 126             |
| 453   procrem N E VeccSignal   124 <sup>1</sup> 114   448   procrem N MapL   207 <sup>1</sup> 126   543   *procrem P Pm   184   24 <sup>1</sup> 126   588   *procrem N PcCC   288   14     455   procrem N R   213   545   procrem N PcCC   285   126   544   *procrem P PcCA   288 <sup>1</sup> 126   500   *procrem N PcS   20 <sup>1</sup> 126   500   *procrem N PcS   20 <sup>1</sup> 126   500   *procrem N PcS   10 <sup>6</sup> 126   500   *procrem N PcS <td>452</td> <td>protein E vegfr</td> <td><math>141^{\ddagger}</math></td> <td>126</td> <td>497</td> <td>protein M Lim</td> <td><math>200^{\ddagger}</math></td> <td>126</td> <td>542</td> <td>*protein P Blimp1</td> <td><math>136^{\ddagger}</math></td> <td>126</td> <td>587</td> <td>protein P Nrl</td> <td>179</td> <td><math>8^{\ddagger}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 452        | protein E vegfr      | $141^{\ddagger}$        | 126                    | 497  | protein M Lim        | $200^{\ddagger}$        | 126                       | 542        | *protein P Blimp1    | $136^{\ddagger}$        | 126             | 587  | protein P Nrl        | 179               | $8^{\ddagger}$  |
| 451   **ROTEN E Wulk   1 <sup>1</sup> 19   409   PROTEN M MaPL   205 <sup>1</sup> 126   544   *PROTEN P CAR   288   126   509   PROTEN P OLX   16 <sup>1</sup> 123     456   PROTEN M AL   255   277   26 <sup>1</sup> 500   PROTEN P SAR   277   26 <sup>1</sup> 457   PROTEN M AL   255   27 <sup>2</sup> 546   *PROTEN P CAR   288   16 <sup>2</sup> 509   PROTEN P SAR   277   26 <sup>1</sup> 458   PROTEN M AL   28 <sup>3</sup> 36 <sup>3</sup> 503   *ROTEN M Notch   41 <sup>3</sup> 548   *PROTEN P Delta   28 <sup>1</sup> 126   500   PROTEN P SAR   79 <sup>1</sup> 136   100 <sup>5</sup> 50   PROTEN P SAR   79 <sup>1</sup> 136   100 <sup>5</sup> 106 <sup>1</sup> <td>453</td> <td>PROTEIN E VEGFSignal</td> <td><math>124^{\ddagger}</math></td> <td>114</td> <td>498</td> <td>protein M Msp130</td> <td><math>297^{\ddagger}</math></td> <td>126</td> <td>543</td> <td>*protein P Bra</td> <td><math>24^{\ddagger}</math></td> <td>126</td> <td>588</td> <td>protein P OrCt</td> <td>288</td> <td><math>34^{\ddagger}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 453        | PROTEIN E VEGFSignal | $124^{\ddagger}$        | 114                    | 498  | protein M Msp130     | $297^{\ddagger}$        | 126                       | 543        | *protein P Bra       | $24^{\ddagger}$         | 126             | 588  | protein P OrCt       | 288               | $34^{\ddagger}$ |
| 455   protrem R 243   294 <sup>4</sup> 126   500   **partem N and Not   25   275   545   *partem P Cark   298 <sup>3</sup> 126   500   *partem P Psix   171   126   500   *partem P Psix   111   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 454        | *protein E Wnt8      | $1^{\ddagger}$          | 19                     | 499  | protein M MspL       | $295^{\ddagger}$        | 126                       | 544        | *protein P Brn       | 184                     | $26^{\ddagger}$ | 589  | *protein P Otx       | $16^{\ddagger}$   | 123             |
| 456   PROTEIN CCM   310 <sup>6</sup> 126   501   PROTEIN N Motel   255   27 <sup>7</sup> 546   PROTEIN P CdP   106   126   5501   PROTEIN P Pmart   41 <sup>1</sup> 110     457   PROTEIN M Able   285   36 <sup>5</sup> 503   PROTEIN N Moltal   197   43 <sup>5</sup> 544   PROTEIN P Data   74 <sup>7</sup> 126   550   PROTEIN P Pmart   41 <sup>1</sup> 110     460   PROTEIN M Bina   38 <sup>3</sup> 126   557   PROTEIN N MAIL   34 <sup>1</sup> 122   551   PROTEIN P Smoth   110   566   PROTEIN P Smoth   10 <sup>6</sup> 10 <sup>2</sup> 10 <sup>6</sup> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 455        | protein E z13        | $294^{\ddagger}$        | 126                    | 500  | *protein M nBtcf     | $78^{\ddagger}$         | 126                       | 545        | protein P capk       | $298^{\ddagger}$        | 126             | 590  | protein P Pks        | 277               | $26^{\ddagger}$ |
| 457   PROTEIN M Abbi   236 <sup>1</sup> 126   502   *PROTEIN M Notch   44 <sup>3</sup> 125   547   *PROTEIN P CPL   126   552   PROTEIN P Sm.27   104 <sup>4</sup> 126     459   *PROTEIN M Bina   123   126   503   *PROTEIN M Notch   188   41 <sup>4</sup> 546   *PROTEIN P Duba   27 <sup>4</sup> 50   504   PROTEIN P Sm.30   66   2     450   *PROTEIN M Bina   145   27 <sup>7</sup> 506   *PROTEIN M OCK   13 <sup>5</sup> 126   551   *PROTEIN P Dui   35 <sup>4</sup> 110   506   *PROTEIN P Sm.21   126   561   *PROTEIN P Dui   34 <sup>4</sup> 144   568   *PROTEIN P Sm.21   126   561   *PROTEIN P Dui   34 <sup>4</sup> 126   567   *PROTEIN P Sm.21   126   561   *PROTEIN P Sm.21   126   126   567   *PROTEIN P Sm.11   126   126   561   *PROTEIN P Sm.21   126   561   *PROTEIN P Sm.21   128 <sup>1</sup> 126   662   *PROTEIN P Sm.11   128 <sup>1</sup> 126   662   *PROTEIN P Sm.11   128 <sup>1</sup> 126   662   *PROTEIN P Sm.11   128 <sup>1</sup> 126   662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 456        | PROTEIN GCM          | $310^{\ddagger}$        | 126                    | 501  | protein M Not        | 255                     | $27^{\ddagger}$           | 546        | *protein P cB        | $7^{\ddagger}$          | 126             | 591  | *protein P Pmar1     | $41^{\ddagger}$   | 110             |
| 458   PROTEIN M Apobec   285   36 <sup>+</sup> 503   PROTEIN M Nrl   197   43 <sup>+</sup> 548   *PROTEIN P Delta2   75 <sup>+</sup> 50   50   FPROTEIN P Sm50   96 <sup>+</sup> 126     460   *PROTEIN M Bra   38 <sup>+</sup> 126   505   PROTEIN N CA   285   36 <sup>+</sup> 550   PROTEIN P Delta2   75 <sup>+</sup> 50   59 <sup>+</sup> PROTEIN P Sm50   96 <sup>+</sup> 126     461   *PROTEIN N CA   75   15 <sup>+</sup> 507   PROTEIN N M   126   553   PROTEIN P Ead   84 <sup>+</sup> 126   507   PROTEIN P SoB1   166 <sup>+</sup> 126     462   PROTEIN M CAP   207 <sup>+</sup> 126   508   *PROTEIN P Ead   13 <sup>+</sup> 120   599   *PROTEIN P SOB1   126 <sup>+</sup> 555   *PROTEIN P Ead   13 <sup>+</sup> 120   599   *PROTEIN P SOB1   128 <sup>+</sup> 126   675   *PROTEIN P Fool   18 <sup>+</sup> 126   600   PROTEIN P SOB1   126   64   *PROTEIN P SOB1   126   655   *PROTEIN P Fool   126   656   *PROTEIN P Fool   126   657   *PROTEIN P Fool   126   657   *PROTEIN P Fool <td< td=""><td>457</td><td>protein M Alx1</td><td><math>236^{\ddagger}</math></td><td>126</td><td>502</td><td>*protein M Notch</td><td><math>49^{\ddagger}</math></td><td>125</td><td>547</td><td>protein P CyP</td><td><math>106^{\ddagger}</math></td><td>126</td><td>592</td><td>protein P Sm27</td><td><math>104^{\ddagger}</math></td><td>126</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 457        | protein M Alx1       | $236^{\ddagger}$        | 126                    | 502  | *protein M Notch     | $49^{\ddagger}$         | 125                       | 547        | protein P CyP        | $106^{\ddagger}$        | 126             | 592  | protein P Sm27       | $104^{\ddagger}$  | 126             |
| 450     **PROTEN M BIImp1     123     126     504     PROTEN M Nr     188     41 <sup>1</sup> 549     *PROTEN P Delta     27 <sup>1</sup> 50     544     PROTEN P Sm30     96 <sup>1</sup> 110       461     *PROTEN M Bran     145     27 <sup>1</sup> 506     *PROTEN M OCC     13 <sup>1</sup> 122     551     *PROTEN P Delta     36 <sup>1</sup> 110     566     *PROTEN P Sm31     16 <sup>61</sup> 126       462     *PROTEN M CAPK     5 <sup>1</sup> 126     508     *PROTEN M Pmar1     20 <sup>71</sup> 126     553     *PROTEN P Endol     84 <sup>1</sup> 120     599     *PROTEN P Sm1     299 <sup>1</sup> 126     553     *PROTEN P Endol     84 <sup>1</sup> 120     599     *PROTEN P Sm1     299 <sup>1</sup> 126     553     *PROTEN P Endol     84 <sup>1</sup> 126     600     *PROTEN P Sull     277     26 <sup>7</sup> 64     *PROTEN M Delta     229     126     511     *PROTEN M Sm30     295 <sup>1</sup> 126     557     *PROTEN P FoxA     18 <sup>3</sup> 126     600     *PROTEN P Tel     149 <sup>3</sup> 126     600     *PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 458        | PROTEIN M Apobec     | 285                     | $36^{\ddagger}$        | 503  | *protein M Notch2    | 197                     | $43^{\ddagger}$           | 548        | *protein P Delta     | $48^{\ddagger}$         | 126             | 593  | protein P Sm30       | 66                | $2^{\ddagger}$  |
| 460   **PROTEIN M Bran   38 <sup>4</sup> 126   505   PROTEIN M CAP   297 <sup>4</sup> 126   505   PROTEIN P Suall   9 <sup>1</sup> 11     462   PROTEIN M CAP   75   15 <sup>5</sup> 500   *PROTEIN M CAP   75   15 <sup>5</sup> 507   PROTEIN M CAP   75   15 <sup>5</sup> 507   PROTEIN M CAP   75   126   508   *PROTEIN P Endol   84 <sup>1</sup> 126   507   PROTEIN P Sull   299 <sup>1</sup> 126   640   *PROTEIN P Etg   33 <sup>1</sup> 114   598   *PROTEIN P Sull   299 <sup>1</sup> 126   640   *PROTEIN P Etg   33 <sup>1</sup> 114   598   *PROTEIN P Sull   299 <sup>1</sup> 126   640   *PROTEIN P Etg   33 <sup>1</sup> 114   128   100   *PROTEIN P Sull   217   26 <sup>1</sup> 647   *PROTEIN M Delta   39   12 <sup>2</sup> 10 <sup>1</sup> 65   *PROTEIN M Sull   116 <sup>1</sup> 126   555   *PROTEIN P Fock   128 <sup>1</sup> 126   601   PROTEIN P ToP   138 <sup>1</sup> 56   601   PROTEIN P ToP   138 <sup>1</sup> 126   602   *PROTEIN P ToP   138 <sup>1</sup> 126   604   PROTEIN P ToP   138 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 459        | *protein M Blimp1    | $123^{\ddagger}$        | 126                    | 504  | protein M Nrl        | 188                     | $41^{\ddagger}$           | 549        | *protein P Delta2    | $79^{\ddagger}$         | 50              | 594  | protein P Sm50       | 96 <sup>‡</sup>   | 126             |
| 461   **PROTEIN M Cark   145   27 <sup>7</sup> 506   **PROTEIN M Otx   13 <sup>5</sup> 122   551   *PROTEIN P Endol6   64 <sup>7</sup> 100   506   *PROTEIN P SoxC   166 <sup>7</sup> 126     463   *PROTEIN M CAPK   5 <sup>7</sup> 126   509   *PROTEIN M Parat   207 <sup>7</sup> 126   552   *PROTEIN P Endol6   57   *PROTEIN P South   209 <sup>7</sup> 126   553   *PROTEIN P Etsl   18 <sup>4</sup> 126   509   **PROTEIN P Sulth   209 <sup>7</sup> 126   553   *PROTEIN P Etsl   18 <sup>4</sup> 126   600   PROTEIN P Sulth   207 <sup>7</sup> 126   555   *PROTEIN P Force   18 <sup>4</sup> 126   601   PROTEIN P Tar   99 <sup>1</sup> 126     466   *PROTEIN M Dpt   112   16 <sup>6</sup> 126   557   PROTEIN P FockA   219 <sup>4</sup> 126   603   *PROTEIN P Tar   138 <sup>4</sup> 126   603   *PROTEIN P Tar   14 <sup>3</sup> 126   603   *PROTEIN P Tar   14 <sup>3</sup> 126   603   *PROTEIN P Tar   14 <sup>3</sup> 126   607   *PROTEIN P Tar   14 <sup>3</sup> 126   607   *PROTEIN P Tar   126   127   126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 460        | *protein M Bra       | $38^{\ddagger}$         | 126                    | 505  | protein M OrCt       | 285                     | $36^{\ddagger}$           | 550        | protein P Dpt        | $297^{\ddagger}$        | 126             | 595  | PROTEIN P Snail      | $9^{\ddagger}$    | 11              |
| 462   PROTEIN M CARK   75   15 <sup>4</sup> 507   PROTEIN M Pks   129   23 <sup>4</sup> 552   PROTEIN P Endolf   84 <sup>1</sup> 126   507   PROTEIN P Sacc   186 <sup>1</sup> 126     464   PROTEIN M CyP   297 <sup>1</sup> 126   508   PROTEIN M Sm30   295 <sup>1</sup> 126   555   PROTEIN P Eve   222   32 <sup>4</sup> 600   PROTEIN P SuTX   277   26 <sup>4</sup> 465   *PROTEIN M Delta   229   1 <sup>4</sup> 511   PROTEIN M Sm30   295 <sup>1</sup> 126   555   *PROTEIN P Few   222   32 <sup>4</sup> 600   PROTEIN P TUR   97   126     467   PROTEIN M Delta   239 <sup>1</sup> 12 <sup>6</sup> 512   PROTEIN M Sm50   295 <sup>1</sup> 126   557   PROTEIN P FoxA   183 <sup>4</sup> 126   600   PROTEIN P TUR   149 <sup>4</sup> 126   608   PROTEIN P TUR   149 <sup>4</sup> 126   127   126   604   PROTEIN P TUR   143 <sup>4</sup> 126   600   PROTEIN P TUR   143 <sup>4</sup> 126   107   126   607   PROTEIN P UbidAli   62 <sup>4</sup> 108   127   126   607   PROTEIN P UbidAli   12 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 461        | *protein M Brn       | 145                     | $27^{\ddagger}$        | 506  | *protein M Otx       | $13^{\ddagger}$         | 122                       | 551        | *protein P Dri       | $36^{\ddagger}$         | 110             | 596  | *protein P SoxB1     | $160^{\ddagger}$  | 126             |
| 463   *PROTEIN M CB   5 <sup>1</sup> 126   508   *PROTEIN P Erg   33 <sup>3</sup> 114   598   *PROTEIN P SuH   296 <sup>1</sup> 126     464   PROTEIN M Delta   39   12 <sup>4</sup> 510   PROTEIN M Sm30   295 <sup>1</sup> 126   554   *PROTEIN P Eve   222   32 <sup>1</sup> 600   PROTEIN P NOTEIN P SUHN   287   126     466   *PROTEIN M Delta   299   1 <sup>4</sup> 511   PROTEIN M Sm30   295 <sup>1</sup> 126   555   *PROTEIN P Eve   222   32 <sup>1</sup> 600   PROTEIN P TEr   99 <sup>1</sup> 126     466   *PROTEIN M Drt   239 <sup>1</sup> 126   512   *PROTEIN M Sm30   295 <sup>1</sup> 126   555   *PROTEIN P FoxN   128   126   603   PROTEIN P TER   126   604   *PROTEIN P TER   149 <sup>4</sup> 126   605   *PROTEIN P Dixitit   126   126   126   607   *PROTEIN P Dixitit   126   610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 462        | protein M capk       | 75                      | $15^{\ddagger}$        | 507  | protein M Pks        | 129                     | $23^{\ddagger}$           | 552        | PROTEIN P Endo16     | $84^{\ddagger}$         | 126             | 597  | PROTEIN P SoxC       | $186^{\ddagger}$  | 126             |
| 464   PROTEIN M CyP   297 <sup>5</sup> 126   554   **PROTEIN P Esti   1s <sup>5</sup> 120   599   *PROTEIN P SUHN   128 <sup>5</sup> 126   555   **PROTEIN P Esti   1s <sup>5</sup> 126   551   **PROTEIN P Esti   1s <sup>5</sup> 126   551   **PROTEIN P Esti   126   551   **PROTEIN P Esti   126   551   **PROTEIN P Esti   126   551   **PROTEIN P FoxA   183 <sup>1</sup> 126   601   PROTEIN P TIR   99 <sup>1</sup> 126     466   *PROTEIN M Dpt   112   16 <sup>1</sup> 512   *PROTEIN M SodEl   11 <sup>1</sup> 126   557   *PROTEIN P FoxA   183 <sup>1</sup> 126   602   *PROTEIN P TEI   136 <sup>1</sup> 126   137   *PROTEIN M SodE   246 <sup>1</sup> 126   559   *PROTEIN P FoxN23   289 <sup>1</sup> 126   604   PROTEIN P TEI   126   126   127   126   128   561   PROTEIN P FoxN3   289 <sup>1</sup> 126   606   *PROTEIN P UbiqLat   310 <sup>1</sup> 126   127   126   562   PROTEIN P FoxN3   289 <sup>1</sup> 126   606   *PROTEIN P UbiqLat   311 <sup>1</sup> 126   128   126   601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 463        | *protein M cB        | $5^{+}$                 | 126                    | 508  | *protein M Pmar1     | $20^{\ddagger}$         | 126                       | 553        | protein P Erg        | $33^{\ddagger}$         | 114             | 598  | *protein P SuH       | $299^{\ddagger}$  | 126             |
| 465   *PROTEIN M Delta   39   12 <sup>3</sup> 510   PROTEIN M Sm30   295 <sup>3</sup> 126   555   *PROTEIN P Eve   222   22 <sup>3</sup> 600   PROTEIN P SuTX   277   26 <sup>3</sup> 466   *PROTEIN M Dpt   112   16 <sup>4</sup> 511   *PROTEIN M SoxB1   11 <sup>4</sup> 126   555   *PROTEIN P FoxL   219 <sup>3</sup> 126   601   PROTEIN P Tel   138 <sup>4</sup> 55     468   *PROTEIN M Endol   65 <sup>5</sup> 126   511   *PROTEIN M SoxB1   11 <sup>4</sup> 126   558   PROTEIN P FoxN23   289 <sup>3</sup> 126   600   PROTEIN P Tel   149 <sup>4</sup> 126     470   PROTEIN M Erg   223 <sup>3</sup> 117   515   *PROTEIN M SuN   31 <sup>5</sup> 56   560   PROTEIN P FoxN23   289 <sup>4</sup> 126   606   PROTEIN P UbiqAlal   62 <sup>1</sup> 125     471   *PROTEIN M Eve   213   28 <sup>4</sup> 137   PROTEIN M FoxN   277   26 <sup>4</sup> 608   *PROTEIN P UbiqAlal   30 <sup>4</sup> 126   608   *PROTEIN P UbiqAlal   30 <sup>4</sup> 126     477   PROTEIN M FoxB   277 <sup>4</sup> 126   500   PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 464        | protein M CyP        | $297^{\ddagger}$        | 126                    | 509  | protein M Sm27       | $297^{\ddagger}$        | 126                       | 554        | *protein P Ets1      | $18^{\ddagger}$         | 120             | 599  | *protein P Suhn      | $128^{\ddagger}$  | 109             |
| 466   *PROTEIN M Delta2   229   1 <sup>2</sup> 511   PROTEIN M Sm50   295 <sup>4</sup> 126   556   PROTEIN P Fock   88 <sup>4</sup> 126   601   PROTEIN P Tur   99 <sup>4</sup> 126     468   *PROTEIN M Dri   239 <sup>1</sup> 126   513   *PROTEIN M SoxB1   11 <sup>1</sup> 126   558   PROTEIN P Fock   219 <sup>1</sup> 126   601   PROTEIN P Tel   149 <sup>4</sup> 126     469   PROTEIN M Endolf   65 <sup>7</sup> 126   514   PROTEIN M SoxC   226 <sup>4</sup> 126   551   PROTEIN P Fock   219 <sup>4</sup> 126   600   *PROTEIN P UbidAlt   62 <sup>2</sup> 125     470   PROTEIN M Estal   169 <sup>4</sup> 112   516   *PROTEIN M TH   194   33 <sup>4</sup> 562   PROTEIN P Fock   318   52 <sup>4</sup> 600   *PROTEIN P UbidPolta   310 <sup>4</sup> 126     473   PROTEIN M Fock   129 <sup>4</sup> 126   518   PROTEIN M TH   121 <sup>4</sup> 155   PROTEIN P ChidPatt   28 <sup>4</sup> 126   600   *PROTEIN P UbidPolta   310 <sup>4</sup> 126     473   PROTEIN M Fock   297 <sup>4</sup> 126   520   PROTEIN M TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 465        | *protein M Delta     | 39                      | $12^{\ddagger}$        | 510  | protein M Sm30       | $295^{\ddagger}$        | 126                       | 555        | *protein P Eve       | 222                     | $32^{\ddagger}$ | 600  | protein P SuTx       | 277               | $26^{\ddagger}$ |
| 467   PROTEIN M Dpt   112   16 <sup>4</sup> 126   557   PROTEIN P FoxA   183 <sup>4</sup> 126   602   **ROTEIN P TCF   133 <sup>4</sup> 564     468   *PROTEIN M Endol6   65 <sup>5</sup> 126   513   *PROTEIN M SoxBl   11 <sup>4</sup> 126   5559   PROTEIN P FoxAS   289 <sup>4</sup> 126   603   PROTEIN P Tgif   26 <sup>2</sup> 107     470   PROTEIN M Erg   223 <sup>3</sup> 117   515   *PROTEIN M Sull   130 <sup>4</sup> 88   560   PROTEIN P FoxZ3   289 <sup>4</sup> 126   604   *PROTEIN P Tgif   26 <sup>2</sup> 107     471   *PROTEIN M Eve   213   28 <sup>4</sup> 517   PROTEIN M Sull   94 <sup>3</sup> 562   FROTEIN P Fizzled i   318   26   606   *PROTEIN P UbiqEs1   310 <sup>4</sup> 126     472   *PROTEIN M FoxA   192 <sup>4</sup> 126   519   *PROTEIN M TC   133 <sup>4</sup> 562   PROTEIN P GatZ   26 <sup>4</sup> 607   *PROTEIN P UbiqEs1   30 <sup>4</sup> 126     474   PROTEIN M FoxB   278 <sup>4</sup> 126   519   *PROTEIN M TC   133 <sup>4</sup> 126   565   *PROTEIN P GatZ   26 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 466        | *protein M Delta2    | 229                     | 1‡                     | 511  | protein M Sm50       | $295^{\ddagger}$        | 126                       | 556        | PROTEIN P Ficolin    | 88 <sup>‡</sup>         | 126             | 601  | protein P tbr        | 99 <sup>‡</sup>   | 126             |
| 468   **PROTEIN M Dri   239 <sup>3</sup> 126   513   **PROTEIN M SoxC   11 <sup>1</sup> 126   558   *PROTEIN P FoxDB   219 <sup>4</sup> 126   604   PROTEIN P Tel   149 <sup>4</sup> 126     470   PROTEIN M Erg   223 <sup>1</sup> 117   515   *PROTEIN M SuH   30 <sup>3</sup> 56   561   PROTEIN P FoxD2   94 <sup>4</sup> 126   604   PROTEIN P UbiqAlx1   62 <sup>4</sup> 127     471   *PROTEIN M Eval   169 <sup>4</sup> 126   518   PROTEIN M SuH   93 <sup>3</sup> 56   561   PROTEIN P Fizzled a   318   126   606   *PROTEIN P UbiqLolta   310 <sup>4</sup> 126     472   *PROTEIN M Ficolin   297 <sup>4</sup> 126   518   PROTEIN M TER   212 <sup>3</sup> 115   563   PROTEIN P FoxLo2   27   26 <sup>4</sup> 600   *PROTEIN P UbiqRecd   30 <sup>8</sup> 113 <sup>4</sup> 126   565   *PROTEIN P Gata   24 <sup>4</sup> 126   601   *PROTEIN P UbiqRecd   30 <sup>8</sup> 126   567   *PROTEIN P Gata   610   *PROTEIN P UbiqRecd   30 <sup>8</sup> 126   567   *PROTEIN P Gata   611   PROTEIN P UbiqRecdddddddddddddddddddddddddddddddddddd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 467        | protein M Dpt        | 112                     | $16^{+}$               | 512  | PROTEIN M Snail      | $166^{+}$               | 126                       | 557        | PROTEIN P FoxA       | $183^{1}$               | 126             | 602  | *protein P tcf       | $138^{I}$         | 55              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 468        | *protein M Dri       | $239^{I}$               | 126                    | 513  | *protein M SoxB1     | 111                     | 126                       | 558        | protein P FoxB       | 219 <sup>‡</sup>        | 126             | 603  | protein P Tel        | $149^{I}$         | 126             |
| 470PROTEIN M Erg223*117515*PROTEIN M Sult130*185560PROTEIN P FoxO94*126605PROTEIN P UbiqAlxl $62^{2}$ 125471*PROTEIN M Eve21328*517PROTEIN M SULT19433*561PROTEIN P frizzled i31852*607PROTEIN P UbiqDelta310*126472*PROTEIN M Evel21328*517PROTEIN M TER212*115563PROTEIN P FMO27724*608*PROTEIN P UbiqCest81*126474PROTEIN M FoxB27*126518PROTEIN M TER213*11554564FROTEIN P GataL246*108*PROTEIN P UbiqCest30*123*475PROTEIN M FoxB27*126520PROTEIN M Tef233*126565*PROTEIN P GataL44*126610*PROTEIN P UbiqGest30*126476PROTEIN M FoxD297*126522PROTEIN M UbiqAlx110*126568*PROTEIN P GataL44*126611PROTEIN P UbiqSoxCL52*126479PROTEIN M frizzled a318126524PROTEIN M UbiqAsCL30*126570*PROTEIN P GronCC144*613PROTEIN P UbiqSoxCL52*126479PROTEIN M GataC26429*29*526PROTEIN M UbiqGcad308126*571PROTEIN P GronCC313*126616PROTEIN P UAADX310*126 <td>469</td> <td>PROTEIN M Endo16</td> <td><math>65^{\ddagger}</math></td> <td>126</td> <td>514</td> <td>protein M SoxC</td> <td>246<sup>‡</sup></td> <td>126</td> <td>559</td> <td>protein P FoxN23</td> <td><math>289^{\ddagger}</math></td> <td>126</td> <td>604</td> <td>protein P Tgif</td> <td>26<sup>‡</sup></td> <td>107</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 469        | PROTEIN M Endo16     | $65^{\ddagger}$         | 126                    | 514  | protein M SoxC       | 246 <sup>‡</sup>        | 126                       | 559        | protein P FoxN23     | $289^{\ddagger}$        | 126             | 604  | protein P Tgif       | 26 <sup>‡</sup>   | 107             |
| 471   **PROTEIN M Eks1   160*   112   516   *PROTEIN M Sutx   93*   56   561   PROTEIN P frizzled a   318   126   606   *PROTEIN P UbiqDelta   310*   126     472   *PROTEIN M Ficolin   297*   126   518   PROTEIN M TH   212*   115   563   PROTEIN P Fizzled i   318   52*   607   *PROTEIN P UbiqDelta   30*   126     473   PROTEIN M Fixed   192*   126   519   *PROTEIN M TH   212*   115   563   PROTEIN P GataC   256   24*   609   *PROTEIN P UbiqDesa   30*   121     476   PROTEIN M FoxA   290*   115   521   PROTEIN M Tig   233*   126   567   *PROTEIN P GataC   256   44*   100   *PROTEIN P UbiqDesa   30*   126     477   PROTEIN M Fix2dei   318   126   522   PROTEIN M UbiqLat   310*   126   567   *PROTEIN P Gcm   110*   114   612   *PROTEIN P UbiqSoxC   52*   126   126   569   *PROTEIN P Gcm   100*   14*   613   PROTEIN P Ubi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 470        | protein M Erg        | 223 <sup>‡</sup>        | 117                    | 515  | *protein M SuH       | 130 <sup>‡</sup>        | 88                        | 560        | protein P FoxO       | $94^{\ddagger}$         | 126             | 605  | protein P UbiqAlx1   | 62 <sup>‡</sup>   | 125             |
| 472   **ROTEIN M Eve   213   28*   517   PROTEIN M SUTX   194   33*   562   PROTEIN P fizizled i   318   52*   607   PROTEIN P UbiqEss   81*   126     473   PROTEIN M FoxA   192*   126   518   PROTEIN M TCF   115*   54   563   PROTEIN P GataC   256   24*   609   PROTEIN P UbiqEss1   30*   113*     475   PROTEIN M FoxB   277*   126   520   PROTEIN M TcF   123*   126   565   *PROTEIN P GataC   256   24*   600   *PROTEIN P UbiqHaf6   30*   113*     476   PROTEIN M FoxB   277*   126   522   PROTEIN M UbiqLal   311*   126   567   *PROTEIN P GataC   66*   126   611   *PROTEIN P UbiqTcB   52*   126     477   PROTEIN M frizzled a   318   126   52*   PROTEIN M UbiqZal   310*   126   568   PROTEIN P GataC   14*   613   PROTEIN P UbiqTcB   52*   126   440   614   613   PROTEIN P UbiqTcB   52*   126   440   614   613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 471        | *protein M Ets1      | $169^{+}$               | 112                    | 516  | *protein M Suhn      | $93^{+}$                | 56                        | 561        | PROTEIN P frizzled a | 318                     | 126             | 606  | *protein P UbiqDelta | $310^{+}$         | 126             |
| 473PROTEIN M Ficolin297126518PROTEIN M TER212'115563PROTEIN P FMo27726'608*PROTEIN P UbiqEst128'124474PROTEIN M FoxA192'126519PROTEIN M TCF135'54563PROTEIN P GataC25624'609*PROTEIN P UbiqEst128'121476PROTEIN M FoxN23290'115521PROTEIN M Tel233'126565*PROTEIN P GataL44'126610*PROTEIN P UbiqEsc430'121476PROTEIN M FoxO297'126522PROTEIN M Tgf240'10'16666PROTEIN P Cad68'126611PROTEIN P UbiqSoxL52'126478PROTEIN M frizzled a318126522PROTEIN M UbiqDelta310'126568PROTEIN P Geom302'126614PROTEIN P UbiqSoxL52'126479PROTEIN M FvMo19433'525524PROTEIN M UbiqCeal308106'571PROTEIN P Grorer14846'615*PROTEIN P UbiqSoxL310'126'480PROTEIN M GataL26429'526PROTEIN M UbiqHesl308117'572PROTEIN P Grorer14846'615*PROTEIN P UsaQEta310'126'482*PROTEIN M GataL51'111527*PROTEIN M UbiqKet308117'572PROTEIN P GSR3318126616PROTEIN P UsaQEta<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 472        | *protein M Eve       | 213                     | $28^{+}$               | 517  | protein M SuTx       | 194                     | $33^{+}$                  | 562        | PROTEIN P frizzled i | 318                     | $52^{+}$        | 607  | PROTEIN P UbiqES     | 81+               | 126             |
| 474PROTEIN M FoxA192*126519*PROTEIN M TCF135*54564PROTEIN P GataC25624*609PROTEIN P UbiqGead308*113*476PROTEIN M FoxA290*115521PROTEIN M Tel233*126565*PROTEIN P GataC26611611PROTEIN P UbiqGead308*126476PROTEIN M FoxO297*126522PROTEIN M Tgi240*107566PROTEIN P Gcaa68*126611PROTEIN P UbiqGoaC52*126477PROTEIN M frizzled318126522PROTEIN M UbiqAlxI311*126568PROTEIN P Gcaa104*6139ROTEIN P UbiqSoaC52*126479PROTEIN M frizzled i31852*524PROTEIN M UbiqCela308126569*PROTEIN P Gro302*126614PROTEIN P UbiqSoaC52*126480PROTEIN M GataE51*111527*PROTEIN M UbiqCela308106*571PROTEIN P Gro302*126614PROTEIN P UMANI312*126482*PROTEIN M GataE51*111527*PROTEIN M UbiqCela308106*571PROTEIN P GsK3 a318126618PROTEIN P UMANI312*126482*PROTEIN M Gcad68*126528PROTEIN M UbiqSoaC309*126576PROTEIN P GsK3 a318126618PROTEIN P UvataX310*119* <td< td=""><td>473</td><td>PROTEIN M Ficolin</td><td>297*</td><td>126</td><td>518</td><td>PROTEIN M TBr</td><td>212+</td><td>115</td><td>563</td><td>PROTEIN P FvMo</td><td>277</td><td>26*</td><td>608</td><td>*protein P UbiqEts1</td><td>28+</td><td>124</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 473        | PROTEIN M Ficolin    | 297*                    | 126                    | 518  | PROTEIN M TBr        | 212+                    | 115                       | 563        | PROTEIN P FvMo       | 277                     | 26*             | 608  | *protein P UbiqEts1  | 28+               | 124             |
| 475PROTEIN M FoxB278*126520PROTEIN M Tel233*126565*PROTEIN P GataE44*126610*PROTEIN P UbiqHa6S30*121476PROTEIN M FoxO297*115521PROTEIN M UbiqAlx1311*126566PROTEIN P GeadaE66*126610*PROTEIN P UbiqHa6S30*126477PROTEIN M FoxO297*126522PROTEIN M UbiqAlx1311*126567PROTEIN P GeadaE64*126613PROTEIN P UbiqFac30*126478PROTEIN M frizzled a318126523*PROTEIN M UbiqEs318126569*PROTEIN P GeadaE64*64*613PROTEIN P UbiqFac52*126480PROTEIN M GataC26429*25**PROTEIN M UbiqCad308*126570*PROTEIN P Grotrc13*126616PROTEIN P UMADelta310*126481PROTEIN M GataE51*111527*PROTEIN M UbiqGad30810*571PROTEIN P Grotrc13*126616PROTEIN P UADAX101114*482*PROTEIN M Gcad68*126528PROTEIN M UbiqSoxC308*126573PROTEIN P GRS1318126618PROTEIN P UADAX101114*484PROTEIN M Gcad29*49529*PROTEIN M UbiqSoxC30*126575PROTEIN P HesC118*114619PROTEIN P VEGFS13*12* <td>474</td> <td>protein M FoxA</td> <td>192+</td> <td>126</td> <td>519</td> <td>*protein M tcf</td> <td>135+</td> <td>54</td> <td>564</td> <td>PROTEIN P GataC</td> <td>256</td> <td><math>24^{+}</math></td> <td>609</td> <td>PROTEIN P UbiqGcad</td> <td>308</td> <td><math>113^{+}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 474        | protein M FoxA       | 192+                    | 126                    | 519  | *protein M tcf       | 135+                    | 54                        | 564        | PROTEIN P GataC      | 256                     | $24^{+}$        | 609  | PROTEIN P UbiqGcad   | 308               | $113^{+}$       |
| 476PROTEIN M FoxN23290°115521PROTEIN M Tgit240°107566PROTEIN P Gead68°126611PROTEIN P UbiqInff8°126477PROTEIN M frizzled a318126522PROTEIN M UbiqDelta310 <sup>4</sup> 126568PROTEIN P Gesol002 <sup>4</sup> 14613PROTEIN P UbiqSoxC52 <sup>2</sup> 126479PROTEIN M Frizzled i31852 <sup>4</sup> 524PROTEIN M UbiqDelta310 <sup>4</sup> 126568PROTEIN P Grov302 <sup>4</sup> 126614PROTEIN P UbiqSoxC52 <sup>4</sup> 126480PROTEIN M FvMo19433 <sup>4</sup> 525524PROTEIN M UbiqEs318126569*PROTEIN P Grov302 <sup>4</sup> 126614PROTEIN P UbiqSoxC52 <sup>4</sup> 126481PROTEIN M GataE26429 <sup>4</sup> 525*PROTEIN M UbiqGead308106 <sup>4</sup> 571PROTEIN P Grov313 <sup>1</sup> 126616PROTEIN P UMADelta310 <sup>4</sup> 126482*PROTEIN M GataE51 <sup>1</sup> 111527*PROTEIN M UbiqHinf6317 <sup>4</sup> 126571PROTEIN P Gsx3 a318126618PROTEIN P UMADelta310 <sup>4</sup> 126484PROTEIN M Gcad68 <sup>4</sup> 126531PROTEIN M UbiqSxC309 <sup>4</sup> 126575PROTEIN P Gsx3 a318126618PROTEIN P VecF8116 <sup>4</sup> 119485PROTEIN M Grov301 <sup>4</sup> 126531PROTEIN M UbiqSxC309 <sup>4</sup> 126575PROTEIN P Hesc118 <sup>4</sup> <td< td=""><td>475</td><td>PROTEIN M FOXB</td><td>278*</td><td>126</td><td>520</td><td>protein M Tel</td><td>233+</td><td>126</td><td>565</td><td>*PROTEIN P GataE</td><td>44+</td><td>126</td><td>610</td><td>*protein P UbiqHesC</td><td>30*</td><td>121</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 475        | PROTEIN M FOXB       | 278*                    | 126                    | 520  | protein M Tel        | 233+                    | 126                       | 565        | *PROTEIN P GataE     | 44+                     | 126             | 610  | *protein P UbiqHesC  | 30*               | 121             |
| $477$ PROTEIN M Fizzled a $297^{\circ}$ $126$ $522$ PROTEIN M UbiqAxl $311^{\circ}$ $126$ $567$ PROTEIN P Gem $110^{\circ}$ $114^{\circ}$ $612$ $^{\circ}$ PROTEIN P UbiqSoxC $52^{\circ}$ $126$ $479$ PROTEIN M frizzled i $318$ $52^{\circ}$ $524$ PROTEIN M UbiqCesl $316^{\circ}$ $126$ $568$ PROTEIN P Gron $302^{\circ}$ $126$ $614$ PROTEIN P UbiqSoxC $52^{\circ}$ $126$ $479$ PROTEIN M frizzled i $318$ $52^{\circ}$ $524$ PROTEIN M UbiqCesl $308^{\circ}$ $126$ $569$ $^{\circ}$ PROTEIN P Gron $302^{\circ}$ $126$ $614$ PROTEIN P UbiqSoxC $52^{\circ}$ $126$ $480$ PROTEIN M GataE $51^{\circ}$ $111$ $52^{\circ}$ $526$ PROTEIN M UbiqCesl $308$ $106^{\circ}$ $571$ PROTEIN P Groncer $148$ $46^{\circ}$ $615$ $^{\circ}$ PROTEIN P UMANPI $310^{\circ}$ $126$ $482$ PROTEIN M GataE $51^{\circ}$ $111$ $527$ PROTEIN M UbiqCesl $308$ $117^{\circ}$ $572$ PROTEIN P GrosK3 a $318$ $85^{\circ}$ $617$ PROTEIN P UVAOX $310^{\circ}$ $112^{\circ}$ $484$ PROTEIN M Gcad $68^{\circ}$ $126$ $528$ PROTEIN M UbiqCesl $308^{\circ}$ $127^{\circ}$ $771$ $787$ $7877$ PROTEIN P GrosK3 a $318$ $126$ $618$ PROTEIN P UvAOX $310^{\circ}$ $119^{\circ}$ $485$ PROTEIN M Gros $301^{\circ}$ $126$ $575$ PROTEIN P Hesc $118^{\circ}$ $116$ $620$ PROTEIN P UvAOX $310^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 476        | PROTEIN M FOXN23     | 290*                    | 115                    | 521  | PROTEIN M 1git       | 240*                    | 107                       | 566        | PROTEIN P Gcad       | 68*                     | 126             | 611  | PROTEIN P UbiqHnt6   | 8*                | 126             |
| 478PROTEIN M Inzzled a318126523*PROTEIN M UbiqDelta310*126568PROTEIN P Gesolin6914*613PROTEIN P UbiqDelta52'52'126480PROTEIN M Fizzled i31852'52'52'12661496'126'615*PROTEIN P UbiqDelta310'126'480PROTEIN M GataC26429'526PROTEIN M UbiqEs308'126'570'*PROTEIN P Grorce14'616'*PROTEIN P UMADelta310'126'481PROTEIN M GataC26429'526PROTEIN M UbiqCad308'106'571'PROTEIN P Grorce13'126'616'PROTEIN P UMADelta310'126'482*PROTEIN M Gcad68'126'528PROTEIN M UbiqGood308'117'572'PROTEIN P GSR3i318126'616'PROTEIN P UVADX101'110'484PROTEIN M Gcad68'126'528PROTEIN M UbiqSoxD27''126'573'PROTEIN P Hesc118''114''619''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 477        | PROTEIN M FOXO       | 297*                    | 126                    | 522  | PROTEIN M UbiqAlx1   | 311*                    | 126                       | 567        | PROTEIN P Gcm        | 110*                    | 114             | 612  | *PROTEIN P UbiqSoxB1 | 308*              | 126             |
| 4/9PROTEIN M inzide1318 $52^{\circ}$ $524$ PROTEIN M UbiqEs318 $126$ $569$ $^{\circ}$ PROTEIN P Groc $302^{\circ}$ $126$ $614$ PROTEIN P Ubiq1el $52^{\circ}$ $524$ PROTEIN M UbiqEs $308^{\circ}$ $126$ $569$ $^{\circ}$ PROTEIN P Groc $148$ $46^{\circ}$ $615$ $^{\circ}$ PROTEIN P UMADelta $310^{\circ}$ $126$ 480PROTEIN M GataC $264$ $29^{\circ}$ $526$ PROTEIN M UbiqEsd $308^{\circ}$ $126$ $570$ PROTEIN P Groc $313^{\circ}$ $126$ $614$ PROTEIN P UMADelta $310^{\circ}$ $126$ 482 $^{\circ}$ PROTEIN M GataE $51^{\circ}$ $111$ $527$ $^{\circ}$ PROTEIN M UbiqHefd $308^{\circ}$ $117^{\circ}$ $570$ PROTEIN P GROT $318$ $85^{\circ}$ $617$ $^{\circ}$ PROTEIN P UMADelta $310^{\circ}$ $126$ 483PROTEIN M Gcad $68^{\circ}$ $126$ $528$ PROTEIN M UbiqSoRB1 $27^{\circ}$ $126$ $573$ PROTEIN P GROT $118^{\circ}$ $116^{\circ}$ $119^{\circ}$ 484PROTEIN M Gelsolin $71$ $17^{\circ}$ $530$ PROTEIN M UbiqSoRC $309^{\circ}$ $126$ $575$ PROTEIN P Hesc $118^{\circ}$ $116^{\circ}$ $119^{\circ}$ 486 $^{\circ}$ PROTCEI M Grot $314^{\circ}$ $126$ $571$ PROTEIN P Hesc $118^{\circ}$ $116^{\circ}$ $126$ $571$ PROTEIN P Hesc $116^{\circ}$ $116^{\circ}$ $126^{\circ}$ 486PROTCEI M Grot $314^{\circ}$ $126$ $571$ PROTEIN P Hesc $19^{\circ}$ $126$ $621$ PROTEIN P L3 $293^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 478        | PROTEIN M frizzled a | 318                     | 126                    | 523  | *PROTEIN M UbiqDelta | 310*                    | 126                       | 568        | PROTEIN P Gelsolin   | 69                      | 14*             | 613  | PROTEIN P UbiqSoxC   | 52*               | 126             |
| 480PROTEIN M GAUS19433*525PROTEIN M Objeckii308126570PROTEIN P GATCF14846*615PROTEIN P UMADEL310*126481PROTEIN M GataE264 $29^{4}$ 526PROTEIN M Ubjeckad308106*571PROTEIN P GATCF14846*615PROTEIN P UMANEL310*126482*PROTEIN M GataE51*111527*PROTEIN M Ubjeckad308106*571PROTEIN P GSK3 a31885*617*PROTEIN P UVAOLX310119*483PROTEIN M Gead68*126528PROTEIN M Ubjeckad27*126573PROTEIN P GSK3 a318126616PROTEIN P UVAOLX310*119*484PROTEIN M Gelsolin7117*530PROTEIN M UbjeckaC309*126576PROTEIN P Hex15*116620*PROTEIN P Wint83*21486*PROTEIN M Gro301*126531PROTEIN M UbjeckaC309*126576PROTEIN P Hex15*116620*PROTEIN P Wint83*21486*PROTEIN M Gro301*126531PROTEIN M UbjeckaC309*126576PROTEIN P Hex15*116621PROTEIN P Wint83*21486*PROTEIN M Gro311*126533PROTEIN M UMANEL29292*578PROTEIN P Hax19*126621PROTEIN P 23293*126488 </td <td>479</td> <td>PROTEIN M frizzled 1</td> <td>318</td> <td>52*<br/>00<sup>†</sup></td> <td>524</td> <td>PROTEIN M UbiqES</td> <td>318</td> <td>126</td> <td>569</td> <td>*PROTEIN P Gro</td> <td>302+</td> <td>126</td> <td>614</td> <td>PROTEIN P UbiqTel</td> <td>52*</td> <td>126</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 479        | PROTEIN M frizzled 1 | 318                     | 52*<br>00 <sup>†</sup> | 524  | PROTEIN M UbiqES     | 318                     | 126                       | 569        | *PROTEIN P Gro       | 302+                    | 126             | 614  | PROTEIN P UbiqTel    | 52*               | 126             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 480        | PROTEIN M FVMO       | 194                     | 33*<br>00 <sup>†</sup> | 525  | "PROTEIN M UbiqEts1  | 308*                    | 126                       | 570        | *PROTEIN P GrotCF    | 148<br>010 <sup>†</sup> | 46*             | 615  | "PROTEIN P UMADelta  | 310*              | 126             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 481        | PROTEIN M GataC      | 264                     | 29*                    | 526  | PROTEIN M UbiqGcad   | 308                     | 106*                      | 571        | PROTEIN P Grotfc     | 313*                    | 126             | 616  | PROTEIN P UMANFI     | 312*              | 126             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 482        | "PROTEIN M GataE     | 51*<br>cot              | 111                    | 527  | "PROTEIN M UbiqHesC  | 308                     | 117*                      | 572        | PROTEIN P GSK3 a     | 318                     | 85*             | 617  | PROTEIN P UVAOtx     | 310               | 119*            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 483        | PROTEIN M Gcad       | 68*<br>00 <sup>‡</sup>  | 126                    | 528  | PROTEIN M UbiqHinfb  | 317*<br>07 <sup>‡</sup> | 126                       | 573        | PROTEIN P GSK3 1     | 318<br>110 <sup>‡</sup> | 126             | 618  | PROTEIN P VEGFR      | 110*              | 119             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 484        | PROTEIN M Gem        | 29.                     | 49<br>17 <sup>‡</sup>  | 529  | PROTEIN M UbiqSoxB1  | 27°<br>200‡             | 120                       | 574        | PROTEIN P Hesc       | 118.                    | 114             | 619  | *ppompul D Wete      | oo<br>et          | 13.             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 480        | *protein M Geisonn   | /1<br>201 <sup>‡</sup>  | 100                    | 530  | PROTEIN M Ubi-Tol    | 309.<br>200‡            | 120                       | 575        | PROTEIN P Hex        | 10 <sup>1</sup>         | 110             | 620  | PROTEIN P Witts      | 0.02 <sup>±</sup> | 21              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 480        | *protein M Gro       | 3017                    | 120<br>46 <sup>‡</sup> | 501  | *protein M Ubiq1el   | 309*                    | 120<br>01 <sup>‡</sup>    | 070<br>577 | *DDOTEIN P HIIIO     | 40 <sup>+</sup>         | 120             | 6021 | PROTEIN P Z13        | 293*              | 120             |
| $\frac{466}{490} = \frac{1}{\text{PROTEIN M GNGAC}} = \frac{313}{318} = \frac{120}{535} = \frac{333}{535} = \frac{120}{126} = \frac{333}{535} = \frac{120}{126} = \frac{333}{516} = \frac{120}{516} = \frac$ | 401        | PROTEIN M GIOTCF     | 144<br>219 <sup>‡</sup> | 40.                    | 532  | PROTEIN M UMADelta   | 284                     | 91 <sup>.</sup>           | 571        | PROTEIN P HOX        | 19.                     | 1.4             | 022  | nuosome              | 318               | 120             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 480        | PROTEIN M GFOTFC     | 313                     | 120                    | 534  | PROTEIN M UMANTI     | 292                     | 92 <sup>.</sup><br>00‡    | 570        | PROTEIN P Kakapo     | 09<br>158 <sup>‡</sup>  | 14<br>97        |      |                      |                   | 1               |
| 2: Continuation of node names and associated IDs for the endomesoderm network from Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 409        | PROTEIN M GSK5 &     | 310                     | 196                    | 535  | *DROTEIN M UMR       | 304<br>310 <sup>‡</sup> | 190                       | 580        | PROTEIN F LI         | 207 <sup>‡</sup>        | 196             |      |                      |                   | 1               |
| 2: Continuation of node names and associated IDs for the endomesoderm network from Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -490       | FROTEIN IN GSKO I    | 310                     | 120                    | 000  | FROTEIN M UVAUUX     | 910,                    | 120                       | 000        | FROTEIN F LIIII      | 2017                    | 120             |      |                      | I                 | L               |
| d from top to bottom and from loft to right. Explanations of symbols follow that in Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2</b> : | Continuation         | ı of                    | nod                    | e na | ames and assoc       | ciate                   | ed Il                     | Ds f       | for the endom        | esod                    | lerr            | n n  | etwork from T        | able              | e 1.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | df         | rom ton to be        | otto                    | mo                     | nd   | from loft to riv     | rht                     | $\mathbf{E}_{\mathbf{Y}}$ | nlar       | nations of sym       | hol                     | e fo            | 1101 | that in Tabl         | 0.1               |                 |

We perform ROC analysis to examine the enrichment of the benchmark Endo16 regulators in the top k nodes prioritized by PANI, PSSD, TDE and BC (properties used to compute the putative target scores). We vary k in the range [0 - |V|], where |V| is the size of the endomesoderm network. The area under the ROC curve (AUC) (Figure 2) is 0.625, 0.56, 0.572 and 0.637 for PANI, PSSD, TDE and BC, respectively. In the case of the endomesoderm network, the performance of PANI is mainly attributed to BC. This is probably because unlike PSSD, BC is less sensitive to experimental error and parameter estimation. Also, the unique topological characteristics of the network as discussed earlier contribute to the important role BC plays in this network. In summary, the good performances of PANI and BC indicate that network topology features are useful complement to traditional simulation-based model analysis, especially for networks where the dynamics are still fuzzy. Note that PANI achieves slight improvement over BC in terms of the minimum number of top scoring nodes required to identify the benchmark regulators (MinNode) (PANI=599, BC=603) and the enrichment of benchmark regulatory nodes in the top-61 ranked nodes (PANI=74%, BC=65.6%).

# 4.2 Comparison with Random Prioritization and Local Sensitivity Analysis (LSA)

For random prioritization, the set of nodes related to the benchmark Endo16 regulators are randomly prioritized 100 times. For simplicity, we assume that the random prioritization assigns a unique rank from the range [1 - 622] to each benchmark node. We compare the minimum number of top scoring nodes required to identify all the benchmark

regulators (*MinNode*). The *MinNode* of PANI is 599 while that of the random trials varies in the range [612 – 622]. Hence, PANI can identify the benchmark Endo16 regulators using much fewer top scoring nodes compared to random prioritization. Next, we perform a paired *t*-test of ranked nodes generated by PANI and random prioritization. The rankings are normalized to the range [0-1] before carrying out the paired *t*-test to account for the presence of ties in PANI's rankings and the lack of ties in the random rankings. The *p*-value of the two-tailed paired *t*-test varies in the range  $[1.54 \times 10^{-5} - 0.1]$ , suggesting that the rankings of PANI and the random trials are different. Furthermore, PANI ranks benchmark regulators higher than random trials at 5% significance level in one-tailed paired *t*-test and the ROC AUC varies in the range [0.44 - 0.54].

We use *Copasi* to perform the LSA and set the parameters as follows: {Subtask=Time Series, Function=Non-Constant Concentrations of Species, Variable=Initial Concentrations}. The analysis took  $\sim 19$  minutes and the rankings are represented in Tables 1 and 2. The Spearman's correlation coefficient between PANI's and LSA's ranks is 0.472, implying a moderate correlation between the rankings. The MinNode values of PANI and LSA are 599 and 622, respectively, implying that PANI requires fewer top ranking nodes to identify all the benchmark regulators. The one-tailed paired t-test performed on the normalized rankings of PANI and LSA reveals that PANI ranks benchmark regulators higher than LSA at 5% significance level. In fact, PANI ranks 80.1% of the benchmark regulators higher than LSA. For instance, compared to PANI, LSA ranks all nodes associated to Wnt8 and Bra lower although both are Endo16 regulators. Further-



more, the ROC AUC of LSA is 0.549 (Figure 2) and in the LSA's top-61 nodes, only 20 (32.8%) are in the set of benchmark nodes. Hence, PANI produces superior prioritization results compared to random prioritization and LSA.

# 5. ROBUSTNESS OF PRIORITIZATION

In this section, we study the robustness of the target prioritization step (Step 1 in Section 4) by examining the effect of various parameters. The parameters that we examine are the concentration-time profile length  $(|\zeta|)$ , the weights of the three properties ( $\omega_{\text{PSSD}}$ ,  $\omega_{\text{TDE}}$  and  $\omega_{\text{BC}}$ ), and the node of interest (output node). Recall that the concentration-time profile is used to compute PSSD while the weights are used for the calculation of the putative target score. The output node is used as a reference for the reachability-based pruning of non-regulators and the computation of PSSD. We vary each of these parameters and examine their effects on the prioritization ranking as well as the execution time of Step 1. Note that examining the effects of the parameters on ranking allows us to study the sensitivity of the prioritization results to these parameters, giving us a sense of the robustness of PANI-based targets prioritization in the endomesoderm network.

#### **5.1** Effects of Profile Length $(|\zeta|)$

In this experiment, we examine the effect of varying the number of time points in the concentration-time profile  $\zeta$ 



Figure 5: Relationship of execution time (s) and |T|.



Figure 6: Effect of varying output node on endomesoderm ranking results. Node names of the corresponding node ID can be found in Tables 1 and 2.

 $(|\zeta|)$  on the ranking. The profiles are obtained using *Copasi* where  $|\zeta|$  varies in the range of {10, 25, 50, 75, 100, 250, 300, 500, 750, 1000}. We observe that the execution times of PANI increase with increasing value of  $|\zeta|$  (Figure 3) as the latter affects the time for calculating PSSD.

Next, we investigate the effect of  $|\zeta|$  on the ranking results. This gives us a sense of the minimum  $|\zeta|$  required to produce superior quality ranking and allows us to assess the practical execution time more accurately. We compare the changes in the ranking results using Spearman's ranking correlation coefficient as depicted in Figure 3. We observe that  $|\zeta| = 10$  has a lower coefficient with respect to the rankings obtained for other values of  $|\zeta|$ . Although the coefficient at  $|\zeta| = 10$  is lower, it is still relatively high at  $\sim 98\%$ , suggesting that the concentration-time profiles in the endomesoderm network may have few profile changes and a small  $|\zeta|$  is sufficient to capture the variations in the profiles. In fact, three of the benchmark regulators {PROTEIN E Pmar1, PROTEIN M Hox, PROTEIN M Pmar1 } are assigned the same ranks and the standard deviation of the ranks of the benchmark regulators vary in the range [0 - 8] across the entire range of  $|\zeta|$ . At  $|\zeta| > 25$ , the correlation coefficient approaches a constant value of  $\sim 100\%$  when compared with other values of  $|\zeta| > 25$ . Hence, a small value of  $|\zeta|$  is sufficient and the execution time of Step 1 for  $|\zeta| < 100$  is less than 100 seconds.



Figure 7: Clustergram analysis of Spearman's correlation coefficient of endomesoderm ranking result when output node is varied.

**5.2 Effects of Weights** ( $\omega_{PSSD}$ ,  $\omega_{TDE}$  and  $\omega_{\frac{1}{PC}}$ )

We now investigate the effects of different scalar weight factors on the ranking result by examining how the percentage of common putative target nodes varies as the weights are modified. We vary each weight in the range of  $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$  while ensuring that  $\omega_{\text{PSSD}} + \omega_{\text{TDE}} + \omega_{\perp} = 1$ . This produces 36 different weightratios. For each weight-ratio, the putative target score of each node is calculated. Then, the Spearman's correlation coefficient of the rankings of each pair of weight-ratios is evaluated. We find that many of the weight-ratios contain common putative target nodes. The correlation coefficient ranges between  $\sim~0.8$  to 1 (Figure 4) and 76.9% of the top-50% putative target nodes in all the ratios are common. Next, we look at the minimum number of top scoring nodes required to identify the benchmark  $\tt Endo16$  regulators (*MinNode*) in these weight-ratios. We find that the *MinNode* needed to identify at least 75% of the benchmark regulators for this 622-node network is 497. The standard deviation of the ranks of the benchmark regulators vary in the range [0.58] -84.7] across the entire range of weight-ratios and 63.3%of the regulators has deviation of less than 20. In particular, protein m SoxB1, protein e SoxB1, protein e cB, PROTEIN M CB, PROTEIN P CB, PROTEIN E Hox and PROTEIN P Hox are consistently ranked in the  $90^{th}$  percentile. These results imply that although the rankings of the targets vary, most of the targets are still ranked high enough to be considered as a putative target node in most weight-ratios, and many of these putative target nodes correspond to the benchmark regulators.

# 5.3 Effects of Selecting Different Output Node

In this experiment, we examine the effect of selecting a different output node on the execution time and the prioritization results. When we vary the output node, the number of pruned targets |T| obtained from the pruning phase

(Section 3.1) falls into two distinct clusters (Figure 5), one containing less than 20 nodes (cluster 1) and another containing more than 600 nodes (cluster 2). This distribution of |T| is likely due to the network structure such as the presence of SCCs (Section 2.1). Recall that the endomesoderm network contains a large SCC with 360 nodes. Since nodes in the same SCC have the same set of pruned targets and hence the same |T|, it is likely that selecting an output node belonging to this SCC contributes to many of the points in cluster 2. Observe that the execution time varies linearly with |T|. When we vary the output node, the prioritization results change. We perform Spearman's rank correlation coefficient and clustergram analysis to investigate the effect of selecting different output node on the prioritization results. For the purpose of computing the Spearman's ranked correlation coefficient, candidate nodes that are pruned  $(V \setminus T)$ are assigned the lowest rank value to reflect their low relevance as putative target node.

Although the endomesoderm network (Figure 6) appears to have a close Spearman's correlation coefficient across the entire range of output nodes, some of these output nodes seem to share more similar rank correlation coefficient than others. The endomesoderm network's correlation coefficient appears to fall into two different clusters. The clustergram analysis (Figure 7) reveals two main clusters. The first main cluster (Figure 7, magenta box) contains the set of root nodes, singleton nodes and intermediate nodes which are not in any SCC; the second main cluster contains nodes in the 8 two-node SCCs and the 360-node SCC. For the two-node SCCs, nodes in the same SCC were clustered together. For the larger-sized SCC, nodes of the same types tend to form sub-clusters. For instance, nodes associated to Blimp1 and FoxA cluster together to form a sub-cluster {mRNA E Blimp1, mrna E FoxA, mrna M Blimp1, mrna M FoxA, mrna P Blimp1, mRNA P FoxA, mRNA P GataC} (Figure 7, blue box). Hence, for the endomesoderm network, selection of output nodes in the same SCC produces closer rank correlation coefficient and hence more similar prioritization results. This is most likely due to output nodes in the same SCC sharing similar PSSD as time series profiles of genes in the same module are highly correlated in gene regulatory network [35].

#### 6. CONCLUSIONS

In this paper, we apply prioritization tools (LSA and PANI) to the sea urchin endomesoderm gene regulatory network to identify putative target nodes involved in the regulation of Endo16. Prioritization tools assist researchers in identifying a set of nodes that should be prioritized for the study of a particular problem, thus saving precious time and resources. Target prioritization is particularly useful for large networks where visualization is challenging and manually analyzing the network is virtually impossible. We obtain a prioritized list of nodes that corresponds well with the set of benchmark Endo16 regulators using PANI in around 250 seconds. We find that the characteristics of the endomesoderm network affect PANI's performance. Specifically, the presence of a large SCC and constant concentration profiles of many nodes significantly reduced the roles played by TDE and PSSD features for identifying target molecules. This highlights an intricate relationship between the network characteristics and its influence on the role of structural and dynamic properties of nodes in *in silico* targets prioritization, which should be considered in future applications.

Besides identifying the benchmark Endo16 regulators, PANI also prioritizes several nodes (*e.g.*, Snail) that play a regulatory role for Endo16 but are not in the set of benchmark nodes. Hence, we can exploit the capability of *in silico* target prioritization techniques (*e.g.*, PANI) to identify these interesting nodes to gain further biological insights, such as improving on the Endo16 regulatory pathway which is far from complete. For instance, we can design experiments to uncover the relationships between nodes that PANI prioritizes and the Endo16 benchmark regulators to help us fill the gaps in the pathway, thereby improving its accuracy.

# 7. ACKNOWLEDGMENTS

The authors are supported by grant from the Singapore-MIT Alliance Programme in Computational and Systems Biology.

#### 8. **REFERENCES**

- G. Amore et al. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. *Developmental Biology*, 261(1):55 – 81, 2003.
- [2] L. Angerer et al. Mutual antagonism of soxb1 and canonical wnt signaling in sea urchin embryos. *Signal Transduction*, 7:174–180, 2007.
- [3] C. Arenas-Mena et al. Hindgut specification and cell-adhesion functions of sphox11/13b in the endoderm of the sea urchin embryo. Development, Growth & Differentiation, 48(7):463-472, 2006.
- [4] S. Ben-Tabou de Leon et al. Deciphering the underlying mechanism of specification and differentiation: The sea urchin gene regulatory network. *Sci. STKE*, 2006(361):pe47, 2006.
- [5] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25:163–177, 2001.
- [6] C. Byrum et al. Blocking dishevelled signaling in the noncanonical wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation. *Developmental Dynamics*, 238(7):1649–1665, 2009.
- [7] H. Chua et al. Pani: A novel algorithm for fast discovery of putative target nodes in signaling networks. In ACM Conference on Bioinformatics, Computational Biology and Biomedicine, 2011.
- [8] E. Davidson et al. A Genomic Regulatory Network for Development. Science, 295(5560):1669–1678, 2002.
- [9] C. Ettensohn. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. *Developmental Biology*, 112(2):383 – 390, 1985.
- [10] V. Hinman et al. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. *Proceedings of the National Academy of Sciences*, 100(23):13356-13361, 2003.
- [11] V. Hinman et al. Evolutionary plasticity of developmental gene regulatory network architecture. Proceedings of the National Academy of Sciences, 104(49):19404–19409, 2007.
- [12] D. Hu et al. Time-dependent sensitivity analysis of biological networks: Coupled MAPK and PI3K signal transduction pathways. The Journal of Physical Chemistry A, 110(16):5361-5370, 2006.
- [13] W.-C. Hwang et al. Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. *Clin Pharmacol Ther*, 84(5):563–572, Nov 2008.
- [14] C. Jopling et al. Shp2 knockdown and noonan/leopard mutant shp2Űinduced gastrulation defects. *PLoS Genet*, 3(12):e225, 12 2007.
- [15] E. Keogh et al. Derivative dynamic time warping. In In First SIAM International Conference on Data Mining (SDMŠ2001, 2001.
- [16] C. Kuhn et al. Monte carlo analysis of an ode model of the sea urchin endomesoderm network. BMC Systems Biology, 3(1):83, 2009.
- [17] E. Lai et al. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. *Developmental Cell*, 1(6):783 – 794, 2001.

- [18] N. Le Novère et al. Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. *Nucleic Acids Res*, 34(Database issue):D689–D691, Jan 2006.
- [19] T. Lee et al. Transcriptional regulatory networks in saccharomyces cerevisiae. *Science*, 298(5594):799–804, 2002.
- [20] C. Livi et al. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network. *Developmental Biology*, 293(2):513 – 525, 2006.
- [21] C. Logan et al. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. *Development*, 126(2):345–357, 1999.
- [22] S. Materna et al. Logic of gene regulatory networks. Curr Opin Biotechnol, 18(4):351–354, Aug 2007.
- [23] C. Nocente-McGrath et al. Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation. *Developmental Biology*, 136(1):264 – 272, 1989.
- [24] P. Oliveri et al. A regulatory gene network that directs micromere specification in the sea urchin embryo. *Developmental Biology*, 246(1):209 – 228, 2002.
- [25] P. Oliveri et al. Global regulatory logic for specification of an embryonic cell lineage. *Proceedings of the National Academy* of Sciences, 105(16):5955–5962, 2008.
- [26] O. Otim et al. Sphnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. *Developmental Biology*, 273(2):226 – 243, 2004.
- [27] D. Pant et al. Automated oncogene detection in complex protein networks with applications to the mapk signal transduction pathway. *Biophysical Chemistry*, 113(3):275 -288, 2005.
- [28] I. Peter et al. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. *Developmental Biology*, 340(2):188 – 199, 2010. Special Section: Gene Regulatory Networks for Development.
- [29] C. Roberts et al. Targeted mutagenesis of the hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. *Mol. Cell. Biol.*, 22(7):2318–2328, 2002.
- [30] L. Romano et al. Endo16 is required for gastrulation in the sea urchin lytechinus variegatus. *Dev Growth Differ*, 48(8):487–497, Oct 2006.
- [31] E. Röttinger et al. A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. *Development*, 131(5):1075-1087, 2004.
- [32] J. Smith et al. A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. *Developmental Biology*, 313(2):863 – 875, 2008.
- [33] I. Sobolá. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Math. Comput. Simul.*, 55(1-3):271–280, 2001.
- [34] L. Solnica-Krezel. Conserved patterns of cell movements during vertebrate gastrulation. *Curr Biol*, 15(6):R213–R228, Mar 2005.
- [35] S. Tornow et al. Functional modules by relating protein interaction networks and gene expression. *Nucleic Acids Res*, 31(21):6283–6289, Nov 2003.
- [36] L. Wolpert. Gastrulation and the evolution of development. Development, 116(Supplement):7–13, Apr 1992.
- [37] S.-Y. Wu et al. The snail repressor is required for pmc ingression in the sea urchin embryo. *Development*, 134(6):1061–1070, 2007.
- [38] C.-H. Yuh et al. Correct expression of spec2a in the sea urchin embryo requires both otx and other cis-regulatory elements. *Developmental Biology*, 232(2):424 – 438, 2001.
- [39] C.-H. Yuh et al. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. *Developmental Biology*, 269(2):536 - 551, 2004.
- [40] C.-H. Yuh et al. Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo. *Developmental Biology*, 281(2):286 – 298, 2005.
- [41] Z. Zi et al. In silico identification of the key components and steps in IFN-gamma induced JAK-STAT signaling pathway. *FEBS Lett*, 579(5):1101–1108, Feb 2005.
- [42] Z. Zi et al. A quantitative study of the hog1 mapk response to fluctuating osmotic stress in saccharomyces cerevisiae. *PLoS ONE*, 5(3):e9522, 03 2010.