
Efficient Support for Ordered XPath Processing in
Tree-Unaware Commercial Relational Databases

Boon-Siew Seah1,2 Klarinda G. Widjanarko1,2 Sourav S. Bhowmick1,2

Byron Choi 1 Erwin Leonardi1,2

1School of Computer Engineering, Nanyang Technological University, Singapore
2Singapore-MIT Alliance, Nanyang Technological University, Singapore

{821123145823,klarinda,assourav,kkchoi,lerwin}@ntu.edu.sg

May 23, 2007

Abstract

In this paper, we present a novel ordered XPATH evaluation in tree-unaware RDBMS. The novelties of
our approach lies in the followings. (a) We propose a novel XML storage scheme which comprises only leaf
nodes, their corresponding data values, order encodings and their root-to-leaf paths. (b) We propose an
algorithm for mapping ordered XPATH queries into SQL queries over the storage scheme. (c) We propose an
optimization technique that enforces all mapped SQL queries to be evaluated in a “left-to-right” join order.
By employing these techniques, we show, through a comprehensive experiment, that our approach not only
scales well but also performs better than some representative tree-unaware approaches on more than 65% of
our benchmark queries with the highest observed gain factor being 1939. In addition, our approach reduces
significantly the performance gap between tree-aware and tree-unaware approaches and even outperforms a
state-of-the-art tree-aware approach for certain benchmark queries.

1 Introduction

With the rapid emergence of XML as the de facto standard for exchanging data on the Web, the interest in
efficiently querying growing XML data sources has increased. One of the salient features of XML data is that it
is order-sensitive. Supporting an ordered data model of XML as well as ordered XML queries, ordered XPATH

axes and position predicates in particular, have been the key to successful XML applications, e.g., [12]. In this
paper, we present a novel approach to efficiently evaluate ordered XPATH queries in a relational database.

Current approaches for evaluating XPATH expressions in relational databases can be arguably categorized
into two representative types. They either resort to encoding XML data as tables and translating XML queries
into relational queries [3, 4, 5, 6, 10, 11, 15] or store XML data as a rich data type and process XML queries by
enhancing the relational infrastructure [9]. The former approach can further be classified into two representative
types. Firstly, a host of work on processing XPATH queries on tree-unaware relational databases has been
reported [5, 10, 11] – these approaches do not modify the database kernels. Secondly, there have been several
efforts on enabling relational databases to be tree-aware by invading the database kernel to implement XML

support [3, 4, 6, 15]. It has been shown that the latter approaches appear scalable and, in particular, perform
orders of magnitude faster than some tree-unaware approaches [3, 6].

In this paper, we focus on supporting ordered XPATH evaluation in a tree-unaware relational environment.
There is a considerable benefit in such an approach with respect to portability and ease of implementation on
top of an off-the-shelf RDBMS. Although a diverse set of strategies for evaluating XML queries in tree-unaware
relational environment have been recently proposed, few have undertaken a comprehensive study on evaluating
ordered XPATH queries. Tatarinov et al. [12] is the first to show that it is indeed possible to support ordered



XPATH queries in relational databases. However, this approach does not scale well with large XML documents.
In fact, as we shall show in Section 7, the GLOBAL-ORDER approach in [12] failed to return results for 20% of
our benchmark queries on 1GB dataset in 60 minutes. Furthermore, this approach resorts to manual tuning of
the relational optimizer when it failed to produce good query plans. Although such a manual tuning approach
works, it is a cumbersome solution.

In this paper, we address the above limitations by proposing a novel scheme for ordered XPATH query
processing. Our storage strategy is built on top of SUCXENT++ [10], by extending it to support efficient
processing of ordered axes and predicates. SUCXENT++ is designed primarily for query-mostly workloads.
We exploit SUCXENT++’s strategy to store leaf nodes, their corresponding data values, auxiliary encodings
and root-to-leaf paths. In contrast, some approaches, e.g., [6, 15], explicitly store information for all nodes of
an XML document. Specifically, the followings remark the novelties of our storage scheme. (1) For each
level of an XML document, we store an attribute called RValue which is an enhancement of the original RValue,
proposed in [10], for processing recursive XPATH queries. (2) For each leaf node we store three additional
attributes namely BranchOrder, DeweyOrderSum and SiblingSum. These attributes are the foundation for our
ordered XPATH processing. The key features of these attributes are that they enable us (a) to compare the order
between non-leaf nodes by comparing the order between their first descendant leaf nodes only; and (b) to
determine the nearest common ancestor of two leaf nodes efficiently. As a result, it is not necessary to store
the order information of non-leaf nodes. Furthermore, given any pair of nodes, these attributes enable us to
evaluate position-based predicates efficiently.

As highlighted in [12], relational optimizers may sometimes produce poor query plans for processing
XPATH queries. In this paper, we undertake a novel strategy to address this issue. As opposed to manual
tuning efforts, we propose an automatic approach to enforce the optimizer to replace previously generated
poor plans with probably better query plans, as verified by our experiments. Unlike tree-aware schemes, our
technique is non-invasive in nature. That is, it can easily be incorporated without modifying the internals of
relational optimizers. Specifically, we enforce a relational optimizer to follow a “left-to-right” join order and
enforce the relational engine to evaluate the mapped SQL queries according to the XPATH steps specified in the
query. The good news is that this technique can select better plans for the majority of our benchmark queries
across all benchmark datasets. As we shall see in Section 7, the performance of previously-inefficient queries
in SUCXENT++ is significantly improved. The highest observed gain factor is 59. Furthermore, queries that
failed to finish in 60 minutes were able to do so now, in the presence of such a join-order enforcement. This is
indeed stimulating as it shows that some sophisticated internals of relational optimizers not only are irrelevant
to XPATH processing but also often confuse XPATH query optimization in relational databases. Overall a “join-
order-conscious” SUCXENT++ significantly outperforms both GLOBAL-ORDER and SHARED-INLINING[11]
in at least 65% of the benchmark queries with the highest observed gain factors being 1939 and 880, respec-
tively. To the best of our knowledge, this is the first effort on exploiting a non-invasive automatic technique to
improve query performance in the context of XPATH evaluation in relational environment.

Recently, [3] showed that MONETDB is among the most efficient and scalable tree-aware relational-based
XQuery processor and outperforms the current generation of XQuery systems significantly. Consequently, we
investigated how our proposed technique compared to MONETDB. Our study revealed some interesting results.
First, although MONETDB is 11-164 and 3-74 times faster than GLOBAL-ORDER and SHARED-INLINING,
respectively, for the majority of the benchmark queries, this performance gap is significantly reduced when
MONETDB is compared to SUCXENT++. Our results show that not only MONETDB is now 1.3-16 times faster
than SUCXENT++ with join-order enforcement but surprisingly our approach is faster than MONETDB for 33%
of benchmark queries! Additionally, MONETDB (Win32 builds) failed to shred 1GB dataset as it is vulnerable
to the virtual memory fragmentation in Windows environment. Note that, this is in contrary to the results in [3]
where MONETDB was built on top of Linux 2.6.11 operating system (8GB RAM), using a 64-bit address space,
and was able to efficiently shred 11GB dataset.

In summary, the main contributions of this paper are as follows. In Section 4, we describe our novel schema-
oblivious relational storage scheme for XML. In Section 5, we present how ordered XPATH queries are supported
in our proposed storage scheme. In Section 6, we proposed a novel “left-to-right” join order-based technique to

2



(a) Original Schema of SUCXENT++

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, PathId, LeafOrder, 

  BranchOrder, BranchOrderSum, 

  LeafValue)

DocumentRValue (DocId, Level, RValue)

(b) Modified Schema of SUCXENT++

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, DeweyOrderSum,

   PathId, BranchOrder, LeafOrder, 

   SiblingSum, LeafValue)

Attribute (DocId, LeafOrder, PathId, 

   LeafValue)

DocumentRValue (DocId, Level, RValue)

Catalog

Book

Title Chapter

Para Para

Chapter

Book

Chapter

Para

Chapter

Book

1

1

1 2 3

1 2

2

1 2

1

3*

D1 = 0

D2 = 3 D3 = 4

D4 = 6

D5 = 19

D6 = 22

D7 = 38

* - number representing local order of the node
Di = DeweyOrderSum

(c) XML Data

descendant-or-selfpreceding following

A The context node A The leaf node that represents the context node

@id @id @id

Level     M   RVal Mod
RVal

  1         6     10     19

  2         3       2       3

  3         1       1       1

  4         0       0       0

Figure 1: SUCXENT++ schema and example of XML data

improve query plan selection of relational query optimizers. To the best of our knowledge, this is the first effort
on exploiting such non-invasive automatic technique to improve query performance in the context of XPATH

processing in relational environment. Through an extensive experimental study in Section 7, we show that our
approach significantly outperforms existing tree-unaware approaches for ordered XPATH queries. Additionally,
our approach reduces significantly the performance gap between tree-aware and tree-unaware approaches and
even outperform a state-of-the-art tree-aware approach for certain benchmark queries.

2 Related Work

Most of the previous tree-unaware approaches, except [12], focused on proposing efficient evaluation for
children and descendant-or-self axes and positional predicates in XPATH queries. In this paper, the
main focus is on the evaluation for following, preceding, following-sibling, and preceding-sibling
axes as well as position-based and range predicates. All previous approaches, reported query performance on
small/medium XML documents – smaller than 500 MB. We investigate query performance on large synthetic
and real datasets. This gives insights on the scalability of the state-of-the-art tree-unaware approaches for
ordered XML processing.

Compared to the tree-aware schemes [3, 4, 6, 15], our technique is tree-unaware in the sense that it can be
built on top of any commercial RDBMS without modifying the database kernel. The approaches in [4, 15] do
not provide a systematic and comprehensive effort for processing ordered XPATH queries. Although the scheme
presented in [3, 4, 6] can support ordered axes, no comprehensive performance study has demonstrated with a
variety of ordered XPATH queries. Furthermore, these approaches did not exploit the “left-to-right” join order
technique to improve query plan selection.

In [12], Tatarinov et al. proposed the first solution for supporting ordered XML query processing in a re-
lational database. A modified EDGE table [5] was the underlying storage scheme. They described three order
encoding methods: global, local, and dewey encodings. The best query performance was achieved with the
global encoding for query-mostly workloads and with dewey encoding for a mix of queries and updates. Our
focus differs from the above approach in the following ways. First, we focus on query-mostly workloads. Sec-
ond, we consider a novel order-conscious storage scheme that is more space- and query-efficient and scalable
when compared to the global encoding.

3 Background on SUCXENT++

Our approach for ordered XPATH processing relies on the SUCXENT++ approach [10]. We begin our discussion
by briefly reviewing the storage scheme of SUCXENT++. Foremost, in the rest of the paper, we always assume

3



DocId LeafOrder PathId LeafValue

1 1 1 book 01

1 5 1 book 02

1 7 1 book 03

Attribute

DocId Level RValue

1 1 10

1 2 2

1 3 1

DocRValue

PathId PathExp

1 .catalog#.book#.@id#    

2 .catalog#.book#.title#   

3 .catalog#.book#.chapter#.para#   

Path

4 .catalog#.book#.chapter#

5 .catalog#.book#

DocId
Leaf

Order
PathId

Leaf
Value

1 1 2 D1

1 2 3 D2

1 3 3 D3

PathValue

1 4 4 D4

1 5 3 D5

1 6 4 D6

1 7 5 D7

Branch
Order

0

2

3

2

1

2

1

Dewey
OrderSum

0

3

4

6

19

22

38

Sibling
Sum

0

0

1

3

19

22

38

Figure 2: XML data in RDBMS

document order in our discussions. The SUCXENT++ schema is shown in Figure 1(a). Document stores the
document identifier DocId and the name Name of a given input XML document T . We associate each distinct
(root-to-leaf) path appearing in T , namely PathExp, with an identifier PathId and store this information in Path

table. For each leaf node n in T , we shall create a tuple in the PathValue table. We now elaborate the meaning
of the attributes of this relation.

Given two leaf nodes n1 and n2, n1.LeafOrder < n2.LeafOrder iff n1 precedes n2. LeafOrder of the first leaf
node in T is 1 and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a leaf node immediately preceding n2. Given two
leaf nodes n1 and n2 where n1.LeafOrder+1 = n2.LeafOrder, n2.BranchOrder is the level of the nearest common
ancestor of n1 and n2. That is, n1 and n2 intersect at the BranchOrder level. The data value of n is stored in
n.LeafValue.

To discuss BranchOrderSum and RValue, we introduce some auxiliary definitions. Consider a sequence of
leaf nodes C: 〈n1, n2, n3, . . . , nr〉 in T . Then, C is a k-consecutive leaf nodes of T iff (a) ni.BranchOrder ≥ k
for all i ∈ [1,r]; (b) If n1.LeafOrder > 1, then n0.BranchOrder < k where n0.LeafOrder+1 = n1.LeafOrder; and (c)
If nr is not the last leaf node in T , then nr+1.BranchOrder < k where nr.LeafOrder+1 =
nr+1.LeafOrder. A sequence C is called a maximal k-consecutive leaf nodes of T , denoted as Mk, if there
does not exist a k-consecutive leaf nodes C ′ and |C|<|C ′|.

Let Lmax be the largest level of T . Then, RValue of level `, denoted as R`, is 1 if ` = Lmax. Otherwise,
R` = R`+1 × |M`+1| + 1. Now we are ready to define the BranchOrderSum attribute. Let N to be the set
of leaf nodes preceding a leaf node n. n.BranchOrderSum is 0 if n.LeafOrder = 1 and

∑
m∈N Rm.BranchOrder

otherwise.

Based on the definitions above, Prakash et al. [10] defined Property 1 (below) which is essential to
determine ancestor-descendant relationships efficiently.

Property 1 Given two leaf nodes n1 and n2, |n1.BranchOrderSum - n2.BranchOrderSum| < R` implies the
nearest common ancestor of n1 and n2 is at a level greater than `. 2

4 Extensions of SUCXENT++

To support ordered XML queries, the order information of nodes must be captured in the XML storage scheme.
Unfortunately the LeafOrder and BranchOrderSum attributes only encode the global order of all leaf nodes. Since
(order) information of non-leaf nodes is not explicitly stored, it must be derived from the attributes of leaf nodes.

We now present how the original SUCXENT++ schema is extended to process ordered XPath queries ef-
ficiently. First, we move information related to attribute nodes from PathValue table to a new Attribute ta-
ble. Second, we introduce new attributes to encode the relative order between (both non-leaf and leaf) nodes.
Specifically, DeweyOrderSum and SiblingSum are introduced to replace BranchOrderSum. Second, the definition
of RValue is modified such that RValue and DeweyOrderSum preserve the properties presented [10]. The modified
schema is shown in Figure 1(b) and Figure 2 shows the shredded version of the example XML document.

4



Algorithm to Compute DeweyOrderSum

01  for each non-attribute leaf node ni arranged in document order {

02      if (ni.branchOrder > 0) {
03          ni.DeweyOrderSum = dSum[ ni.branchOrder + 1 ] + ModRValue( ni.branchOrder );
04          for ( level = ni.branchOrder + 1; level <= maxDepthOfXMLDoc; level++ )
05              dSum[level] = ni.DeweyOrderSum;
06      }
07      else {    //initialization for the first leaf node
08          ni.DeweyOrderSum = 0;
09          for ( level = 1; level <= maxDepthOfXMLDoc; level++ )
10              dSum[level] = 0;
11      }

12  }

Figure 3: Algorithm to compute DeweyOrderSum

4.1 Attribute Table

The PathValue table originally stored information related to both element and attribute nodes. However, to
avoid mixing the order of element and attribute nodes, we separate the attribute nodes into Attribute table. The
Attribute table consists of the following columns: DocId, LeafOrder, PathId, LeafValue. As we shall see later, a
non-leaf node can be represented by the first descendant leaf nodes. Therefore, an attribute node is identified
by DocId and LeafOrder of its parent node and its PathId.

4.2 Modified RValue Attribute

Conceptually, RValue is used to encode the level of the nearest common ancestor of any pairs of leaf nodes. To
ensure a property like Property 1 holds after modifications, intuitively, we “magnify” the gap between RValues,
as shown in Definition 1. Relative order information is then captured in these gaps.

Definition 1 [ModifiedRValue] Let Lmax be the largest level of an XML tree T . ModifiedRValue of level `,
denoted as R′

`, is defined as follows: (i) If ` = Lmax − 1 then R′
` = 1; (ii) If 0 < ` < Lmax − 1 then

R′
` = 2R′

`+1 × |M`+1|+ 1. 2

For example, consider the XML tree shown in Figure 1(c). Lmax = 4. The values of |M1|, |M2|, and |M3|
are 6, 3, and 1, respectively. Then, R′

3 = 1, R′
2 = 2× 1× |M3|+ 1 = 3, and R′

1 = 2× 3× |M2|+ 1 = 19. To
ensure the evaluation of queries other than ordered XPATH queries is not affected by the above modifications,
the RValue attribute in DocumentRValue stores R′`−1

2 + 1 instead of R′
`.

4.3 DeweyOrderSum and SiblingSum Attributes

Next, we define the first attribute related to ordered XPATH processing. Consider the path query
/catalog/book[1]/chapter[1] and Figure 1(c). Since only leaf nodes are stored in the PathValue

table, the new attribute DeweyOrderSum of leaf nodes captures order information of the non-leaf nodes. At first
glance, a simple representation of the order information could be a Dewey path. For instance, the Dewey path
of the first chapter node of the first book node is “1.1.2”. However, using such Dewey paths has two major
drawbacks. Firstly, string matching of Dewey paths can be computationally expensive. Secondly, simple lex-
icographical comparisons of two Dewey paths may not always be accurate [12]. Comparing “1.2” and “10.2”
in lexicographical order will indicate that “10.2” appears before “1.2” [12]. Hence, we define DeweyOrderSum

for this purpose:

Definition 2 [DeweyOrderSum] Consider an XML document T and a leaf node n at level ` in T . Ord(n, k)
= i iff a is either an ancestor of n or n itself; k is the level of a; and a is the i-th child of its parent.
DeweyOrderSum of n, n.DeweyOrderSum, is defined as

∑`
j=2 Φ(j) where Φ(j)=[Ord(n, j)-1]×R′

j−1. 2

5



Algorithm to Compute SiblingSum

01 for each non-attribute leaf node ni arranged in document order {

02     if( ni.branchOrder > 0 ) {

03         sOrd = siblingOrder.Order( ni.branchOrder + 1, elementName[ni.branchOrder + 1] );
           //siblingOrder.Order(level, elementname) keep tracks of the same-sibling order
           //for a node, given the level and the element name for that level

04         ni.SiblingSum = sSum[ ni.branchOrder ] + (sOrd-1) * ModRValue( ni.branchOrder );

05         for ( level = ni.branchOrder + 1; level <= maxDepthOfXMLDoc; level++)
06             sSum[level] = ni.SiblingSum;
07         for ( level = ni.branchOrder + 2; level <= ni.depth; level++)
08             siblingOrder.Order(level, elementName[level]);

09     }

10     else { //initialization for the first leaf node
11         ni.SiblingSum = 0;
12         for ( level = 1; level <= maxDepthOfXMLDoc; level++ )
13             sSum[level] = 0;
14         for ( level = 1; level <= ni.depth; level++ )
15             siblingOrder.Order(level, elementName[level]);
16     }

17 }

Figure 4: Algorithm to compute SiblingSum

For example, consider the rightmost chapter node in Figure 1(c) which has a Dewey path “1.2.2”. Using
the ModifiedRValue values derived previously, the DeweyOrderSum of this node can then be calculated as follows:
n.DeweyOrderSum = (Ord(n, 2)− 1)×R′

1 + (Ord(n, 3)− 1)×R′
2 = 1× 19 + 1× 3 = 22.

Figure 3 shows the algorithm to derive DeweyOrderSum during document shredding. dSum is an array
to store the DeweyOrderSum for each level with respect to the current node ni. Since ni.BranchOrder is the
level of the nearest common ancestor between the current node ni and the previous node, it implies that
the local order of current node ni at level BranchOrder + 1 is increased by 1 and the local order of ni at
level ≤ BranchOrder remains unchanged. Therefore, ni.DeweyOrderSum equals to dSum[BranchOrder + 1] +
ModifiedRValue(BranchOrder) (line 03). dSum is also updated accordingly (lines 04-05).

Note that DeweyOrderSum is not sufficient to compute position-based predicates with QName name tests,
e.g., chapter[2]. Hence, the SiblingSum attribute is introduced to the PathValue table.

Definition 3 [SiblingSum] Consider an XML document T and a leaf node n at level ` in T . Sibling(n, k) = i
iff a is either an ancestor of n or n itself; k is the level of a; and the i-th τ -child of its parent (τ is the tag name
of a). SiblingSum of n, n.SiblingSum, is

∑`
j=2 Ψ(j) where Ψ(j) = [Sibling(n, j)-1]×Rj−1. 2

SiblingSum encodes the local order of nodes which are with the same tag name of n, namely same-tag-sibling
order. For example, consider the children of the first book element in Figure 1(c). The local orders of title
and the first and second chapter nodes are 1, 2 and 3, respectively. On the other hand, the same-tag-sibling
order of these nodes are 1, 1 and 2, respectively.

The algorithm to compute SiblingSum is shown in Figure 3. SiblingOrder.Order(level, elementName) is used
to calculate Sibling(ni, k) for the current node ni where k = level and τ = elementName. ni.SiblingSum equals to
sSum[BranchOrder] + [Sibling(ni , ni.BranchOrder+1) - 1] × ModifiedRValue(BranchOrder) (line 04).

4.4 Preservation of SUCXENT++’s Features

The above modifications do not adversely affect the document reconstruction process and efficient evaluation
of non-ordered XPATH queries, as discussed in [10]. Recall that given a pair of leaf nodes, Property 1 was
used in [10] to efficiently determine the nearest common ancestor of the nodes. Since we have modified the
definition of RValue and replaced the BranchOrderSum attribute with the DeweyOrderSum attribute, this property
is not applicable to the extended SUCXENT++ scheme. It is necessary to ensure that a corresponding property
holds in the extended system.

LEMMA 1
∑`

j=k Φ(j) ≤ R′k−2−1

2 where Φ(j) =[Ord(n, j)-1]×R′
j−1, k ∈ (2,`] and n is a leaf node in an

XML document at level `. 2

6



Based on the above lemma, it is straightforward to show that
∑`

j=k Φ(j) < R′
k−2.

Theorem 1 Let n1 and n2 be two leaf nodes in an XML document. If
R′`+1−1

2 + 1 ≤ |n1.DeweyOrderSum -

n2.DeweyOrderSum| < R′`−1
2 + 1 then the level of the nearest common ancestor of n1 and n2 is ` + 1. 2

For example, consider the second leaf node in Figure 1(c). DeweyOrderSum of this node is 3. Let D1 be the
DeweyOrderSum of leaf nodes that have nearest common ancestor at level 2. Using the above theorem, D1 falls
within the following range: (R′

2− 1)/2+1 ≤ |D1− 3| < (R′
1− 1)/2+1⇒ 2 ≤ |D1− 3| < 10 which returns

the first and fourth leaf nodes (DeweyOrderSum = 0 and 6, respectively). Let D2 be the DeweyOrderSum of leaf
nodes that have nearest common ancestor at level 3. D2 falls within the following range: (R′

3 − 1)/2 + 1 ≤
|D2 − 3| < (R′

2 − 1)/2 + 1 ⇒ 1 ≤ |D2 − 3| < 2 which returns the third leaf node (DeweyOrderSum = 4).
Now let say we want to get the leaf nodes that have nearest common ancestor at level 2 or deeper and let D3

be the DeweyOrderSum of these nodes. D3 falls within the following range: |D3 − 3| < (R′
1 − 1)/2 + 1 ⇒

|D3 − 3| < 10 which returns the first four leaf nodes.
We illustrate Theorem 1 further with XQUERY example. Consider the following XQUERY on the XML tree

in Figure 1(c).

FOR $b IN document(“catalog”)/catalog/book[1]
RETURN $b/chapter/para

Let Da be DeweyOrderSum of the first leaf node satisfying /catalog/book[1], which is the first title
node. The RETURN clause implies the path /catalog/book/chapter/para. In this particular case, the
nearest common ancestor between para nodes and book node is at level 2. This implies that the nearest
common ancestor between para nodes and the first leaf node satisfying book node is at level 2 or deeper.
Let Db be DeweyOrderSum of the resulting nodes that satisfy both paths. Since the level of intersection is 2 or
deeper, |Db − Da| < (R′

1 − 1)/2 + 1. From Figure 1(c), Da = 0 and R′
1 = 19. Hence, nodes in the query

result set must satisfy the inequality: |Db − 0| < (19− 1)/2 + 1. Note that DeweyOrderSum of the second and
third leaf nodes (para nodes) are 3 and 4. Since |3− 0| < 10 and |4− 0| < 10, these nodes satisfies the above
query. Whereas, the fifth leaf node whose DeweyOrderSum is 19 does not satisfy the above query.

The proofs of the lemma, theorems and propositions are given in Appendix A.

5 Ordered XPath Processing

This section describes how ordered XPATH queries are supported by the modified schema. First, we propose a
method of node order comparison in the absence of non-leaf nodes. Next, we show how ordered XPATH queries
are supported in detail. Finally, we present a translation algorithm of ordered XPATH queries and SQL.

5.1 Non-leaf Node Order Comparison

Our strategy for comparing the order of non-leaf nodes is based on the following observation. If node n0 pre-
cedes (resp. follows) another node n1, then descendants of n0 must also precede (resp. follow) the descendants
of n1. Therefore, instead of comparing the order between non-leaf nodes, we compare the order between their
descendant leaf nodes. For this reason, we define a representative leaf node of a non-leaf node n to be its first
descendant leaf node. Note that the BranchOrder attribute records the level of the nearest common ancestor of
two consecutive leaf nodes. Let C be the sequence of descendant leaf nodes of n and n1 be the first node in
C. We know that the nearest common ancestor of any two consecutive nodes in C is also a descendant of node
n. This implies (1) except n1, BranchOrder of a node in C is at least the level of node n and (2) the nearest
common ancestor of n1 and its immediately preceding leaf node is not a descendant of node n. Therefore,
BranchOrder of n1 is always smaller than the level of n. We summarize this property in Property 2.

7



Property 2 Let n be a non-leaf node at level ` and C = 〈n1, n2, n3, . . . , nr〉 be the sequence of descendant
leaf nodes of n in document order. Then, n1.BranchOrder < ` and ni.BranchOrder ≥ `, where i ∈ (1,r]. 2

Definition 4 [DeweyOrderSum of non-leaf nodes] Let S = 〈i1, i2, i3, . . . , ir1〉 be a sequence of non-leaf
sibling nodes of a non-leaf node i0 in document order. Let C = 〈n1, n2, . . . , nr2〉 be the sequence of leaf nodes
of S and nj2 is denoted as the first descendant leaf node of ij1 . Then, ij1 .DeweyOrderSum = nj2 .DeweyOrderSum.
2

In the above definition, DeweyOrderSum of a leaf node is conceptually propagated to its ancestor nodes.
Consequently, the following proposition holds.

Proposition 1 Let C = 〈n1, n2, n3, . . . , nr〉 be a sequence of sibling nodes. Consider ni where 1 < i ≤ r
and the level of ni is `, where ` > 1. Let m be ni or descendant of ni. Then, n1.DeweyOrderSum+ [Ord(ni) -
Ord(n1)] ×R′

`−1 ≤m.DeweyOrderSum < n1.DeweyOrderSum+ [(Ord(ni) - Ord(n1))+1] ×R′
`−1 where Ord(ni)

and Ord(n1) are the local order of ni and n1, respectively. 2

By using the above proposition, we can compare the order of two non-leaf nodes without evaluating ev-
ery sibling nodes in the sequence. Also, since n1 is the first sibling, Ord(n1) = 1. Therefore, based on
the above proposition, the following holds: n1.DeweyOrderSum+ [Ord(ni)-1]×R′

`−1 ≤ m.DeweyOrderSum <
n1.DeweyOrderSum+ Ord(ni) ×R′

`−1.
Similar propositions for SiblingSum can be established in a straightforward manner.

5.2 Support for Ordered XPath Queries

We now present how various types of ordered XPATH queries are supported by the modified SUCXENT++. Due
to space constraints, we only focus on how DeweyOrderSum and ModifiedRValue are used for query processing.
Similar technique can be applied to evaluations with SiblingSum.

Position predicates. Position-based predicates, i.e., predicates of the form position()=i, select the node at
the i-th position of the sequence of inner focus context nodes. We propose to compute the i-th node without
evaluating every node in the sequence by applying Proposition 1. For example, suppose n1 be the first book
node of the sequence of book nodes (the context nodes) in Figure 1(c). Observe that n1.DeweyOrderSum

= 0 as its representative leaf node is the first leaf node of the XML tree. We now employ the inequality in
Proposition 1 to select a sibling node, e.g., the second book node n2. Here, Ord(n2) = 2, ` = 2, R′

1 = 19, and
n1.DeweyOrderSum = 0. Then, 0+1×19 ≤ n2.DeweyOrderSum < 0+2×19⇒ 19 ≤ ni.DeweyOrderSum <
38. The nodes in this range are the descendant leaf nodes of n2. Such simple arithmetic calculations can be
efficiently implemented in a relational database.

fn : last() can be computed by first determining all sibling nodes that satisfy the specific path and then
finding the node with the largest DeweyOrderSum.

Position predicate on child axes. This class of queries can be translated into a child axis followed by a position
predicate, in which one must select the i-th child of the context node. Our strategy is to determine the first child
of a context node and then the child’s i-th sibling node as described above. First, by using Definition 4, we
know that if n2 is the first child of n1, then n1.DeweyOrderSum = n2.DeweyOrderSum. Second, Proposition 1
provides us a method for selecting the i-th sibling node of a node.

Reconsider Figure 1(c) and the XPATH query /catalog/*[2]. The query result is the second child of
catalog node. Suppose n0 is the context node /catalog. Let n1 be the first sibling node in the sequence
returned by the expression /catalog/*. Then, n0.DeweyOrderSum = n1.DeweyOrderSum. Since the first
sibling in that sequence is n1 and all siblings of n1 is in that sequence, we can now utilize Proposition 1 to
select the leaf nodes of the second node in the context.

The range operator, e.g., [position()=2 TO 10], can be easily handled in similar fashion.

Following and preceding axes. following axis selects all nodes which follow the context node excluding
the descendants of the context node. preceding axis, on the other hand, selects all nodes which precede

8



Di

DeweyOrderSum

Di+R’L-1
Di - ((R’L-2 - 1) / 2 + 1) Di + ((R’L-2 - 1) / 2 + 1)

preceding-sibling following-sibling

followingpreceding

descendant-or-selfDi : DeweyOrderSum of the context node

L : level of the context node

Figure 5: Relationship between DeweyOrderSum and RValue.

the context node excluding the ancestors of the context node. Similar to position predicates, we summarize a
property of DeweyOrderSum to facilitate efficient processing of these axes.

Proposition 2 Let na and nb be two nodes in the XML tree T and nb is a context node at level `b where `b > 1.
Then, the following statements hold:

1. na.DeweyOrderSum ≥ nb.DeweyOrderSum+R′
`b−1

if and only if na follows nb and is not a descendant of
nb;

2. Similarly, na.DeweyOrderSum < nb.DeweyOrderSum if and only if na precedes nb and na is neither a
descendant nor an ancestor of nb.

2

We illustrate this proposition in Figure 5. Now let us consider the following examples. Suppose that
we evaluate the following axis on the first book node nb in Figure 1(c). Here, nb.DeweyOrderSum = 0,
` = 2 and R′

1 = 19. Let N be the nodes in the result of the evaluation of following axis. Then, by
using Proposition 2, n ∈ N must satisfy this inequality: n.DeweyOrderSum ≥ 0 + 19. Similarly, suppose we
evaluate the preceding axis on the last book node n′b in Figure 1(c). n′b.DeweyOrderSum = 38. Denote
the sequence of nodes satisfying the preceding axis to be N ′. Then n ∈ N ′ must satisfy the following
inequality: n.DeweyOrderSum < 38. Another example can be found in Figure 1(c).

Note that since SUCXENT++ only stores the leaf nodes, returning the internal nodes and the whole subtree
as required by following::* and preceding::* axis require extra processing as the resulting XML

document may have a very different structure or schema than the original XML document. This is achieved in
SUCXENT++ during the result construction phase. Observe that, in our query, if we use QName as the name
test (for example following::title), and the path from the root to QName element is unique then no
extra processing is required.

If the level of the QName is greater than the level of the context node (e.g.
/catalog/book[2]/preceding::title in Figure 1(c)), then we can use Proposition 2 and PathId

to return the resulting nodes. The same also applies if the level of the QName equals to the level of the context
node (e.g. /catalog/*[1]/following::book in Figure 1(c)). However, if the level of the QName is
less than the level of the context node (e.g. /catalog/*[1]/chapter/para/following::chapter
in Figure 1(c)), we need to use Theorem 1 to exclude the nodes that have common ancestor at QName level or
deeper. These three cases are illustrated in Figure 6.

Following-sibling and preceding-sibling axes. following-sibling axis selects the children of the
context node’s parent that occur after the context node in document order whereas preceding-sibling
axis selects the children of the context node’s parent that occur before the context node in document order.
Support for following-sibling (resp. preceding-sibling) axis can be achieved with an additional
constraint on the following (resp. preceding) axis – the selected nodes must be siblings of the context
node.

Proposition 3 Let na and nb be two nodes in the XML tree T and nb is the context node at level `b where
`b > 2. Then, the following statements hold:

9



LQ

LC

followingpreceding

preceding::QName following::QName

QName

LQ= LC

followingpreceding

preceding::QName following::QName

LQ

followingpreceding

preceding::QName following::QName

LC

QNameQName

(a) Case 1: Qname level (LQ) > context node level (LC)

(b) Case 2: Qname level (LQ) = context node level (LC)

(a) Case 3: Qname level (LQ) < context node level (LC)
The context node The leaf node that represents the context node

QName QName

QName QName

Figure 6: following::QName

1. nb.DeweyOrderSum +R′
`b−1 ≤ na.DeweyOrderSum < nb.DeweyOrderSum +(R′

`b−2−1)/2+1 if and only
if na is a sibling of nb and na follows nb.

2. nb.DeweyOrderSum−(R′
`b−2 − 1)/2− 1 < na.DeweyOrderSum < nb.DeweyOrderSum if and only if na is

a sibling of nb and na precedes nb.
2

The above proposition is illustrated in Figure 5. Now let us consider the following examples. Suppose we
evaluate the following-sibling axis on the first title node nt in Figure 1(c). Here nt.DeweyOrderSum

= 0, ` = 3, R′
1 = 19, and R′

2 = 3. Denote N to be the nodes reachable via the following-sibling
axis from nt. Using Proposition 3, 0 + 3 ≤ nk.DeweyOrderSum < 0 + (19 − 1)/2 + 1 where nk ∈ N . That
is, 3 ≤ nk.DeweyOrderSum < 10. Hence, the second (DeweyOrderSum = 3) and the third (DeweyOrderSum

= 6) chapter nodes are in this range. Now, suppose we evaluate the preceding-sibling axis at the
last chapter node nc in Figure 1(c). Here nc.DeweyOrderSum = 22. Let N be the nodes which satisfy the
preceding-sibling axis. Therefore, 22 − (19 − 1)/2 − 1 < nr.DeweyOrderSum < 22 where nr ∈ N .
That is, 12 < nr.DeweyOrderSum < 22. Hence, the chapter node with DeweyOrderSum = 19 satisfies this
bound. Another example can be found in Figure 1(c).

10



processPathExpr (XPath)

01 for every step in the XPath {
02   if (step.getAxis() == CHILD and 
              step.hasPredicate() == FALSE)
03     currentPath.add(nametest, step.getAxis())
04   else {
05     from_sql.add("PathValue as Vi")
06     if(currentPath.level() > 1) {
07       where_sql.add("Vi.pathid in currentPath.getPathId()")
08       where_sql.add("Vi.branchOrder < currentPath.level()")
09     }
10     processAxis(step, currentPath)
11     processPredicate(step, currentPath)
12   }
13   if (step.isLast() and currentPath.needUpdate()) {
14     from_sql.add("PathValue as Vi")
15     where_sql.add("Vi.pathid in currentPath.getPathId()")
16   }
17 }
18 select_sql.add("Vi.leafValue, Vi.leafOrder, ... ")
19 return select_sql + from_sql + where_sql + 
          where_sql.unionWithAttribute()

processAxis (step, currentPath)

01 switch (step.getAxis()){
02   child:
03     where_sql.add("Vi.DeweyOrderSum BETWEEN 
            Vi-1.DeweyOrderSum - RValue(currentPath.level() - 1) + 1 AND
            Vi-1.DeweyOrderSum + RValue(currentPath.level() - 1) - 1 ")
04   following:
05     where_sql.add("Vi.DeweyOrderSum >= 
            Vi-1.DeweyOrderSum + 2 * RValue(currentPath.level()) - 1 ")
06     if (currentPath.QNameLevel(nametest) < currentPath.level()
07       where_sql.add("+ RValue(currentPath.QNameLevel(nametest) - 1) - 1")
08   preceding:
09     where_sql.add("Vi.DeweyOrderSum < Vi-1.DeweyOrderSum ")
10     if (currentPath.QNameLevel(nametest) < currentPath.level()
11       where_sql.add("- RValue(currentPath.QNameLevel(nametest) - 1) + 1")
12   following-sibling:
13     where_sql.add("Vi.DeweyOrderSum BETWEEN 
            Vi-1.DeweyOrderSum + 2 * RValue(currentPath.level()) - 1 AND
            Vi-1.DeweyOrderSum + RValue(currentPath.level() - 1) - 1 ")
14   preceding-sibling:
15     where_sql.add("Vi.DeweyOrderSum BETWEEN 
            Vi-1.DeweyOrderSum - RValue(currentPath.level() - 1) + 1 AND
            Vi-1.DeweyOrderSum - 1 ")
16 }
17 currentPath.add(nametest, step.getAxis())

(b)The processAxis Algorithm(a)The processPathExpr Algorithm

Figure 7: Procedure processPathExpr and Procedure processAxis.

processPredicate (step, currentPath)

01 switch (step.getAxis()) {
02   CHILD:
03      n_from = step.getPredicateFrom() - 1
04      n_to   = step.getPredicateTo()
05   FOLLOWING-SIBLING:
06      n_from = step.getPredicateFrom()
07      n_to   = step.getPredicateTo() + 1
08   PRECEDING-SIBLING:
09      n_from = - step.getPredicateFrom()
10      n_to   = - step.getPredicateTo() + 1
11 }
12 switch (step.getPredicateType()){
13   position based predicate without name test:
14      where_sql.add("Vi.DeweyOrderSum BETWEEN
             Vi-1.DeweyOrderSum + n_from * (2 * RValue(currentPath.level()) - 1) AND
             Vi-1.DeweyOrderSum + n_to * (2 * RValue(currentPath.level()) - 1) - 1 ")
15   position based predicate with name test:
16      where_sql.add("Vi.SiblingSum BETWEEN
             Vi-1.SiblingSum + n_from * (2 * RValue(currentPath.level()) - 1) AND
             Vi-1.SiblingSum + n_to * (2 * RValue(currentPath.level()) - 1) - 1 ")
17 }

Figure 8: Procedure processPredicate.

5.3 Ordered XPath Query Translation Algorithm

Based on the properties defined in the previous subsection, we present an algorithm, shown in Figures 7 and 8,
for generating SQL from ordered XPATH queries. Our algorithm assumes an XPATH expression is represented as
a sequence of steps where a step may be associated with predicates. A SQL statement consists of three clauses:
select sql, from sql and where sql. We assume that a clause has an add() method which encapsulates
some simple string manipulations and simple SUCXENT++ joins for constructing valid SQL statements. In
addition to preprocessing PathId as mentioned in [10], for a single XML document, we also preprocess RValue

to reduce the number of joins. The translation consists of three main procedures.
processPathExpr (Figure 7(a)): It analyzes the steps of an input XPATH expression (Line 01) and

outputs a SQL statement. If the step consists of a child axis only (Lines 02-03), then we simply maintain a
global variable currentPath which records the simple downward path from the root to the context nodes.1

Otherwise, when the step involves ordered predicates/other axes, we add predicates which select a superset
of the next context nodes (Lines 05-09) and then call processAxis and processPredicate (Lines
10-11) with currentPath to obtain the next context nodes. We add predicates in Lines 08 to determine the
representative nodes of the context nodes. Finally, we collect the final results (Line 19).

processAxis (Figure 7(b)): This procedure translates a step, together with currentPath, based on
the step type (Line 01). Lines 02-03, 04-11 and 12-15 encode Theorem 1, Proposition 2 and Proposition 3,
respectively.

1The details for maintaining currentPath is simple but lengthy. For simplicity, we omitted such discussions.

11



01  WITH V (leafValue, pathID, branchOrder, DeweyOrderSum,
            DocId, LeafOrder  ) AS (
02  SELECT V2.leafValue, V2.pathID, V2.branchOrder,
           V2.DeweyOrderSum, V2.DocId,  V2.LeafOrder
03     FROM PathValue V1, PathValue V2
04     WHERE V1.docId = 1
05     AND V1.SiblingSum BETWEEN
               0 + 0 * (2 * 10 - 1) AND
               0 + 1 * (2 * 10 - 1) - 1
06     AND V1.pathid in (5,4,3,2)
07     AND V1.branchOrder < 2
08     AND V2.docId = V1.docId
09     AND V2.DeweyOrderSum BETWEEN
               V1.DeweyOrderSum - 10 + 1 AND

   V1.DeweyOrderSum + 10 - 1
10     AND V2.pathid in (4,3,2)
11     AND V2.DeweyOrderSum BETWEEN
               V1.DeweyOrderSum + 1 * (2 * 2 - 1) AND

   V1.DeweyOrderSum + 3 * (2 * 2 - 1) - 1
12  )
13  SELECT V.* , 1 AS Attr
14     FROM V
15  UNION ALL
16  SELECT A.leafValue, A.pathID, V.branchOrder, V.DeweyOrderSum,
           A.DocId, A.LeafOrder ,  0 AS Attr
17     FROM Attribute A, V
18     WHERE A.DocId = V.DocId AND A.LeafOrder = V.LeafOrder
19     AND A.PathId in (0)
20  ORDER BY DocId, DeweyOrderSum, Attr

Figure 9: SQL example: /catalog/book[1]/*[position()=2 to 3]

01  WITH V (leafValue, pathID, branchOrder, DeweyOrderSum, 
            DocId, LeafOrder  ) AS ( 
02  SELECT DISTINCT V2.leafValue, V2.pathID, V2.branchOrder, 
                    V2.DeweyOrderSum, V2.DocId, V2. LeafOrder 
03     FROM PathValue V1, PathValue V2
04     WHERE V1.docId = 1
05     AND V1.pathid in (4,3)
06     AND V1.branchOrder < 3
07     AND V2.docId = V1.docId
08     AND V2.DeweyOrderSum >=  V1.DeweyOrderSum + 2 * 2 – 1  
09             + 10 - 1
10     AND V2.pathid in (5,4,3,2)
11  ) 
12  SELECT V.* , 1 AS Attr 
13     FROM V 
14  UNION ALL 
15  SELECT A.leafValue, A.pathID, V.branchOrder, V.DeweyOrder Sum, 
           A.DocId, A.LeafOrder ,  0 AS Attr 
16     FROM Attribute A, V 
17     WHERE A.DocId = V.DocId AND A.LeafOrder = V.LeafOrder 
18     AND A.PathId in (1) 
19  ORDER BY DocId, DeweyOrderSum, Attr 

Figure 10: SQL example: /catalog/book/chapter/following::book

processPredicate (Figure 8(a)): This procedure mainly translates position predicates. Lines 01-11
determine the range of position specified by the predicate. Given these, Lines 12-17 implement Proposition 1.

We now illustrate the details of the translation algorithms with five examples related to translation of
position-based predicates.

Example 1 [Position-based predicates] Consider the path expression /catalog/book[1]/

*[position()=2 to 3]. The translated SQL is shown in Figure 9. /catalog/book[1] is trans-
lated to Lines 05-07. Theorem 1 is used to get the children of /catalog/book[1] (lines 08-10), and
/*[2] is translated to Lines 11. Lines 13-19 are used to union the resulting element nodes with the attribute
nodes and the last line is to order the result by document order.

Example 2 [SQL for following axis] Consider the path expression /catalog/book/chapter/
following::book. The translated SQL is shown in Figure 10. /catalog/book/chapter is trans-
lated to Lines 05-06. Proposition 2 is used to get the following nodes (line 08) and since the level of book
is higher then the level of /catalog/book/chapter, then Theorem 1 is used to exclude the nodes that
have common ancestor at level 2 or deeper (line 09). PathId is used to return only the book nodes (line 10).

Example 3 [SQL for preceding axis] Consider the path expression /catalog/book/chapter/
preceding::book. The translated SQL is similar to Figure 10 except that the predicate in line 08 is

12



01  WITH V (leafValue, pathID, branchOrder, DeweyOrderSum,
            DocId, LeafOrder  ) AS (
02  SELECT DISTINCT V2.leafValue, V2.pathID, V2.branchOrder,
                    V2.DeweyOrderSum, V2.DocId,  V2.LeafOrder
03     FROM PathValue V1, PathValue V2
04     WHERE V1.docId = 1
05     AND V1.SiblingSum BETWEEN
               0 + 1 * (2 * 10 - 1) AND

   0 + 2 * (2 * 10 - 1) - 1
06     AND V1.pathid in (5,4,3,2)
07     AND V1.branchOrder < 2
08     AND V2.docId = V1.docId
09     AND V2.DeweyOrderSum >= V1.DeweyOrderSum + 2 * 10 - 1
10     AND V2.pathid in (5,4,3,2)
11     AND V2.DeweyOrderSum BETWEEN
               V1.DeweyOrderSum + 1 * (2 * 10 - 1) AND

   V1.DeweyOrderSum + 2 * (2 * 10 - 1) - 1
12  )
13  SELECT V.* , 1 AS Attr
14     FROM V
15  UNION ALL
16  SELECT A.leafValue, A.pathID, V.branchOrder, V.DeweyOrderSum,
           A.DocId, A.LeafOrder ,  0 AS Attr
17     FROM Attribute A, V
18     WHERE A.DocId = V.DocId AND A.LeafOrder = V.LeafOrder
19     AND A.PathId in (1)
20  ORDER BY DocId, DeweyOrderSum, Attr

Figure 11: SQL example: /catalog/book[2]/following-sibling::*[1]

replaced with V2.DeweyOrderSum < V1.DeweyOrderSum due to Proposition 2 and line 09 is replaced with
- 10 + 1 due to Theorem 1.

Example 4 [SQL for following-sibling axis] Consider the path expression /catalog/book[2]/
following-sibling::*[1]. The translated SQL is shown in Figure 11. /catalog/book[2] is
translated to Lines 05-07. /following-sibling::* is translated to Lines 08-10. Since the level of
/catalog/book is 2, the translated SQL for following-sibling is similar to following axis (line
9). *[1] is translated to line 11.

Example 5 [SQL for preceding-sibling axis] Consider the path expression /catalog/book[2]/
preceding-sibling::*[1]. The translated SQL is similar to Figure 11 except that the predicate in
line 09 is replaced with V2.DeweyOrderSum < V1.DeweyOrderSum.

6 Join Order Enforcement

Due to the tree-unaware nature of the underlying relational storage scheme as well as the lack of appropriate
XML statistics, relational optimizers may generate inefficient query plans. In order to address this problem,
some approaches have resorted to manual tuning of query plans [12] while others invade the database kernel
to make it tree-aware [3, 4]. The former approach has not been scalable as it requires significant human
intervention whereas the later approach may require non-trivial modifications of the internals of a RDBMS.
In this section, we propose a simple yet effective technique to generate better query plans automatically without
invading the database kernel.

As discussed in Section 5.3, in order to evaluate an (ordered) XPATH query in SUCXENT++, each XPATH

axis is translated into a join between the PathValue table and intermediate results (i.e., the context nodes).
For example, in Figures 9-11, PathValue V1 returns the representative nodes of the context nodes to calculate
PathValue V2. Due to the lack of tree awareness, the relational optimizer is not capable of transforming the
order of joins intelligently. Consequently, it may generate poor join order that typically requires caching large
intermediate results in the database bufferpool. This is particularly important to NL joins, where large and deep
loops are prohibitive. For example, the first few joins of a “right-to-left” join order may easily yield a large
number of context nodes. To respond to this, we propose to enforce a “left-to-right” join order on the translated
SQL query. Also, this evaluation order “naturally corresponds” to the order of XPATH steps specified in the
XPATH expression. By employing this technique, the relational optimizer does not explore the large number of
permutations of join order. We apply join order if the translated SQL query involves more than one PathValue

13



ID
Res. Card.

(10MB)
Res. Card.
(100MB)

Res. Card.
(1000MB)

Q1 66 119 74

Q2 66 119 74

Q3 104,272 626,812 627,200

Q4 65,161 392,930 393,350

Q5 30 34 34

Q6 7 7 7

Q7 21 37 54

Q8 19 35 52

Q9 250 2,500 25,000

Q10 249 2,499 24,499

Query

/catalog/item[1000]

/catalog/*[1000]

/catalog/item[position()=1000 to 10000]/
*[position()=2 to 7]

/catalog/item[position()=1000 to 10000]/authors/
author

/catalog/*[1500]/publisher/following-sibling::*

/catalog/*[1500]/publisher/following-sibling::*[5]

/catalog/*[1500]/publisher/preceding-sibling::*

/catalog/*[1500]/publisher/preceding-sibling::*[2]

/catalog/*[X]/following::title

/catalog/*[Y]/preceding::title

ID
Node Total

DC10 225,234 240,234

DC100 2,242,200 2,392,200

DC1000 22,442,612 23,942,612

DBLP 8,222,945 9,888,875

Size 
(MB)

10.3

103.3

1033.3

335

Max 
Depth

8

8

8

6

ID
Res. 
Card.

D1 2

D2 190,838

D3 6

D4 5

Query

/dblp/*[100000]/author

/dblp/article/author[2]

/dblp/*[600000]/pages/preceding-sibling::*

/dblp/*[600000]/pages/following-sibling::*

(a) Features of Dataset (c) Benchmark queries for DBLP

ID
Res. Card.

(10MB)
Res. Card.
(100MB)

Res. Card.
(1000MB)

Query

(b) Benchmark queries for DC10, DC100, and DC1000

Attribute

15,000

150,000

1,500,000

1,665,930

Total Number

X = 2250, 22500, 225000 for DC10, DC100, DC1000 respectively; Y = 250, 2500, 25000 for DC10, DC100, DC1000 respectively

Figure 12: Dataset and Benchmark Queries.

relation. In addition, if the PathValue table appears in the SQL query only once, we let the relational optimizer
to decide the plan for the join between the PathValue table and the Attribute table.

The above enforcement can easily be implemented by query hints in commercial databases. Regarding
our implementation, we use OPTION(FORCE ORDER) to implement the above technique in SUCXENT++. The
strength of this approach lies in its simplicity in implementing on any commercial RDBMS that supports query
hints.

7 Performance Study
In this section, we present the results of our performance evaluation on our proposed approach, a tree-unaware
schema-oblivious approach (GLOBAL-ORDER [12]), a tree-unaware schema-conscious approach (SHARED-
INLINING [11]), and a tree-aware approach (MonetDB [3]). Prototypes for modified SUCXENT++ (denoted
as SX), SUCXENT++ with join order enforcement (denoted as SX-JO), GLOBAL-ORDER (denoted as GO) and
SHARED-INLINING (denoted as SI) were implemented with JDK 1.5. We used the Windows version of MON-
ETDB/XQuery 0.12.0 (denoted as MXQ) downloaded from http://monetdb.cwi.nl/XQuery/Download/index.html.
The experiments were conducted on an Intel Xeon 2GHz machine running on Windows XP with 1GB of RAM.
The RDBMS used was Microsoft SQL Server 2005 Developer Edition. Note that we did not study the perfor-
mance of XML support of SQL Server 2005 as it can only evaluate the first two ordered queries in Figure 12(b).

7.1 Experimental Setup

Data and query sets. In our experiments, XBENCH [13] dataset was used for synthetic data. Data-centric (DC)
documents were considered with data sizes ranging from 10MB to 1GB. In addition, we used a real dataset,
namely DBLP XML [16]. Figure 12 (a) shows the characteristics of the datasets used. Two sets of queries
were designed to cover different types of ordered XPATH queries. In additional, the cardinality of the results
was varied. Figures 12 (b) and 12 (c) show the benchmark queries on XBENCH and DBLP, respectively. XPATH

queries with descendant axes were not included as they had been studied in [10].

Test methodology. The XPATH queries were executed in the reconstruct mode where not only the non-leaf
nodes, but also all their descendants, were selected. Appropriate indexes were constructed for all approaches
(except for MONETDB) through a careful analysis on the benchmark queries. Prior to our experiments, we
ensured that statistics on relations were collected. The bufferpool of the RDBMS was cleared before each run.
Each query was executed 6 times and the results from the first run were always discarded.

14



843.17

862.33

7,163.00

4,517.33

1,359.67

1,233.67

1,594.00

1,556.33

3,244.50

5,007.17

44.17

36.17

492.33

226.50

41.83

41.50

36.33

39.00

36.00

39.00

58.33

27.67

75,236.00

2,726.00

13.00

63.67

63.67

125.67

132.67

153.17

DC10

13,177.17

7,653.67

43,517.67

30,352.50

7,176.50

7,121.67

7,161.33

7,301.83

8,809.00

8,129.83

39,152.67

39,152.67

64,976.50

44,738.67

7,563.33

1,951.00

30,292.83

6,702.00

6,264.50

1,720.33

85,223.50

86,271.17

134,293.83

286,369.00

1,026.17

889.83

908.17

868.67

DNF

DNF

DC100 DC1000

80.50

114.67

3,023.67

1,364.33

85.83

88.67

81.17

85.83

174.67

177.17

ID

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

1,042.33

1,041.17

4,935.33

3,138.83

385.33

41.17

708.67

688.17

91.00

72.50

5,967.00

5,967.00

31,229.50

17,574.33

1,740.67

437.67

4,223.33

3,522.17

804.83

511.00

58.33

27.67

5,885.00

2,726.00

28.17

72.83

78.50

35.67

137.83

137.50

47.67

60.33

47,664.17

14,266.33

209.00

248.50

208.20

222.83

668.67

702.33

47.67

60.33

DNF

14,266.33

5,133.67

339.00

5,236.20

365.83

650.83

680.17

61.67

44.50

368,666.00

56,665.17

1,036.67

925.67

1,000.50

1,144.17

7,992.17

8,456.50

61.67

44.50

DNF

56,665.17

49,795.33

54,927.67

50,419.83

54,610.83

42,872.00

42,925.17

6,264.17

12,596.67

82,539.00

81,575.00

1,927.80

2,803.00

2,143.60

2,859.20

55.00

DNF

46,827.50

46,820.50

D1

D2

D3

D4

24,975.17

39,912.00

32,829.17

32,795.00

55.00

32,605.83

2,008.83

1,886.83

(a) For DC10, DC100, and DC1000 (in msec)

(b) For DBLP (in msec)

GOMXQ SXID SI SX-JO GOMXQ SXID SI SX-JO

GOMXQ SX GO SI GOMXQSI SISX-JO SX-JOSX SX-JOSX

Figure 13: Query Performance (in msec).

7.2 Query Evaluation Times

Figures 13(a) (resp. 13(b)) presents the query evaluation times for the approaches on DC (resp. DBLP) dataset.
Queries that Did Not Finish within 60 minutes were denoted as DNF.
Enforcement of Join Order. The SX and SX-JO columns in Figure 13 describes the effect of enforcing join
order in SUCXENT++. Note that we did not enforce the join order for queries Q1, Q2, Q4, and D1 when the
PathValue table appears in the translated SQL queries only once.

We made three main observations from our results as follows. First, in almost all cases the query perfor-
mance improved significantly when join order is enabled. For instance, for DBLP the performance of queries
D3 and D4 were improved by factors of 23 and 25, respectively. In fact, 18 out of 24 queries in Figure 13 ben-
efited from join order enforcement. Second, the benefit of this technique increases as the dataset size increases.
For instance, for the 1GB dataset the performances of Q5 to Q8 improved by 47 to 59 times. Furthermore,
queries that failed to return results previously in 60 minutes (Q3, D2) were now able to return results across all
benchmark datasets. Third, the penalty of join order for most of the benchmark queries, if any, was low on all
benchmark datasets. In fact, the largest penalty on the query performance due to join order enforcement was
22ms. In Section 7.3, we shall elaborate on the effectiveness of join order enforcement by analyzing the query
plans.
Comparison with GLOBAL-ORDER and SHARED-INLINING. Overall SX-JO outperformed both SI and
GO in at least 65% of the benchmark queries with the highest observed gain factors being 880 and 1939,
respectively. GO showed non-monotonic behavior for Q5-Q8 and as a result the performance of SX-JO was
comparable to GO for these queries on DC1000. However, SX-JO significantly outperformed SI for Q5-Q8 (up
to 30 times). Note that for DC1000, GO failed to return results for queries Q9 and Q10. Finally, for the DBLP

dataset, SX-JO significantly outperformed GO and SI for D1, D3, and D4, with the highest observed gain factor
454 and 114, respectively.
Comparison with MONETDB. Our study in the context of MONETDB revealed some interesting results. First,
MXQ was 11-164 and 3-74 times faster than GO and SI, respectively, for the majority of the benchmark queries.
However, this performance gap was significantly reduced when it was compared against SX-JO. Our results
showed that MXQ was 1.3-16 times faster than SX-JO. Surprisingly our approach was faster than MONETDB

for 33% of benchmark queries! Specifically, SX-JO was faster than MXQ for Q2, Q5, and Q8 on DC10 and Q1
and Q2 on DC100. Also, for the real dataset (DBLP) SX-JO was faster than MXQ for D1, D3, and D4 with the
highest observed factor being 35. Unfortunately, we could not report the results of MXQ for DC1000 because
it failed to shred the document. The reason of this problem is that MXQ (Win32 builds) is currently vulnerable
to the virtual memory fragmentation in Windows environment. MXQ also does not evaluate predicates applied
after reverse axis in reverse document order, but in document order. Therefore, in Q8, it evaluated the second
preceding-sibling element in document order, not in reverse document order (not in accordance to W3C
XPath recommendation [17]).

15



7.3 Sucxent++ Query Plan Analysis

In this subsection, we present an analysis of the query plans for the queries that are greatly benefited by join
order enforcement. Before we proceed any further, we wish to clarify that our goal in this paper is to present
a novel scheme for efficient processing of ordered XPATH queries in relational databases and highlight the
interesting behavior of a commercial optimizer in this context. We stress that, not being privy of the internals
of the optimizer, some of the remarks made in the subsequent discussion related to the query optimizer are
speculative in nature and should therefore be treated as such. Our intention is primarily to inform the community
to the phenomena that we have encountered during our investigation, with the hope that they may prove useful
in building the next generation of XML-enabled database systems.
Plan analysis of DC10 Q3: The SQL syntax for Q3 is similar to example in Figure 9. In the SQL statement,
two PathValue tables are joined together (lines 03-11) to form a temporary table V (line 01). V is used to return
the element nodes (lines 13-14) and attribute nodes (lines 16-19).

The portions of the query plans for Q3 without/with join order are shown in Figure 14 and Figure 15.
The query plan trees for both approach consist of primarily two subtrees. One subtree (Figure 14(a) and
Figure 15(a)) computes the V table and then returns all the attributes of V. The other subtree (Figure 14(b) and
Figure 15(b)) depicts the plan for computing the V table followed by joining it to the Attribute table.

Let us discuss the first subtree. Without join order, SQL Query Optimizer is “not smart enough” to decide
how to select both of the PathValue tables leading to larger intermediate result. Take a look at the upper part
of Figure 14(a). Notice the size of arrow going out from the ClusteredIndexSeek-PathValue table is large. The
size of arrow is proportional to the result size. This is because the seek predicates used are not specific enough;
therefore, more rows are returned. And in the lower part of Figure 14(a), rather than using clustered index
seek and filter, SQL Query Optimizer uses several steps which lead to longer query processing time. The most
expensive operation (as seen by the percentage and the arrow size) is the Index Spool (Eager Spool).

With join order enforcement (Figure 15(a)), SQL Query Optimizer uses better seek predicates for the upper
PathValue table resulting in smaller intermediate result size and uses less steps for the lower PathValue table
leading to a more efficient processing.

For the second subtree, with join order (Figure 15(b)), SQL Query Optimizer joins the two PathValue

tables, then does a hash match with the Attribute table. Whereas without join order (Figure 14(b)), SQL Query
Optimizer firstly joins the Attribute table with the PathValue table, then joins the result with two PathValue

tables. The total number of joins is greater by one and there is more processing compared to the join order
approach.
Plan analysis of DC100 Q5,Q7, DC1000 Q5-Q8: The SQL syntax for Q5-Q8 is similar to example in
Figure 11 except that for Q5 and Q7, line 11 is not applicable. In the SQL statement, two PathValue tables
are joined together (lines 03-11) to form a temporary table V (line 01). V is used to return the element nodes
(lines 13-14) and attribute nodes (lines 16-19).

The query plan for DC100 Q7, DC1000 Q5-Q8 are similar to query plan for DC100 Q5 with some minor
differences. Therefore, we only discuss the query plan for DC100 Q5. Similar to Q3, the query plan trees for
both without join order (Figure 16) and with join order (Figure 17) approaches consist of two subtrees.

Let us discuss the first subtree. Similar to what happens in Q3, without join order, the intermediate result
size is much greater than with join order. As can be seen in the upper part of Figure 16(a), the result size of the
ClusteredIndexSeek-PathValue is large; this is due to the seek predicates used by SQL Query Optimizer is not
specific enough. And in the lower part of the figure, the large result size of Table Spool (Lazy Spool) causes
the cost to be large as well. Whereas in Figure 17(a), the seek predicate used is better and Table Spool is not
required to process the result.

For the second subtree, interestingly, without join order (Figure 16(b)), SQL Query Optimizer chooses
better seek predicate and better steps for the two PathValue tables. But even though the cost to calculate the
second subtree is relatively low, since the cost of calculating the first subtree is high, the total query time is still
high. With join order (Figure 17(b)), SQL Query Optimizer joins the two PathValue tables, then joins it with
the Attribute table.

16



(a) Subtree to compute V table and return V table

(b) Subtree to compute V table followed by join with Attribute

Figure 14: Portion of SUCXENT++ Query Plan DC10 Q3 (without join order)

(a) Subtree to compute V table and return V table

(b) Subtree to compute V table followed by join with Attribute

Figure 15: Portion of SUCXENT++ Query Plan DC10 Q3 (with join order)

17



(a) Subtree to compute V table and return V table

(b) Subtree to compute V table followed by join with Attribute

Figure 16: Portion of SUCXENT++ Query Plan DC100 Q5 (without join order)

(a) Subtree to compute V table and return V table

(b) Subtree to compute V table followed by join with Attribute

Figure 17: Portion of SUCXENT++ Query Plan DC100 Q5 (with join order)

18



Figure 18: Portion of EDGE Query Plan DC100 Q5

Figure 19: Portion of EDGE Query Plan DC1000 Q5

7.4 Edge Query Plan Analysis

This subsection discusses query plans of Edge which have anti-monotonic behavior.
Plan analysis of DC100 and DC1000 Q5-Q8: The reason why DC100 and DC1000 Q6-Q8 have anti-
monotonic behavior is similar to Q5. Therefore, we only discuss query plan for Q5.

The query plan for DC100 and DC1000 Q5 are similar except for the portion to get the publisher node.
To get publisher node, after getting the context node (/catalog/*[1500]), we need to get the children
of the context node which satisfy path id of publisher. The dotted box in Figure 18 and Figure 19 highlights
the portion to get the publisher node for DC100 and DC1000. The part on the right side of the dotted box
is where the context nodes are retrieved.

In DC100 (Figure 18), the SQL Query Optimizer choose to get the result by using clustered index seek and
do a hash match with the context node. But it appears that the clustered index seek return a lot of result which
make the overall process expensive. In DC1000 (Figure 19), the SQL Query Optimizer gets the publisher
node by using several steps but with smaller result size for each step, which leads to faster processing.
Plan analysis of DC10 and DC100 Q9-Q10: The reason why DC100 and DC1000 Q9-Q10 have anti-
monotonic behavior are similar. Therefore, we only discuss query plan for Q10.

19



Figure 20: Portion of EDGE Query Plan DC10 Q10

Figure 21: Portion of EDGE Query Plan DC100 Q10

20



Different with [12] which do not consider attribute, we introduce an additional table Attribute to store all of
the attributes. To get attribute nodes, firstly we need to get all of the element nodes, both non-leaf nodes (i.e.
context nodes) and all of their descendants (note that we run the experiment in reconstruct mode). After that,
we join the Attribute table with the element nodes based on the id to get the attribute nodes. The final result is
a UNION ALL between element nodes with the attribute nodes.

The main difference between DC10 and DC100 is in how the attribute nodes are retrieved. The dotted box
in Figure 20 and Figure 21 highlights the portion where SQL Query Optimizer joins the Edge table with the
Attribute table for DC10 and DC100. The part on the right side of the dotted box is where the non-leaf nodes
are retrieved.

In DC100, SQL Query Optimizer firstly joins all except the last Edge table to get the non-leaf nodes. The
last Edge table is used to retrieve all of the element nodes (non-leaf nodes and their descendant), then the result
is joined with Attribute table to get the attribute nodes (dotted box in Figure 21). But in DC10, SQL Query
Optimizer joins the Edge table with Attribute table (dotted box in Figure 20), then joins the result with the
non-leaf element nodes which is more expensive.

8 Conclusions and Future Work

In this paper, we presented a scalable storage scheme for ordered XPATH evaluation in relational environment.
Our scheme extends SUCXENT++ [10] for the support of the processing of ordered axes and predicates while
maintaining its original properties. The mapped SQL queries were forced to execute a “left-to-right” join order.
We showed that this technique could improve query performance notably. In addition, our results showed
that our proposed approach outperforms other representative tree-unaware approaches for the majority of the
benchmark queries. Although tree-aware approaches were often the best in terms of query performance [3],
the “join-order conscious” SUCXENT++ reduced the performance gap between tree-aware and tree-unaware
approaches significantly and could outperform a state-of-the-art tree-aware approach (MONETDB) for certain
benchmark queries. Importantly, unlike tree-aware approaches, our approach did not require any invasion of the
database kernels to improve query performance and could easily be built on top of any off-the-shelf commercial
RDBMS.

As part of our future work, we are studying the “join order” phenomena encountered during our investi-
gation. We are also exploring other non-invasive mechanisms for improving XPATH query performance on a
relational backend.

References
[1] K. BEYER, R. J. COCHRANE, V. JOSIFOVSKI, ET AL. System RX: One Part Relational, One Part XML. In SIG-

MOD, 2005.

[2] P. BOHANNON, J. FREIRE, P. ROY, J. SIMEON. From XML Schema to Relations: A Cost-based Approach to XML
Storage. In ICDE, 2002.

[3] P. BONCZ, T. GRUST, M. VAN KEULEN, S. MANEGOLD, J. RITTINGER, J. TEUBNER. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational Engine. In SIGMOD , 2006.

[4] D. DEHAAN, D. TOMAN, M. P. CONSENS, M. T. OZSU. A Comprehensive XQuery to SQL Translation Using
Dynamic Interval Coding. In SIGMOD, 2003.

[5] D. FLORESCU, D. KOSSMAN. Storing and Querying XML Data using an RDBMS. IEEE Data Engg. Bulletin.
22(3), 1999.

[6] T. GRUST, J. TEUBNER, M. V. KEULEN. Accelerating XPath Evaluation in Any RDBMS. In ACM TODS, 2004.

[7] T. GRUST, J. TEUBNER, M. V. KEULEN. Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps. In
Proc. of VLDB, 2003.

[8] Z. H. LIU, M. KRISHNAPRASAD, V. AURORA. Native XQuery Processing in Oracle XMLDB. In SIGMOD, 2005.

21



[9] S. PAL, I. CSERI, O. SEELIGER ET AL. XQuery Implementation in a Relational Database System. In VLDB, 2005.

[10] S. PRAKASH, S. S. BHOWMICK, S. K. MADRIA. Efficient Recursive XML Query Processing Using Relational
Databases. In DKE), 58(3), 2006.

[11] J. SHANMUGASUNDARAM, K. TUFTE ET AL. Relational Databases for Querying XML Documents: Limitations
and Opportunities. In VLDB, 1999.

[12] I. TATARINOV, S. VIGLAS, K. BEYER, ET AL. Storing and Querying Ordered XML Using a Relational Database
System. In SIGMOD, 2002.

[13] B. YAO, M. TAMER ÖZSU, N. KHANDELWAL. XBench: Benchmark and Performance Testing of XML DBMSs.
In ICDE, Boston, 2004.

[14] M. YOSHIKAWA, T. AMAGASA, T. SHIMURA, AND S. UEMURA. XRel: A Path-based Approach to Storage and
Retrieval of XML Documents Using Relational Databases. ACM TOIT 1(1):110-141, 2001.

[15] C. ZHANG, J. NAUGHTON, D. DEWITT, Q. LUO AND G. LOHMANN. On Supporting Containment Queries in
Relational Database Systems. In SIGMOD, 2001.

[16] DBLP XML Record. http://dblp.uni-trier.de/xml/.

[17] XML Path Language (XPath) 2.0: W3C Proposed Recommendation 21 November 2006.
http://www.w3.org/TR/xpath20/

22



A Proofs

A.1 Proof of Lemma 1

Let Mj be the maximum consecutive j-consecutive leaf node set. Then, the maximum number of consecutive
leaf nodes with BranchOrder ≥ j is |Mj |. Given any node at level j, all but one of the descendants of this node
has BranchOrder ≥ j. Hence, any node at level j has at most |Mj |+ 1 descendant leaf nodes.

Recall convention that the first sibling has LocalOrder equal to 1. Given Ord(n,t) of n at each level t ∈ [k, `],
any ancestor of n at level t−1 has at least [Ord(n,t)-1] that are not n nor n’s ancestor. Each of these nodes either
is a leaf node, or has at least one descendant leaf node. Hence, an ancestor of n at level t − 1 has, excluding
n, at least [Ord(n,t)-1] descendant leaf nodes, all of which are descendants of the n’s ancestor at level k − 1
and are not descendants of any n’s ancestor at level greater than t− 1. Therefore, there is a node at level k − 1
with at least (

∑`
t=k[Ord(n,t)-1]) + 1 descendant leaf nodes (including n). This implies that

∑`
t=k[Ord(n,t)-1]

≤ |Mk−1|. Therefore,

∑̀

j=k

Φ(j) =
∑̀

j=k

[Ord(n, j)− 1]×R′
j−1

≤
∑̀

j=k

[Ord(n, j)− 1]×R′
k−1

≤ |Mk−1| ×R′
k−1

≤ R′
k−2 − 1

2

A.2 Proof of Theorem 1

To prove Theorem 1, we separate it into two parts: |n1.DeweyOrderSum - n2.DeweyOrderSum| < R′`−1
2 + 1 and

R′`+1−1

2 + 1 < |n1.DeweyOrderSum - n2.DeweyOrderSum|

LEMMA 2 Let n1 and n2 be two leaf nodes in an XML document. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| < R′`−1

2 + 1 then the level of the nearest common ancestor is greater
than `. 2

Assume the level of the nearest common ancestor of n1 and n2 is ≤ `,
then |n1.DeweyOrderSum - n2.DeweyOrderSum| < (R′

` - 1)/2 + 1. Let `1 be the level of n1 in X and `2 be
the level of n2 in X .
When level of nearest common ancestor is `: In this case, Φ1(j) − Φ2(j) = 0 for all j < ` + 1 and

Φ1(j)− Φ2(j) 6= 0 for j ≥ ` + 1. Consider the following cases.

Case n1.LeafOrder > n2.LeafOrder:

∆ = n1.DeweyOrderSum− n2.DeweyOrderSum

=
`1∑

j=`+1

Φ1(j)−
`2∑

j=`+1

Φ2(j)

= [Ord(n1, ` + 1)− 1]×R′
` − [Ord(n2, ` + 1)− 1]×R′

` +
`1∑

j=`+2

Φ1(j)−
`2∑

j=`+2

Φ2(j)

23



Since, Ord(n1,`+1) 6= Ord(n2, ` + 1) and Ord(n1, ` + 1) > Ord(n2, ` + 1), the above equation satisfies the
following:

∆ ≥ R′
` +

`1∑

j=`+2

Φ1(j)−
`2∑

j=`+2

Φ2(j)

≥ R′
` −

R′
` − 1
2

(From Lemma 1)

≥ R′
` − 1
2

+ 1

Case n1.LeafOrder < n2.LeafOrder:
Since in this case, Ord(n1,`+1) 6= Ord(n2, ` + 1) and

Ord(n1, ` + 1) < Ord(n2, ` + 2), Equation 1 satisfies the following:

∆ ≤ −R′
` +

`1∑

j=`+2

Φ1(j)−
`2∑

j=`+2

Φ2(j)

≤ −R′
` +

R′
` − 1
2

(From Lemma 1)

≤ −(
R′

` − 1
2

+ 1)

Therefore,

|∆| ≥ (
R′

` − 1
2

+ 1) (contradiction)

When level of nearest common ancestor is less than `: Let level of nearest common ancestor be k. Then,

Case n1.LeafOrder > n2.LeafOrder:

∆ ≥ R′
k − 1
2

+ 1 (Shown to be true above)

> (
R′

` − 1
2

+ 1) since k < ` (contradiction)

Case n1.LeafOrder < n2.LeafOrder:

|∆| ≥ R′
k − 1
2

+ 1

> (
R′

` − 1
2

+ 1) since k < ` (contradiction)

Hence, nodes n1 and n2 cannot have a nearest common ancestor at level lesser than or equal to `. The level
of nearest common ancestor must be greater than `.

LEMMA 3 Let n1 and n2 be two leaf nodes in an XML document. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ R′`−1

2 + 1 then the level of the nearest common ancestor is equal
to or smaller than `. 2

Assume the level of the nearest common ancestor of n1 and n2 is > `,
then |n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ (R′

` - 1)/2 + 1. Let `1 be the level of n1 in X and `2 be
the level of n2 in X . Let k > l be the level of the nearest common ancestor. Therefore Φ1(j)− Φ2(j) = 0 for
all j < k + 1 and Φ1(j)− Φ2(j) 6= 0 for j ≥ k + 1.

24



Case n1.LeafOrder > n2.LeafOrder:

|∆| = |n1.DeweyOrderSum− n2.DeweyOrderSum|

=
`1∑

j=k+1

Φ1(j)−
`2∑

j=k+1

Φ2(j)

≤
`1∑

j=k+1

Φ1(j)

Case n1.LeafOrder < n2.LeafOrder:

|∆| = −
`1∑

j=k+1

Φ1(j) +
`2∑

j=k+1

Φ2(j)

≤
`2∑

j=k+1

Φ2(j)

Based on Lemma 1:

|∆| ≤ R′
k−1 − 1

2

≤ R′
` − 1
2

<
R′

` − 1
2

+ 1 (contradiction)

Combining Lemma 2 and Lemma 3 above, we can conclude that if
R′`+1−1

2 + 1 ≤ |n1.DeweyOrderSum - n2.DeweyOrderSum| <
R′`−1

2 + 1 then the level of the nearest common
ancestor of n1 and n2 is ` + 1.

A.3 Proof of Proposition 1

Let `f1 be the level of the leaf node representing n1 and `fi be the level of the leaf node representing m. Given
that n1 and ni are siblings and m is either ni or ni’s descendant, both n1 and m must have the same ancestors
at level `− 1 or lesser. Therefore, Ord(n1,j) = Ord(m,j) for 1 ≤ j < ` and Ord(m,`) = Ord(ni,`). Then,

∆ = m.DeweyOrderSum− n1.DeweyOrderSum

=
`fi∑

j=2

Φi(j)−
`f1∑

j=2

Φ1(j)

=
`fi∑

j=`

Φi(j)−
`f1∑

j=`

Φ1(j)

= [Ord(m, `)− Ord(n1, `)]×R′
`−1 +

`fi∑

j=`+1

Φi(j)−
`f1∑

j=`+1

Φ1(j)

= [Ord(ni, `)− Ord(n1, `)]×R′
`−1 +

`fi∑

j=`+1

Φi(j)−
`f1∑

j=`+1

Φ1(j)

25



Since first descendant leaf node of n1 is the representative leaf node of n1,
∑`f1

j=`+1 Φ1(j) = 0. We know∑`
j=k Φ(j) ≥ 0 since Φ(j) ≥ 0 ∀ j. Also from Lemma 1

∑`
j=k Φ(j) < R′

k−2 for k > 2. Then for
H = [Ord(ni, `)− Ord(n1, `)]×R′

`−1 the following holds,

H ≤ ∆ < H + R′
`+1−2

H ≤ ∆ < [Ord(ni, `)− Ord(n1, `) + 1]×R′
`−1

Manipulating the above inequality by replacing ∆ with
m.DeweyOrderSum-n1.DeweyOrderSum and Ord(ni, `) with Ord(ni), we get

n1.DeweyOrderSum + [Ord(ni)− Ord(n1)]×R′
`−1

≤ m.DeweyOrderSum

< n1.DeweyOrderSum + [Ord(ni)− Ord(n1) + 1]×R′
`−1

A.4 Proof of Proposition 2

Case 1: Let nd be a descendant of nb at level `b and nd follows nb in document order. Additionally, let `fd

be the level of the leaf node representing nd and `fb the level of the leaf node representing nb. Let ∆ =
nd.DeweyOrderSum− nb.DeweyOrderSum. Then,

∆ =
`fd∑

j=2

Φd(j)−
`fb∑

j=2

Φb(j)

Since nd is a descendant of nb, Ord(nb, j) = Ord(nd, j) for 1 ≤ j < `d. Then, Φd(j) − Φb(j) = 0 ∀ j ≤ `d.
Also, `b < `d. Thus,

∆ =
`fd∑

j=`b+1

Φd(j)−
`fb∑

j=`b+1

Φb(j)

Since
∑`

j=k Φ(j) < R′
k−2 (Lemma 1),

`fd∑

j=`b+1

Φd(j)−R′
`b−1 < ∆ < R′

`b−1 −
`fb∑

j=`b+1

Φb(j)

−R′
`b−1 < ∆ < R′

`b−1

nb.DeweyOrderSum−R′
`b−1 < nd.DeweyOrderSum

< nb.DeweyOrderSum + R′
`b−1

All descendants of nb must satisfy the above inequality. Therefore, if na.DeweyOrderSum≥ nb.DeweyOrderSum

+ R′
`b−1

where `b > 1, then na cannot be a descendant of nb. Furthermore, given the total ordering of
DeweyOrderSum among nodes and R′

j > 0 for j > 0, na must follow nb.

Case 2: We must show that if na.DeweyOrderSum < nb.DeweyOrderSum, then na is not a descendant of nb,
na is not an ancestor of nb, and na precedes nb. Let nd be a descendant of nb. nb.DeweyOrderSum is the
DeweyOrderSum of the first descendant of nb. Then nd.DeweyOrderSum ≥ nb.DeweyOrderSum. Hence, if
na.DeweyOrderSum < nb.DeweyOrderSum, then na is not a descendant of nb. Since SUCXENT++ does not
store non-leaf nodes, it is guaranteed that selected nodes are not ancestors of nb. Finally, DeweyOrderSum is a
total order among nodes, and hence if na.DeweyOrderSum < nb.DeweyOrderSum, then na must precede nb.

26



A.5 Proof of Proposition 3

Case 1: First we show that na follows nb. From Proposition 2, since na.DeweyOrderSum≥ nb.DeweyOrderSum+R′
`b−1,

then na follows nb in document order and na is not a descendant of nb. To show that na is sibling of nb, we
need to prove that the nearest common ancestor is at level `b−1. Based on Theorem 1

na.DeweyOrderSum− nb.DeweyOrderSum < (R′
`b−2 − 1)/2 + 1

na.DeweyOrderSum < nb.DeweyOrderSum + (R′
`b−2 − 1)/2 + 1

Case 2: First we show that na precedes nb. Since nb.DeweyOrderSum < na.DeweyOrderSum, then na precedes
nb in document order and na is not a descendant of nb. To show that na is sibling of nb, we need to prove that
the nearest common ancestor is at level `b−1. Based on Theorem 1

nb.DeweyOrderSum− na.DeweyOrderSum < (R′
`b−2 − 1)/2 + 1

na.DeweyOrderSum > nb.DeweyOrderSum− [(R′
`b−2 − 1)/2 + 1]

27


